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SOLID EXTENSIONS OF THE CESÀRO OPERATOR

ON THE HARDY SPACE H2(D)

GUILLERMO P. CURBERA AND WERNER J. RICKER

Abstract. We introduce and study the largest Banach space of
analytic functions on the unit disc which is solid for the coefficient-
wise order and to which the classical Cesàro operator C : H2 → H

2

can be continuously extended, while still maintaining its values in
H

2. Properties of this Banach space H(ces2) are presented as well
as a characterization of individual analytic functions which belong
to H(ces2). In addition, both the multiplier space of H(ces2) and
the spectrum of C : H(ces2) → H(ces2) are determined.

1. Introduction

The study of optimal domains for certain operators is a tool for deal-
ing with refinement of inequalities and extensions of such operators.
For instance, the Hausdorff-Young inequality asserts ‖f̂‖p′ ≤ ‖f‖p for
f ∈ Lp(T) with 1

p
+ 1

p′
= 1 and 1 ≤ p ≤ 2. Via a study of the optimal

domain for the underlying kernel operator it is shown in [15] that there
exists a largest Banach function space Fp(T) having order continuous
norm and satisfying Lp(T) ( Fp(T) ( L1(T), with continuous inclu-

sions, such that ‖f̂‖p′ ≤ ‖f‖Fp(T) for all f ∈ Fp(T). A similar approach
leads to a sharpening of Sobolev’s inequality in rearrangement invari-
ant spaces, with applications to compactness properties of Sobolev em-
beddings, [4], [5]. The Hardy integral operator S : f 7→ 1

x

∫ x

0
f(y) dy,

x ∈ (0,∞), for f ∈ Lloc(R
+) and considered with values in a rearrange-

ment invariant space is also treated from this viewpoint in [8].
Consider now the Cesàro operator, given by

(1) C(f)(z) :=
∞
∑

n=0

( 1

n+ 1

n
∑

k=0

ak

)

zn

with f(z) =
∑∞

0 akz
k ∈ H(D) (the space of all analytic functions on

the open unit disc D), which is bounded on the Hardy space Hp :=
Hp(D) for every 1 ≤ p < ∞; see [18] and the references therein. In [6]
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2 GUILLERMO P. CURBERA AND WERNER J. RICKER

it is shown that C has a continuous optimal extension C : [ C, Hp] →
Hp where, relative to ‖f‖[C,Hp] := ‖ C(f)‖Hp as its norm, [ C, Hp] is a
Banach space of analytic functions on D determined by the property
of being the largest amongst all Banach spaces of analytic functions
X such that C maps X continuously into Hp. For the particular case
p = 2, this optimal domain [ C, H2] is a Hilbert space characterized by

(2)
∞
∑

n=0

anz
n ∈ [ C, H2] ⇐⇒

(

1

n + 1

n
∑

k=0

ak

)

∈ ℓ2,

with norm ‖∑∞
0 anz

n‖[ C,H2] := ‖( 1
n+1

∑n
0 ak)

∞
0 ‖ℓ2, [6, Theorem 3.8(iii)].

Unlike for H2, it is a priori unclear whether [ C, H2], which is gen-
uinely larger than H2, is solid for the pointwise order, i.e., whether
g ∈ [ C, H2] whenever g ∈ H(D) satisfies |g(z)| ≤ |f(z)|, for all z ∈ D,
with f ∈ [ C, H2]. That this is so follows from a growth characterization
for elements of [ C, H2], [6, Corollary 3.3], namely, f ∈ H(D) belongs
to [ C, H2] if and only if

(3)

∫ 2π

0

∫ 1

0

|f(reiθ)|2
|1− reiθ|2 (1− r) drdθ < ∞.

There is also a significant interest in subspaces X ⊂ H(D) which are
solid for the coefficient-wise order, i.e., g(z) =

∑∞
0 bnz

n ∈ X whenever
|bn| ≤ |an|, for n ≥ 0, with f(z) =

∑∞
0 anz

n ∈ X ; see for example [14]
and the references therein. Whereas H2 is also solid for this order, this
property does not transfer to its optimal domain space [ C, H2]. This
follows from (2) by considering g(z) = (1− z)−1 and f(z) = (1 + z)−1.

So, it is meaningful to consider the solid core of the optimal domain
space [ C, H2], namely the largest of all subspaces within [ C, H2] which
are solid for the coefficient-wise order. Direct inspection of (2) shows
that this solid core of [ C, H2] is precisely the space

H(ces2) :=

{ ∞
∑

n=0

anz
n ∈ H(D) :

( 1

n+ 1

n
∑

k=0

|ak|
)∞

n=0
∈ ℓ2

}

,

which contains H2 as a (solid) subspace.
The aim of this paper is to study the space H(ces2) and the op-

erator C acting on it. If H(ces2) is equipped with its natural norm
(cf. (5) below), then C actually maps H(ces2) continuously into H2.
In Section 2 we undertake a detailed analysis of the Banach space
of analytic functions H(ces2). For this purpose we need to consider
the Cesàro operator acting on various sequence spaces in CN. In par-
ticular, we characterize those analytic functions belonging to H(ces2)
via a monotonicity property of their Taylor coefficients (Theorem 2.8).
Section 3 is devoted to identifying the continuous multiplication op-
erators on H(ces2), i.e., the multiplier space of H(ces2); these turn
out to be precisely those given by multiplication via analytic functions
with absolutely summable Taylor coefficients (Theorem 3.1). There is
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a significant interest in identifying the spectrum of the Cesàro opera-
tor acting in various Banach spaces of analytic functions; see [1], [16],
and the references therein. In Section 4 we show that the spectrum
of C : H(ces2) → H(ces2) is σ( C) = {z ∈ C : |1 − z| ≤ 1}; see The-
orem 4.1. In view of these results we are in the interesting situation
where the spectrum of C : H(ces2) → H(ces2) coincides with that of
the initial operator C : H2 → H2, but the multiplier space of H(ces2) is
significantly smaller (being isomorphic to ℓ1) than that of H2 (namely,
H∞). It is also noteworthy that the solid space H(ces2) is in a certain
sense “maximal”. Namely, if one considers C : H(ces2) → H(ces2),
rather than C : H2 → H2, then its optimal domain space [ C,H(ces2)]
contains [ C, H2] as a proper subspace. Remarkably, however, the solid
core of the larger space [ C,H(ces2)] is againH(ces2), that is, no further
solid extension occurs; see Proposition 2.10.

2. The Banach space of analytic functions H(ces2)

A precise description of the analytic functions belonging to H(ces2)
is possible. To establish this we need to study in some detail the Cesàro
operator acting on sequence spaces. We use the same notation for the
Cesàro operator acting on functions (via (1)) as for the Cesàro operator
acting on sequences. Thus, writing elements of CN as a = (an)

∞
n=0, the

Cesàro operator C : CN → CN is given by:

a = (an)
∞
0 7−→ C(a) :=

( 1

n+ 1

n
∑

k=0

ak

)∞

n=0
.

It is a bijection on CN with inverse C−1((bn)
∞
0 ) =

(

(n+1)bn−nbn−1

)∞

0
,

where b−1 := 0. Let CN
+ denote the cone of all non-negative sequences,

in which case we have C(a) ∈ CN
+ whenever a ∈ CN

+. Moreover, | C(a)| ≤
C(|a|) for a ∈ CN, where |a| := (|an|)∞0 ∈ CN is the modulus of a in the
complex vector lattice CN and ≤ is the coordinate-wise order in RN.

Recall that C : ℓ2 → ℓ2 continuously with operator norm ‖ C‖2 = 2,
[11, Theorem 326]. Thus, we may also consider its optimal domain,
namely

[ C, ℓ2] :=
{

a = (an)
∞
0 ∈ CN : C(a) =

( 1

n+ 1

n
∑

k=0

ak

)∞

n=0
∈ ℓ2

}

,

which can be shown to be a Banach space for the norm

‖a‖[ C,ℓ2] := ‖ C(a)‖ℓ2 =
( ∞
∑

n=0

∣

∣

∣

1

n+ 1

n
∑

k=0

ak

∣

∣

∣

2
)1/2

.

Via the Cesàro operator C : [ C, ℓ2] → ℓ2 the Banach sequence space
[ C, ℓ2] is linearly isomorphic and isometric to ℓ2. However, unlike
ℓ2, [ C, ℓ2] is not solid for the coordinate-wise order (consider a :=
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((−1)n)∞0 ∈ [ C, ℓ2] whereas |a| /∈ [ C, ℓ2]). The solid core of [ C, ℓ2],
with respect to the coordinate-wise order, is clearly the space

{

a = (an)
∞
0 ∈ CN :

( 1

n+ 1

n
∑

k=0

|ak|
)∞

n=0
∈ ℓ2

}

.

It is the known Banach sequence space ces2, equipped with the norm

(4) ‖a‖ces2 :=
( ∞
∑

n=0

( 1

n+ 1

n
∑

k=0

|ak|
)2
)1/2

= ‖ C(|a|)‖ℓ2,

which is thoroughly treated in [2]. Note that the positive cone of ces2
and that of [ C, ℓ2] coincide. From the continuity of C on ℓ2 it follows
that ℓ2 ⊆ ces2 ⊆ [ C, ℓ2], with each inclusion continuous. Moreover,
both embeddings are strict. It follows from | C(a)| ≤ C(|a|) and (4)
that C : ces2 → ℓ2 continuously.

Remark 2.1. (i) The largest amongst the spaces ℓp, for 1 ≤ p ≤ ∞,
which satisfy ℓp ⊆ ces2 is ℓ

2. The space ces2 6⊂ ℓ∞; actually, it contains
sequences with arbitrarily large terms. Indeed, given any increasing
sequence of positive integers (kn)

∞
0 , the element a =

∑∞
n=0 knein , where

in = k2
n(n+ 1)4, belongs to ces2. Here en := (δin)

∞
i=0 for n ≥ 0.

(ii) Despite (i) there is still some control on the growth of the partial
sums of elements from ces2. Indeed,

lim
n→∞

∑n
k=0 |ak|√
n+ 1

= 0, a ∈ ces2.

To see this, let n ∈ N and observe that

‖a‖2ces2 ≥
∞
∑

m=n

(

1

m+ 1

m
∑

k=0

|ak|
)2

≥
∞
∑

m=n

(

1

m+ 1

n
∑

k=0

|ak|
)2

≥
(

n
∑

k=0

|ak|
)2

∞
∑

m=n

1

(m+ 1)2
≥
(

n
∑

k=0

|ak|
)2 1

n + 1
.

The claim now follows because
∑∞

m=n(
1

m+1

∑m
k=0 |ak|)2 → 0 as n → ∞.

Given any subset A ⊆ {a ∈ CN : lim sup n
√

|an| ≤ 1} we denote by
H(A) the subset of H(D) consisting of those analytic functions whose
sequence of Taylor coefficients belongs to A. In this manner H(ces2)
arises from the sequence space ces2. Moreover, H(ces2) becomes a
Banach space of analytic functions on D relative to the norm ‖·‖H(ces2),
where for f(z) =

∑∞
0 anz

n ∈ H(ces2),

(5) ‖f‖H(ces2) :=

( ∞
∑

n=0

( 1

n+ 1

n
∑

k=0

|ak|
)2
)1/2

= ‖(an)∞0 ‖ces2.

In particular, H(ces2) and ces2 are isometrically isomorphic. From
ℓ2 ( ces2 ( [ C, ℓ2] we have H2 ( H(ces2) ( [ C, H2], with continuous
inclusions.
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Remark 2.2. For 1 ≤ p < 2, we have Hp 6⊆ H(ces2), since it was
shown in [6, p.280] that Hp 6⊆ [ C, H2], for 1 ≤ p < 2. Unlike for H2,
there exist functions inH(ces2) which fail to have a.e. boundary values.
This follows from H2 ( H(ces2) and a classical result of Littlewood
stating that if (an) 6∈ ℓ2 then, for almost all choices of signs (εn), with
εn = ±1, the function

∑∞
0 εnanz

n fails to have a.e. boundary values,
[9, Theorem A.5].

We now collect various Banach space properties of H(ces2).

Proposition 2.3. For H(ces2) the following assertions hold.

(i) The monomial functions {zn : n ≥ 0} are an unconditional,

boundedly complete and shrinking basis for H(ces2).
(ii) H(ces2) is reflexive.

(iii) Every f ∈ H(ces2) is the sum, in H(ces2), of its Taylor series.
(iv) Point evaluations on H(ces2) are continuous.

Proof. (i)–(iii). These assertions follow from the fact that there is an
isometric isomorphism between H(ces2) and ces2.

(iv) This follows from the continuous inclusion H(ces2) ⊆ [ C, H2]
and continuity of point evaluations in [ C, H2], [6, §3]. �

Remark 2.4. In [ C, H2] the set {zn+1 − zn : n ≥ 0} constitutes a
basis, [6, Proposition 3.8(iv)]. On the other hand, f ∈ [ C, H2] is the
sum (in [ C, H2]) of its Taylor series f(z) =

∑∞
n=0 anz

n if and only if

(6) lim
n→∞

∣

∣

∑n
k=0 ak

∣

∣

√
n+ 1

= 0.

To see this first note, for f ∈ [ C, H2], that Cf is the sum of its Taylor
series in H2, i.e., Cf(z) =∑∞

n=0 bnz
n with (bn)

∞
0 := C((an)∞0 ). Since C

is a (topological) isomorphism of the Frechét space H(D) onto itself and
C−1(zn) = (n+1)(zn−zn+1), we have f(z) =

∑∞
n=0 bn(n+1)(zn−zn+1)

in [ C, H2]. Rearranging the partial sums of this last series yields

n
∑

k=0

bk(k + 1)(zk − zk+1) =

n
∑

k=0

akz
k −

(

n
∑

k=0

ak
)

zn+1, n ≥ 0.

Since the norm of zn+1 in [ C, H2] is equivalent to 1/
√
n+ 1 for n ≥ 0,

the claim follows. Condition (6) implies, via Remark 2.1(ii), that func-
tions in H(ces2) are always the sum, in [ C, H2], of their Taylor series.
This also follows from Proposition 2.3(iii) and H(ces2) ⊆ [ C, H2].

We now describe those functions which belong to H(ces2). For this
we first need to describe the range C(ces2) ⊆ ℓ2 of C : ces2 → ℓ2.

Denote by CN
⋆ the set of all (bn)

∞
0 ∈ CN

+ such that the sequence
(

(n+ 1)bn
)∞

0
is increasing, in which case

(7) C(CN
+) = CN

⋆ .
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Note that CN
⋆ is a cone in CN generating the full space CN, that is,

CN = (CN
⋆ − CN

⋆ ) + i(CN
⋆ − CN

⋆ ). The set of all non-negative sequences
(bn)

∞
0 ∈ ℓ2 for which the sequence

(

(n + 1)bn
)∞

0
is increasing will be

denoted by ℓ2⋆, i.e., ℓ
2
⋆ = ℓ2 ∩ CN

⋆ .
The following striking property of the Cesàro operator and the space

ces2 is due to G. Bennett, [2, Theorem 20.31].

Theorem 2.5. Let a ∈ CN. Then a ∈ ces2 if and only if C(|a|) ∈ ces2.

With this property we can now prove the following result.

Proposition 2.6. The range of C : ces2 → ℓ2 is given by

C(ces2) =
{

b ∈ CN : b = (b1 − b2) + i(b3 − b4),with bj ∈ ℓ2⋆

}

.

Proof. Let us first establish that

(8) C(ces2) ∩ CN
⋆ = ℓ2 ∩ CN

⋆ = ces2 ∩ CN
⋆ .

A chain of embeddings follows from C(ces2) ⊆ ℓ2 ⊆ ces2. Let b ∈
ces2 ∩ CN

⋆ . By (7) there exists a ∈ CN
+ such that b = C(a). That is,

C(|a|) = C(a) = b ∈ ces2 which implies that a ∈ ces2; see Theorem
2.5. Consequently, b = C(a) ∈ C(ces2). Recall that ℓ2⋆ = ℓ2∩CN

⋆ . This,
together with (8), shows that (b1 − b2) + i(b3 − b4) ∈ C(ces2) whenever
bj ∈ ℓ2⋆.

Let now b ∈ C(ces2) and set a = C−1(b) ∈ ces2. Observe that
(ℜa)+ and (ℜa)− are disjointly supported sequences. Thus, |a| ≥
|ℜa| ≥ max{(ℜa)+, (ℜa)−}. As ces2 is solid, a ∈ ces2 implies that
(ℜa)+, (ℜa)− ∈ ces2. A similar argument applies to ℑa. Since (ℜa)+ ∈
ces2 ∩ CN

+, by (8) we have

C((ℜa)+) ∈ C(ces2) ∩ C(CN
+) = C(ces2) ∩ CN

⋆ = ℓ2 ∩ CN
⋆ = ℓ2⋆.

A similar argument applies to (ℜa)−, (ℑa)+, and (ℑa)−. Since
b = C(a) = C((ℜa)+)− C((ℜa)−) + i C((ℑa)+)− i C((ℑa)−),

the claim is established. �

Corollary 2.7. For g ∈ H(D) we have g ∈ H( C(ces2)) precisely when

g = (g1 − g2) + i(g3 − g4), gj ∈ H(ℓ2⋆).

Let ℓ2• denote the set of all non-negative increasing sequences (an)
∞
0 ∈

CN satisfying (an/(n+ 1))∞0 ∈ ℓ2.

Theorem 2.8. A function f ∈ H(D) belongs to H(ces2) if and only if

f(z) = (1− z)
(

(h1(z)− h2(z)) + i(h3(z)− h4(z))
)

, hj ∈ H(ℓ2•).

Proof. Since C is injective, a ∈ ces2 if and only if C(a) ∈ C(ces2).
Thus, f ∈ H(ces2) if and only if C(f) ∈ H( C(ces2)). From Corollary
2.7 this occurs precisely when

C(f) = (g1 − g2) + i(g3 − g4), gj ∈ H(ℓ2⋆).
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The known integral expression C(f)(z) = 1
z

∫ z

0
f(ξ)
1−ξ

dξ, for z ∈ D,

yields f(z) = (1− z)(z C(f)(z))′. Thus, f ∈ H(ces2) if and only if

f(z) = (1− z)
(

z ·
(

(g1 − g2) + i(g3 − g4)
)

)′

, gj ∈ H(ℓ2⋆).

Given (bn)
∞
0 ∈ CN set an := (n+ 1)bn, for n ≥ 0. Then (bn)

∞
0 ∈ ℓ2⋆ if

and only if (an)
∞
0 ∈ ℓ2•. For g(z) :=

∑∞
0 bnz

n we have

(

zg(z)
)′
=

∞
∑

n=0

(n+ 1)bnz
n =

∞
∑

n=0

anz
n.

Then g ∈ H(ℓ2⋆) if and only if (bn)
∞
0 ∈ ℓ2⋆, which occurs if and only if

(an)
∞
0 ∈ ℓ2•, equivalently if and only if h(z) := (zg(z))′ ∈ H(ℓ2•). �

Remark 2.9. The previous result has an analogue for the optimal
domain [ C, H2]. To see this, let f ∈ H(D). Then h(z) := f(z)/(1−z) ∈
H(D) and so h(z) =

∑∞
0 anz

n with (an)
∞
0 ∈ D. In view of condition

(3) it follows that f ∈ [ C, H2] if and only if

(9)

∫ 2π

0

∫ 1

0

|f(reiθ)|2
|1− reiθ|2 (1− r) drdθ = 2π

∞
∑

n=0

|an|2
(2n+ 2)(2n+ 1)

< ∞,

which holds if and only if (an/(n + 1))∞0 ∈ ℓ2; see also [6, Proposition
3.2]. Thus, the difference between the solid core H(ces2) of [ C, H2] and
the optimal domain [ C, H2] itself arises from the fact that
{

(a1 − a2) + i(a3 − a4) : aj ∈ ℓ2•

}

(
{

(xn) : (xn/(n+ 1))∞0 ∈ ℓ2
}

,

where aj ∈ CN
+ are increasing sequences with (ajn/(n+1))∞0 ∈ ℓ2. Note,

via (9) with M2(r, h) :=
( ∫ 2π

0
|h(reiθ)|2 dθ

)1/2
, that

[ C, H2] = (1− z) ·
{

h ∈ H(D) :

∫ 1

0

(1− r)(M2(r, h))
2 dr < ∞

}

.

The spaceH(ces2) also arises via a different procedure. The operator
C : H2 → H2 is a positive operator when considered as acting between
complex Banach lattices (for the coefficient-wise order in H2). So, we
may look for continuous H2-valued extensions of C to larger Banach
spaces of analytic functions (i.e., containing H2 continuously) which are
solid for the coefficient-wise order. The (optimal) continuous extension
C : [ C, H2] → H2 is not such an extension because [ C, H2] is not solid.
Of course, the largest of these solid spaces for which such a continuous
extension is possible is the solid core H(ces2) of [ C, H2].

We end this section with a remarkable stability property of H(ces2).
The optimal domain [ C,H(ces2)] of the continuous Cesàro operator
C : H(ces2) → H(ces2) contains [ C, H2] as a proper subspace (as [ C, ℓ2] (
[ C, ces2]). Surprisingly, even though the target space H(ces2) is now
substantially larger than H2, no further solid extension occurs. This is
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a consequence of the particular property of the Cesàro operator stated
in Theorem 2.5.

Proposition 2.10. The largest solid space of analytic functions on D
which C maps continuously into H(ces2) is H(ces2) itself.

Proof. LetX be any solid subspace of [ C,H(ces2)], i.e., C(X) ⊂ H(ces2)
with X solid for the coefficient-wise order. If f(z) =

∑∞
0 anz

n ∈ X ,
then also h(z) :=

∑∞
0 |an|zn ∈ X and hence, C(h) =∑∞

0 ( C(|a|)nzn ∈
H(ces2), i.e., C(|a|) ∈ ces2. Then Theorem 2.5 implies that a ∈ ces2
and so f ∈ H(ces2). Accordingly, X ⊆ H(ces2). �

3. The multipliers of H(ces2)

Given any Banach space of analytic functions it is always desirable
to identify its multipliers. For H(ces2) this means to determine all
continuous operators Mϕ given by multiplication via a function ϕ ∈
H(D):

(10) H(ces2) ∋ f 7→ Mϕ(f) := fϕ ∈ H(ces2).

Denote by M(H(ces2)) the space of all such continuous multiplication
operators on H(ces2). It is a subspace of the Banach space L(H(ces2))
of all bounded linear operators on H(ces2) and is closed for the opera-
tor norm ‖ · ‖op. Since point evaluations on H(ces2) are continuous, it
follows from the Closed Graph Theorem that if ϕ ∈ H(D) satisfies fϕ ∈
H(ces2) whenever f ∈ H(ces2), then necessarily Mϕ ∈ M(H(ces2)).
By an abuse of language, on occasions we will identify the multipli-
cation operator Mϕ with the function (symbol) ϕ and refer to ϕ as a
multiplier on H(ces2). Thus, in [6, Theorem 3.7] it was shown that
M([ C, H2]) = H∞. Consider now ℓ1 as a commutative, unital Ba-
nach algebra relative to convolution and equipped with its usual norm
‖(bn)∞0 ‖1 =

∑∞
0 |bn| for (bn)∞0 ∈ ℓ1.

Theorem 3.1. As Banach algebras and with equality of norms,

M(H(ces2)) =
{

ϕ(z) =

∞
∑

n=0

bnz
n : (bn)

∞
0 ∈ ℓ1

}

( H∞.

Moreover, the spectrum

σ(Mϕ) = ϕ(D), ϕ ∈ M(H(ces2)).

Proof. Multiplication of functions in H(D) corresponds to convolution
of their sequences of Taylor coefficients, i.e.,

(

∞
∑

n=0

anz
n
)(

∞
∑

m=0

bmz
m
)

=

∞
∑

k=0

(

k
∑

j=0

ajbk−j

)

zk.
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Consequently, an analytic function ϕ(z) =
∑∞

0 bnz
n defines an element

of M(H(ces2)) via (10) precisely when the sequence b = (bn)
∞
0 of its

Taylor coefficients defines a bounded convolution operator Tb on ces2:

ces2 ∋ a = (an)
∞
0 7−→ Tb(a) := a ∗ b =

(

k
∑

j=0

ajbk−j

)∞

k=0
∈ ces2.

Due to the isometric isomorphism between H(ces2) and ces2, we have
‖Mϕ‖op = ‖Tb‖op.

Suppose first that b = (bn)
∞
0 ∈ ℓ1. Let a = (an)

∞
0 ∈ ces2. To show

that a ∗ b ∈ ces2 we need to verify that C(|a ∗ b|) ∈ ℓ2, where

(11) C(|a ∗ b|) =
(

1

n+ 1

n
∑

k=0

∣

∣

∣

k
∑

j=0

ajbk−j

∣

∣

∣

)∞

n=0

.

Now, the n-th coordinate of C(|a ∗ b|) satisfies

(

C(|a ∗ b|)
)

n
=

1

n+ 1

n
∑

k=0

∣

∣

∣

k
∑

j=0

ajbk−j

∣

∣

∣
≤ 1

n + 1

n
∑

k=0

k
∑

j=0

|aj ||bk−j|

=
1

n+ 1

n
∑

j=0

|aj|
n−j
∑

i=0

|bi| ≤ ‖b‖ℓ1 ·
1

n+ 1

n
∑

j=0

|aj|

= ‖b‖ℓ1 ·
(

C(|a|)
)

n
.

Since a ∈ ces2, we have C(|a|) ∈ ℓ2. Consequently, C(|a ∗ b|) ∈ ℓ2, so
that a ∗ b ∈ ces2. Moreover, ‖a ∗ b‖ces2 ≤ ‖b‖ℓ1 · ‖a‖ces2, i.e., ‖Tb‖op ≤
‖b‖ℓ1 .

Now let Tb, with b = (bn)
∞
0 ∈ CN, be a bounded convolution operator

on ces2. To show that b ∈ ℓ1 we prove, for every N ∈ N, that
∑N

0 |bi| ≤
‖Tb‖op. So, let N ∈ N be fixed.

In order to estimate ‖Tb‖op from below, recall that

(12) ‖Tb‖op = sup
a∈ces2

‖a ∗ b‖ces2
‖a‖ces2

= sup
a∈ces2

‖ C(|a ∗ b|)‖ℓ2
‖ C(|a|)|ℓ2

.

Fix M ∈ N. For each (aM , . . . , aM+N) ∈ CN+1 set

(13) a :=
M+N
∑

i=M

aiei ∈ ces2.
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First we estimate the norm of a in ces2 from above. Since an = 0,
for n < M and also for n > M +N , we conclude that

C(|a|)n =



































0, if n < M,

1

n+ 1

n
∑

j=M

|aj|, if M ≤ n < M +N,

1

n+ 1

M+N
∑

j=M

|aj |, if n ≥ M +N.

Consequently, we have that

C(|a|) ≤
(

M+N
∑

j=M

|aj |
)

∞
∑

i=M

ei
i+ 1

= ‖a‖ℓ1
∞
∑

i=M

ei
i+ 1

.

Hence, for any a of the form (13),

(14) ‖ C(|a|)‖ℓ2 ≤ ‖a‖ℓ1
∥

∥

∥

∞
∑

i=M

ei
i+ 1

∥

∥

∥

ℓ2
≤ 1√

M
‖a‖ℓ1 .

Next we estimate the norm of a∗ b in ces2 from below. Since an = 0,
for n < M , it is clear that (a ∗ b)n = 0 whenever n < M . Thus, for the
Cesàro means (11) we have

(

C(|a∗b|)
)

n
=



















































0, if n < M,

1

n+ 1

n
∑

k=M

|a ∗ b|k, if M ≤ n < M +N,

1

n+ 1

M+N
∑

k=M

|a ∗ b|k, if n = M +N,

1

n+ 1

(

M+N
∑

k=M

|a ∗ b|k +
n
∑

k=M+N+1

|a ∗ b|k
)

, if n > M +N.

Consequently,

(

C(|a ∗ b|)
)

n
≥











0, if n < M +N,

1

n + 1

M+N
∑

k=M

|a ∗ b|k, if n ≥ M +N.

Setting

S :=

M+N
∑

k=M

|a ∗ b|k,

it follows that

C(|a ∗ b|) ≥ S
∞
∑

i=M+N

ei
i+ 1

.
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Hence,

(15) ‖ C(|a ∗ b|)‖ℓ2 ≥ S
∥

∥

∥

∞
∑

i=M+N

ei
i+ 1

∥

∥

∥

ℓ2
≥ S√

M +N + 1
.

We now require an alternative expression for S. Since an = 0 for
n < M , observe that

S =

M+N
∑

k=M

|a ∗ b|k =

M+N
∑

k=M

∣

∣

∣

k
∑

j=0

ajbk−j

∣

∣

∣ =

M+N
∑

k=M

∣

∣

∣

k
∑

j=M

ajbk−j

∣

∣

∣,

that is,

S = |aMb0|+ |aMb1 + aM+1b0|+ · · ·+ |aMbN + · · ·+ aM+Nb0|.
A close inspection shows, by setting

BNa :=









b0 0 · · · 0
b1 b0 · · · 0
...

...
...

bN bN−1 · · · b0

















aM
aM+1
...

aM+N









,

that S = ‖BNa‖ℓ1 . Then (15) becomes

‖ C(|a ∗ b|)‖ℓ2 ≥
‖BNa‖ℓ1√
M +N + 1

.

This inequality and (14), together with (12), yield for all a of the
form (13) with M ∈ N arbitrary that

‖Tb‖op ≥ sup
a,M

√
M√

M +N + 1

‖BNa‖ℓ1
‖a‖ℓ1

= ‖BN‖ℓ1
N+1

→ℓ1
N+1

.

The matrix BN has operator norm ‖BN‖ℓ1
N+1

→ℓ1
N+1

=
∑N

0 |bi|. Conse-

quently, b = (bn)
∞
0 ∈ ℓ1 and ‖Tb‖op ≥ ‖b‖ℓ1 .

Concerning the spectrum, it is routine to check that M(H(ces2)) is
a closed subalgebra of L(H(ces2)) which is also inverse closed. Hence,
σ(Mϕ) coincides with the spectrum of ϕ as an element of the Ba-
nach algebra ℓ1. Since ℓ1 is generated (as a Banach algebra) by e1 =
(0, 1, 0, . . . ) and the maximal ideal space of ℓ1 can be identified with D,
[7, Theorem 4.6.9], it follows from Theorem 2.3.30 (see also pp. 158-
160) of [7] that the spectrum of ϕ(z) =

∑∞
0 bnz

n, considered as the

element (bn)
∞
0 of ℓ1, is precisely ϕ(D). �

Remark 3.2. (i) Every function h(z) =
∑∞

0 bnz
n from H(D) induces

a linear map Tb : C
N → CN via the Toeplitz matrix

Tb :=









b0 0 0 · · ·
b1 b0 0 · · ·
b2 b1 b0 · · ·
...

...
...









.
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Theorem 3.1 implies that Tb maps ces2 into itself if and only if b ∈ ℓ1.
(ii) Theorem 3.1 shows that the multipliers for H(ces2) form a lattice

for the coefficient-wise order. This is not so for the multipliers of H2

and [ C, H2], both of which have H∞ as their multiplier space.

4. The operator C on H(ces2)

In a classical paper the authors study C : ℓ2 → ℓ2 and show that its
spectrum is σ( C) = {z ∈ C : |1 − z| ≤ 1}, [3, Theorem 2(6)]. Recall
that its operator norm is ‖ C‖2 = 2. In order to treat C : H(ces2) →
H(ces2) it is useful to identify the dual space H(ces2)

′ of H(ces2). The
isometric isomorphism between H(ces2) and ces2 yields the identifica-
tion H(ces2)

′ = H(ces′2) (where ces
′
2 is the dual space of ces2) with the

duality given by

< f, g >:=
∞
∑

n=0

anbn,

for elements f(z) =
∑∞

0 anz
n ∈ H(ces2) and g(z) =

∑∞
0 bnz

n ∈
H(ces′2).

The dual space of ces2 was identified by Jagers, [13]. G. Bennett has
given a more tractable isomorphic identification, [2, Corollary 12.17].
Namely, consider the Banach space

d(2) :=
{

b = (bn)
∞
0 :

(

sup
k≥n

|bk|
)∞

n=0
∈ ℓ2

}

,

equipped with the norm

‖b‖d(2) :=
( ∞
∑

n=0

sup
k≥n

|bk|2
)1/2

.

Then ces′2 is isomorphic to d(2) and its duality with ces2 is given by

< a, b >:=
∞
∑

n=0

anbn, a ∈ ces2, b ∈ d(2).

However, the dual norm of ces′2 is only equivalent with that of d(2).

This fact will not interfere with any of our results. The sequence b̃ =
(b̃n)

∞
0 given by b̃n := supk≥n |bk|, n ≥ 0, is called the least decreasing

majorant of (bn)
∞
0 ∈ CN. Note that, even though ces′2 ≃ d(2) ( ℓ2

(e.g. x =
∑∞

0 2−ne22n ∈ ℓ2 \ ces′2), all non-negative and eventually
decreasing sequences from ℓ2 do belong to ces′2.

Theorem 4.1. For the Cesàro operator C : H(ces2) → H(ces2) we

have that ‖ C‖op = 2 and

σ( C) = {z ∈ C : |1− z| ≤ 1}.
Proof. Due to the isometric isomorphism between the spaces H(ces2)
and ces2, it suffices to study the problem for C : ces2 → ces2.
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We first show that ‖ C‖op ≤ 2 for the continuous operator C : ces2 →
ces2. Since | C(a)| ≤ C(|a|), for a ∈ ces2, we have

‖ C(a)‖ces2 = ‖ C(| C(a)|)‖ℓ2 ≤ ‖C( C(|a|))‖ℓ2 ≤ ‖C‖2·‖ C(|a|) ‖ℓ2 = 2‖a‖ces2,
that is, ‖ C‖op ≤ 2.

To show that the point spectrum σp( C) of C is empty, suppose that
λ ∈ σp( C). Choose 0 6= a ∈ ces2 such that C(a) = λa. A direct
algebraic calculation (as in the proof of part (3) of Theorem 2 of [3])
yields |an| ≥ |an−1| for n ≥ 1. Thus, |an| ≥ |aN | > 0 for n ≥ N with
N the smallest natural number such that aN 6= 0. This implies that
C(|a|) ≥ u with un = 0 for n < N and un = |aN | > 0 for n ≥ N . But,
u 6∈ ℓ2 and so C(|a|) 6∈ ℓ2 which is a contradiction. Hence, σp( C) = ∅.

Let C′ : ces′2 → ces′2 be the dual operator of C, i.e.,

C′((xn)
∞
0 ) =

(

∞
∑

k=n

xk

k + 1

)∞

n=0
, (xn)

∞
0 ∈ ces′2.

We now show that σp( C′) = U where

U = {z ∈ C : |1− z| < 1}.
Let λ ∈ σp( C′). Then C′(x) = λx for some 0 6= x = (xn)

∞
0 in ces′2.

But, ces′2 ⊆ ℓ2 and so x ∈ ℓ2, i.e., λ is an eigenvalue of the Hilbert
space adjoint operator C∗ = C′ of C : ℓ2 → ℓ2. By Theorem 2(5) of [3]
we have that λ belongs to U , i.e., σp( C′) ⊆ U . In order to establish the
reverse inclusion, observe that direct algebraic calculations (as in the
proof of part (4) of Theorem 2 of [3]) yield: if C′(x) = λx with x 6= 0,
then necessarily λ 6= 0, x0 6= 0 and

xn = x0 ·
n
∏

j=1

(

1− 1

jλ

)

, n ≥ 1.

We need to verify that this x belongs to ces′2 = d(2) whenever λ ∈ U ,
i.e., that the least decreasing majorant x̃ of x belongs to ℓ2. The
identities

(16)
|xn|2
|xn−1|2

=
∣

∣

∣
1− 1

nλ

∣

∣

∣

2

= 1− 2ℜ(λ)
n|λ|2 +

1

n2|λ|2 ,

imply that |xn| ≤ |xn−1| whenever the right-side of (16) is at most 1,
i.e., if ℜ(λ) ≥ 1/(2n) for all n ≥ 1. For each λ ∈ U we have ℜ(λ) > 0.
Thus there exists n0 such that, for n ≥ n0, we have |xn| ≤ |xn−1|.
Hence (x̃)n = |xn| for n ≥ n0, and so x̃ ∈ ℓ2 if and only if x ∈ ℓ2. But,
(16) and the Raabe-Duhamel criterion [12, Ch.I, §20-21] imply that

x ∈ ℓ2 whenever 2ℜ(λ)
|λ|2

> 1. This last condition is precisely |1− λ| < 1,

that is, λ ∈ U . Accordingly, σp( C′) = U .
It follows from σp( C) = ∅ and Corollary II.5.3(iii) and (vi) of [10]

that σr( C) = σp( C′) = U . Accordingly, U = σr( C)∪σp( C) ⊆ σ( C) and
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so U ⊆ σ( C). In particular, 2 ∈ σ( C) and so also ‖ C‖op ≥ 2. Hence,
‖ C‖op = 2.

For the reverse inclusion σ( C) ⊆ U consider first ( C − λI)−1 : CN →
CN. For λ ∈ C\{0, 1, 1

2
, 1
3
, . . . } the matrix for ( C−λI)−1 = (cnm)

∞
n,m=0

is given by, [17, Theorem 3],

cnm =











































−1

(n+ 1)λ2
∏n

k=m(1− 1
(k+1)λ

)
, if 0 ≤ m < n,

n + 1

1− (n+ 1)λ
, if m = n,

0, if n < m.

We write

( C − λI)−1 = Dλ −
1

λ2
Eλ,

where the diagonal operatorDλ = (dnm)
∞
n,m=0 is given by dnn = n+1

1−(n+1)λ

with dnm = 0 in all other cases, and the lower triangular operator
Eλ = (enm)

∞
n,m=0 is specified as follows: for each n ≥ 0 define

(17) enm =



















1

(n + 1)
∏n

k=m(1− 1
(k+1)λ

)
, if 0 ≤ m < n,

0, if n ≤ m,

for all m ≥ 0.
Let dλ := inf{|λ − 1

k
| : k ≥ 1} > 0. Then Dλ is bounded on ces2

since
∣

∣

∣

(

Dλ(a)
)

n

∣

∣

∣
=
∣

∣

∣

(n+ 1)an
1− (n + 1)λ

∣

∣

∣
=
∣

∣

∣

an
1

n+1
− λ

∣

∣

∣
≤ |an|

dλ
, n ≥ 0.

Thus, |Dλ(a)| ≤ 1
dλ
|a|. Since ces2 is solid, if a ∈ ces2 it follows that

Dλ(a) ∈ ces2 and ‖Dλ(a)‖ces2 ≤ 1
dλ
‖a‖ces2. Accordingly, Dλ : ces2 →

ces2 is bounded with ‖Dλ‖op ≤ 1
dλ
. Consequently, ( C − λI)−1 is

bounded on ces2 precisely when Eλ is.
For the case when ℜλ ≤ 0, with λ 6= 0, we claim that Eλ is bounded

on ces2 and so λ is in the resolvent set of C. To see this observe that
∣

∣

∣

∣

∣

1

(1− 1
(k+1)λ

)

∣

∣

∣

∣

∣

≤ 1 ⇐⇒ |λ| ≤
∣

∣

∣
λ− 1

k + 1

∣

∣

∣
⇐⇒ ℜλ ≤ 1

2(k + 1)
.

It follows from (17) that |enm| ≤ 1
n+1

, for 0 ≤ m < n. Consequently,
|Eλ(a)| ≤ C(|a|). Again, due to the fact that ces2 is solid, if a ∈ ces2
then C(|a|) ∈ ℓ2 ⊆ ces2 and so Eλ(a) ∈ ces2 with ‖Eλ(a)‖ces2 ≤
‖C(|a|)‖ces2 ≤ ‖C‖op‖a‖ces2. Accordingly, Eλ : ces2 → ces2 is bounded
and ‖Eλ‖op ≤ ‖C‖op = 2.
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Since ‖ C‖op = 2 ensures that {z ∈ C : |z| > 2} is a subset of the
resolvent set ρ( C) of C, it remains to show that the set

D :=
{

z ∈ C : |z| ≤ 2, ℜ(z) > 0, |z − 1| > 1
}

⊆ ρ( C).
For this purpose D can be described via the family of circles Γα = {z ∈
C : ℜ(1

z
) = α} for 0 < α < 1

2
with Γα having centre 1

2α
> 1 and radius

1
2α

(note, for any z ∈ C, that |z − 1| > 1 if and only if ℜ(1
z
) < 1

2
).

Indeed,

D =
{

z ∈ C : |z| ≤ 2
}

∩
(

⋃

0<α< 1

2

Γα

)

.

Let λ ∈ D. Then λ ∈ Γα for some α = ℜ( 1
λ
) ∈ (0, 1

2
). Consequently,

ℜ(1− 1
kλ
) = 1− α

k
, for k ≥ 1. Given a ∈ ces2 it follows from (17) that

(

Eλ(a)
)

0
= 0 and, for n ≥ 1, that

∣

∣

∣

(

Eλ(a)
)

n

∣

∣

∣
=

∣

∣

∣

∣

∣

1

n+ 1

n−1
∑

m=0

am
∏n

k=m(1− 1
(k+1)λ

)

∣

∣

∣

∣

∣

≤ 1

n+ 1

n−1
∑

m=0

|am|
∏n

k=m |1− 1
(k+1)λ

|

≤ 1

n+ 1

n−1
∑

m=0

|am|
∏n

k=m |ℜ(1− 1
(k+1)λ

)|

=
1

n+ 1

n−1
∑

m=0

|am|
∏n

k=m(1− α
k+1

)

=
(

E 1

α
(|a|)

)

n
.

Thus, |Eλ(a)| ≤ E 1

α
(|a|). Since 0 < α < 1

2
we have that 1

α
> 2

and so 1
α

belongs to the resolvent set of C. Thus, E 1

α
is bounded

on ces2. Since a ∈ ces2 implies |a| ∈ ces2, we have E 1

α
(|a|) ∈ ces2.

Thus, Eλ(a) ∈ ces2 with ‖Eλ(a)‖ces2 ≤ ‖E 1

α
‖op‖a‖ces2. Accordingly,

Eλ : ces2 → ces2 is bounded (with ‖Eλ‖op ≤ ‖E 1

α
‖op) and so also ( C −

λI)−1 is bounded. �
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