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A 3-LOCAL IDENTIFICATION OF THE
ALTERNATING GROUP OF DEGREE 8, THE
MCLAUGHLIN SIMPLE GROUP AND THEIR

AUTOMORPHISM GROUPS

ABSTRACT. In this article we give 3-local characterizations of the
alternating and symmetric groups of degree 8 and use these char-
acterizations to recognize the sporadic simple group discovered by
McLaughlin from its 3-local subgroups.

1. INTRODUCTION

In [18] local characteristic p completions of weak BN-pairs are clas-
sified when p is an odd prime. The outcome of this classification is that
such groups are either rank 2 Lie type groups in characteristic p, the
weak BN-pair is of type PSL3(p) or p € {3,5,7} and the weak BN-
pairs have known structure. In these exceptional cases the techniques
used in [18] break down. This is partly because the expected outcomes
may not be Lie type groups of rank 2 and so cannot be identified from
their action on a moufang polygon and partly because the p-rank is very
low leading to difficulties in eradicating p’-cores in centralizers of invo-
lutions. The groups corresponding to weak BN-pairs of type PSL3(p)
are currently being investigated by Astill [2]. For the larger amalgams
when p € {5,7} the exceptional cases have been further analyzed in
[17] and [19]. In the case p = 3 there are three different, but closely re-
lated, exceptional weak BN-pairs of characteristic 3. For more details
on weak BN-pairs see [18]. The purpose of this paper is to handle one
of these exceptional configurations. In fact we prove a much stronger
result than the original motivating problem requires, anticipating that
this result will also find application in the programme of Meierfranken-
feld on finite groups of local characteristic p [15]. Our main theorem
characterizes McL, the simple group discovered by McLaughlin, and
Aut(McL) in terms of certain 3-local data and is as follows (our nota-
tion will be explained below).
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Theorem 1.1. Suppose that G is a finite group, S € Syl;(G), Z =
Z(S) and J is an elementary abelian subgroup of S of order 3*. Further
assume that
(i) O% (Ng(J)) ~ 3%.Alt(6);
(ii) O¥ (Ng(Z)) ~ 32+%.2:Alt(5); and
(iii) for all non-trivial elements x of J, Ca(O3(Ca(x))) < O3(Ce(x)).
Then G is isomorphic to either McL or Aut(McL).

Let us consider one of the target groups in Theorem 1.1, namely
G = McL. Choosing an involution ¢ in L := O%(Ng(Z)) we observe
that CL(t) = 3 x 2-Alt(5). From the ATLAS [5], we recall that Cg(t) =
2-Alt(8). It is therefore tempting to try to prove that Cg(t) must be
isomorphic to 2-Alt(8) since we can then avail ourselves of identification
results due to Janko and Wong [13]. This is the path we follow which
brings us to

Theorem 1.2. Let G be a finite group with D = (y, z) an elementary
abelian Sylow 3-subgroup of G of order 9. Assume the following hold.
(i) C(D) = D and Ng(D)/Cg(D) = Dih(8).
(i) Cg(y) is 3-closed, Cq(y)/D = 2 and Ng({y))/D = 22,
(iii) Cg(z) = 3 x Alt(5) and Ng({z)) = Sym(3) A Sym(5) (the
diagonal subgroup of index 2 in Sym(3) x Sym(5)).
Then G is isomorphic to Alt(8).

The proof of Theorem 1.2 has many features in common with certain
of the 3-local characterizations obtained by Higman ([8], [9]) and a
number of his students. This line of development was eclipsed by the
burgeoning work on the simple group classification in the 1970’s, though
3-local characterizations continue to be of interest (see [12, 11]). The
main aim in the proof of Theorem 1.2 is to pin down the structure
of a Sylow 2-subgroup of G. The first step is to look at Cg(F)/F
where F is a Sylow 2-subgroup of Cg(z) (so F is an elementary abelian
group of order 4). Now the structure of Cg(z) implies that (z)F/F
is self-centralizing in Cg(F)/F and so we may apply a result due to
Feit and Thompson (see Theorem 2.1 below) to limit the structure of
Cg(F)/F. Further work restricts the structure of Cg(F)/F yet more
until we see, in (3.7), that C(F') has a normal Sylow 2-subgroup with
E = 05(Cg(F)) an elementary abelian group of order 2*. After that
we quickly get that Ng(E) contains 7', a Sylow 2-subgroup of G of
order 2°. At this point there are results we could quote to identify
G as being Alt(8). However, wherever possible, we give elementary
proofs rather than appealing to substantial results in the literature. So,
using the Feit Thompson result two more times we next determine the
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structure of the centralizers of involutions in the two involution classes.
This information, combined with the presentation for Alt(8) given in
Lemma 2.6, enables us to show that G' contains a subgroup isomorphic
to Alt(8). An easy application of the Thompson order formula finally
yields that G = Alt(8).

In seeking the second alternative of Theorem 1.1, just as for the McL
case, we are led to establish characterizations for smaller groups. Our
next result is the one we require. Note, however, the uninvited guest
here - the Sym(8) possibility is the one occurring in Aut(McL).

Theorem 1.3. Let G be a finite group with D = (y, z) an elementary
abelian Sylow 3-subgroup of G of order 9. Assume the following hold.

(i) [Ca(D)/D| = 2, Ne(D)/D = Dih(8) x2 and Na(D)/Ca(D) =
Dih(8).
(i) Cg(y) is 3-closed, Cq(y)/D =2 2? and Ng({y))/D = 23.
(i) Ca(z) =2 3 x Sym(5) and Ng((z)) = Sym(3) x Sym(5).

Then G is isomorphic to either Sym(8) or PGO (5).

We remark that PGO (5) is isomorphic to (Alt(5)22).2 by which we
mean the the unique group X with F*(X) = Alt(5) x Alt(5) a minimal
normal subgroup of X and X/F*(X) elementary abelian of order 4.
This group emerges in the proof of Theorem 1.3 as a certain subgroup
of index 2 in the subgroup of Sym(10) which preserves a partition of
the ten points into two sets of size five.

The hypotheses of Theorems 1.2 and 1.3 are very similar as indeed
are the groups Alt(8) and Sym(8), yet some aspects of the proof of
Theorem 1.3 are very different to that of Theorem 1.2. We begin, in
the spirit of the proof of Theorem 1.2, by quoting a theorem of Prince’s
(see Theorem 2.3) to deduce that Cg(t) is either Ng(D) or is isomor-
phic to 2 x Sym(6). Here ¢ is the involution in Z(Ng(D)). The former
case, which gives rise to G = (Alt(5)?2).2, rapidly leads to considering
a subgroup of G isomorphic to (Alt(5)?22).2 with the remainder of the
proof directed to towards showing that it actually is G. The methods
used are mostly 2-local in nature and culminate in a call to the clas-
sification of groups with an abelian Sylow 2-subgroup [22]. It is in the
latter case that we take a very different tack. The basic idea is to start
with the Coxeter presentations for the direct Sym(6) factor of Cg(t)
and the direct Sym(3) factor of Ng((z)) and attempt to paste them
together so as to obtain a Coxeter presentation for Sym(8). Let ¢; be
an involution in this direct Sym(3) factor. The crucial step, carried out
in (4.6), is to show that ¢ and t; are G-conjugate. We suppose that
this is not the case and examine whether or not certain involutions
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are in 7 = t“. Matters come to a head when this fusion information,
seen within an elementary abelian 2-subgroup E of order 16, leads us
to a predict the existence of a certain subgroup of GL4(2) of order 42.
This predicted subgroup is incompatible with the subgroup structure
of GL4(2) and so we have our contradiction.

As a consequence we obtain a subgroup X of G which is isomorphic
to Sym(8). The rich 2-local structure of Sym(8) assists us to quickly
establish that X contains a Sylow 2-subgroup of G' and then, courtesy of
the Thompson Transfer Lemma, we find that GG contains a subgroup H
of index 2. Now we may apply Theorem 1.2 to deduce that H = Alt(8),
whence it follows that G = Sym(8). We mention that at the heart of
the proofs of both Theorem 1.1 and 1.2 we apply results that crucially
rely on character theory for their proofs. Namely for Theorem 1.1 we
apply Theorem 2.1 and for Theorem 1.2 we apply Theorem 2.3.

Returning to the proof of Theorem 1.2 we mention that an amal-
gam consisting of the groups with shape (A;, Ay, A3) = (Sym(3) A
Sym(5),3% : Dih(8),22 : Dih(12)), pairwise intersections A; N Ay ~
32 : 22, Ay N Az = Dih(8), A; N A3 = Dih(8) and triple intersection
AN Ay N As =2 22 can be found in G. If it were possible to show
that the universal completion of such an amalgam must be isomorphic
to Alt(8), then we would have another proof of Theorem 1.2 which
would have been much more akin to the generators and relations part
of the proof of Theorem 1.3. However, calculations using MAGMA [4]
and employing the small index and coset image routines reveals that
the universal completion of this amalgam has quotients isomorphic to
Sym(8) x Alt(8) and 3'*.(Alt(8) x 2), so this is a forlorn hope.

With Theorems 1.2 and 1.3 to hand we finally embark upon the proof
of Theorem 1.1. Choosing ¢ to be an involution in O¥ (Ng(Z)) we wish,
as mentioned earlier, to use these two results to determine the structure
of Cg(t)/(t). Of course we must verify that we have the hypotheses of
these theorems and this is done in Lemmas 5.12 and 5.14.

All groups in this paper are assumed to be finite with our group
theoretic notation being standard as given, for example, in [1] and
[14]. For the description of group structures we follow the ATLAS [5]
except that we shall use Sym(n) and Alt(n) to denote, respectively, the
symmetric and alternating groups of degree n and Dih(n), Q(n) and
SDih(n), respectively, to stand for the dihedral group, quaternion group
and semidihedral group of order n. We also use Mat(n) to denote the
Mathieu group of degree n. Finally X ~ Y where X and Y are groups
will indicate that X and Y have the same shape.
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2. BACKGROUND RESULTS
.From here on we assume all groups are finite.

Theorem 2.1 (Feit Thompson Theorem). Let G be a group which con-
tains a self-centralizing subgroup of order 3. Then one of the following
statements 18 true.

(i) G contains a nilpotent normal 3'-subgroup N such that G/N
is isomorphic to either Alt(3) or Sym(3).
(ii) G contains a normal 2-subgroup N such that G/N is isomor-
phic to Alt(5).
(iii) G is isomorphic to PSLy(7).

Proof. This is a theorem of Feit and Thompson [6]. O

The set of maximal abelian normal subgroups of a p-group P is
denoted by SCN(P) and the subset of this set consisting of those groups
with p-rank at least & is denoted by SCNg(P).

Our next important result is a consequence of the soluble signalizer
functor theorem [14].

Theorem 2.2. Let G be a group of 2-rank at least 4 with Oy (G) =1
and SCN3(S) non-empty. If the centralizer of every involution of G is
soluble, then Oy (Cq(t)) =1 for every involution t of G.

Proof. See for example [7, Theorem 2.2]. O

As mentioned in Section 1, the next result is used in the proof of
Theorem 1.3.

Theorem 2.3 (Prince). Let G be a group which has a self-centralizing
Sylow 3-subgroup S of order 9. Suppose that Ng(S)/S = Dih(8) and
that Cq(z) < Ng(S) for all x € S#. Then either S<IG or G =2 Sym(6).

Proof. See [20, Lemma 3.2]. O

Theorem 2.4 (Janko, Wong). Let G be a group which possesses an
involution t such that Cg(t) =2 2-Alt(8). Then either G = Cg(t)Ox(G)
or G = McL.

Proof. See [13]. O
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We shall also require the surprisingly effective Thompson Transfer
Lemma.

Lemma 2.5 (Thompson Transfer Lemma). Let G be a group and T €
Syl,(G). Suppose that there ezists a mazimal subgroup U of T and an
involution t of T such that t NU = 0. Then t ¢ O*(G).

Proof. See [14, 12.1.1]. O
Lemma 2.6. The generators x,...,x¢ and the relations
o= 1
w7 = 1for2<i<6
(rizi01)° = 1for1<i<5
(xix]-)Z = 1for1<i<4dandi+1<j<6

give a presentation for Alt(8).

Proof. This is well-known. See [10, page 138].
O

Lemma 2.7. Suppose that G is group which contains a subgroup M =
(t) x My of odd index where t is an involution and My = Sym(4). Then
G contains a subgroup H of index 2 such that t € H and M N H =
Sym(4).

Proof. Let T € Syly,(M) and T, = T N My = Dih(8). Since T =
2 x Dih(8), Out(7’) is a 2-group whence Ng(T) = TCq(T). There-
fore no two distinct involutions in Z(T') are G-conjugate by Burnside’s
Theorem [14, Theorem 7.1.5]. Let 7" = (u). Then Z(T) = (t, u). Be-
cause M, has two conjugacy classes of involutions (and one of them
contains u) we deduce that one of ¢ and tu cannot be G-conjugate to
any element in Tj. Using the Thompson Transfer Lemma we then see
that there is an index 2 subgroup H of G with t ¢ H (and tu ¢ H)
and M N H = Sym(4). O

Lemma 2.8. Suppose G is a 2-group containing an elementary abelian
subgroup @ of index 2. Assume that t is an involution in G\ Q and
Co(t) = [Q,t]. Then tQ contains exactly |Cq(t)| involutions and they
are all conjugate.

Proof. If g € @, then tg is an involution precisely when ¢ and g com-
mute. Since g € Cg(t) = [Q, t], we have that tg = t[g,t] = t? for some
qE€ Q.

d

Lemma 2.9. Suppose that G = Sym(8) and H < G with H = Alt(8).
Let T € Syl,(G) and Ty =T N H.
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(i) Ty contains a unique elementary abelian subgroup of order 2*.
(ii) Lett € Z(T)*. Then Cg(t) contains exactly three subgroups of
index 2. They are Cg(t), Sym(2) ¢ Alt(4) and one other which
we call K. The groups Cy(t) and Sym(2) Alt(4) have Sylow
2-subgroups of exponent 4 and K contains elements of order 8.

Proof. These results are consequences of calculations in Sym(8). O

3. A CHARACTERIZATION OF Alt(8)

This section is devoted to proving Theorem 1.2. So we are assuming
that G is a group with D = (y,z) an elementary abelian Sylow 3-
subgroup of G of order 9. Setting Z = (z), Y = (y), L = Ng(Z) and
M = Ng(D) we also have

(3.1)
(i) Ce(D) = D, M/D = Dih(8);
(ii) D is normalin Cq(Y), Ce(Y)/D = 2 and Ng(Y)/D = 2%; and
(iii) Ce(Z) =23 x Alt(5) and L = Sym(3) A Sym(5).

Since M/D = Ng(D)/Cg(D) = Dih(8), M has two orbits on the
subgroups of D of order 3 and two orbits on D#. Note that |M :
M NL| =2.From (3.1) (ii) and (iii) it follows that
(3.2) G has two conjugacy classes of elements of order 3 namely, y“

and 2€.

Let V € Syl,(M N L). Then V 2 22 and V contains an element
inverting D and a non-trivial element which centralizes Z. Put B =
Ny (V) =2 Dih(8). Letting ag and by be involutions with ag € Cg(2)
and by € Cg(y) we observe that ag € V, B = (b, V') and

(3.3) ag and by are not conjugate in G. In particular, G has at least

two conjugacy classes of involutions.

Note that Z < Cg(ag) and Y < Cg(by). If ay and by were G-
conjugate, then by (3.2), 3% would divide |Cg(ag)| contrary to (3.1)
(). Thus (3.3) holds. [ )

Next we investigate the group generated by N (V) and B = Ny (V).
Set F'= N(V)NCg(Z) and choose a € F\ V.
(3.4)
(i) NL(V) = Dih(8);

(ii) (N.(V),B) = KV where K = (a,by) = Dih(12) is a comple-
ment to V in K'V; and



8 3-LOCAL IDENTIFICATIONS

(iii) V# C af.

The definition of V' and the structure of L imply that Np(V) =
Dih(8), F' € Syl,(0*(Cs(Z))) and F is elementary abelian of order 4.
In particular, we note that a is an involution.

Since a centralizes Z arguing as in (3.3) we see that a and by are
not conjugate. Set K = (a,by) and Ky = {(aby). Clearly we have
(NL(V),B) = KV. Further, as a and by are not G-conjugate, Z(K)
is non-trivial.

Since Z(Np(V)) centralizes Z and the non-trivial element of Z(B)
inverts Z, Z(Np(V)) # Z(B). Using N(V) = (a,V), B = (b, V),
Z(NL(V)) # Z(B) aswellas Z(B)Z(N.(V)) <V, we get that Z(B)* #
Z(B) and Z(N(V))% # Z(Ng(V)). Therefore K acts transitively on
V# If KNV # 1, then Z(K)NV # 1, contrary to K acting transitively
on V#.So KNV =1 and K is a complement to V in KV. Since 3
divides |K|, Ky has order divisible by 6. Let x be an element of K, of
order 3. By (3.2) z is G-conjugate to either y or z. If the former occurs
(3.1) (ii) implies that |K,| = 6 while if the latter occurs (3.1)(iii) gives
Cg(x) = 3 x Alt(5) and, as 2 divides | Ky|, we also get |Ky| = 6. Hence
K = Dih(12) and we have (ii).

Finally, as ap € V, the transitive action of K on V# implies (iii)
holds and so (3.4) is true. [ )

Observe again that F' is elementary abelian of order 4, a,a9 € F
and Np(F) = Sym(3) A Sym(4). Let Z(K) = (b) (where K is as in
(3.4)(ii)). Then b € Z(VK) and, by (3.4)(ii), VK/{b) = Sym(4).

(3.5)

(i) All the involutions in L are in a® = af.

(ii) 8¢ =05, b € Ce(F) \ F and 8 divides |Cg(F)|.
(iii) The elements in Cg(b) of order 3 are in y©.

Because Np(F) = Sym(3) A Sym(4), all the involutions in F are
conjugate. Since all the involutions in V are in a§ by (3.4) (iii), we
infer that all the involutions in L are in a§ = a® and (i) holds.

JFrom FF < N (V) < VK and b € Z(VK), it follows that b € Cg(F)
and so b € Cg(F) \ F. Hence the 2-part of |Cg(F)| is at least 8. Let
z be an element of K of order 3 with = inverted by a and by (which
we recall are not G-conjugate). If x € 2%, then, by (3.5)(i), all the
involutions in Ng({z)) are in a®, which is not the case. Hence = € y
and we have (ii) and (iii). [

Set N = Ng(F), C = Cq(F) and C = Cg(F)/F. At the moment
we know that N/C = NL(F)/Cr(F) = Sym(3) and, by the definition
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of F', Z < (. We shall shortly obtain detailed information about N
which will ultimately restrict the 2-structure of G. Since LNC = ZF,
we have C5(Z) = Z. Hence Theorem 2.1 yields that

(3.6) C has a normal subgroup X with F' < X such that one of the

following holds.
(i) C 22 PSLy(7) and X = 1.
(ii) C/X = Alt(5) and X is a 2-group.
(iii) C/X =2 Alt(3) or Sym(3) and X is a nilpotent 3'-group.
Let Dy € Syl;(N) with Z < Dg. Notice that Dy € Syly(G) and so
D, is G-conjugate to D. Thus Dy contains a G-conjugate Z; of Z with
7 # 7y and also two G-conjugates Y7 and Y of Y. Put F = Oy(C).

(3.7)

(i) C/E = Alt(3) and F = FCg(Z,) = Cg(FE) is elementary
abelian of order 2*.
(ii) |N| = 2°.32%
(iii) ENa® #0# ENbC.
(iv) Cp(Y1) = Cp(Y2) = 1.

We establish (3.7) by working through the list in (3.6). The first
possibility cannot occur as |Out(PSLy(7))| = 2 would force Cg(z) to
involve PSL,(7) for some z € D¥. Next we consider the possibility
that C/X = Alt(5) or Sym(3). Then N¢/x(ZX/X) = Sym(3). Since
F < N¢(Z) and Cy/p(Z) = 1, this gives [No(Z)| = 2°.3 and then
the Frattini Argument implies that |Ny(Z)| = 2%.32. But |Ng(Z)| =
23.32.5, a contradiction. Therefore, by (3.6), C'/X = Alt(3).

Now X is a 3'-group upon which Dg operates and so by [14, 8.3.4]

X =(Ox(11),Cx(Y2),Cx(Z1),Cx(2))-

Since Cg(Y7) is 3-closed by (3.1)(ii), Cx (Y1) < Cq(Do)NX = DyNX =
1. Similarly, Cx(Y2) = 1. We have that Cx(Z) = F. ;From Cx(Z;) <
Cs(Z1) = 3x Alt(5) and the fact that Dy normalizes C'x(Z;) we deduce
that Cx(Z) is elementary abelian of order 1 or 4. By (3.5)(ii), |C| is
divisible by 8 and so we conclude that X = FCx(Z;) with |X| = 24.
Therefore E = X and E = FCx(Z;) with E elementary abelian of
order 2*. Clearly C(FE) < Cc(E) = E and so we have (i) and (iv).
Since N/C = Sym(3) and a,b € C, (ii) and (iii) follow.

Put P = Ng(FE). Since Z and Z; are conjugate in Ng(Dy) = 32 :
Dih(8) and any two fours subgroups of L which are normalized by Dy
are conjugate by an element of Np(Dy), we may find an element f €
Ng(Dy) which conjugates F(= Cg(Z)) to Cg(Z;). Further, as Np(F) =
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Sym(3) A Sym(4), we see that elements of (N (F)NNg(Dy))\ Dy invert
Dy. Therefore, as Ng(Dy)/Dy = Dih(8),

(NL(F) N Ng(Dy))/ Do = Z(Na(Dy)/ Do)

and so f? € Ni(F). Therefore, by (3.7)(i), f normalizes E = FCg(Z;)
and hence N(f) < P. In our next claim we pin down the structure of
P.

(3.8)

(i) P has orbits of length 6 and 9 on E# with representatives,
respectively, a and b.

(ii) P = N{f) has order 26.3% and P acts irreducibly on E. More-
over P is isomorphic to a subgroup of Sym(8).

Because a and b are not G-conjugate they are certainly not P-
conjugate. Since, by (3.5) (i), b centralizes F', b € E by (3.7)(i). Also
by (3.5)(iii), b is not centralized by any conjugate of Z. Thus (3.7)(iv)
implies that b is not centralized by any nontrivial element of Dy. There-
fore |b] > 9. As F/ = Cg(Z,) and FN F/ =1, |af| > 6. This proves
that (i) holds.

By (3.7)(i) and (ii), P/E is isomorphic to a subgroup of GL4(2) =
Alt(8) of order divisible by 9. Considering the lengths of the orbits of
N{f) on E implies that P acts irreducibly on E and also that P is a
{2, 3}-group with the same orbits on E as N(f). It follows that |P| =
26.32 or 27.3% (with P/E being a subgroup of O (2) 2 Sym(3)?2). In
particular, Dy E is normalized by P. Now Np(Z) < Np(F) = Sym(3) A
Sym(4) and DyE/E contains exactly two conjugates of Z fused by f,
so we infer that P = N(f) is of order 2|N| = 26.3%.

Recalling that |Nz(F)| = 23.32 we have that |P : Np(F)| = 8. Thus,
as E is the unique minimal normal subgroup of P, P is isomorphic to
a subgroup of Sym(8). [ )

(3.9) If P/EDy =2 22, then P is isomorphic to a subgroup of Alt(8).

If (3.9) is false, then, using (3.8)(ii), we have P = Sym(4) x Sym/(4)
where, by virtue of F = Cg(Z), we have that Z is contained in one
of the direct factors of the decomposition of P. But then Cp(Z) =
3 x Sym(4) and this is not isomorphic to a subgroup of 3 x Alt(5).
Thus (3.9) holds. )

Let T € Syl,(P). Our grip on the 2-structure of G begins to tighten.
(3.10)

(i) E is the unique elementary abelian subgroup of 7' of order 2*.
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(ii) T € Syl,(G).

We first prove part (i). Suppose that F; < T with F # FE; and
E, = 24 If P/ED, is cyclic, then |EyE/E| = 2 and |E N Ey| = 23.
So E; induces a transvection on E. However, E; inverts DyFE/E and
so this is not possible. Thus P/DyF is elementary abelian and hence,
by (3.9), P is isomorphic to a subgroup of Alt(8) and there we readily
verify our claim. Let S € Syl,(G) with T < S. Then, using (i), Ng(T') <
Ne(E)NnS=PnNS =T, whence T = S € Syl,(G). [ )

We next investigate Cg(b) further. Put @ = O5(Cg(b)).
(3.11)

(i) Q =21+
(ii) P is isomorphic to a subgroup of Alt(8).
(iii) Cg(b)/Ox(Cq(b)) is isomorphic to the centralizer of an invo-
lution of cycle type 2% in Alt(8).

¢From (3.1) (ii) and (3.5) (iii) it follows that Cg(b)/(b) contains a
self-centralizing subgroup of order 3. Further, by (3.4) (ii), Cs(b)/(b)
contains a subgroup isomorphic to Sym(4) and, by (3.8) (i) and (3.10)
(i), has a Sylow 2-subgroup of order 2°. Using Theorem 2.1 for a second
time reveals that Cg(b)/Ox(Cg(b)) has order 20.3 with |Q| = 2°. If
E < @, then E is a normal subgroup of Cg(b) by (3.10) (i) and hence
Cg(b) < Ng(E) = P, which is not the case. Therefore E £ () and
so |E N Q| = 23. Since Q/(b) has two Sym(3) non-central chief factors
and E N Q = 23, we deduce that Q/(b) is elementary abelian. Hence
Q' = (b) by (3.10) (i). Using the Sym(3) action we see that Z(Q) is
elementary abelian. If Z(Q) # (b), then Z(Q) = 23 and ENQ £ Z(Q).
But then Z(Q)(F N Q) is an elementary abelian subgroup of 7" which
does not exist by (3.10) (i). Thus Q = 21, Since EQ = T, T/E must
be elementary and so (3.9) gives (ii).

Now KV < Cg(b) and KV contains a subgroup (b, b)V = Sym(4).
Since b & (b3,bo)V, by (i) this group is core-free in Cg(b)/O(Cg(b)).
Therefore X = Cg(b)/Oa (Cg(b)) is isomorphic to a subgroup of Sym(8).
Moreover X has index 2 in the centralizer of an involution of cycle
type 2* in Sym(8). Plainly X is not 2-closed and, as T is isomorphic
to a Sylow 2-subgroup of Alt(8), X has no elements of order 8. Using
Lemma 2.9(ii) yields (iii). [ )

(3.12) G has exactly two conjugacy classes of involutions.

Let g be an involution in G. By (3.10) (ii) we may suppose g € 7.
If g € E, then g € a® Ub® by (3.8)(i). If g & E, then, by (3.11) (ii),
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Cr(g) = [E, 9] = 2% and hence all involutions in gE are conjugate by
Lemma 2.8. So we may further suppose g € Ng(Dy) and then we see
that g € No(Z) = L or g € Cq(Y1) U Cg(Ys). Again g € a® U bC, so
proving (3.12). [ )

(3.13) Cg(a)/Ox(Cg(a)) = Cp(a) is isomorphic to the centralizer of

an involution of cycle type 1*.22 in Alt(8).

We have Cg(a) > CL(a)E which has order 2°.3. Since a is not con-
jugate to b, Cr(a)E contains a Sylow 2-subgroup of Cg(a). Thus we
can calculate in a Sylow 2-subgroup of Alt(8) in which a corresponds
to the involution (1,2)(3,4) and has centralizer in P isomorphic to

((1,2)(3,4),(1,3)(2,4), (5,6)(7,8),(5,7)(6,8), (5,6,7),(1,2)(5,6)).

Thus we see that Cp(a)/{a) = 2 x Sym(4). In particular, Cg(a)/{a)
has Sylow 2-subgroups isomorphic to Dih(8) x 2 and Z(Cp(a))/{a) =
F/{a). By Lemma 2.7 Cg(a) has a normal subgroup of index 2 not
containing F. Suppose that (3.13) does not hold. Then applying The-
orem 2.1 for the third and final time we get that the subgroup H of
index 2 in Cg(a) has H/{a) = PSLy(7). Since Aut(PSLy(7)) has dihe-
dral Sylow 2-subgroups, it follows that Cg(a) < Ng(F) < P which is
absurd as P is soluble. Thus (3.13) holds. [ )

(3.14) G is a simple group.

Let N be a non-trivial normal subgroup of G. By (3.1) and [14, 8.3.4]
3 divides |N|. Then, as Ng(D) acts irreducibly on D, we get D < N.
Hence G = NNg(D) by the Frattini Argument. Further F = [E, Dy| <
[E, N] < N and therefore N contains all the involutions in G by (3.7)
(iii) and (3.12). Since a Sylow 2-subgroup of Ng(D) is isomorphic to
Dih(8), this implies that G = NNg(D) = N, so proving (3.14). [ )

(3.15)

(i) Cg(b) is isomorphic to the centralizer of an involution of cycle
type 2% in Alt(8).

(ii) Cg(a) is isomorphic to the centralizer of an involution of cycle
type 14.22 in Alt(8).

Combining (3.11) (iii), (3.12) and (3.13) yields that the centralizer of
every involution in G is soluble. Since G has 2-rank at least 4 and, by
(3.14), Ox(G) = 1, Theorem 2.2 together with (3.11) (iii) and (3.13)
gives (3.15). [ )
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(3.16) G contains a subgroup isomorphic to Alt(8).

We show that G contains elements x4, ..., x¢ which satisfy the rela-
tions detailed in Lemma 2.6. We start in the subgroup L = Sym(3) A
Sym(5). We select x; = z and then z3,...,x¢ € L are chosen to corre-

spond to transpositions from Sym(5) satisfying the standard Coxeter
relations and inverting x;. We need to find an appropriate involution
Ty. Set 2y = T5x6. Then 2z, is an element of order 3 in E(L) = Alt(5).
Since |Nz({z1))| = 22.3? and Z is normal in N({(z1)), we deduce that
z; is conjugate to z. Since z; and z3 centralize z; and (z7,x3) =
Sym(3), we get (z1,23) < E(Cg(z1)) = Alt(5). Now select an invo-
lution 2o € E(Cg(z1)) so that x5 centralizes xg, (1, z2) = Alt(4) and
(29, 23) =2 Sym(3). There are two choices for such an element and they
are conjugate by x3. Notice at this stage we know that z1, ..., xs sat-
isfy all the relations listed in Lemma 2.6 apart from perhaps the rela-
tion between x5 and z4 which says that zox4 has order 2. From (3.15)
we have that Cg(zs) = Sym(4) A Dih(8). Since (z3,z3) = Sym(3),
(x3,74) = Sym(3) and Cg(xg)/02(Ca(z6)) = Sym(3), we may finally
choose x5 s0 that £205(Ca(z6)) = 2402(Cq(x6)). In particular we may
and do choose x5 so that xox4 has order a power of 2. Now x93 and x3x4
are both elements of order 3. Hence xox3, 1374 € O*(Ca(xs)) = Alt(4).
Since roxys = Tox3x3x4 is an element of 2-power order, we infer that
2914 has order 2 or 1. Since xo & L, 9 # x4 and so xox4 has order 2. By
Lemma 2.6 (x1, T, T3, T4, Ts, Te) = Alt(8), which establishes (3.16). #

The Thompson order formula [1, 45.6] for the case of two involution
conjugacy classes asserts that

G| = [Ce(b)ne + |Cala)lny
where n, is the number of ordered pairs (o, 8) € a® x b with a € (a3)
and ny is the number of ordered pairs («, 3) € a® x b¢ with b € (af3).
Since the numbers n, and n, are determined by the structure of Cg(a)
and C(b) and the fusion in these centralizers is exactly as it is in Alt(8)

by (3.16), we deduce that |G| = |Alt(8)|. Therefore (3.16) implies that
G = Alt(8) and this completes the proof of Theorem 1.2.

4. A CHARACTERIZATION OF Sym(8) AND (Alt(5)?2).2

In this section we move on to establish Theorem 1.3 which charac-
terizes Sym(8) and (Alt(5)22).2. Thus G is a group with D = (y, z) an
elementary abelian Sylow 3-subgroup of order 9. This time our further
assumptions are

(4.1)
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(i) |Ca(D)/D| = 2, No(D)/D 2 Dih(8) x 2 and Ng(D)/C(D) =
Dih(8);
(ii) D is normal in Cg(y), Ca(y)/D = 2% and Ng({(y))/D = 23
and
(iii) Cg(z) =2 3 x Sym(5) and Ng({z)) = Sym(3) x Sym(5).

Our first task is to give what is essentially a presentation of Ng(D).
Let 21, z2 be two conjugates of z in D with D = (21, 25) and put Z; =
(z;) for 1 = 1,2. Let (t) = Z(Ng(D)). So t has order 2. Let s and
t1 be involutions in Ng(D) chosen so as (s, t1) = Dih(8), 2{ = 2z and
[22,t1] = 1. Furthermore, assume that ¢; is chosen so that C¢((t1, 21)) =
Sym(5). Define ty = t§, and set B = (t,11, s). Then B € Syl,(Ng(D)),
Z(B) = (t, t1t2> and B' = <t1t2> Set

L = Ng(Z,) and M = Ng(D).
Define y; = 2122 and put Y = (y). Now set

A = Cg({t1, 21)) = Cr((t1, z1)) = Sym(5).
Note that t € A and t centralizes Z,, and therefore we record that
(4.2) t is a transposition in A. [ )

(4.3) Either M = Cg(t) or Cg(t) = 2 x Sym(6).

Put K = Cg(t) and K = K/(t). Then K > D. From (4.1)(i), we
have Nz(D)/D = N¢g(D)/Cq(D) = Dih(8). Also, from (4.1)(ii) we
have Cz(y) < Nz(D). Now as t is a transposition in A, D is normal in

Cr(t). Thus C%(Z) < Nz(D). Hence Theorem 2.3 completes the proof
of (4.3). [ )

(4.4) The following hold.

(i) Either ¢ is G-conjugate to t; or t is A-conjugate to tt,.
(ii) ¢ is not G-conjugate to tts.

We have t; € A = Sym(5). If ¢ty is a transposition in A, then t
is A-conjugate to t by (4.2) and as ¢; and ¢, are conjugate by s we
have that ¢ is conjugate to t;. If ¢5 is not a transposition in A (so
ty € A’ 22 Alt(5)), then tt, is a transposition in A. Thus in this case tt,
is A-conjugate to ¢t by (4.2) again. This proves (i).

Since t1ty € B' < Z(B), t1t, is contained in the derived subgroup of
Ca(tita). As, by (4.3), t is not in the derived subgroup of its centralizer,
t and t;ty are not G-conjugate. Thus (ii) also holds. '
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Set t, = titot and note that t, inverts every non-trivial element of
D.

(4.5) If Cg(t) = M, then G = (Alt(5)22).2.

Suppose that C(t) = M. Then, as M is soluble and Cg(¢;) contains
A which is not soluble, ¢ is not conjugate to ¢; and thus t is A-conjugate
to tty by (4.4). Therefore, as t is a transposition in A, ¢ty is a trans-
position in A and so centralizes an A-conjugate Z3 of Z,. Observe, as
Zs is inverted by tty and Z3 is centralized by tte, (Zs, Z3) = Alt(5).
Further {to,t,tty} is the set of all involutions in a Sylow 2-subgroup of
Cr(Z1) = 3 x Sym(3) x 2. Since ¢; centralizes A and Z3 is A-conjugate
to Zy, {tta, t1,t.} are the involutions in a Sylow 2-subgroup of the cen-
tralizer in Ng(Z1Z3) of Zs. Thus, as sets, {tto, t1,t,} and {to,¢,tt2} are
G-conjugate. As t is not conjugate to t; and is conjugate to tto, we infer
that ¢ is conjugate to t,. Therefore, as M = Cq(t), O3(Ca(ts)) = Z3Z4
for some Z, conjugate to Z;. Since s € Cg(t*), s normalizes Z3Z,. Note
that, as (Zy, Z3) = Alt(5), (Z1, Zs, Z3) = 3 x Alt(5). If Z5 = Zs, then s
would normalize (Z,, Zy, Z3) = 3 x Alt(5). But then s would normalize
Zy, = Z((Zy,Zy, Z3)) which it does not. Hence Z§ = Z,. Notice that
Cc;(Z3) 2 <Z1, Z4, tl, t*> Hence

Ca(Zy) = Ca(Z3)° > (Z1, Zy,t1,t)° = (Zo, Z3, 1o, 14).
It follows that (Zs, Z3) and (Z;, Z,) commute. Since
(21, 24)" = (22, Z3),
we infer that
X = (21, Za, Zo, Zy) = Alt(5) x Alt(5).

Because t, centralizes Z3Z4, and Cx(Z3Z,) = Z3Z,, t. ¢ X, but
t. does normalize X. Thus we have Ng(X) > (X,s,t,), t. ¢ X,
with ¢, inverting all the non-trivial elements of D and s interchanging
(Zy, Zy) and (Zy, Z3). Combining this with (4.1)(ii) and the fact that
Aut(Alt(5) x Alt(5)) = Sym(5) ! Sym(2) yields that H = Ng(X) =
(Alt(5) 12)2. Let S € Syly(H). Since H is uniquely determined up to
isomorphism, we may determine the conjugacy classes of involutions
and how they correspond to the involutions in B. However, we note
that there remains a small ambiguity with the identification of s and
st (see Table 1). In Table 1 we have regarded H as a subgroup of index
2 in Sym(5) 2 viewed as a subgroup of Sym(10) and stabilizing the
partition {{1,...,5},{6,...,10}} of {1,...,10}.

Since Cg(t) = Cy(t) = M, t is not G-conjugate to any of the other
H-classes of involution. Furthermore, we calculate that in S, there are
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Inv. 7 Representative Cy (1) Structure
t (1,2)(3,4) Cr(i) ~ (2% x Alt(5)).2
tita (1,2)(3,4)(6,7)(8,9) Cy(i) =222
t (1,2)(6,7) Ce(1) = Cy(i) =2 2 x 3% : Dih(8)
s, st (1,7)(2,6)(3,8)(4,9)(5,10) Cx(i) = 2 x Sym(5)
TABLE 1

exactly 4 conjugates of ¢t and they are all conjugate in S. In particu-
lar, Ng(S) = Cng(s)(t)S < (Cq(t),S) < H. Hence Ng(S) = S and
so S € Syl,(G). Now we apply the Thompson Transfer Lemma to ¢
with respect to the index 2 subgroup (SN X)(s) of S, to deduce that
G has a subgroup Gy with |G : G5 = 2. Hence exactly one of s or
st € (G5 we denote which ever element it is by s,. We know that s,
centralizes y, so as s, is not conjugate to ¢, Y € Syl;(Cg,(ss)) and,
as t € Gy, we have that Y is self-centralizing in Cg,(s.)/(s.). Be-
cause Cx (s,) contains a subgroup isomorphic to Alt(5), we infer from
Theorem 2.1 that Cx(s.) & Cg,(s+)/O2(Caq,(s)). In particular, s,
is not G-conjugate to either ¢; or t;f,. Thompson’s Transfer Lemma
now delivers a subgroup G4 of index 2 in GG5. Furthermore, GG, has ele-
mentary abelian Sylow 2-subgroups of order 16. Therefore Ng, (SN X)
controls the fusion of involutions in § N X with respect to G4. Since
|Ng,(SNX)/Cgq, (SNX)| is divisible by [Nx(SNX)/(SNX)| = 3% and
this number is odd, the subgroup structure of GL4(2) = Alt(8), shows
that |[Ng, (SN X)/Cq, (SN X)| = 3% It follows that there are three
Ne¢, (S N X)-conjugacy classes in S N X. Thus G4 has three conjugacy
classes of involutions.

Finally, we note that it easy to demonstrate that if G > H, then G4
is a minimal normal subgroup of G which is a simple group with ele-
mentary abelian Sylow 2-subgroups and three conjugacy classes of in-
volutions. This violates the classification of simple groups with abelian
Sylow 2-subgroups given in [22] ( see also [3]) as all such simple groups
have one conjugacy class of involutions. Therefore we conclude that
G = H = (Alt(5)12).2. [ )

[a¥)

In view of (4.3) and (4.5), from now on we assume that Cg(t) =
2 x Sym(6). The first configuration we study finally leads to a contra-
diction.

(4.6) t is G-conjugate to t;.
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Set 7 = t“ and, aiming for a contradiction, assume that t; ¢ 7.
Then tty € T by (4.4) (i). Furthermore, as t is a transposition in A,
(4.4) (i) implies that ¢t is also a transposition in A. Set T' = (1,2, 1).
Then T is elementary abelian of order 8 and s normalizes T'. Let Z be
the set of all involutions in G and set N' = Z\T. Since (tt1)* = tt5 = tto,
we have

T D {t,tty,tta}.
(4.6.1) Let J = Cg(t) = 2 x Sym(6).
(1) t1t2 € JI = A]t(6),
(iii) ¢ and t1t, are not G-conjugate; and
(iv) (t1)J" = Sym(6) = (tt1)J".

Part (i) and (ii) follows from (t;t,) = B’ < J'. Part (iii) follows
similarly from the fact that ¢ € Cg(t)', whereas t1t, < B' < Cg(t1t2)'.
Part (iv) now follows from (iii) as ¢¢; and tt, are both conjugate to ¢.

We restate (4.6.1) (iii) by noting that

N 2 {tla t27 tth}'

Let F = Ni(T). Then F = Dih(8) x 2. Select f € (FNA)\T.
Observe that f centralizes ¢; and ty, (tt2)/ =t and (¢t;)/ = t,. Hence
we have shown

(4.6.2) T2 T NT = {t,tty, tty, t,}.

Let E =TZ(S). If E = Z(S), then, as B < S, T < Z(B) which
is false. Therefore E is elementary abelian of order 2%. It follows that
P = Ng,»)(E) =2 x 2 x Sym(4) and P has three orbits of length one
and four orbits of length 3 on the involutions in E. Since ¢; and ¢, are
conjugate by s and since s € P, we see that there exists t3 € E with
t¥ = {t1, 5, t3}. In particular, t3 € A/. Since ¢ and ¢, are in 7 it follows
that

(4.6.3) T D {t, 11, tto, tts, thita(= t.), thits, ttats).
Now t1t, € N and so tots, tit3 € N as well.
(4.6.4) N D {t1,to, ts, tito, tots, tits ).

Let P; > S be a maximal subgroup of Cg(t) with P; # P. Then the
structure of Sym(6) shows that P, = Sym(4) x 2 x 2.

(4.6.5) Suppose that R € {P, P, }. If |Z(R)NT| > 2, then the Sylow
3-subgroups of R are conjugate to Z.
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Obviously TNR D {t}. Suppose that g € Z(R)NT with ¢ # g. Then
R < Cg(g) = Sym(6) x 2. Since R is a maximal subgroup of Cg(t)
and since t # g, we get that R = Cg(t) N Cg(g). Let U € Syls(R).
Then Ca(U) = (Cog(U), Coo(e)(U))- Now |Copn(U)| = 22.3% =
|Cce(g)(U)]. Since these two groups are not contained in R, we infer
that Cq(U) > Ceogyw(U) and so [Cq(U)| > 22.3%. Hence (4.1) (ii) and
(iii) imply that U is conjugate to Z. This proves (4.6.5).

Let x = titot3 and note that z € Z(P).

(4.6.6) t; € Z(P,) and the Sylow 3-subgroups of P, are conjugate to

Z.

Since {t1,19,t3} is a P-orbit and ¢{ = ty, we get have that t3 is
centralized by (E,s) = S. Thus t3 € Z(S). We calculate that the three
subgroups of Z(S) which contain ¢ are (t,t,t9), (t,z) and (¢, t3). Since
t1ty € J, it follows from the structure of Sym(6), that P, = C((t, t3)).
Since t3 € T, the result follows from (4.6.5).

Since the Sylow 3-subgroups of P, and of P are not conjugate in G,
we have that Z(P)NT = {t}. Hence

(4.6.7) z,tz € N.
Combining (4.6.3), (4.6.4) and (4.6.7), we have
ENT = {t, tt, tto, tts, thita(= t.), thits, thats ).

Finally we recall the element f € (AN NL(T))\ T. As f normalizes
T, f normalizes Cq(T) = E. Hence f induces an action on E and
permutes the seven elements of EN 7. Now ¢/ = tt; and ttéc = 1. Since
the orbits of P on ENT are {t}, {t., ttits, ttots} and {tt1, tte, tts}, we
infer that H = Ng(FE) acts transitively on ENT. But then |H : P| =7
and we get |H/E| = 42. Since H/E > P/E = Sym(3), we now have
a contradiction to the structure of GL4(2) = Alt(8), so finishing the
proof of (4.6). [ )

We now set X = (Cq(t), M, L).
(4.7) X = Sym(8) and Cg(z) < X for all elements 2 € X of order 3.

We begin by noting that s € Cg(t) and M = (M N L)(s), so X =
(Cg(t), L). Since t and ¢, are conjugate by (4.6), we have Cg(t;) =
2 x Sym(6) and of course Cg(t;) contains A = Sym(5) with t € A a
transposition in A. Let J = (Cg(t1)'(t). Then A < J and by considering
the six-point action on the cosets of A, we identify ¢ as a transposition
in J. Recall that ¢, is conjugate to ¢ and so is also a transposition in J.
Since t and ¢, commute, there exist transpositions ci, co € A satisfying
the Coxeter relations given by the Coxeter diagram
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tg C1 Co t

o ——— 0 — 0
We have that C;({c;,co,t)) is cyclic of order 2 containing the trans-
position g of J. Together with %5, c1,co and ¢, g satisfies the Coxeter

relations defined by the diagram
q tg C1 Co t
* ———o — o — 0o —°

Therefore (g, to, ¢1, o, ) = Sym(6) and it commutes with ¢;. Now we
add elements ¢; and ti'. We know (t1,¢') = (t1,21) = Sym(3) and
that this subgroup commutes with A = (3, ¢1, 2, t). So we have the
following Coxeter diagram where the dotted line denotes a product

order which we have yet to determine.

tl til g tz C1 Co t

& —— —— O — O —O—9
Now (tcp) is a cyclic group of order 3 which is contained in A. Since
all subgroups of A of order 3 inverted by transpositions in A are A-
conjugate to Zs, we conclude that (tcy) is conjugate to Z;. Therefore
Cg(tes) = 3 x Sym(5). Since (t1,17', g,t2) < Cg(tca), we have that
(1,15, g,12) is a subgroup of A; = O3(Cg(tey)) = Sym(5). Further-
more, we have that

<t17ti17t2> S NA1 (Zl) =2x Sym(3)

So (ti,t7*,ta) = Na,(Z1). Since J = (g, A) does not normalize 7,
we have g & N4, (Z1) and so g & (t1,5*,12) . Hence, as N, (Z1) is a
maximal subgroup of A;, A; = (t1,t*, g,t2) = Sym(5). We have that
ty centralizes Z1, therefore ¢, is a transposition in A; and since t; and
(t2, g) commute, t; is also a transposition in A;. Hence g and ¢]* are
transpositions in A;. Thus either ¢{* and g commute or have product of
order 3. If they commute, then (¢, s, g,%') would have a subgroup of
order 9 in Sym(5), which is absurd. Therefore t7* g has order 3. It follows
that X = (t1,}', g,t2, ¢1, ¢o, t) = Sym(8). Finally, by considering the
centralizers of elements of order 3 in Sym(8) and appealing to (4.1) we
see that Cg(z) < X for all z € X with z of order 3. [ )

Finally we prove that X = G. Let S € Syl,(X) be such that ¢ €
S. Also let «, 3,7,t be the representatives for the four X-conjugacy
classes of involutions in X where we assume that « has cycle type
2%, B cycle type 12.23 and v has cycle type 1%.22. Of course ¢ is a
transposition. We have that Cx(a) & 2:Sym(4), Cx(8) = 2x2:Sym(3)
and Cx () = Dih(8) x Sym(4). Plainly « and 7 cannot be G-conjugate
to t as their centralizers do not embed in Cg(t) = 2 x Sym(6). Thus
if t is G-conjugate to any of these involutions it must be conjugate
to (. Suppose that ¢ is G-conjugate to 5. Then Cg(8) = 2 x Sym(6)
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and a Sylow 3-subgroup (d) of Cx(3) embeds into a Sylow 3-subgroup
of Dy of Cg(B). Thus Dy < Cg(d) and, since |Dy| = 9, Dy £ X,
which contradicts (4.7). Thus ¢ and 8 are not G-conjugate. An easy
calculation in a Sylow 2-subgroup of Sym(8) shows that S contains
exactly four transpositions and that they are conjugate in S. The above
calculation then shows that t NS = t5. Therefore Ng(S) acts on
t9 and hence Ng(S) = S(Cq(t) N Ng(S)) < (S,Cq(t)) < X. Thus
N¢(S) = Nx(S) = S and so S € Syl,(G). Because t is not G-conjugate
to either « or 7, t is not G-conjugate to any element of SNX'. Therefore
GG has a normal subgroup H of index 2 by Thompson’s Transfer Lemma.
Because this subgroup contains X’ 2 Alt(8) it satisfies the hypotheses
of Theorem 1.2. Hence H = Alt(8) by Theorem 1.2. Consequently
G = X = Sym(8), so proving Theorem 1.3. O

5. THE McLAUGHLIN GROUP

In this, our final section, we present the proof of Theorem 1.1. Much
of our deliberations are concerned with getting into a position to use
Theorems 1.2 and 1.3. We begin by recalling the hypotheses of Theo-
rem 1.1.

Hypothesis 5.1. G is a group, S € Syl3(G), Z = Z(S) and J is an
elementary abelian subgroup of S of order 3* such that the following
hold

(i) O% (Ng(J)) ~ 3*.Alt(6);
(i) O (Ng(Z2)) ~ 3F*.2-Alt(5); and
(iii) for all non-trivial elements x of J, Cz(O3(Ca(x))) < O3(Cg(x)).
The proof of Theorem 1.1 develops through a series of lemmas. Set

Q = 03(Ng(2))(= 03(Ga(Z))). So Q is extraspecial of order 3°. Fur-
ther set

L =Ng(Z), L, =0%(L), M = Ng(J) and M, = O* (M).
Thus we have

L./Q = 2°Alt(5) = SLy(5) and M, /J =2 Alt(6) =2 PSLy(9).
Lemma 5.2. The following hold:

() Ca(@) = Z2(Q);
(i) Z=2(Q) = 3; and
(iii) Ca(J) = J.

Proof. By Hypothesis 5.1 (i), as |S : Q| = 3 and Q = 3" |JNQ| = 33
and J N @ is a maximal elementary abelian subgroup of (). Hence
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Z(Q) < J. But then C(05(Ce(Z(Q)))) < Q by Hypothesis 5.1 (iii).
Hence (i) holds. Since Z < Cg(Q), (ii) follows from (i).

Let C' = Cg(J). Then C is normalized by M. Since C' > J, we have
either CN M, = J or C N M, = M, from Hypothesis 5.1 (i). However,
Z < J and so C < Ng(Z). Thus Hypothesis 5.1 (ii) shows that it
is impossible for C N M, = M,. So C N M, = J and hence [M,, C] <
CNM, = J.If z € C has 3'-order, then we see that [S, z, z] < [J,z] = 1.
Thus z € Cg(S) < Ce(Q) = Z(Q), using (i), and so z = 1. Hence C is
a 3-group. Since Ng(J)/M, is a 3'-group, we conclude that C' = J. O

Lemma 5.3. Suppose that T is a 2-group of order 32 which contains
a subgroup R = Q(16) and a normal cyclic subgroup F of order 4 with
Cr(F) = Q(8). Then T is isomorphic to the group

{a,b,c|a*=b*=c® = cPc = " = b?c* = [a,c?] = [a,b] = a®c* = 1).
In particular, we note that (ab, c) = SDih(16) and (a, ¢?, bc) = 2xQ(8).

Proof. Let a € F be of order 4 and R = (b, ¢) with (c) of order 8. Then,
as R is a quaternion group, b has order 4, ¢® = ¢! and b = . Set
U = Cr(a) = Q(8). Then we may assume notation is chosen so that
U = (b, c?). Since a®> € FNU, we deduce that a> € Z(R). Thus a’c* = 1.
Finally we note that a normalizes (c), centralizes ¢* and ¢ & Cg(a), so
it follows that ¢® = ¢® and this completes the presentation of 7. O

Lemma 5.4. As an M,/J-module, J can be identified with the irre-
ducible 4-dimensional section of the natural 6-point GF(3)-permutation
module for Alt(6).

Proof. Since Cg(J) = J by Lemma 5.2 (iii), J is a faithful M, /J-
module. Because 5 does not divide the order of GL3(3), we infer that
J is irreducible as a GF(3)Alt(6)-module. Using the fact that Alt(6)
is isomorphic to PSLy(9), we may apply the weight theory for SLy(9)
to determine the irreducible Alt(6)-modules. We know that SLy(9) has
three basic modules in characteristic 3— they have dimensions 1, 2 and
3 and are all definable over GF(9). Steinberg’s tensor product theorem
then gives us all the irreducible modules for SLy(9) as tensor products
of basic modules and their algebraic conjugates by the automorphism
of GF(9) of order 2. The only irreducible modules that, when defined
over GF(3), have dimension 4 are the basic module of dimension 2
and its conjugate and the tensor product of those two modules. The
latter one is then the unique 4-dimensional irreducible representation
of PSL5(9) of dimension 4 over GF(3). Since the module defined in the
lemma is 4-dimensional, the result holds. ]
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Not surprisingly we shall need to know more about the module in
Lemma 5.4.

Lemma 5.5. Suppose that X = Alt(6) and let V be the GF(3)-permutation
module for X with standard basis {vy, ..., vs}. Let Uy = (3 5_, v;) and
U= (v;+2v;|1<14,5 <6). Set W =U/Uy. Then W is 4-dimensional
and the following hold.

(i) X has three orbits on the one-dimensional subspaces of W, Oy,
O, and Os, with representatives (vy + vy +v3+Up), (v1 + 20y +
v3 + 2vq + Up) and (v1 + 2vy + Uy) respectively. Furthermore,
|O1| = 10 and |Os| = |Os| = 15. The stabilizers of a member
of Oy and of a member of Oz are not conjugate in X.

(ii) If t is an involution in X, then dim Cy(t) = 2 and Cy(t)
contains two subspaces from O1 and one each from Oy and Os.
Furthermore, Cx (t) = Dih(8) interchanges the two members of
O, in Cw(t) and |Cx(t)/Ceyiy(Cw(t))| = 4.

(iii) If g € X has order 4, then Cy(g) = 0.

(iv) If D € Syly(X), then dim Cyw (D) = dim W/[W,D] = 1 and
Cw(D) € Oq;

(v) If d € X has order 3, then dim Cy (d) = 2; and

(vi) If D € Syl3(X) and t € Nx(D) is an involution, then t cen-
tralizes Cyw (D) and W/[W, D].

Proof. This is an elementary calculation. O

Suppose that K < S is an abelian subgroup of order at least 3%
and assume that K # J. Then either JK = S and |J N K| > 3? or
|JK/J| =3 and |J N K| > 33 In the former case, S = JK centralizes
J N K which is impossible as Z = Z(S) has order 3 by Lemma 5.2 (ii).
Thus |JK/J| = 3and C;(K) = JNK has order 3%. But this contradicts
Lemma 5.5 (v). Thus J = K. In particular we have J = J(S), the
Thompson subgroup of S.

Lemma 5.6. Ng(S)=LN M.

Proof. Notice that S = J@ and J and @ are characteristic in S. It
follows that Ng(S) < LN M. On the other hand M N L normalizes
JQ =S and so LN M < Ng(S). d

We shall need some familiar facts, originally established by Schur,
about the double covers of the symmetric group.

Lemma 5.7. Suppose thatn > 4 andn # 6. Then there are exactly two
isomorphism types of group X such that X/Z(X) = Sym(n), |Z(X)| =
2 and Z(X') = Z(X). These groups are denoted by 2~ Sym(n) and
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2*Sym(n) and are distinguished by the fact that in the first case the
preimage of a transposition has order 4 and in the second has order 2.

Furthermore, in either case, if a, b € X project to disjoint transpositions
in X/Z(X), then [a,b] # 1.

Proof. The first part of this result can be read from Schur’s paper [21,
page 166] and second part comes from [21, page 164]. Also see [1]. O

Lemma 5.8. Suppose that X = 2£Sym(5) and S € Syl,(X). If X =
2*Sym(5), then S = SDih(16) whereas, if X = 2-Sym(5) then S &
Q(16).

Proof. This uses the information given in [5, page 236]. O

Lemma 5.9. Suppose that X = 2-Sym(8) and T € Syly(X). Then

(i) X has ezactly 3 conjugacy classes of involutions. If a,b,c are
representatives of these conjugacy classes then we may suppose
that a € Z(X), b projects to an element of cycle type 2* and c
projects to an element of cycle type 12.23.

(i) Z(T) = Z(X).

Proof. Let tq,19,t3 and t, be elements of X which project to pairwise
disjoint transpositions. Then for each i, t; has order 4 and by Lemma 5.7
tit; = tjt;z where z € Z(X)#. Using these relations it follows that
elements which project to element of cycle type 12.23 and 2% have order
2 and those which project to elements of cycle type 1.2 and 1%.22 have
order 4. Since [t1tots, t4]| = z, t1tats is conjugate to ty, totzz.

Now let F; < X and F» < X be such that F}/Z(X) and F,/Z(X) are
disjoint four groups acting regularly on 4 points. Then F;\ X contains
only elements of order 4. Hence F; = F» = Q(8). Furthermore F; and
F5 commute. If follows that Fi F; is extraspecial and so elements which
project to elements of cycle type 2* are all conjugate in X (and indeed
in X'). O
Lemma 5.10. Suppose that X = 2-Alt(8). Then X contains exactly
two conjugacy classes of involutions; the central one and ones which
project to elements of cycle type 2*.

Proof. Since X = Y' where Y = 27Sym(8), this follows from Lemma 5.9.
g

In the next lemma we begin to close the net on our target groups
by determining the structures of L and M. Set Ly = L,Ny, (S) and
My = M,Ny,(S). Since Ny, (S) < L and N, (S) < M, both Ly and
My are subgroups of G.

Lemma 5.11. The following hold.
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(i) My/J = Mat(10), Lo/Q = 2-Sym(5) and Nr,(S)Nu.(S) has
Sylow 2-subgroups which are isomorphic to Q(8).

(ii) |L: Lo| = |M : M| < 2.

(iii) If |L = Lo| = 2, then M/J = 2 x Mat(10) and L/Q ~ (40
SLy(5)).2 with L having Sylow 2-subgroups isomorphic to the
group described in Lemma 5.3. Furthermore, Ng(S) has Sylow
2-subgroups which are isomorphic to 2 X Q(8).

Proof. Since L, has no subgroup of index 2, L, centralizes Z. Therefore
Ny, (S) centralizes Z and so, as Ny, (S) has Sylow 2-subgroups which
are cyclic of order 4 and Z < J, Lemma 5.5 (iii) implies that Ny, (S) £
M,. Therefore, | Ny, (S) : N, (S) N M,.| > 2. Let t; be an involution in
Ny« (S). Then ¢y inverts S/J and, by Lemma 5.5 (ii) and (vi) centralizes
J/[J,S] and Z and inverts [J,S]/Z. Now [J,S] = JNQ and Q/(J N
Q) = QJ/J as a (t;) operator group. It follows that ¢; inverts Q/Z.
On the other hand, Cg(Q) = Z and so L,/Q operates faithfully on
Q/Z. Let ty be an involution in Ny, (S). Then t,Q € Z(L./Q) and
consequently t, also inverts (Q/Z and centralizes Z. It follows that ¢,
centralizes @/Z(Q). But then ¢t is a 3-element. Hence ;.5 = ¢,.S and
[N, (S) N N, (S)| = 3°.2.

Because Np,(S) normalizes M,, we have Ny (S)Ny,(S) is a sub-
group of Ng(S). Furthermore, Ny (S)Nu.(S) acts on M, /J =2 Alt(6).
Since Ny, (S)Nur, (S)/S is generated by Np, (S)/S and Ny, (S)/S both
of which are cyclic groups of order 4 and |Nz,(S)/S N Ny, (S)/S| = 2,
we infer that either Ny, (S)Na, (S)/S =2 Q(8) or 4 x 2. As the normal-
izer of a Sylow 3-subgroup of Aut(Alt(6)) is isomorphic to 32 : SDih(16)
and |My/M,| = 2, we deduce that

(a) if Np,(S)Nu(S)/S =4 x 2, then My/J =2 x Alt(6); and

(b) if Nz.(S)Nu.(S)/S = Q(8), then My/J = Mat(10).
Aiming for a contradiction, suppose that (a) occurs and let X € Syl, (N, (S)).
Then X = 2 x 4. Now Ni,(S)Nu, (S) < Ng(Z) and so L, has index
2in Ly = XL,. If |Z(Ly/Q)| = 2, then from Lemma 5.8 we have
that Ly/Q has either quaternion or semidihedral Sylow 2-subgroups
and consequently has no subgroup isomorphic to X = 2 x 4. There-
fore |Z(Ly/Q)| = 4. Since Ly/Q acts faithfully on @/Z and since the
minimum dimension of a faithful GF(3)SLy(5)-module is 4, we get that
Z(Ly/Q) is cyclic by Schur’s Lemma. Thus Ly/@) = 4 o SLy(5). How-
ever, as X has exactly two cyclic subgroups of order 4, in this case we
see that X NNy, (S) centralizes S/@Q which as an X-space is isomorphic
to J/(JNQ) = J/[J, S] and this contradicts Lemma 5.5 (iii). Therefore
(b) holds. In particular, if X € Syl, (N (S)), then X = Q(8). It follows
that the Sylow 2-subgroups of L, contains two quaternion subgroups
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of order 8 (X and a Sylow 2-subgroup of L,). Since X € Syl,(Np,(95)),
Z(Ly/Q) = Z(L,/Q) and we have that Ly/Q = 2~Sym(5) or 2*Sym(5)
by Lemma 5.7. Since these groups have Sylow 2-subgroups which are
respectively semidihedral and quaternion by Lemma 5.8, and semidi-
hedral groups have a unique maximal subgroup which is quaternion,
we deduce that Ly/Q = 2~ Sym(5). Thus (i) holds.

Suppose that L > Ly. Then, as Aut(Alt(5)) = Sym(5), we have
that Cr/q(L./Q) > Z(L./Q). Since L,/Q acts irreducibly on Q/Z, we
use Schur’s Lemma to deduce that Cp,q(L./Q) is cyclic of order 4.
Thus Crq(L+/Q)L./Q = 40 SLy(5) (and has index 2 in L). Suppose
that Cp,(L./Q) = Z(L/Q). Then Z(L/Q) is cyclic of order 4 and
Schur’s Lemma applied to the action of L/Q on (/Z implies that
there is a monomorphism from L/Q to GLy(9). However, if F is a
Sylow 5-subgroup of L/Q, then, as Ly/Q = 2~ Sym(5), we have that
Npjo(F')/Crq(F) is cyclic of order 4 and this means that any faithful
characteristic 3 representation of L/() must have dimension at least 4.
Thus we cannot have Cr,q(L./Q) = Z(L/Q). Therefore, Crq(L./Q)
is not central in L/Q. It follows that C,o(L./@Q) is not contained in
the centre of any Sylow 2-subgroup of L/@Q which contains it. Let R; €
Syly(Lo/@). Then Ry = Q(16) and since Cf o (L./Q) commutes with
RiNL,/Q = Q(8), Lemma 5.3 implies that the Sylow 2-subgroups of L
are isomorphic to the group given in Lemma 5.3. Let Cy,/q(L./Q) = (a)
and R; = (b,c) be as in Lemma 5.3. By Lemma 5.8 we have that
Niog(S/Q) = Q(8). Thus Ny q(S) has Sylow 2-subgroups of order
16 and contains a subgroup isomorphic to Q(8) which is contained in
Ly/@ but not in L,/Q. Since Q(16) contains exactly two subgroups
isomorphic to Q(8), it follows that a Sylow 2-subgroup of Ng(S) is
conjugate to {(a,bc,c?) = 2 x Q(8). Therefore Ng(S)/S = 2 x Q(8)
implies that M/J is not a subgroup of Aut(Alt(6)). Therefore M/J =
2 x Mat(10). Hence (ii) and (iii) hold. O

Notice that the non-conjugate subgroups of Alt(6) of index 15 are
conjugate in Mat(10). Therefore the orbits of M, on J of length 15 as
described in Lemma 5.5 (i) fuse into a single M-orbit of length 30. We
reiterate this point in the proof of the next lemma.

Lemma 5.12. The subgroup J contains exactly two G-conjugacy classes
of subgroups of order 3. Furthermore, if Y < J is a subgroup of order
3 and Y is not conjugate to Z, then O3(Ng(Y)) = J and Ng(Y) is
soluble.
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Proof. Since J = J(S), J is weakly closed in S. Thus M controls fusion
in J by [1, 37.6]. By Lemma 5.5(i), M, has three orbits on the non-
trivial cyclic subgroups of J. However, by Lemma 5.11 (i), M,/J =
Mat(10) and in Mat(10), there are no subgroups of index 15. Hence
M, has orbits of length 30 and 10 on the non-trivial cyclic subgroups
of J. Furthermore, assuming that Y < J is a non-trivial cyclic subgroup
of J and Y is not conjugate to Z, we get that Ny (Y)/J = Sym(4) or
2 x Sym(4) according to whether |M : My| = 1 or 2. Since Y is not
conjugate to Z in G, Ny (Y) contains a Sylow 3-subgroup of Ng(Y).
Therefore O3(Ng(Y)) < J and then, as J is abelian, Hypothesis 5.1(iii)
implies that O3(Ng(Y)) = J and Ng(Y) = Np(Y) is soluble. O

Let ¢ be an element of order 2 in L, N M. Then tQ € Z(L./Q), t
centralizes Z and Cf,(t) = 3 x SLy(5). Define

K =Cg;(t) and K = K/(t).

Lemma 5.13. One of the following holds:
(i) M/J = Mat(10) and K %_Q'Alt(
(i) M/J =2 x Mat(10) and K = (A
(iii) M/J = 2xMat(10), K = 27 Sym(
H of index 2 and K N H =2 2-Alt(
)

Proof. Suppose first that M/J = Mat(10) (so L = Ly and M = M,).
Since Cyy/4(tJ) = SDih(16), Lemma 5.5 (ii) and the Frattini Argument
imply [M N K| = 322 and D = C,(t) = O3(M N K) € Syl;(M N
K) is elementary abelian of order 9. Let T' € Syl,(M N K) with t €
Z(T). Then T = TJ/J = SDih(16). Lemma 5.5 (ii) together with the
structure of 7" imply Cynx(D) = D(t) and Nynx(D)/Crunx(D) =
T = Dih(8). We recall from Lemma 5.12 that J has two conjugacy
classes of non-trivial cyclic subgroups one represented by Z, the other
by Y where O3(Cy(Y)) = J. By Lemma 5.5 (ii) we may choose Y < D,
and we have Cz=57(Y) = DCr(Y) = 3 x Sym(3).

Since t inverts Q/Z and centralizes Z, we have that |[K N L| = 2%.3%.5
and (KNL)/Z=L/Q =2 Sym(5). Also, since Z is inverted in L, we
have K N L = Sym(3) A Sym(5).

We now calculate the centralizers and normalizers of Z and Y in K.
Since Z and t have coprime orders, C%(Z) = Cx(Z) = L,N K = 3 x
Alt(5) and N%(Z) = Ng(Z) = LN K = Sym(3) A A Sym(5). Similarly,
since Ng(Y) < M, we have that N%(Y') normalizes D, Nz(Y) has order
22.32 and has elementary abelian Sylow 2-subgroups and |C%(Y)| =
32.2. Since every non-trivial cyclic subgroup of Dis _conjugate to either
Z or Y in K and since D € Syl;(Cx(Y)) and D € Syl,(Cx(Z)),

);
1t(5) 22).2; or
8), G has a normal subgroup
8).

(
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we infer that D € Syl;(K). Now Nz(D) cannot conjugate Y to Z
and so we deduce that |[Ng(D) : Ny_)(Z)| = 2 and therefore, as
|Nye)(£)/ D] = 4 and [Ny (D) /D] = 8, Ngg(D) = Ny (D). We
have shown that K satisfies the hypothesis of Theorem 1.2 and thus
K = Alt(8). Since K contains CJ,(t) which in turn contains a subgroup
isomorphic to 2-Alt(5) which itself contains ¢, we deduce that K is
perfect. Hence K £ 2-Alt(8) as claimed.

Now suppose that M/J = Mat(10) x 2. Set D = Cy(t). Then D
O3(KNM) and KNM = DT where T € Syl,(LN M) and T
Cuys(tJ) = 2 x SDih(16). We choose notation so that Z(T) = (e, t)
with eJ € Z(M/J) and T = (e) x Ty with Ty € Syl,(M,). Since e
inverts D, we see that Cp(D) = (ef,t) = {ef) where f € Z(T;) (notice
(ef)? =t and f has order 4). It follows that Crna (D) = D x (ef) and

Ninm(D)/Crnm(D) = T/(ef) = Dih(8).

As before we have two K-classes of non-trivial cyclic subgroups of order
3 in D with representatives Y and Z where O3(Ng(Y)) = J. We have
Nk (Y)/D = {e,T1)D/D where T} = TNM, = Dih(8) by Lemma 5.5
(i). It follows that Nzrz7(Y)/D = 2% and Crrzz(Y)/Y =2 22. Turning
to K N L, we see that K N L/Z =2 2 x Sym(5) from Lemma 5.11. Since
7 is inverted in K N L, we infer that K N L = Sym(3) x Sym(5) and
Cw=z(Z) =2 3 x Sym(5). We now argue exactly as in the previous case
that the hypothesis of Theorem 1.3 holds. Therefore K is isomorphic
either to (Alt(5) 22).2 or Sym(8).

To complete the proof of the lemma we need to establish the addi-
tional facts stated in (iii). So suppose that K 22 Sym(8). As O*(Cy, (t)) &
2-Alt(5), we have K = 2¥Sym(8) or 2-Sym(8). Now we have seen
that ef € Cx (D). Therefore, ef is a transposition in K. Hence K =
27Sym(8) as ef has order 4. Let R € Syl,(K). Then, as K = 2-Sym(8),
Z(R) = (t) by Lemma 5.9 (ii). It follows that NG(R) < K and so
R € Syl,(G). Let K, = O*(K) = 2-Alt(8). Then K, has two conju-
gacy classes of involutions by Lemma 5.10, the central one and the
ones which project to involutions of cycle type 2*. We know that both
€ and f invert D and so since e is an involution and f is an element
of order 4, we deduce that € has cycle type 12.23 and f has cycle
type 11.22 from Lemma 5.9 (i). In particular, e ¢ K, and et ¢ K,.
Now Cg(e) > Cu(e) = 2 x Mat(10) and 2 x Mat(10) is not isomor-
phic to a subgroup of K. Therefore, ¢ is not G-conjugate to e. Let
Ty € Syly(Chrn(t)). Then 77 = Dih(8) and, as all the involutions in
T1J/J are conjugate in M,/J, we infer that all the involutions in T}
are conjugate to t. Since 77 < K and the involutions in K,e are all

1l
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conjugate to e, we deduce that 7T} < K, and the involutions in K, are
all conjugate to t. Finally, as R is a Sylow 2-subgroup of GG and, as e is
not conjugate to any element of RN K,, Thompson’s Transfer Lemma
implies that G has a subgroup H of index 2. Since K, is perfect, we
have K N H = K, and we are done. O

Lemma 5.14. K is not isomorphic to (Alt(5)12).2

Proof. Assume that K is isomorphic to (Alt(5)?2).2 and set K, =
O%(K). Then K, = Alt(5) x Alt(5). By Lemma 5.13, M/J = 2 x
Mat(10). Let R be a Sylow 2-subgroup of Cyy, (t). Then, as M,/J =
Alt(6), R = Dih(8). Because Ny (S) = (RN N (S))S = (RN L)S,
Lemma 5.11(i) tells us Ly = (RN L)L,, RN L is cyclic of order 4 as
well as Ly/Q = 2~ Sym(5). Let A = O3(Cy.(t)). Then A = SLy(5) and,
as RN L normalizes A, A(RN L) = Ly/Q = 2~ Sym(5). In particular,
as K, is perfect, K, does not contain RN L. On the other hand, as A
is perfect, A is contained in K, and we infer that K, > (t) and K/K,
is elementary abelian of order 4. Now let 7" be a Sylow 2-subgroup
of M containing R. Then, as M/J = 2 x Mat(10), T = 2 x SDih(16).
Significantly, if we let F} and F; be the two fours groups of R, then there
is an element f € T' < K such that F! = F. Suppose for a moment
that RK, = K. Then, as |R| =8 and |RK,/K,| =4, RNK, = (t) and
F K, # F,K,. But, as K/K, is abelian, this means that

R K, = (FK,) = KK, = /K, = RK,,

which is a contradiction. Therefore, RK, /K, has order 2 and thus, as
RNL L K,, RK, = (RNL)K,. Now R £ L implies there exists s € R
such that Z* # Z. Since s normalizes Cj(t), we have ZZ° = Cy(t) €
Syl;(K) and, as A = O3(Ck(Z)), we have A®> # A. In particular, as
RK, = (RNL)K, and RN L normalizes A, A is not normal in K,. Let
K, and K5 be the two distinct subgroups of K such that, for i = 1,2,
K; > (t), K; & Alt(5) and K; < K,. Let W = ZZ* = C,(t). Then
K, centralizes W N Ky. As W < J, it follows from Lemma 5.12 that
W N K; is a conjugate of Z and then using Lemma 5.5(ii) we may
assume W N K; = Z. But then K; = A. Hence A is normal in K,,
which as we remarked above is impossible. This contradiction shows K
is not isomorphic to (Alt(5)?2).2. O

Proof of Theorem 1.1. Suppose that M/J = Mat(10). Then Lemma 5.13(i)
together with Theorem 2.4 implies that either G = KOy (G) or G =2
McL. The former possibility contradicts the fact that M acts irre-
ducibly on J. Therefore G = McL. If M/J = Mat(10) x 2, then,
by Lemmas 5.13 (ii), (iii) and 5.14, G has normal subgroup H of in-
dex 2 such that Cy(t) = 2-Alt(8). Employing Theorem 2.4 again gives



CHRISTOPHER PARKER AND PETER ROWLEY 29

H = McL. Since K = 2-Sym(8), C¢(H) < Z(K) < H, whence, as
Z(H) = 1, we get G is contained in the automorphism group of H.
Hence G = Aut(McL). This completes the proof of Theorem 1.1. [
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