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Near critical density irregular sampling in

Bernstein spaces∗

Alexander Olevskii and Alexander Ulanovskii

May 12, 2013

Abstract

We obtain sharp estimates for the sampling constants in Bernstein
spaces when the density of the sampling set is near the critical value

Keywords: Bernstein space; Beurling’s sampling theorem; Sampling constant

1 Introduction

1.1 Beurling’s sampling theorem

Definition 1 Let σ be a positive number. The Bernstein space
Bσ consists of all continuous bounded functions on R which are the
Fourier transforms of distributions supported by [−σ, σ].

It is well–known that Bσ can be also characterized as the space of
all bounded functions on R which can be extended to the complex
plane as entire functions of exponential type σ.

Definition 2 A set Λ ⊂ R is called a set of stable sampling (SS)
for Bσ if

sup
x∈R
|f(x)| ≤ C sup

λ∈Λ
|f(λ)|, for all f ∈ Bσ, (1)

where C > 0 is a constant.

We denote by K(Λ, Bσ) the infimum over all C for which inequal-
ity (1) holds true, and call K(Λ, Bσ) the sampling constant. We also
set K(Λ, Bσ) =∞ when Λ is not an SS for Bσ.

∗This research was supported through the programme ”Research in Pairs” by the Mathe-
matisches Forschungsinstitut Oberwolfach in 2012.
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Definition 3 A set Λ is called uniformly discrete (u.d.) if

inf
λ,γ∈Λ,λ 6=γ

|λ− γ| > 0.

If Λ is an SS for Bσ, then (see [1, Corollary of Theorem 2]) for
every positive ε there is a u.d. subset Λ′ of Λ satisfying K(Λ′, Bσ) <
K(Λ, Bσ) + ε. Hence, in order to describe all sampling sets for Bσ,
it suffices to describe the u.d. sampling sets. The classical theorem
of Beurling [1] states that this description can be given in terms of
the lower uniform density of Λ,

D−(Λ) := lim
l→∞

min
a∈R

|Λ ∩ (a, a+ l)|
l

.

Here |Λ∩ (a, a+ l)| denotes the number of elements in Λ∩ (a, a+ l).

Theorem A (A. Beurling) A u.d. set Λ is an SS for Bσ, σ > 0, if
and only if

D−(Λ) >
σ

π
.

1.2 Sampling near critical density

Suppose Λ ⊂ R is a u.d. set satisfying D−(Λ) = 1. By Theorem A,
Λ is an SS for Bσ when σ < π, and is not an SS for Bσ when σ ≥ π.
One may check that when σ < π and σ approaches the critical value
π, then K(Λ, Bσ) tends to infinity.

We ask how fast K(Λ, Bσ) must grow when σ ↑ π.
When Λ = Z is the set of integers, Bernstein [2] proved that

K(Z, Bσ) has exactly the logarithmic growth:

Theorem B (S.N. Bernstein) Let Λ = Z. Then

K(Z, Bσ) =
2

π
log

π

π − σ
(1 + o(1)), σ ↑ π. (2)

A slightly weaker result was proved by Boas and Schaeffer [3].
Some estimates of K(Z, Bσ) can be found in [11]. We mention also
paper [4] which considers Gabor frames generated by the Gaussian
window with respect to the lattice aZ×aZ: An asymptotic behavior
of the frame constants is obtained as constant a approaches the
critical value a = 1.

The main result of this paper shows that the critical constants
K(Λ, Bσ) always have at least the logarithmic growth as σ ↑ π:
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Theorem 1 For every Λ, D−(Λ) = 1, and every 0 < σ < π, we
have

K(Λ, Bσ) ≥ C log
π

π − σ
, (3)

where C > 0 is an absolute constant.

Suppose a set Λ is an SS for Bσ. This means that the sampling
constant K(Λ, Bσ) is finite. Then, by Theorem A, D−(Λ) > π/σ.
Using Theorem 1, one can in a sense measure the stability of The-
orem A by showing that D−(Λ) cannot be too close to π/σ unless
the sampling constant K(Λ, Bσ) is large:

Corollary 1 Suppose a u.d. set Λ is an SS for Bσ, σ > 0. Then

D−(Λ) ≥ σ

π
· 1

1− exp{−CK(Λ, Bσ)}
, (4)

where C > 0 is an absolute constant.

To prove this corollary, one may observe that the relations

K(Λ, Bσ) = K(aΛ, Bσ/a), (5)

D−(aΛ) = D−(Λ)/a

are true, where a > 0 and aΛ = {aλ, λ ∈ Λ}. Then, to get (4), one
chooses a = D−(Λ) and applies (3).

We shall present two proofs of Theorem 1 based on two differ-
ent approaches. The first approach is based on Faber’s ideas in
the interpolation theory, while the second one belongs to circle of
Beurling’s ideas.

Remark 1 Since Beurling’s Theorem A follows from Corollary 1,
our first approach gives a new proof of this fundamental result.

Remark 2 By removing a single point from Z, one gets a stronger
estimate from below than (3):

K(Z \ {0}, Bσ) ≥ σ

π − σ
.

Indeed, set

f(x) =
sinσx

σx
.
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Then maxx∈R |f(x)| = 1 and

|f(n)| =
∣∣∣∣sinσnσn

∣∣∣∣ =

∣∣∣∣sin(π − σ)n

σn

∣∣∣∣ ≤ π − σ
σ

, n ∈ Z \ {0},

from which the estimate above follows.
In fact, sampling constants K(Λ, Bσ) may have arbitrarily fast

growth:

Theorem 2 For every function ω(σ) ↑ ∞ as σ ↑ π, there exists
Λ, D−(Λ) = 1, such that

K(Λ, Bσ) ≥ ω(σ), σ < π.

2 Sampling constants for polynomials. Faber’s
approach

Let us denote by T := {|z| = 1, z ∈ C} the unite circle in the
complex plane, and by C(T) the space of all continuous functions
on T with the uniform norm ‖ · ‖. Let

Pn := {
n∑
j=0

cjz
j, |z| = 1}

denote the subspace of C(T) of the restrictions onto T of all complex
polynomials of degree ≤ n.

Definition 4 A set Λ ⊂ T is called a set of stable sampling (SS)
for Pn if

‖f‖ ≤ C sup
λ∈Λ
|f(λ)|, f ∈ Pn,

where C does not depend on f . The sampling constant K(Λ, Pn) is
defined to be the infimum over all such C.

Clearly, a set Λ ⊂ T is an SS for Pn if and only if |Λ| > n.
Our next result is an analogue of Theorem 1 for polynomials, and

may have intrinsic interest.

Theorem 3 There is an absolute constant C > 0 such that for every
Λ ⊂ T, |Λ| > n, we have

K(Λ, Pn) ≥ C log
n

|Λ| − n
.
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Remark 3 Among all sets Λ ⊂ T satisfying |Λ| = n + 1, the mini-
mum of K(Λ, Pn) is attained for the equally spaced nodes, i.e.

K(Λ, Pn) ≥ K(Zn+1, Pn),

see [7], [5] and [6]. Here Zn+1 is the set of n + 1−roots of unity.
The inequality above was conjectured by Erdös in [8].

In what follows, we will use a variant of Theorem 3 for trigono-
metric polynomials.

Denote by C2π the space of all continuous 2π−periodic functions
on R equipped with the uniform norm ‖ · ‖, and by

Tk := {
k∑

j=−k

cje
ijt, t ∈ R}

the (2k+ 1)−dimensional subspace of all trigonometrical polynomi-
als of degree ≤ k. Sampling sets Γ ⊂ [0, 2π) for Tk and sampling
constants K(Γ, Tk) are defined as above. Clearly, Γ ⊂ [0, 2π) is an
SS for Tk if and only if |Γ| > 2k. Then we have

Theorem 3∗ There is an absolute constant C > 0 such that for
every Γ ⊂ [0, 2π), |Γ| > 2k, we have

K(Γ, Tk) ≥ C log
2k

|Λ| − 2k
.

It is easy to check that Theorems 3 and 3∗ are equivalent. Indeed,
since K(Λ, Pn) ≥ K(Λ, Pn−1), one can check that Theorem 3 for odd
n follows from the result for even n. Then take any even number n
and set k = n/2. The relation Λ = {eiγ : γ ∈ Γ} establishes a one-
to-one correspondence between sets Λ ⊂ T and Γ ⊂ [0, 2π), and the
relation g(t) = e−iktf(eit) establishes a one-to-one norm preserving
correspondence between functions f ∈ Pn and g ∈ Tk. It follows
that K(Λ, Pn) = K(Γ, Tk), n = 2k, which proves the equivalence
between Theorems 3 and 3∗.

Our proof of Theorem 3∗ involves some ideas going back to Faber.
Recall that a linear operator U : C2π → Tk is called a projector

if
Uf = f, f ∈ Tk. (6)
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The following result is well known: Every projector U : C2π → Tk
satisfies the inequality

‖U‖ > C log k. (7)

Here and below we denote by C some absolute positive constants,
maybe different form line to line.

Inequality (7) follows directly from the fundamental observation
due to Faber: By averaging of every projector with respect to trans-
lations, one gets a translation-invariant projector which is simply
the k−th partial Fourier sum Sk. Precisely,

1

2π

∫ 2π

0

HhUH−hdh = Sk, U : C2π → Tk. (8)

Here Hh is the translation operator and Sk(f) means the k−th par-
tial Fourier sum of f .

Remark 3 Actually, Faber considered Lagrange interpolation pro-
jectors, which send f to the polynomial q ∈ Tk interpolating f at
given n nodes on the circle. Sometimes (see [9]) equality (8) for
arbitrary projectors is called the Zygmund–Marzinkievich–Berman
formula, while inequality (7) is called the Lozinski–Harshiladze the-
orem.

The result above has a number of versions and applications. We
shall use the following one due to Al.A. Privalov [13]:

Lemma 1 ([13]) There is a constant C > 0 with the property:
Given integers 1 ≤ m ≤ 2k, a projector U : C2π → Tk, and linear
functionals ψj ∈ C∗2π, j = 1, ...,m, there is a function f ∈ C2π, ‖f‖ ≤
1, such that ψj(f) = 0, j = 1, ...,m, and

‖Uf‖ ≥ C log
2k

m
.

The reader may find a list with additional references in [13].
For completeness of presentation, we prove this lemma in sec. 4.

Proof of Theorem 3∗. Denote by m ≥ 0 the number such that
|Γ| = 2k + m + 1. Since clearly, K(Γ, Tk) ≥ K(Γ∗, Tk) whenever
Γ ⊂ Γ∗ ⊂ [0, 2π), we may assume that m ≥ 1. Choose any subset
Γm ⊂ Γ such that |Γm| = m, and set Γ′ = Γ\Γm. Then |Γ′| = 2k+1.
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Set

ϕ(t) :=
∏
γ∈Γ′

sin
t− γ

2
,

and define U : C(T)→ Tk to be the Lagrange interpolation operator

Uf(t) := ϕ(t)
∑
γ∈Γ′

f(γ)

2ϕ′(γ) sin t−γ
2

.

It is easy to see that U is a projector onto Tk.
Now, for every γ′ ∈ T \ Γ′, the relation

ψγ′(f) := Uf(γ′) = ϕ(γ′)
∑
γ∈Γ′

f(γ)

2ϕ′(γ) sin γ′−γ
2

is a linear functional on C2π. It follows from Lemma 1 that there
exists f ∈ C2π, ‖f‖ ≤ 1, such that ψγ(f) = 0, γ ∈ Γm, and ‖Uf‖ ≥
C log(2k/m), from which Theorem 3∗ follows.

The following statement follows from Theorem 3∗ by an appro-
priate change of variable.

Corollary 2 There is an absolute constant C > 0 with the property:
Given an interval (−N,N), N ∈ N, and a set Λ ⊂ (−N,N), |Λ| >
2N, there is a trigonometric polynomial

P (t) =
N∑

j=−N

cje
iπj
N
t ∈ Bπ

such that

max
t∈R
|P (t)| ≥ C log

2N

|Λ| − 2N
max
λ∈Λ
|P (λ)|.

3 Sampling constants for Bernstein spaces

3.1 A sampling theorem for Bπ

Let N be a positive integer and Λ ⊂ R be a set. Throughout this
section we use the notation

ΛN := Λ ∩ (−N,N), Λ(N) := Λ ∪ (−∞,−N ] ∪ [N,∞).
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Since Λ(N) contains two infinite rays |t| ≥ N, it is an SS for Bπ. We
show that for large N , the sampling constant K(Λ(N), Bπ) must be
large unless the number of points of Λ in (−N,N) is ”much larger
than” 2N :

Theorem 4 There is an absolute constant C > 0 such that for every
set Λ ⊂ R, |ΛN | > 2N , we have

K(Λ(N), Bπ) ≥ C log
2N

|ΛN | − 2N
. (9)

Throughout the rest of this section we denote by C different
positive absolute constants.

In order to prove this theorem we first need an auxiliary lemma.

Lemma 2 Assume M ∈ N and M−1/3/2 < δ < M−1/3. For every
set Γ ⊂ R, |ΓM | > 2M , we have

K(Γ(M), Bπ/(1−δ)) ≥ C log
2M

|ΓM | − 2M
. (10)

3.2 Proof of Lemma 2

We may assume that M is a sufficiently large number, so that the
inequalities below hold true.

1. Let us show that it suffices to prove Lemma 2 for the case

2M +M2/3 ≤ |ΓM | ≤ 3M. (11)

Indeed, if |ΓM | > 3M , then (10) is true for C = 1/ log 2.
Further, assume (10) holds for all sets Γ′ satisfying (11). Let

us show that it is then true for all sets Γ satisfying 2M < |ΓM | <
2M +M2/3. For every such set Γ one may choose a set Γ′ such that
Γ ⊂ Γ′ and 0 ≤ |Γ′M | − (2M +M2/3) ≤ 1. Then

K(Γ(M), Bπ/(1−δ)) ≥ K(Γ′(M), Bπ/(1−δ)) ≥ C log
2M

M2/3 + 1
>

C

3
logM >

C

6
log

2M

|ΓM | − 2M
,

which completes the proof.
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2. Fix a number m,M − 2
√
M < m < M −

√
M , such that there

are no two distinct points γ1, γ2 ∈ ΓM satisfying |γ1 − γ2| = m. Set

Γ′ := ΓM +mZ =
⋃
γ∈ΓM

(γ +mZ).

One may check that ΓM ⊂ Γ′ and |Γ′m| = |ΓM |. By this and Corol-
lary 2, there is a trigonometric polynomial

P (t) =
m∑

j=−m

cje
iπj
m
t ∈ Bπ

satisfying

max
t∈R
|P (t)| ≥ C log

2m

|ΓM | − 2m
max
γ∈ΓM

|P (γ)|. (12)

Denote by |t0| ≤ m a maximum modulus point of P . Set

g(t) :=
P (t)

P (t0)

sin(m−1/3(t− t0))

m−1/3(t− t0)

and δ := 1− (1 +m−1/3)−1 ∈ (M−1/3/2, 2M−1/3). Then

g ∈ Bπ+m−1/3 = Bπ/(1+δ).

3. We now obtain some estimates of |g| from above on the set Γ(M).
Firstly,

max
|t|≥M

|g(t)| ≤ max
|t|≥M

∣∣∣∣sin(m−1/3(t− t0))

m−1/3(t− t0)

∣∣∣∣ ≤ 1

m−1/3(M −m)
≤ 2

M1/6
.

Further, by (11) and (12),

max
γ∈ΓM

|g(γ)| ≤ maxγ∈ΓM |P (γ)|
maxt∈R |P (t)|

≤(
C log

2m

|ΓM | − 2m

)−1

≤
(
C

2
log

2M

|ΓM | − 2M

)−1

.

Hence, since
max
t∈R
|g(t)| = g(t0) = 1,

we see that g satisfies

max
t∈R
|g(t)| = 1 ≥ min{C

2
log

2M

|ΓM | − 2M
,
M1/6

2
} max
γ∈Γ(M)

|g(γ)|,

which proves (10).
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3.3 Proof of Theorem 4

The argument in the first part of the previous proof shows that we
may assume 2N +N2/3 ≤ |ΛN | ≤ 3N. Clearly, we may also assume
that N is a large number.

Choose N−1/3/2 < δ < 2N−1/3/3 such that δN ∈ N, and set
M = (1−δ)N and Γ = (1−δ)Λ. It is clear that |ΓM | = |ΛN | > 2M,
and one may check that M−1/3/2 < δ < M−1/3. This means that
we can apply Lemma 2, which gives

K(Λ(N), Bπ) = K(Γ(M), Bπ/(1−δ)) ≥ C log
2M

|ΓM | − 2M
=

C log
2(1− δ)N

|ΛN | − 2(1− δ)N
>
C

2
log

2N

|ΛN | − 2N
,

which proves (9).

3.4 Proof of Theorem 1

Set a = σ/π and Γ = aΛ. By (5), Theorem 1 is equivalent to the
statement that for every set Γ ⊂ R satisfying D−(Γ) = π/σ > 1, we
have

K(Γ, Bπ) ≥ C log
π

π − σ
. (13)

Without loss of generality we may assume that π − σ is a small
number, and denote by N the integer satisfying

σ

2π − 2σ
− 1 < N ≤ σ

2π − 2σ
.

Then

D−(Γ) =
π

σ
≤ 1 +

1

2N
.

Therefore, there exists an interval of length 2N which contains at
most 2N +2 points of Γ. We may assume that |ΓN | ≤ 2N +2. Since

K(Γ, Bπ) ≥ K(Γ(N), Bπ),

estimate (13) follows from Theorem 4.
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4 Proof of Lemma 1

Given 1 ≤ m < 2k linear functionals ψj ∈ C∗2π, we have to show
that there exists g ∈ C2π satisfying ψj(g) = 0, j = 1, ...,m, and

max
t∈[0,2π)

|Ug(t)| > C log
2k

m
. (14)

Here and throughout this proof we denote by C absolute constants.

1. Fix integer constants

ρ :'
(
k

m

)1/3

, m1 :' k

ρ
,

where a ' b means |a − b| < C. We may assume that k/m, ρ and
m1/mρ are large numbers.

2. Set

Q0(t) :=

(
sin 2mρt

4mρ sin t/2

)2

, Q(t) :=

4mρ∑
l=1

αlQ0

(
t− πl

2mρ

)
.

One can check that

‖Q‖ ≤ max{|αl|; l = 1, ..., 4mρ}.

Observe that αl can be chosen to satisfy the equalities

ψj(e
im1qtQ(t)) = 0,

where

q = 0,±1, ...,±(ρ− 1),±(ρ+ 1), ...,±2ρ, j = 1, ...,m.

This is so, since the number of equalities, (4ρ−1)m, is less than the
number of coefficients, 4mρ. Moreover, we may chose αl so that

max{|αl|; l = 1, ..., 4mρ} = αl0 = 1.

Set t0 := πl0/(2mρ). Then ‖Q‖ = αl0 = Q(t0) = 1.

3. Consider Fejér’s polynomial

P (t) :=

(
1

ρ
+

cos t

ρ− 1
+ ...+

cos(ρ− 1)t

1

)
−
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(
cos(ρ+ 1)t

1
+ ...+

cos 2ρt

ρ

)
=: P1(t)− P2(t).

Clearly, P1(0) > log ρ and it is well–known that ‖P1−P2‖ ≤ C. Set
f1(t) := CP1(m1t), f2(t) := CP2(m1t) and f = f1 − f2, where C is
such that ‖f‖ = 1. Observe that

‖f1‖ = f1(0) = CP1(0) > C log ρ ≥ C log
k

m
.

4. Consider the polynomials

gτ := (H−τf) ·Q,

where (Hτf)(t) := f(t−τ). Clearly, ‖gτ‖ ≤ 1 and all our functionals
vanish on gτ , for every τ . To prove the lemma, we show that there
exists τ such that gτ satisfies (14).

Set
G(τ) := (Ugτ )(t0 − τ) = G1(τ) +G2(τ),

where
Gj(τ) := (U(H−τfj) ·Q)(t0 − τ).

In order to prove that gτ satisfies (14) for some τ , it suffices
to show that maxτ |G(τ)| > C log k/m. To prove the latter, it is
convenient to use the de la Vallée Poussin means:

Vl(f)(x) :=
1

l

2l−1∑
j=l

Sj(f)(x),

where Vl(f) denotes the l−th partial Fourier sum of f . It is well
known that ‖Vl(G)‖ < C‖G‖.

It is easy to see that polynomial G2(t) contains only exponentials
with exponents j : |j| > 8mρ, so that V4mρ(G2) = 0. Further, one
may check that polynomial (H−τf1) ·Q belongs to Tk, so that

G1(τ) = ((H−τf1) ·Q)(t0 − τ) = f1(t0)Q(t0 − τ).

Hence, G1 ∈ T4mρ which gives V4mρ(G1) = G1. We conclude that

‖G‖ ≥ C‖V4mρ(G)‖ = C‖V4mρ(G1)‖ =

C‖G1‖ ≥ C|G1(0)| = C|f1(0)||Q(to)| ≥ C log
k

m
.
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5 Beurling’s approach

5.1 Some results from Beurling’s sampling theory

Beurling in [1] has built a general theory of balayage (or sweeping)
of any finite measure from Rn to a given set Λ without changing the
values on a compact set E of its Fourier transform. For a large class
of sets E he established connection between balayage and sampling
in the corresponding Bernstein space. We recall several facts from
his theory which we use in the proof of Theorem 1 below.

Given two closed sets A and B on R, the Fréchet distance d(A,B)
between A and B is the smallest number d > 0 such that A ⊂
B+[−d, d] and B ⊂ A+[−d, d]. Let Λj be (not necessarily discrete)
closed sets in R. A set Λ is called a weak limit of Λj if for every
closed interval I we have d(Λ∩ I,Λj ∩ I)→ 0, j →∞. We shall use
the fact that (see [1], Theorem 1)

K(Λ, Bσ) ≤ lim inf
j→∞

K(Λj, Bσ). (15)

Given a u.d. set Λ, consider its translations Λ − a, a ∈ R. For
every sequence aj, one can always choose a subsequence such that
the corresponding translations of Λ converge weakly to some u.d.
set Λ′. We denote by W (Λ) the set of all possible weak limits of the
translates of Λ. It follows from (15) that

K(Λ′, Bσ) ≤ K(Λ, Bσ), Λ′ ∈ W (Λ).

We say that a set Λ is a uniqueness set for Bσ if f ∈ Bσ and
f |Λ = 0 imply f = 0. There is a beautiful connection between
sampling and uniqueness properties for Bernstein spaces (see [1],
Theorem 3):

Theorem C (Beurling) Λ is an SS for Bσ if and only if every set
Λ′ ∈ W (Λ) is a uniqueness set for Bσ.

5.2 Some facts about entire functions

1. A corollary of Jensen formula.
Given an entire function f , denote by nf (r) the number of its

zeros in the circle |z| < r. Then the inequality

nf (r) ≤ max
|z|≤r

log |f(ez)| − log |f(0)| (16)
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holds provided f(0) 6= 0. This is an immediate corollary of Jensen
formula (see [10], p.13).

2. Bernstein’s inequality.
Set

‖f‖ := sup
x∈R
|f(x)|.

Bernstein’s inequality ([10], p. 227, [14], p. 72) states

‖f ′‖ ≤ σ‖f‖, for every f ∈ Bσ. (17)

3. Observe that every f ∈ Bσ satisfies ([14], Theorem 11, p. 70)

|f(x+ iy)| ≤ ‖f‖eσ|y|, x+ iy ∈ C.

From this inequality and (16), for every f ∈ Bσ, f(0) 6= 0, it follows
that

nf (r) ≤ σer + log
‖f‖
|f(0)|

, r > 0. (18)

5.3 Proof of Theorem 1

Throughout the proof we denote by C some absolute constants.
To prove Theorem 1, we show that for every Λ, D−(Λ) = 1, and

every σ < π there exists f ∈ Bσ satisfying

‖f‖ = 1, |f(λ)| ≤ C

log π
π−σ

, for every λ ∈ Λ. (19)

It is clear that it suffices to verify this only for σ > σ0, with some
σ0 < π.

By Theorem C and (15), we may additionally assume that there
exists ϕ ∈ Bπ such that ϕ|Λ = 0. Without loss of generality, we may
also assume that 0 6∈ Λ, ‖ϕ‖ = 1 and |ϕ(0)| ≥ 1/2.

Fix any number N ≥ 64, and set σ := π − πN−3. Observe that

log
π

π − σ
= 3 logN. (20)

To find a function f satisfying (19), we consider three cases.
1. Assume that the interval [−N,N ] contains a zero λ0 of ϕ of

multiplicity ≥ 2. Set

g(x) :=
λ0ϕ(x)

x− λ0

.

14



We have g ∈ Bπ, g|Λ = 0 and |g(1/2)| = |ϕ(1/2)| ≥ 1/2. The latter
shows that ‖g‖ ≥ 1/2. Further,

|g(x)| ≤ |λ0|‖ϕ‖
N2 − |λ0|

≤ 2

N
, for all x, |x| ≥ N2.

Now set

f(x) :=
g(σ

π
x)

‖g‖
. (21)

Then f ∈ Bσ and ‖f‖ = 1. When λ ∈ Λ, |λ| < N2, from (17) we
have

|f(λ)| =
|g(λ− π−σ

π
λ)|

‖g‖
≤ π − σ

π
|λ|‖g

′‖
‖g‖
≤ π

N
.

When λ ∈ Λ, |λ| ≥ N2, it follows from the estimate on |g(x)| and
‖g‖ above that |f(λ)| < 4/N . These estimate and (22) prove (a
stronger inequality than) (19).

2. We may assume that ϕ has only simple zeros on [−N,N ].
Assume additionally that every subinterval of [−N,N ] of length√
N contains at least

√
N/8 points of Λ. Then∑

λ∈Λ,|λ|<N

1

|λ|
≥ 1

8

√
N
∑
|j|<
√
N

1

|j|
√
N

= C logN. (22)

Now, for every λ ∈ Λ, |λ| < N, we denote by cλ the number such
that |cλ| = 1 and

− cλ
λϕ′(λ)

=

∣∣∣∣ cλ
λϕ′(λ)

∣∣∣∣ .
Set

g(x) := ϕ(x)
∑

λ∈Λ,|λ|<N

cλ
(x− λ)ϕ′(λ)

.

Then g ∈ Bπ, g(λ) = cλ whenever λ ∈ Λ, |λ| < N, and g(λ) = 0
otherwise. Using Bernstein’s inequality (17) for ϕ′(λ) and (22), we
get

|g(0)| = |ϕ(0)|
∑

λ∈Λ,|λ|<N

1

|λϕ′(λ)|
≥ C logN.

Moreover, by (18), for every |x| > 2N2 we have

|g(x)| ≤
∑

λ∈Λ,|λ|<N

1

|(2N2 − λ)ϕ′(λ)|
≤ |g(0)|

N
.
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Hence, two estimates hold:

|g(λ)|
‖g‖

≤ |g(λ)|
|g(0)|

≤ C

logN
, λ ∈ Λ, (23)

and
|g(x)|
‖g‖

≤ C

N
, |x| > 2N2. (24)

Let f be defined by (21). Then f ∈ Bσ and ‖f‖ = 1. When
λ ∈ Λ, |λ| < 2N2, we have |λ|N−3 < 2/N . Hence, by (17) and (23),

|f(λ)| = |g(λ− λN−3)|
‖g‖

≤ |g(λ)|+ |λ|σN−3‖g‖
‖g‖

≤ C

logN
.

From (24) it follows that the ratio above admits an even better
estimate for |λ| > 2N2. These estimates and (20) prove (19).

3. Assume that there is an interval I of length
√
N which contains

<
√
N/8 points of Λ. We may assume that I = [−

√
N/2,

√
N/2].

We shall need the following lemma (see [12], Lemma 4.5):

Lemma 3 ([12]) Given an integer n and a positive number ω < 1,
let P be an algebraic polynomial of degree ≤ n which has a zero
of multiplicity ≥ ωn at the point 1. Then there exists a constant
0 < η < 1 which depends only on ω such that

max
|z|=1
|P (z)| = max

|z|=1;|z+1|>η
|P (z)|.

Set

ψ(x) :=

(
cos

π√
N
x

)√N/4 ∏
λ∈Λ∩I

sin
2π√
N

(x− λ).

One may check that ψ is
√
N−periodic, ψ ∈ Bπ/2 and ψ(λ) = 0, λ ∈

Λ ∩ I. Moreover, letting z := exp(2πix/
√
N), we see that

ψ(x) = z−
√
N/4(z + 1)

√
N/8

∏
λ∈Λ∩I

(z2 − α2
λ), αλ := e−2πiλ/

√
N .

Hence, by Lemma 3 we conclude that there exists an absolute con-
stant 0 < c < 1/2 and a point x0, |x0| ≤ c

√
N satisfying

‖ψ‖ = |ψ(x0)|.
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Set

f(x) :=
ψ(x)

ψ(x0)

sin π(x−x0)
4

π(x−x0)
4

.

We have f ∈ B3π/4, ‖f‖ = f(x0) = 1, f(λ) = 0 whenever λ ∈
Λ, |λ| <

√
N/2. Moreover, since |x − x0| > (1/2 − c)

√
N, |x| >√

N/2, we get

|f(x)| ≤

∣∣∣∣∣sin π(x−x0)
4

π(x−x0)
4

∣∣∣∣∣ ≤ 4

π(1/2− c)
√
N
, |x| ≥

√
N/2,

from which (19) follows.

6 Proof of Theorem 2

Theorem 2 follows easily from our Theorem 4.
Take any function ω(σ) ↑ ∞, σ ↑ π, and any sequence 0 < σ1 <

σ2 < ..., σj ↑ π. To prove Theorem 2 it suffices to construct a u.d.
set Λ, D−(Λ) = 1, for which K(Λ, Bσj) > ω(σj+1), j ∈ N.

Set

Λ1 := { π
σ1

n : n ∈ Z, |n| < N1} ∪ {x : x ∈ R, |x| ≥ N1}.

By Theorem 4 we may choose N1 so large that

K(Λ1, Bσ1) > ω(σ2).

Next, we set

Λ2 := { π
σ1

n : n ∈ Z, |n| < N1}

∪{ π
σ2

n : n ∈ Z, N1 < |n| < N2} ∪ {x : x ∈ R, |x| ≥ N2}.

By Theorem 4 we may choose N2 > N1 so large that

K(Λ2(N, σ), Bσ2) > ω(σ3),

and so on. Proceeding like that we construct a sequence Nj → ∞
and a sequence Λj which converge to some Λ. Since Λ ⊂ Λj for each
j, we have

K(Λ, Bσj) ≥ K(Λj, Bσj) > ω(σj+1).

17



Moreover, for every j ∈ N we have

Λ ∩ {x : Nj < |x| < Nj+1} = { π
σj
n : Nj < |n| < Nj+1}.

From this it easily follows that D−(Λ) = 1, which completes the
proof.
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