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Abstract

We obtain a Mehler–Heine type formula for a class of general-
ized hypergeometric polynomials. This type of formula describes the
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zeros. We illustrate these results with numerical experiments and some
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1 Introduction

One of the main topics in the theory of orthogonal polynomials is the study
of their asymptotics. Several types of asymptotics of polynomials can be
studied, giving valuable information about the polynomials with degrees
large enough. Mehler–Heine formulae provide us with the local asymptotics
of polynomials which are scaled adequately, and they establish a limit re-
lation between polynomials and Bessel functions of the first kind. As a
consequence, we can deduce asymptotic relations between the zeros of the
polynomials under study and the zeros of the corresponding Bessel func-
tion. These formulae were introduced for classical orthogonal polynomials
by Mehler and Heine in the 19th–century. For example, if we denote the Ja-

cobi polynomials by P
(α,β)
n (x), the Laguerre ones by L

(α)
n (x), and by Jα(x)

the Bessel function of the first kind and order α, then the Mehler–Heine
formulae are (see [10]):

lim
n→∞

P
(α,β)
n

(
1− z2

2n2

)
nα

= 2αz−αJα(z), lim
n→∞

L
(α)
n

(
z
n

)
nα

= z−α/2Jα(2
√
z),

which hold uniformly on compact subsets of the complex plane, and where

Jα(z) =
(z
2

)α ∞∑
k=0

(−1)k
(
z
2

)2k
k!Γ(α+ k + 1)

. (1)

Later this type of formulae has been studied in other frameworks such
as: multiple orthogonal polynomials (see [5], [11]), orthogonal polynomi-
als on the unit disk (see [4]), exceptional orthogonal polynomials (see [6]),
Sobolev orthogonal polynomials (see, among others, the survey [8] though
there has been a wide literature about this topic after that survey), etc. In
those papers, the polynomials considered satisfy some type of orthogonality
(standard or not).

It is well known that the orthogonal polynomials in the Askey scheme
can be expressed in terms of terminating generalized hypergeometric func-
tions (see [7]). Moreover, other families of polynomials, which are not nec-
essarily orthogonal, such as Sister Celine polynomials, Cohen polynomials,
Prabhakar and Jain polynomials, Laguerre–Sobolev type polynomials, etc
can be also expressed in this way (see, for example, [9] and the references
cited in that paper). Thus, all these families lie in the class of generalized
hypergeometric polynomials. On the other hand, mathematical and phys-
ical applications of generalized hypergeometric functions can be found, for
example, in [2, Sect. 16.23 and 16.24], and the references therein.
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The main goal of this paper is to consider this wide class of polynomials,
the generalized hypergeometric polynomials, and establish hypothesis under
which Mehler–Heine type formulae can be obtained, so that we can describe
asymptotically the scaled zeros of the corresponding polynomials in terms
of the zeros of Bessel functions.

The structure of the paper is the following. In Section 2, we establish the
Mehler–Heine asymptotics of these generalized hypergeometric polynomials
and describe the asymptotic behavior of the corresponding zeros. We also
illustrate the application of the main result by means of well-known families
of polynomials. In Section 3, we provide some numerical results and plots.

2 Mehler–Heine type asymptotics

We consider generalized hypergeometric series (see, for example, [1] or [2])

pFq

(
a0, a1, . . . , ap−1

b0, b1, . . . , bq−1
; z

)
:=

∞∑
i=0

(a0)i · · · (ap−1)i
(b0)i · · · (bq−1)i

zi

i!
,

where bj must not be nonpositive integers for j = 0, . . . , q − 1, and (·)j
denotes the Pochhammer symbol defined as

(c)j =

j−1∏
k=0

(c+ k), (c)0 = 1.

The above series is convergent provided that either p ≤ q, or p = q + 1 and
|x| < 1 (see [2]). Clearly, if we take a0 = −n, then this series becomes a
polynomial of degree at most n, i.e.,

pFq

(
−n, a1, . . . , ap−1

b0, b1, . . . , bq−1
; z

)
=

n∑
i=0

(−n)i(a1)i · · · (ap−1)i
(b0)i(b1)i · · · (bq−1)i

zi

i!
. (2)

We denote by Z− := {0,−1,−2,−3, . . .}. For our purposes, we take b :=
b0 ∈ R \ Z−, and use the following notation

αn = (k1n+ ℓ1, . . . , kp−1n+ ℓp−1), p ≥ 2,

(3)

βn = (s1n+ t1, . . . , sq−1n+ tq−1), q ≥ 2,

where kj > 0 (resp. sj > 0) and kjn + ℓj (resp. sjn + tj) must not be
nonpositive integers for j = 1, . . . , p − 1 (resp. j = 1, . . . , q − 1). With
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these assumptions we guarantee that (2) is a polynomial of degree exactly
n. In fact, we can relax the assumption on kjn + ℓj , simply assuming that
kjn + lj is not a negative integer greater than −n for any j. However, this
is irrelevant from the asymptotic point of view since kj > 0.

Thus, we are going to work with the generalized hypergeometric poly-
nomials

pFq(−n, αn; b, βn; z) := pFq

(
−n, k1n+ ℓ1, . . . , kp−1n+ ℓp−1

b, s1n+ t1, . . . , sq−1n+ tq−1
; z

)
, (4)

where b must not be nonpositive integers. If p = 1 (resp. q = 1), then
αn (resp. βn) does not appear in the expression of pFq, for example,

1F1(−n; b; z).

In this way, we can establish the main result.

Theorem 1. Let b ∈ R \ Z−. Using the notation given in (3)–(4), we have

lim
n→∞ pFq

(
−n, αn; b, βn;

z

np−q+1

)
= 2b−1Γ(b)

(
4
k1 · · · kp−1

s1 · · · sq−1
z

)−(b−1)/2

× Jb−1

(
2

√
k1 · · · kp−1

s1 · · · sq−1
z

)
, (5)

uniformly on compact subsets of the complex plane.

Proof. We do the scaling z 7→ z
np−q+1 in (4), and we get

pFq

(
−n, αn; b, βn;

z

np−q+1

)
=

n∑
i=0

(−n)i(k1n+ ℓ1)i · · · (kp−1n+ ℓp−1)i
(b)i(s1n+ t1)i · · · (sq−1n+ tq−1)i

× 1

i!

zi

ni(p−q+1)
.

Taking into account the well–known relations (see, for example, [3])

(c)i =
Γ(c+ i)

Γ(c)
and lim

n→∞

nb−aΓ(n+ a)

Γ(n+ b)
= 1,

we can deduce for i and j fixed

lim
n→∞

n−i(kjn+ ℓj)i = kij and lim
n→∞

n−i(sjn+ tj)i = sij ,
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where we have used kj > 0 and sj > 0. We also have lim
n→∞

n−i(−n)i = (−1)i,

for i fixed. Thus, we get

lim
n→∞

(−n)i(k1n+ ℓ1)i · · · (kp−1n+ ℓp−1)i
(b)i(s1n+ t1)i · · · (sq−1n+ tq−1)i

1

i!

zi

ni(p−q+1)

=

(
−k1 · · · kp−1

s1 · · · sq−1
z

)i 1

i!(b)i
. (6)

On the other hand, for each n positive integer we have,∣∣∣∣(−n)i(k1n+ ℓ1)i · · · (kp−1n+ ℓp−1)i
(b)i(s1n+ t1)i · · · (sq−1n+ tq−1)i

1

i!

zi

ni(p−q+1)

∣∣∣∣ ≤ C
zi

i!(b)i
:= Cgi(z),

and taking z into a compact subset K of the complex plane, we get

∞∑
i=0

Cgi(z) = C0F1(−; b; z) < ∞.

The above expression together with (6) allow us to apply Lebesgue’s domi-
nated convergence theorem obtaining

lim
n→∞ pFq

(
−n, αn; b, βn;

z

np−q+1

)
= 0F1

(
−; b;

−k1 · · · kp−1

s1 · · · sq−1
z

)
.

To prove the result given in (5), it only remains to express the hypergeo-
metric function 0F1 in terms of a Bessel function of the first kind given in
(1), that is,

0F1 (−; b;−z) = Γ(b)z−(b−1)/2Jb−1(2
√
z).

Remark 1. When p = 1 or q = 1 we assume
∏0

i=1 ki =
∏0

i=1 si = 1.

Remark 2. Notice that if we have a generalized hypergeometric polynomial
like in (4), then this theorem points out how to scale the variable to obtain
Mehler–Heine type asymptotics. In fact, the scaling depends only on the
values p and q.

Remark 3. Notice that we have written (5) in that way to highlight that
the limit function can be expressed as ω−dJd(ω) with d = b − 1 and ω =

2
√

k1···kp−1

s1···sq−1
z, and therefore it has only real zeros for b > 0.When b is negative

and noninteger, complex zeros can occur. Since

ω−dJd(ω) = 2−d
∞∑
j=0

(−1)jω2j

22jj!Γ(d+ j + 1)
,
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this function is even. Thus, if z0 ∈ C is any zero of ω−dJd(ω), then −z0
and ±z0 are zeros too. Indeed, the number of complex zeros of the function
z1−bJb−1(z) is 2⌊1 − b⌋, where ⌊·⌋ denotes the integer part. Moreover, if
⌊1− b⌋ is odd, then two of these zeros are pure imaginary numbers (see [12,
pp. 483-484]).

This remark will help us establish Corollary 1. In this way, we are going
to introduce some notation about the zeros of these functions. We denote
by jb−1,i the i–th positive zero of z1−bJb−1(z), that is, jb−1,1 < jb−1,2 < . . . ,
and by ib−1,k with k = 1, 2 the two pure imaginary zeros of z1−bJb−1(z),
when they exist, i.e., when b < 0 and ⌊1 − b⌋ is odd. When b ∈ (−∞,−1),
the complex zeros of z1−bJb−1(z) with real part different from 0 form a set

Ab−1 := {zb−1,1,−zb−1,1, . . . , zb−1,k,−zb−1,k},

with k = ⌊1−b⌋−1 when ⌊1−b⌋ is odd, and ⌊1−b⌋ when this value is even.
According to Remark 3, ib−1,1 = −ib−1,2 and therefore we will write

i2b−1 := i2b−1,1 = (−ib−1,2)
2 ∈ (−∞, 0).

On the other hand, we denote

c2b−1,j := z2b−1,j = (−zb−1,j)
2, j = 1, . . . , k.

We denote by xn,i, i = 1, . . . , n, the zeros of the generalized hyperge-
ometric polynomial pFq (−n, αn; b, βn;x) . These zeros can be complex (see
Remark 4), and therefore with this notation we only enumerate them. Now,
Mehler–Heine type asymptotics given in Theorem 1 has a simple and nice
consequence about the asymptotic behavior of the zeros of the generalized
hypergeometric polynomials. In this way, applying Hurwitz’s Theorem in
the previous theorem and taking Remark 3 into account, we deduce the
following result.

Corollary 1. We have

• When b > 0,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
j2b−1,i .

• When b ∈ (−1, 0),

np−q+1xn,1 →
s1 · · · sq−1

4 k1 · · · kp−1
i2b−1,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
j2b−1,i−1, i ≥ 2.
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• When b ∈ (−∞,−1), we get,

– If ⌊1− b⌋ is odd,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
c2b−1,i, i = 1, . . . ⌊1− b⌋ − 1,

np−q+1xn,⌊1−b⌋ →
s1 · · · sq−1

4 k1 · · · kp−1
i2b−1,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
j2b−1,i−⌊1−b⌋, i ≥ ⌊1− b⌋+ 1.

– If ⌊1− b⌋ is even,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
c2b−1,i, i = 1, . . . ⌊1− b⌋,

np−q+1xn,i →
s1 · · · sq−1

4 k1 · · · kp−1
j2b−1,i−⌊1−b⌋, i ≥ ⌊1− b⌋+ 1.

Remark 4. Observe that in Theorem 1 the values ℓj (j = 0, . . . , p − 1)
and tk (k = 0, . . . , q − 1) can be complex numbers. Then, the generalized
hypergeometric polynomial (4) is a polynomial with complex coefficients,
and all their zeros can be complex. But, for example, if b > 0, then according
to Corollary 1 these zeros must go to real zeros when n → ∞. We show an
example in Table 1.

Table 1: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i and limit values

with p = 4, q = 3, b = 3.2, αn = (5n + 2 − i, 2n + 4.4 + 2i, 2n + 1.3) and
βn = (4n+ 5.5 + 2i, n+ 3, 2n+ 1− 2i).

np−q+1xn,i i = 1 i = 2 i = 3
n = 50 2.772974-0.07136404i 7.208271-0.18526461i 13.51223-0.3466352i
n = 100 2.837294-0.03669921i 7.378569-0.09540667i 13.83973-0.1788655i
n = 200 2.870103-0.01860900i 7.464701-0.04839507i 14.00345-0.0907761i
n = 300 2.881135-0.01246414i 7.493548-0.03241677i 14.05798-0.0608109i
n = 400 2.886670-0.00936998i 7.507997-0.02437004i 14.08523-0.0457175i
Limit values 2.903345890 7.551440462 14.16691692

Next, we are going to apply Theorem 1 to some families of polynomi-
als. Obviously, we can recover the well-known Mehler–Heine formulae for
classical Laguerre and Jacobi polynomials.
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Laguerre orthogonal polynomials, L
(α)
n , are defined (see [2, p. 443]) as

L(α)
n (x) =

(α+ 1)n
n!

1F1

(
−n,
α+ 1

; x

)
,

then according to Theorem 1, we must scale as x 7→ x/n, and we get

lim
n→∞

L
(α)
n (x/n)

nα
= lim

n→∞

(α+ 1)n
n!nα 1F1

(
−n,
α+ 1

;
x

n

)
= x−α/2Jα(2

√
x).

Jacobi orthogonal polynomials are given by their explicit expression (see [2,
p.442])

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
.

Then, doing the scaling x 7→ 1 − x2/(2n2) and applying Theorem 1 with
k1 = 1 and ℓ1 = α+ β + 1, we obtain

lim
n→∞

P
(α,β)
n (1− x2/(2n2))

nα
=

1

Γ(α+ 1)
lim
n→∞ 2F1

(
−n, n+ α+ β + 1

α+ 1
;
x2

4n2

)
=
(x
2

)−α
Jα(x).

We also obtain this type of formulae for some special cases of varying
Jacobi polynomials. These polynomials have been studied broadly in the

literature. Here, we consider the polynomials P
(α,βn)
n (x) where βn = kn+ ℓ.

Then, for k > −1 and kn+ℓ are nonnegative integers, we can apply Theorem
1 with k1 = k + 1 and ℓ1 = α+ ℓ+ 1 and we have

lim
n→∞

P
(α,kn+ℓ)
n (cos(x/n))

nα
= lim

n→∞

P
(α,kn+ℓ)
n (1− x2/(2n2))

nα

= 2α
(√

k + 1x
)−α

Jα

(√
k + 1x

)
. (7)

As far as we know, formula (7) is new and we can see the influence of the
varying sequence βn on the local asymptotics of the varying Jacobi poly-

nomials. Taking into account the symmetry relation (see [10]) P
(α,β)
n (x) =

(−1)nP
(β,α)
n (−x) we can also give a Mehler–Heine type formula for P

(kn+ℓ,β)
n (x).

Using Corollary 1 we get the asymptotic behavior of the scale zeros of
these varying Jacobi polynomials, i.e.,

lim
n→∞

n arccos(xn,i) =
jα,i√
k + 1

.

We illustrate this result in Table 2.
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Table 2: n arccos(xn,i), for i = 1, 2, 3, 4, where xn,i are zeros of varying

Jacobi polynomials P
(α,kn+ℓ)
n (x), with α = 3, k = 2, and ℓ = 3.

n arccos(xn,i) i = 1 i = 2 i = 3 i = 4
n = 50 3.553808938 5.437485980 7.251180615 9.040061345
n = 100 3.617406099 5.534411383 7.379743345 9.199244152
n = 200 3.650163324 5.584427086 7.446253216 9.281863874
n = 300 3.661229898 5.601337650 7.468768650 9.309873879

jα,i/
√
k + 1 3.683588189 5.635529334 7.514329641 9.366622556

3 Numerical results and plots

We illustrate each case of Corollary 1 with numerical experiments. Ta-
bles 3, 4, 5, and 6 show examples of the scaled zeros of the polynomials

pFq(−n, αn; b, βn;x) for several values of the parameters covering the differ-
ent cases in Corollary 1.

Table 3: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i, and limit values

with p = 4, q = 2, b = 2.7, αn = (2n+5, 5n+4, 10n+2), and βn = (7n+3).

np−q+1xn,i i = 1 i = 2 i = 3 i = 4
n = 50 0.3685097848 1.044570556 2.040260372 3.353764336
n = 100 0.3815670147 1.082163558 2.115364638 3.480873986
n = 200 0.3883188099 1.101464927 2.153534298 3.544641366
n = 300 0.3906034387 1.107974105 2.166343940 3.565906695
Limit values 0.3952246348 1.121105987 2.192087683 3.608429948

Table 4: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i and limit values

with p = 3, q = 2, b = −0.51, αn = (n+ 5, 2n+ 4), and βn = (3n− 2).

np−q+1xn,i i = 1 i = 2 i = 3 i = 4
n = 100 -0.5125961704 2.712821650 13.11913963 30.45738847
n = 200 -0.5285867673 2.797610057 13.53168903 31.42490016
n = 300 -0.5341169337 2.826909856 13.67388803 31.75698846
n = 400 -0.5369210238 2.841761889 13.74589783 31.92488576
Limit values -0.5454935730 2.887148128 13.96565918 32.43614705
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Table 5: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i and limit values

with p = 5, q = 3, b = −4.7, αn = (n + 5, 2n − 3, 4n − 2, n + 2.5), and
βn = (3n+ 2, n+ 3.2).

np−q+1xn,i i = 1, 2 i = 3, 4 i = 5
n = 100 -0.91580431 ± 1.1888420i 0.58363774 ± 1.7954946i -1.4027762
n = 200 -0.92602579 ± 1.2019119i 0.58992949 ± 1.8156009i -1.4182381
n = 300 -0.92972125 ± 1.2066715i 0.59224276 ± 1.8228585i -1.4238619
n = 400 -0.93162543 ± 1.2091301i 0.59344144 ± 1.8265962i -1.4267656
Limit values -0.93757075 ± 1.2168298i 0.59721014 ± 1.8382584i -1.4358546

np−q+1xn,i i = 6 i = 7 i = 8 i = 9
n = 100 3.890351663 10.51334686 18.56598941 28.33916299
n = 200 3.934641689 10.63780780 18.79603886 28.70934750
n = 300 3.950503560 10.68157125 18.87525535 28.83385381
n = 400 3.958650613 10.70390684 18.91538509 28.89638312
Limit values 3.983985499 10.77280667 19.03799349 29.08527041

In Table 5, we have taken b = −4.7, then ⌊1− b⌋ = 5 is odd. Thus, ac-
cording to Corollary 1, four complex numbers and one negative real number
belong to the set of the limit values.

Table 6: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i and limit values

with p = 3, q = 4, b = −1.3, αn = (n + 5, 2n + 4), and βn = (3n + 2, n +
3, 3n+ 1).

np−q+1xn,i i = 1, 2 i = 3 i = 4 i = 5
n = 100 -1.5281402 ± 3.0432995i 22.07846924 68.17653987 136.0098247
n = 200 -1.5402918 ± 3.0675759i 22.25275073 68.70429887 137.0321472
n = 300 -1.5445394 ± 3.0760486i 22.31389119 68.89124261 137.3996579
n = 400 -1.5467015 ± 3.0803592i 22.34505034 68.98681754 137.5884435
Limit values -1.5533451 ± 3.0935962i 22.44093282 69.28205198 138.1749534

In Table 6, we have taken b = −1.3, then ⌊1 − b⌋ = 2 is even. Thus,
according to Corollary 1, two complex numbers belong to the set of the limit
values.

We have also included some plots with b negative, but |b| larger than in
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the previous tables. Our choices have been b = −10.4 and b = −11.5, then
we get ⌊1− b⌋ = 11 and ⌊1− b⌋ = 12, respectively. Therefore, ten complex
numbers and one negative real number belong to the set of the limit values
in the case b = −10.4, and twelve complex numbers are limit values of the
scaled zeros in the case b = −11.5. See Figures 1 and 2.

Furthermore, we consider varying Jacobi polynomials P
(α,βn)
n (x) with

complex zeros converging to positive real zeros, and we obtain some nice
plots in Figure 3.
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a. αn = (n+ 5, 2n+ 3, 2n+ 1), βn = (3n+ 2, n+ 3)

b. αn = (n+ 5 + 2i, 2n+ 3, 2n+ 1), βn = (3n+ 2, n+ 3)

c. αn = (n+ 5, 2n+ 3, 2n+ 1), βn = (3n+ 2 + 5i, n+ 3)

d. αn = (n+ 5 + 2i, 2n+ 3 + 4i, 2n+ 1− 2i), βn = (3n+ 2 + 5i, n+ 3 + 2i)

Figure 1: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i (circles), and limit

values (squares), with p = 4, q = 3, b = −10.4, for n = 14, . . . , 100.
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a. αn = (n+ 5, 2n+ 3, 2n+ 1), βn = (3n+ 2, n+ 3)

b. αn = (n+ 5− 3i, 2n+ 3− 4i, 2n+ 1), βn = (3n+ 2, n+ 3)

c. αn = (n+ 5, 2n+ 3, 2n+ 1), βn = (3n+ 2− 3i, n+ 3− 2i)

d. αn = (n+ 5 + 6i, 2n+ 3− 5i, 2n+ 1 + 4i), βn = (3n+ 2 + 2i, n+ 3− 7i)

Figure 2: Scaled zeros of pFq(−n, αn; b, βn;x), n
p−q+1xn,i (circles) and limit

values (squares), with p = 4, q = 3, b = −11.5 and n = 14, . . . , 100.
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a. α = 3, βn = 2n+ 3 + 4i

b. α = 3, βn = 2n+ 3− 4i

c. α = 3, βn = 2n− 3 + 4i

d. α = 3, βn = 2n− 3− 4i

Figure 3: n arccos(xn,i) (circles), where xn,i are zeros of varying Jacobi

polynomials P
(α,βn)
n (x) and limit values (squares), for n = 14, . . . , 100.
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