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LOCAL ASYMPTOTICS FOR THE AREA OF RANDOM WALK

EXCURSIONS

DENIS DENISOV, MARTIN KOLB, AND VITALI WACHTEL

Abstract. We prove a local limit theorem for the area of the positive exur-

sion of random walks with zero mean and finite variance. Our main result
complements previous work of Caravenna and Chaumont, Sohier, as well as

Kim and Pittel.

1. Introduction and statement of results

Let {Sn} be an integer-valued centered random walk with finite second moments,
and let τ denote the first time when the random walk is negative, i.e., τ := min{n ≥
1 : Sn ≤ 0}. The path {S1, S2, . . . , Sτ−1} we shall call the positive excursion of
{Sn}. It follows easily from recent results of Caravenna and Chaumont [3] and
Sohier [13] that the rescaled excursion of the random walk conditioned on τ = n+1
converges weakly to the standard Brownian excursion which we shall denote by
e(t), t ∈ [0, 1]. This implies that an appropriately rescaled area converges towards
the corresponding functional of the Brownian excursion. More precisely,

P
(
n−3/2An ≤ x

∣∣∣τ = n+ 1
)
→ P

(∫ 1

0

e(t)dt ≤ x
)
, x > 0, (1)

where

An :=

n∑
k=1

Sk.

For simple random walks this convergence was proved by Takacs [15], who also
identified the limiting distribution – the so-called Airy distribution. (We give be-
low an exact expression for its density.) His motivation was partially rooted in
combinatorics. More precisely, he was interested in the investigation of the as-
ymptotic number of random trees on n vertices with given total height, see Takacs
[15, 16, 17] and Spencer [14]. Using the well-known one-to-one correspondence be-
tween random trees and random walk excursions, this problem is equivalent to a
problem concerning the area under random walk path. It is worth mentioning that
areas of random walk excursions appear also in other combinatorial problems such
as:

• analysis of linear probing hashing, Flajolet, Poblete and Viola [7];
• enumeration of paths below a line of rational slope, Banderier and Gitten-

berger [1];
• Winston-Kleitman problem on tournament scores, Winston and Kletman

[21] and Takacs [15].

1991 Mathematics Subject Classification. Primary 60G50; Secondary 60G40, 60F17.
Key words and phrases. Random walk,excursion, Airy function, Airy distribution.
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2 DENISOV, KOLB, AND WACHTEL

Assertion (1) allows to find the asymptotic number of random trees on n vertices
with the total height bounded by xn3/2. But in order to find the number of trees
with fixed total height one need a local version of (1). Moreover, such a result
allows to confirm the Kleitman-Winston conjecture mentioned above, see Takacs
[15, page 565]. This conjecture were proved by Kim and Pittel [10] by deriving a
uniform upper bound for probabilities P(An = a|τ = n+ 1) in the case of a simple
random walk.

The main purpose of the present paper is to extend the result of Kim and Pittel
to a local limit theorem for the excursion area of all random walks with finite
variance.

We say that X is (d, ρ)-lattice if its distribution is lattice with span d and shift
ρ ∈ [0, d), i.e., h is the maximal number such that P(X ∈ {ρ + dk, k ∈ Z}) = 1.
Furthermore, we define Nx := {n ≥ 1 : P(Sn = x) > 0}, x ≥ 0.

Theorem 1. Assume that EX = 0, EX2 := σ2 ∈ (0,∞) and X is (d, ρ)-lattice.
Then

sup
a∈n(n+1)ρ/2+dZ

∣∣∣∣n3/2P (An = a
∣∣τ = n+ 1

)
− d

σ
wex

( a

σn3/2

)∣∣∣∣→ 0 as n→∞

(2)
and, for every x ≥ 0,

sup
a∈n(n+1)ρ/2+dZ

∣∣∣∣n3/2P (An = a
∣∣τ = n+ 1, Sn = x

)
− d

σ
wex

( a

σn3/2

)∣∣∣∣→ 0 (3)

as Nx 3 n→∞. Here wex denotes the density of
∫ 1

0
e(t)dt.

Takacs [15, Theorem 5] has obtained an exact expression for wex:

wex(x) =
213/6

33/2x10/3

∞∑
k=1

a2k exp

{
− 2a3k

27x2

}
U

(
−5

6
,

4

3
,

2a3k
27x2

)
,

where U(a, b, z) is a confluent hypergeometric function and {−ak} is a sequence of
zeros of the Airy function

Ai(x) =
1

π

∫ ∞
0

cos(t3/3 + tx)dt

arranged so that ak < ak+1 for all k. (For further properties of the Airy function
we refer to Janson [9, Section 12].)

Using the asymptotics wex(x) → 0 as x → 0 or x → ∞ from [9, Section 15] we
conclude supx≥0 wex(x) <∞. From this fact and (2) we infer that

sup
a≥1

P
(
An = a

∣∣τ = n+ 1
)
≤ C

n3/2
, n ≥ 1,

reproducing the main result of Kim and Pittel [10].

Example 2. In order to demonstrate the relevance of our theorem in a combina-
torial context, we apply it to the following problem of enumeration of Dyck paths
below a line of rational slope. Following Banderier and Gittenberger [1], we look
at walks on N2 with steps (1, 0) and (0, 1) constrained to stay below a line y = α

βx

with α, β ∈ N. We are interesed in the asymptotic number of such walks of length
n which start at (0, 0), end on the line and have a fixed area between the line and
the path. According to Theorem 8 in [1], this number is equal, up to the factor
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α + β, to the number of random walk excursions of length n with the endpoint 0
and the same area. The set of jumps of this random walk is {α,−β}. Let N(n, a)
denote the number of excursions with area a. Then

N(n, a) = 2nP(An = a, τ = n, Sn = 0),

where Sn is a random walk with P(X = α) = P(X = −β) = 1/2. This walk is
obviously (α, α+ β)-lattice. Since EX = α− β is not necessarily zero, we can not
apply Theorem 1 directly. In order to obtain a driftless random walk we perform
an exponential change of measure. Set h0 = (α + β)−1 log(β/α) and define a new

measure P̂ by the equality

P̂(X = x) =
eh0x

ϕ(h0)
P(X = x), x ∈ {α,−β},

where ϕ(h) = EehX = (eαh − e−βh)/2. Then

P(An = a, τ = n, Sn = 0) = (ϕ(h0))
n
P̂(An = a, τ = n, Sn = 0).

Combining now (3) with Theorem 6 in [20], we obtain

P̂(An = a, τ = n, Sn = 0) = C(α, β)wex

( a

σn3/2

)
n−3 + o(n−3),

where σ2 = σ2(α, β) = ÊX2. (We can not give an analytical expression for the
constant C(α, β), due to the fact that we do not know exact form of the renewal
function of ascending ladder epochs.) As a result we have

N(n, a) ≈ C(α, β)wex

( a

σn3/2

)
n−3

((
β

α

)α/(α+β)
+

(
α

β

)β/(α+β))n
.

The proof of (2) is based on the following local limit theorem for the joint
distribution of a discrete meander and its area.

Theorem 3. Assume that the conditions of Theorem 1 are satisfied. Then, for
every z ≥ 0,

sup
a∈n(n+1)ρ/2+dZ,x∈nρ+dZ

∣∣∣∣n2Pz (An = a, Sn = x
∣∣∣τ > n

)
− d2

σ2
h
( a

σn3/2
,

x

σn1/2

)∣∣∣∣→ 0,

where h(u, v) is the density function of the vector (
∫ 1

0
Mtdt,M1) and Pz is the

distribution of the walk starting at z.

Part of the proof of this theorem consists in showing that the distribution of the

vector (
∫ 1

0
Mtdt,M1) has a continuous density.

Corollary 4. As n→∞,

sup
a∈n(n+1)ρ/2+dZ

∣∣∣∣n2P(An = a|τ > n)− d

σ
wme

( a

σn3/2

)∣∣∣∣→ 0,

where wme is the density of
∫ 1

0
Mtdt.

This result is a local counerpart of Theorem 4 in Takacs [18].
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2. Brownian meander and its area

As it was mentioned above one of the steps in the proof of Theorem 3 consists

in the investigation of the distribution of (
∫ 1

0
Mtdt,M1). The next proposition

contains all the properties of this distribution which are needed in the proof of
Theorem 3.

Proposition 5. The joint distribution of
∫ 1

0
Mtdt and M1 is absolutely continuous

with a continuous density h(u, v). There exists a measure ν such that

h(u, v) =

√
π

2

(
6u− 2v +

√
2

π

)
p1(0, 0;u, v) (4)

+

√
π

2

∫ 1

0

∫ ∞
0

ν(ds, dz) [p1(0, 0;u, v)− p1−s(0, 0;u− z, v)] .

Proof. Set It =
∫ t
0
Bsds. Let

pt(x, y;u, v) =
3√
πt2

exp

{
−6(u− x− ty)2

t3
+

6(u− x− ty)(v − y)

t2
− 2(v − y)2

t

}
be the transition function of the process (It, Bt)t≥0 and define

pt(x, y;u, v) =
P(x,y)(It ∈ du,Bt ∈ dv, τ > t)

dudv
,

where τ := inf{t > 0 : Bt = 0}.
Using the strong Markov property it can be easily seen that

p1(0, ε;u, v) = p1(0, ε;u, v)−
∫ 1

0

∫ ∞
0

P(0,ε)(τ ∈ ds, Is ∈ dz)p1−s(z, 0, u, v)

= p1(0, ε;u, v)− p1(0, 0;u, v)P(0,ε)(τ ≤ 1) (5)

+

∫ 1

0

∫ ∞
0

P(0,ε)(τ ∈ ds, Is ∈ dz) [p1(0, 0;u, v)− p1−s(z, 0, u, v)] .

Since

P(0,ε)(τ > 1) = 2Φ(ε)− 1 ∼
√

2

π
ε ε→ 0,

we have

lim
ε→0

1

ε
p1(0, 0;u, v)P(0,ε)(τ > 1) =

√
2

π
p1(0, 0;u, v).

Furthermore, by Taylor’s formula,

p1(0, ε;u, v)− p1(0, 0;u, v)

=
3√
π

(
exp

{
−6(u− ε)2 + 6(u− ε)(v − ε)− 2(v − ε)2

}
− exp

{
−6u2 + 6uv − 2v2

})
=

3√
π

exp
{
−6u2 + 6uv − 2v2

}
(12u− 6u− 6v + 4v)ε+O(ε2),

which implies that

lim
ε→0

1

ε
(p1(0, ε;u, v)− p1(0, 0;u, v)) = p1(0, 0;u, v)(6u− 2v).
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As a result,

lim
ε→0

1

ε

(
p1(0, ε;u, v)− p1(0, 0;u, v)P(0,ε)(τ ≤ 1)

)
= p1(0, 0;u, v)

(
6u− 2v +

√
2

π

)
. (6)

In order to deal with the integral term in (5) we write∫ 1

0

∫ ∞
0

P(0,ε)(τ ∈ ds, Is ∈ dz) [p1(0, 0;u, v)− p1−s(z, 0;u, v)]

=

∫ 1

0

∫ ∞
0

P(0,ε)(τ ∈ ds, Is ∈ dz) [p1(0, 0;u, v)− p1−s(0, 0;u, v)]

+

∫ 1

0

∫ ∞
0

P(0,ε)(τ ∈ ds, Is ∈ dz) [p1−s(0, 0;u, v)− p1−s(z, 0;u, v)]

=

∫ 1/ε2

0

P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

+

∫ 1/ε2

0

∫ ∞
0

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
,

where the last equality follows from the Brownian scaling. Fix some r ∈ (0, 1/2)
and write ∫ 1/ε2

0

P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

=

∫ r/ε2

0

P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

+

∫ 1/ε2

r/ε2
P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)] .

It is easily seen that

∂

∂t
pt(0, 0;u, v) =− 6√

πt3
exp

{
−6u2

t3
+

6uv

t2
− 2v2

t

}
+

2√
πt2

exp

{
−6u2

t3
+

6uv

t2
− 2v2

t

}(
18u2

t4
− 12uv

t3
+

2v2

t2

)
.

Noting that this derivative is uniformly bounded, we infer from Taylor’s formula
that

sup
s≤1/2

s−1|p1(0, 0;u, v)− p1−s(0, 0;u, v)| ≤ C. (7)

Combining this with the estimate
P(0,1)(τ∈ds)

ds ≤ (2π)−1/2s−3/2, we obtain∣∣∣∣∣
∫ r/ε2

0

P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

∣∣∣∣∣
≤ C

∫ r/ε2

0

s−3/2ε2sds = 2C
√
rε. (8)
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Using the relation

P(0,1)(τ ∈ ds)
ds

∼ (2π)−1/2s−3/2 as s→∞,

we get, as ε→ 0,∫ 1/ε2

r/ε2
P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

=
1 + o(1)√

2π

∫ 1/ε2

r/ε2
s−3/2 [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)] ds

=
1 + o(1)√

2π
ε

∫ 1

r

s−3/2 [p1(0, 0;u, v)− p1−s(0, 0;u, v)] ds.

Using (7) once again we conclude that

lim
r→0

lim
ε→0

1

ε

∫ 1/ε2

r/ε2
P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

=
1√
2π

∫ 1

0

s−3/2 [p1(0, 0;u, v)− p1−s(0, 0;u, v)] ds.

Combining this relation with (8), we finally get

lim
ε→0

1

ε

∫ 1/ε2

0

P(0,1)(τ ∈ ds) [p1(0, 0;u, v)− p1−ε2s(0, 0;u, v)]

=
1√
2π

∫ 1

0

s−3/2 [p1(0, 0;u, v)− p1−s(0, 0;u, v)] ds. (9)

We now turn to the integral∫ 1/ε2

0

∫ ∞
0

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
.

Since the derivative

∂

∂u
pt(0, 0;u, v) =

3√
πt2

{
−6u2

t3
+

6uv

t2
− 2v2

t

}(
6v

t2
− 12u

t3

)
is uniformly bounded in t,

|p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)| ≤ C(u, v)ε3z.

Therefore,∣∣∣∣∣
∫ 1/ε2

0

∫ r/ε3

0

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]∣∣∣∣∣
≤ Cε3

∫ r/ε3

0

zP(0,1)(Iτ ∈ dz).

According to formula (2.10) in Isozaki and Watanabe [8]

P(0,1)(Iτ ∈ dz)
dz

=
21/3

32/3Γ(1/3)
z−4/3 exp{−2/9z}, z > 0.
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This implies that∫ r/ε3

0

zP(0,1)(Iτ ∈ dz) ≤
21/3

32/3Γ(1/3)

∫ r/ε3

0

z−1/3dz =
31/3

22/3Γ(1/3)
r2/3ε−2

and, consequently,∣∣∣∣∣
∫ 1/ε2

0

∫ r/ε3

0

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]∣∣∣∣∣
≤ Cr2/3ε. (10)

Since pt is uniformly bounded in all variables,∣∣∣∣∣
∫ r/ε2

0

∫ ∞
r/ε3

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]∣∣∣∣∣
≤ CP(0,1)

(
τ ≤ rε−2, Iτ ≥ rε−3

)
≤ CP(0,1)

(
τ ≤ rε−2,max

t≤τ
Bt ≥ ε−1

)
,

where in the last step we used the bound Iτ ≤ τ maxt≤τ Bt. Applying now a
good-λ-inequality (see Durrett [6, p.153]) and Doob’s inequality, we have

P(0,1)

(
τ ≤ rε−2,max

t≤τ
Bt ≥ ε−1

)
≤ 4rP(0,1)

(
max
t≤τ

Bt ≥ ε−1
)
≤ 8rε.

Therefore,∣∣∣∣∣
∫ r/ε2

0

∫ ∞
r/ε3

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]∣∣∣∣∣
≤ Crε. (11)

It remains to consider the integral∫ 1/ε2

r/ε2

∫ ∞
r/ε3

P(0,1)(τ ∈ ds, Is ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
.

We start with the Laplace transform of the function P(0,1)(τ > t, Iτ > z). It is easy
to verify that

F (λ, µ) := λµ

∫ ∞
0

∫ ∞
0

e−λt−µzP(0,1)(τ > t, Iτ > z)dtdz

= 1−E(0,1)[e
−λτ ]−E(0,1)[e

−µIτ ] + E(0,1)[e
−λτ−µIτ ].

It is well-known that

E(0,1)[e
−λτ ] = e−

√
2λ.

Furthermore, for all positive µ one has, see [12, Theorem 1],

E(0,1)[e
−λτ−µIτ ] =

Ai((2µ)1/3 + 2λ/((2µ)2/3))

Ai(2λ/((2µ)2/3))
.

From these equalities we conclude that

lim
ε→0

1

ε
F (ε2λ, ε3µ) =

√
2λ− Ai′(0)

Ai(0)
(2µ)1/3 +

Ai′(2λ/((2µ)2/3)

Ai(2λ/((2µ)2/3)
(2µ)1/3. (12)



8 DENISOV, KOLB, AND WACHTEL

According to Theorem 2.1(i) in Omey and Willekens [11], the latter convergence
implies that

lim
ε→0

1

ε
P(0,1)(τ > tε−2, Iτ > zε−3) = G(t, z), (13)

where the function G is determined by the right hand side in (12).
By the fundamental theorem of calculus we have

p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

=

∫ ε3z

0

∫ ε2s

0

∂2

∂q∂w
p1−q(0, 0;u− w, v)dqdw −

∫ ε3z

0

∂

∂w
p1(0, 0;u− w, v). (14)

Using this representation and exchanging the integrals, we get∫ 1/ε2

r/ε2

∫ ∞
r/ε3

P(0,1)(τ ∈ ds, Iτ ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
=

∫ 1

0

∫ ∞
0

∂2

∂q∂w
p1−q(0, 0;u− w, v)

∫ 1/ε2

(q∨r)/ε2

∫ ∞
(w∨r)/ε3

P(0,1)(τ ∈ ds, Iτ ∈ dz)dwdq

−
∫ ∞
0

∂

∂w
p1(0, 0;u− w, v)

∫ ∞
(w∨r)/ε3

P(0,1)(τ ∈ (r/ε2, 1/ε2), Iτ ∈ dz)dw

=

∫ 1

0

∫ ∞
0

∂2

∂q∂w
p1−q(0, 0;u− w, v)P(0,1)

(
τ ∈

(
q ∨ r
ε2

,
1

ε2

)
, Iτ >

w ∨ r
ε3

)
dwdq

−
∫ ∞
0

∂

∂w
p1(0, 0;u− w, v)P(0,1)

(
τ ∈

(
r

ε2
,

1

ε2

)
, Iτ >

w ∨ r
ε3

)
dw

Applying now (13), we obtain

1

ε

∫ 1/ε2

r/ε2

∫ ∞
r/ε3

P(0,1)(τ ∈ ds, Iτ ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
→
∫ 1

0

∫ ∞
0

∂2

∂q∂w
p1−q(0, 0;u− w, v)(G (q ∨ r, w ∨ r)−G(1, w ∨ r))dwdq

−
∫ ∞
0

∂

∂w
p1(0, 0;u− w, v)(G (r, w ∨ r)−G(1, w ∨ r))dw as ε→ 0. (15)

Let ν denote the measure which corresponds to G, that is,

G(t, z) =

∫ ∞
t

∫ ∞
z

ν(ds, dy).

Using this representation and (14) with ε = 1, we can rewrite the limit in (15) in
the following way∫ 1

r

∫ ∞
r

ν(ds, dz) [p1−s(0, 0;u, v)− p1−s(0, 0;u− z, v)] .

Letting here r → 0 and taking into account (10) and (11) we conclude that

1

ε

∫ 1/ε2

0

∫ ∞
0

P(0,1)(τ ∈ ds, Iτ ∈ dz)
[
p1−ε2s(0, 0;u, v)− p1−ε2s(0, 0;u− ε3z, v)

]
→
∫ 1

0

∫ ∞
0

ν(ds, dz) [p1−s(0, 0;u, v)− p1−s(0, 0;u− z, v)] as ε→ 0. (16)
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Substituting (6), (9) and (16) into (5), we obtain

lim
ε→0

1

ε
p1(0, ε;u, v) =

(
6u− 2v +

√
2

π

)
p1(0, 0;u, v)

+
1√
2π

∫ 1

0

s−3/2[p1(0, 0;u, v)− p1−s(0, 0;u, v)]

+

∫ 1

0

∫ ∞
0

ν(ds, dz) [p1−s(0, 0;u, v)− p1−s(0, 0;u− z, v)]

Noting that (2π)−1/2s−3/2ds =
∫∞
0
ν(ds, dz), we see that the limit is equal to(

6u− 2v +

√
2

π

)
p1(0, 0;u, v)+

∫ 1

0

∫ ∞
0

ν(ds, dz) [p1(0, 0;u, v)− p1−s(0, 0;u− z, v)] .

To complete the proof of (4) it remains to observe that

h(u, v) = lim
ε→0

p1(0, ε;u, v)

P(0,ε)(τ > 1)

and that P(0,ε)(τ > 1) ∼
√

2
π ε. The continuity of the density follows from the fact

that all the limits are locally uniform in u and v. �

The existence of the density h(u, v) can be seen as follows. Denote

ψsme(x, y, t) = Ex[e−sIt , Bt ∈ dy, τ > t]/dy

By the Feynmann-Kac formula we conclude that the generator As of the semigroup
corresponding to ψsme(x, y, t) is given by the differential operator

As =
1

2

∂2

∂x2
− sy

with the Dirichlet boundary condition. it is well-known that the spectrum of this
operator is purely discrete, and its eigenvalues −λn can be found by the solving the
equation

f ′′(y)− 2syf(y) = −λnf(y)

with the boundary condition f(0) = 0. The general solution is given by Ai((2s)1/3y−
21/3λ/s2/3). In order to satisfy the boundary condition we need to require λn =
ans

2/3/21/3, where −an are zeros of the Airy function.
The sequence (2s)1/6Ai(y(2s)1/3−an)/Ai′(−an) is orthonormal, see [19, Section

4.4] for more details. Therefore, by diagonalisation of the self-ajoint operator As,

ψsme(x, y, t) = −
∞∑
n=1

e−2
−1/3s2/3ant(2s)1/3

Ai(y(2s)1/3 − an)Ai(x(2s)1/3 − an)

(Ai′(−an))2
.

As x→ 0,

ψsme(x, y, 1)

Px(τ > 1)
→
√
π

2
(2s)2/3

∞∑
n=1

e−2
−1/3s2/3an

Ai(y(2s)1/3 − an)

Ai′(−an)
.
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Consequently,

E[e−s
∫ 1
0
Mtdt,M1 ∈ dy]/dy =

√
π

2
(2s)2/3

∞∑
n=1

e−2
−1/3s2/3an

Ai(y(2s)1/3 − an)

Ai′(−an)
.

(17)

Integrating over y we get the formula for the Laplace transform of the area of the
standard meander, see also formula (209) in Janson [9],

E[e−s
∫ 1
0
Mtdt] =

√
π

2
(2s)1/3

∞∑
n=1

rne
−2−1/3s2/3an ,

where

rn :=
1

Ai′(−an)

∫ ∞
−an

Ai(z)dz, n ≥ 1.

Setting s = −ir = e−iπ/2r in (17) and noting that the real part of (e−iπ/2r)2/3 is
always positive, we conclude that

E[eir
∫ 1
0
Mtdt,M1 ∈ dy]/dy =

√
π

2
(−ir)2/3

∞∑
n=1

e−2
−1/3(−ir)2/3an Ai(y(−2ir)1/3 − an)

Ai′(−an)

is decreasing exponentially. Therefore, the corresponding measure is absolutely
continuous with respect to the Lebesgue measure, and the corresponding density is
continuous.

3. Local asymptotics for discrete meanders: Proof of Theorem 3.

First we state some known limit theorems for random walks and discrete mean-
ders.

Proposition 6. If the variance of S1 is one, then, for every B ∈ B(R2
+) and every

starting point z ≥ 0,

lim
n→∞

Pz

((
An
n3/2

,
Sn
n1/2

)
∈ B

∣∣∣τ > n

)
= P

((∫ 1

0

Mtdt,M1

)
∈ B

)
,

where Mt is the Brownian meander.

This convergence is immediate from the functional limit theorem for random
walks conditioned to stay positive which was proved by Bolthausen [2].

Another crucial ingredient of the proof of Theorem 3 is the following result.

Proposition 7. Under the conditions of Theorem 1,

sup
a∈n(n+1)ρ/2+dZ,x∈nρ+dZ

∣∣∣n2P (An = a, Sn = x)− g
( a

n3/2
,
x

n1/2

)∣∣∣→ 0,

where g(u, v) = p1(0, 0;u, v) is the density of the vector (
∫ 1

0
Btdt,B1).

A version of this convergence for absolutely continuous distributions has been
proved by Caravenna and Deuschel [4]. Since the case of discrete random walks
needs only some obvious changes, we omit the proof of this result.

Proposition 7 and the boundednes of g imply the following result.

Corollary 8. There exists a constant C such that

sup
a,x∈Z

P (An = a, Sn = x) ≤ Cn−2, n ≥ 1. (18)
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To simplify notation we give a proof of Theorem 3 for z = 0 only. Moreover, we
assume, for the same reason, that d = 1 and ρ = 0.

We start by considering various ’boundary’ values of a and x. Splitting the
trajectory of Sn at n−m, we obtain

P (An = a, Sn = x, τ > n)

=
∑
y,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ > m) .

(19)

Applying now (18) to probabilities Py (Am = a− b, Sm = x, τ > m) and using the
following well-known relation

P(τ > n) ∼ θn−1/2, (20)

we get

sup
a,x∈Z

P (An = a, Sn = x, τ > n) ≤ C

m2
P(τ > n−m) ≤ C

n5/2
. (21)

If a ≤ δn3/2 then we infer from (19) with m = [n/2] that

P (An = a, Sn = x, τ > n) ≤ P(An−m ≤ a, τ > n−m)
C

m2

≤ P(An−m ≤ δn3/2|τ > n−m)
C

n5/2
.

In view of Proposition 6,

P(An−m ≤ δn3/2|τ > n−m)→ P

(∫ 1

0

Mtdt ≤ 23/2δ

)
.

According to formula (212) in Janson [9],

P

(∫ 1

0

Mtdt ≤ u
)
∼ c1e−c2/u

2

as u→ 0.

Consequently,

n5/2 sup
a≤δn3/2, x≥1

P (An = a, Sn = x, τ > n) ≤ Ce−1/δ. (22)

For a ≥ 2Rn3/2 we have

P (An = a, Sn = x, τ > n)

= P

(
An = a, Sn = x,max

k≤n
Sk ≥ 2R

√
n, τ > n

)
= P

(
An = a, Sn = x,max

k≤m
Sk ≥ R

√
n, τ > n

)
+ P

(
An = a, Sn = x, max

k≤n−m
(Sm+k − Sm) ≥ R

√
n, τ > n

)
.



12 DENISOV, KOLB, AND WACHTEL

Using the Markov property and (18), we get

P

(
An = a, Sn = x,max

k≤m
Sk ≥ R

√
n, τ > n

)
≤ P

(
max
k≤m

Sk ≥ R
√
n, τ > m

)
sup
y,b∈Z

P(An−m = b, Sn−m = y)

≤ C

n5/2
P

(
max
k≤m

Sk ≥ R
√
n
∣∣τ > m

)
≤ C

n5/2
P

(
sup
t≤1

Mt ≥ R
√

2

)
.

In the last step we used functional limit theorem for random walks conditioned to
stay positive. Furthermore, using (21), we obtain

P

(
An = a, Sn = x, max

k≤n−m
(Sm+k − Sm) ≥ R

√
n, τ > n

)
≤ sup
y,b∈Z

P(Am = b, Sm = y, τ > m)P

(
max
k≤n−m

(Sm+k − Sm) ≥ R
√
n

)
≤ C

n5/2
P

(
max
t≤1

Bt > R
√

2

)
.

As a result we have

n5/2 sup
a≥2Rn3/2, x≥1

P (An = a, Sn = x, τ > n) ≤ ∆(R), (23)

where ∆(R)→ 0 as R→∞. Since for x ≥ 2R
√
n the equality

P (An = a, Sn = x, τ > n) = P

(
An = a, Sn = x,max

k≤n
Sk ≥ 2R

√
n, τ > n

)
holds, we have

n5/2 sup
a≥1, x≥2R

√
n

P (An = a, Sn = x, τ > n) ≤ ∆(R), (24)

For x ≤ 2ε
√
n we use an alternative representation for P (An = a, Sn = x, τ > n).

Set X ′i := −Xm+1−i, i ∈ {1, 2, . . . ,m} and S′k = S′0 +
∑k
i=1X

′
i, A

′
k =

∑k
i=1 S

′
i.

Then it is easy to see that{
ym+

m∑
i=1

Si = a− b, y + Sm = x, min
i≤m

(y + Si) > 0

}

=

{
xm+

m∑
i=1

S′i = a− b+ y − x, x+ S′m = y, min
i≤m

(x+ S′i) > 0

}
.

Consequently,

Py (Am = a− b, Sm = x, τ > m) = Px (A′m = a− b, S′m = y, τ ′ > m)

and

P (An = a, Sn = x, τ > n) =
∑
y,b≥1

P (An−m = b, Sn−m = y, τ > n−m)

×Px (A′m = a− b+ y − x, S′m = y, τ ′ > m) .
(25)



LOCAL ASYMPTOTICS FOR EXCURSION’S AREA 13

From this representation and (21) we conclude that

P (An = a, Sn = x, τ > n) ≤ C

(n−m)5/2
Px(τ ′ > m) ≤ C

n5/2
P2ε
√
n(τ ′ > m).

It is immediate from the functional CLT that P2ε
√
n(τ ′ > [n/2]) ≤ Cε. Therefore,

n5/2 sup
a≥1, x≤2ε

√
n

P (An = a, Sn = x, τ > n) ≤ Cε. (26)

We now turn to ’normal’ values for the vector (An, Sn), that is,

δn3/2 ≤ a ≤ 2Rn3/2 and 2ε
√
n ≤ x ≤ 2R

√
n.

For every x define

B1 = B1(x) := {y ≥ 1 : |y − x| ≤ ε
√
n} and B2 = B2(x) := Z+ \B1(x).

For every m ≥ 1 we have

P (An = a, Sn = x, τ > n) = P (An = a, Sn = x, Sn−m ∈ B1, τ > n)

+ P (An = a, Sn = x, Sn−m ∈ B2, τ > n) . (27)

Set m = [ε3n]. Then, applying (21), we obtain, uniformly in a, x ≥ 1,

P (An = a, Sn = x, Sn−m ∈ B2, τ > n)

=
∑

y∈B2,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ > m)

≤ C

n5/2

∑
y∈B2

Py(Sm = x) ≤ C

n5/2
P(|Sm| > ε

√
n) ≤ C

n5/2
Φ(ε−1/2), (28)

where Φ(x) =
∫∞
x

1√
2π
e−u

2/2du.

Further,

P (An = a, Sn = x, Sn−m ∈ B1, τ > n)

=
∑

y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ > m)

=
∑

y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x)

−
∑

y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ ≤ m)

Applying (21) to the probabilities in the second sum, we obtain∑
y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ ≤ m)

≤ C

n5/2

∑
y∈B1

Py (Sm = x, τ ≤ m) =
C

n5/2
Px (S′m ∈ B1, τ

′ ≤ m) .

For x ≥ 2ε
√
n we have

Px (S′m ∈ B1, τ
′ ≤ m) ≤ P

(
max
k≤m

Sk > 2ε
√
n

)
≤ CΦ(ε−1/2).
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Therefore,∑
y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x, τ ≤ m)

≤ C

n5/2
Φ(ε−1/2). (29)

It follows from Proposition 7 that∑
y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)Py (Am = a− b, Sm = x)

=
∑

y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)m−2g

(
a− b−my

m3/2
,
x− y
m1/2

)
+ o

(
m−2P(τ > n−m)

)
(30)

uniformly in a, x ≥ 1. Recalling (20), we get∑
y∈B1,b≥1

P (An−m = b, Sn−m = y, τ > n−m)m−2g

(
a− b−my

m3/2
,
x− y
m1/2

)

=
1− ε3

ε6
θ

n5/2
E

[
g

(
a−An−m − ε3ny

ε9/2n3/2
,
x− Sn−m
ε3/2n1/2

)
1{Sn−m ∈ B1}

∣∣∣τ > n−m
]
.

Since g(u, v)→ 0 as v →∞ uniformly in u,

E

[
g

(
a−An−m − ε3ny

ε9/2n3/2
,
x− Sn−m
ε3/2n1/2

)
1{Sn−m ∈ B2}

∣∣∣τ > n−m
]
≤ r1(ε), (31)

where r1(ε)→ 0 as ε→ 0. According to Proposition 6,

lim
n→∞

E

[
g

(
a−An−m − ε3ny

ε9/2n3/2
,
x− Sn−m
ε3/2n1/2

) ∣∣∣τ > n−m
]

=

∫
R2

+

g

(
an−3/2 − (1− ε3)3/2u

ε9/2
,
xn−1/2 − (1− ε3)1/2v

ε3/2

)
h(u, v)dudv.

Furthermore, as ε→ 0,

ε−6
∫
R2

+

g

(
b− (1− ε3)3/2u

ε9/2
,
y − (1− ε3)1/2v

ε3/2

)
h(u, v)dudv → h(b, y)

locally uniformly in b, y. From this convergence and (31) we infer

lim sup
n→∞

∣∣∣∣∣E
[
g

(
a−An−m − ε3ny

ε9/2n3/2
,
x− Sn−m
ε3/2n1/2

)
1{Sn−m ∈ B1}

∣∣∣τ > n−m
]

−h
( a

n3/2
,
x

n1/2

) ∣∣∣∣∣ ≤ r2(ε). (32)

Combining (27)–(30) and (32), we conclude that

lim sup
n→∞

∣∣∣∣∣n5/2P(An = a, Sn = x, τ > n)− θh
( a

n3/2
,
x

n1/2

) ∣∣∣∣∣ ≤ r3(ε)

uniformly in δn3/2 ≤ a ≤ 2Rn3/2 and 2ε
√
n ≤ x ≤ 2R

√
n. Taking into account

(26)–(24), we arrive at the desired local asymptotic.
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4. Proof of Theorem 1

We are going to split the path of the excursion and to inverse the time in the
second half of the path. For this reason we need information on the position of
our random walk immediately before τ occurs. Let H(x) be the renewal function
corresponding to strict ascending ladder epochs.

Lemma 9. For every fixed x ∈ Z+,

P(Sn = x, τ = n+ 1) ∼ H(x)√
2π

n−3/2P (X < −x).

Furthermore,

P(τ = n+ 1) ∼

(∑
x>0

H(x)P (X < −x)

)
(2π)−1/2n−3/2.

Proof. First we note that

P(Sn = x, τ = n+ 1) = P(Sn = x, τ > n)P(Xn+1 < −x).

Further, according to Theorem 6 in [20],

P(Sn = x, τ > n) ∼ H(x)√
2π

n−3/2.

Thus, the first statement is proved.
Obviously,

P(τ = n+ 1) =
∑
x>0

P(Sn = x, τ > n)P(Xn+1 < −x).

Since supxP(Sn = x, τ > n) ≤ Cn−1, see Lemma 19 in [20],∑
x≥N

P(Sn = x, τ > n)P(Xn+1 < −x) ≤ C

n

∑
x≥N

P(Xn+1 < −x)

≤ C

n
E[|X|, |X| > N ], N ≥ 0.

From the finiteness of the second moment we infer that there exist δn such that
δn → 0 and E[|X|, |X| > δnn

1/2] = o(n−1/2). Consequently,∑
x≥δnn1/2

P(Sn = x, τ > n)P(Xn+1 < −x) = o(n−3/2). (33)

Using Theorem 6 in [20] once again, we obtain

∑
x<δnn1/2

P(Sn = x, τ > n) =
1√
2π
n−3/2(1 + o(1))

 ∑
x<δnn1/2

H(x)P(X < −x)

 .

(34)

Combining (33), (34) and noting that
∑
x>0H(x)P(X < −x) is finite, we finish

the proof. �
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We are now in position to prove Theorem 1. We start with the representation

P (An = a, τ = n+ 1) =

∞∑
x=1

P (An = a, Sn = x, τ = n+ 1)

=

∞∑
x=1

P (An = a, Sn = x, τ > n)P (X ≤ −x) . (35)

Using (21) we conclude that there exists δn → 0 such that

∞∑
x≥δnn1/2

P (An = a, Sn = x, τ > n)P (X ≤ −x)

≤ Cn−5/2E[−X,X ≤ −δnn1/2] = o(n−3). (36)

Combining (19) and (21), we get

P (An = a, Sn = x, τ > n) ≤ Cn−5/2
∑
y,b≥1

Px

(
A′n/2 = a− b, S′n/2 = y, τ ′ > n/2

)
≤ Cn−5/2Px (τ ′ > n/2) .

According to Corollary 3 from [5], Px (τ ′ > n/2) ≤ Cxn−1/2 uniformly in x ≤
δnn

1/2. Therefore, uniformly in a,∑
N≤x≤δnn1/2

P (An = a, Sn = x, τ > n)P (X ≤ −x)

≤ Cn−3E[X2, X ≤ −N ]. (37)

It remains to consider fixed values of x. Applying Theorem 3 to both probabilities
on the right hand side of (19), we get, uniformly in a,

P (An = a, Sn = x, τ > n)

=
H(x) + o(1)

n5

∑
y,b≥1

h

(
23/2b

n3/2
,

21/2y

n1/2

)
h

(
23/2(a− b+ y − x)

n3/2
,

21/2y

n1/2

)

=
H(x) + o(1)

n3

∫ ∞
0

∫ a/n3/2

0

h
(

23/2u, 21/2v
)
h
(

23/2(a/n3/2 − u), 21/2v
)
dudv

=:
H(x) + o(1)

n3
q(a/n3/2).

Summing over x from 1 to N , we get

n3
N∑
x=1

P (An = a, Sn = x, τ > n)P(X ≤ −x)

=

(
N∑
x=1

H(x)P(X ≤ −x)

)
q(a/n3/2) + o(n−3).

Combining this with (35), (36) and (37), we conclude that

n3P(An = a, τ = n+ 1) = q(a/n3/2)

∞∑
x=1

H(x)P(X ≤ −x) + o(n−3)



LOCAL ASYMPTOTICS FOR EXCURSION’S AREA 17

uniformly in a. Hence, in view of Lemma 9,

n3/2P(An = a|τ = n+ 1) =
√

2πq(a/n3/2) + o(n−3/2). (38)

Uniqueness of the limit implies that
√

2πq(x) = wex(x). This completes the proof
of the theorem.
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