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Varieties of Invariant Subspaces

Given by Littlewood-Richardson Tableaux

Justyna Kosakowska and Markus Schmidmeier

Abstract: Given partitions α, β, γ, the short exact sequences

0 −→ Nα −→ Nβ −→ Nγ −→ 0

of nilpotent linear operators of Jordan types α, β, γ, respectively,
define a constructible subset Vβα,γ of an affine variety.

Geometrically, the varieties Vβα,γ are of particular interest as
they occur naturally and since they typically consist of sev-
eral irreducible components. In fact, each Littlewood-Richardson
tableaux Γ of shape (α, β, γ) contributes one irreducible compo-
nent VΓ.
We consider the partial order Γ ≤∗

closure Γ̃ on LR-tableaux which is
the transitive closure of the relation given by VΓ̃∩VΓ 6= ∅. In this
paper we compare the closure-relation with partial orders given
by algebraic, combinatorial and geometric conditions. In the case
where the parts of α are at most two, all those partial orders are
equivalent. We discuss how the orders differ in general.

MSC 2010: Primary: 14L30, 16G20, Secondary: 16G70, 05C85,
47A15

Key words: degenerations, partial orders, Hall polynomials,
nilpotent operators, invariant subspaces, Littlewood-Richardson
tableaux

1. Introduction

We consider varieties given by short exact sequences of nilpotent k-linear
operators where k is an algebraically closed field:
Each such operator is given uniquely, up to isomorphy, as a k[T ]-module
Nα =

⊕s
i=1 k[T ]/(Tαi) for some partition α = (α1, . . . , αs) which represents

The first named author is partially supported by Research Grant No. DEC-
2011/02/A/ ST1/00216 of the Polish National Science Center.

This research is partially supported by a Travel and Collaboration Grant from the
Simons Foundation (Grant number 245848 to the second named author).
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the sizes of its Jordan blocks. The Theorem of Green and Klein [3] states
that for given partitions α, β, γ, there exists a short exact sequence

0 −→ Nα −→ Nβ −→ Nγ −→ 0

of nilpotent linear operators if and only if there is a Littlewood-Richardson
(LR-) tableau of shape (α, β, γ).

In fact, the collection of all such short exact sequences forms a variety Vβ
αγ(k)

which can be partitioned using LR-tableaux, as follows. Consider the affine
variety Homk(Nα, Nβ) endowed with the Zariski topology, and assume that
all subsets carry the induced topology. Define

Vβ
αγ(k) =

{
f : Nα → Nβ

∣∣ f monomorphism of k[T ]-modules

with cokernel isomorphic to Nγ

}
.

The irreducible components of Vβ
αγ(k) are counted by the Littlewood-Richard-

son coefficient. Namely, to each short exact sequence in Vβ
α,γ one can associate

an LR-tableau Γ of shape (α, β, γ), as we will see in Section 2. The subset
VΓ of Homk(Nα, Nβ) of all such short exact sequences is constructible and
irreducible. All VΓ have the same dimension. We denote by VΓ the closure
of VΓ in Vβ

α,γ; the sets VΓ define the irreducible components of Vβ
α,γ, they are

indexed by the set T βα,γ of all LR-tableaux of shape (α, β, γ) (see [7, Theorem
4.3] and [8]). Our aim in this paper is to shed light on the geometry in the

variety

Vβ
α,γ =

•⋃
Γ∈T βα,γ

VΓ;

by studying the closure-relation given as follows.

(1.1) Γ ≤closure Γ̃ ⇔ VΓ̃ ∩ VΓ 6= ∅ where Γ, Γ̃ ∈ T βα,γ.

First we show in Theorem 3.1 that the closure-relation is a preorder (that
is, it is reflexive and antisymmetric) since the relation Γ ≤closure Γ̃ implies
that the tableaux are in the dominance order Γ ≤dom Γ̃ given by the natural
partial orders of the partitions defining the tableaux. Since in general, the
closure-relation is not transitive, see Example 3, we consider the transitive
closure ≤∗closure which is a partial order.
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We consider a second combinatorially given preorder on LR-tableaux, the
box-relation. We say Γ <box Γ̃ if Γ̃ is obtained from Γ by exchanging two
entries which are the only entries in their respective column in such a way
that the lower entry is the higher position in Γ̃. Here is an example:

1
2

1

<box
2

1
1

(The box-order introduced in Section 5.1 is more general.) The box-order
together with the dominance order provide two tests of combinatorial nature
for the validity and for the failure of the closure-relation:

Γ ≤box Γ̃ ⇒ Γ ≤closure Γ̃ ⇒ Γ ≤dom Γ̃

The reductive algebraic group G = Glα×Glβ is acting on Vβ
α,γ via (a, b) ·f =

bfa−1. The orbits of this group action are in one-to-one correspondence with
the isomorphism classes of embeddings. This gives rise to a preorder for
LR-tableaux: We say Γ ≤deg Γ̃ if there are embeddings f ∈ VΓ, f̃ ∈ VΓ̃ such
that f ≤deg f̃ , that is, Of̃ ⊂ Of . The degeneration relation is under control
algebraically as the ext-relation implies the deg-relation, which in turn im-
plies the hom-relation. As the deg-relation, also the hom- and ext-relations
give rise to preorders for LR-tableaux. In the diagram below, the relations
introduced so far on the set T βα,γ are ordered vertically by containment, with
the dominance order the weakest of the relations pictured.

≤dom

≤hom ≤closure

≤deg

≤ext

≤box

↓

↓

↙ ↘

↘ ↙

We show that the dominance order is in fact equivalent to the covariant hom-
order restricted to certain objects called pickets. Thus we have also algebraic
tests both for the validity and for the failure of the closure-relation:

Γ ≤ext Γ̃ ⇒ Γ ≤closure Γ̃ ⇒ Γ ≤hom−picket Γ̃
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The case where all parts of α are at most two has been studied by the authors
in [5] and [6]:

Theorem 1.2. Suppose α, β, γ are partitions such that all parts of α are at
most two.

1. The relations ≤dom, ≤hom, ≤closure, ≤deg, ≤ext, ≤box are all partial or-
ders.

2. The above partial orders are all equivalent.

Several parts of this result have been shown in [6, Proposition 5.4]; in this
paper we give in particular a formula for the dimension of any intersection
of type VΓ̃ ∩ VΓ. More precisely, in [5, 6] we stratify the variety Vβ

α,γ =⋃•V∆ using arc diagrams ∆. Each V∆ is contained in a unique VΓ, and
by resolving intersections in the arc diagram ∆, one can decide if V∆ ⊂ VΓ̃.
The dimension of the intersection VΓ̃ ∩VΓ is the dimension of VΓ minus the
minimum number of crossings in an arc diagram ∆ with V∆ ⊂ VΓ̃ ∩ VΓ.

We conclude this introduction with two conjectures.

Conjecture 1.3. Suppose α, β, γ are partitions such that β\γ is a horizon-
tal and vertical strip. Then the partial orders ≤dom and ≤box are equivalent.

Clearly, it suffices to show that any two LR-tableaux which are in the dom-
inance order can be transformed into each other by using box moves as de-
scribed above. It is a consequence of this conjecture that all partial orders
≤dom, ≤∗hom, ≤∗closure, ≤∗deg, ≤∗ext, ≤box on T βα,γ are equivalent in this case.

In our second conjecture we consider LR-tableaux of arbitrary shape. It links
the geometric closure-relation and the combinatorial dominance order.

Conjecture 1.4. For two LR-tableaux Γ, Γ̃ of the same shape, and for k
an algebraically closed field, the following two statements are equivalent.

1. Γ ≤dom Γ̃.

2. Γ ≤∗closure Γ̃.

Acknowledgement: This research project was started when the authors vis-
ited the Mathematische Forschungsinstitut Oberwolfach in a Research in
Pairs project. They would like to thank the members of the Forschungsinsti-
tut for creating an outstanding environment for their mathematical research.
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2. The LR-tableau of an embedding

Definition: An LR-tableau of shape (α, β, γ) is a Young diagram of shape β
in which the region β \ γ contains α′1 entries 1 , . . ., α′s entries s , where
s = α1 is the largest entry and α′ is the transpose of α, such that

• in each row, the entries are weakly increasing,

• in each column, the entries are strictly increasing,

• for each ` > 1 and for each column c: on the right hand side of c, the
number of entries `− 1 is at least the number of entries `.

The skew diagram β \ γ is said to be a horizontal (resp. a vertical) strip, if
βi ≤ γi + 1 (resp. β′i ≤ γ′i + 1), for all i.

Example: Let α = (4), β = (741), γ = (62). Then the transpose of α is
α′ = (1111), so we have to fill the skew diagram β \ γ with a 1 , a 2 , a 3

and a 4 . Due to the conditions on an LR-tableau, this can only be done in
one way.

Γ :

4

3
2

1

In this example, β \ γ is a vertical but not a horizontal strip.

Notation: An LR-tableau Γ is given as a sequence of partitions

Γ = [γ(0), . . . , γ(s)]

where γ(i) denotes the region in the Young diagram β which contains the
entries , 1 , . . ., i . If Γ has shape (α, β, γ), then γ = γ(0), β = γ(s), and
α′i = |γ(i) \ γ(i−1)| for i = 1, . . . , s.

In the example above, Γ = [(62), (621), (631), (641), (741)].

Definition: Given an embedding A ⊂ B of nilpotent operators of type α and
β, respectively, the LR-tableau of the embedding A ⊂ B is given by

Γ = [γ(0), . . . , γ(s)] where B/T iA ∼= Nγ(i) .

Similarly, the LR-tableau of a short exact sequence 0→ Nα
f→ Nβ → Nγ →

0 is given as the LR-tableau of the embedding Im(f) ⊂ Nβ.
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Two classes of examples will be important in this paper:

Definition: 1. An embedding (A ⊂ B) is a picket if B is an indecompos-
able k[T ]-module.

2. An indecomposable embedding (A ⊂ B) is a pole if A is a cyclic k[T ]-
module.

Clearly, every picket with nonzero subspace is a pole. Poles have been clas-
sified, up to isomorphy, by Kaplansky [2, Theorem 24].

Theorem 2.1. A pole with submodule generator a is determined uniquely,
up to isomorphy, by the radical layers of the elements T ia. �

Notation: We denote by

1. Pm
` the picket that represents the embedding ((Tm−`) ⊂ k[T ]/(Tm)) of

an `-dimensional subspace in an indecomposable nilpotent k[T ]-module
of dimension m,

2. P (x1, . . . , xk) the pole such that T ia ∈ T xiB \T xi+1B. For example for
` ≥ 1, the picket Pm

` is the pole P (m− `,m− `+ 1, . . . ,m− 1).

Example: Let α = (4), β = (741), γ = (62), as before. We picture an
embedding (A ⊂ B) where A ∼= Nα, B ∼= Nβ using the conventions from [10,
(2.3)]. If the generators of B as a k[T ]-module are x7, x4, x1, as indicated,
then the submodule generator a = T 3x7 + Tx4 + x1 is given by the row of
connected bullets.

X :
• • •

x7

x4 x1

Γ :

4

3
2

1

The sequence of radical layers given by the T -powers T ia of the submodule
generator a, and the corresponding quotients B/(T ia) are as follows.

a = T 3x7 + Tx4 + x1 ∈ B \ TB
Ta = T 4x7 + T 2x4 ∈ T 2B \ T 3B
T 2a = T 5x7 + T 3x4 ∈ T 3B \ T 4B
T 3a = T 6x7 ∈ T 6B \ 0

B/(a) ∼= N62

B/(Ta) ∼= N621

B/(T 2a) ∼= N631

B/(T 3a) ∼= N641
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We denote the pole (A ⊂ B) by P (0, 2, 3, 6) and observe that the en-
tries 1, 2, 3, 4 occur in rows 0 + 1, 2 + 1, 3 + 1, 6 + 1 in the LR-tableau
Γ = [62, 621, 631, 641, 741].

In the remainder of this section, we present a formula for the number µ`,r of
boxes ` in the r-th row in the LR-tableau of an embedding (A ⊂ B).

We denote the partition which consists of the first r rows of γ by γ≤r =
(γ′1, . . . , γ

′
r)
′. Thus, if a k[T ]-module C has type γ, then C/T rC has type

γ≤r. The first rows of the above partitions γ(`) are given as follows.

γ
(`)
≤r = type

B

T `A+ T rB

In particular, the number of boxes ` in the first r rows of Γ is given by

|γ(`)
≤r \ γ

(`−1)
≤r | = dim

T `−1A+ T rB

T `A+ T rB
.

If A = (a) is cyclically generated, then this number is 0 if T `−1a ∈ T rB and
1 otherwise. Thus, in this case, Γ has a box ` in the r-th row if and only if

T `−1a ∈ T rB \ T r+1B.

In general, denote by µ`,r the number of boxes ` in the r-th row of the
LR-tableau for an embedding (A ⊂ B).

µ`,r(A ⊂ B) = |γ(`)
≤r \ γ

(`−1)
≤r | − |γ

(`)
≤r−1 \ γ

(`−1)
≤r−1|

= dim
T `−1A+ T rB

T `A+ T rB
− dim

T `−1A+ T r−1B

T `A+ T r−1B

As a consequence we obtain the following result.

Lemma 2.2. The isomorphism type of a pole (A ⊂ B) where A = (a) is
determined uniquely by each of the following:

1. the type of B and the radical layers of the elements T ia,

2. the LR-tableau for (A ⊂ B), or

3. the type of B and the type of B/A. �
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3. The closure-relation and its properties

In this section we present properties of the closure-relation defined by formula
1.1.

3.1. The closure-relation is a preorder

We show that the closure-relation for LR-tableaux implies the dominance
order. As a consequence, the closure-relation is antisymmetric.

Definition: • Two partitions γ, γ̃ are in the natural partial order, in sym-
bols γ ≤dom γ̃, if the inequality

γ′1 + · · ·+ γ′j ≤ γ̃′1 + · · ·+ γ̃′j

holds for each j.

• Two LR-tableaux Γ = [γ(0), . . . , γ(s)], Γ̃ = [γ̃(0), . . . , γ̃(s)] of the same
shape are in the dominance order, in symbols Γ ≤dom Γ̃, if for each i,
γ(i) ≤dom γ̃(i) holds.

Theorem 3.1. Suppose that k is an algebraically closed field, and that the
LR-tableaux Γ, Γ̃ have the same shape. If VΓ̃ ∩VΓ 6= ∅ holds then Γ ≤dom Γ̃.

Corollary 3.2. The closure-relation is a preorder (i.e. reflexive and anti-
symmetric).

We begin with a lemma.

Lemma 3.3. Suppose A, B are vector spaces and M⊆ Homk(A,B) is a set
of monomorphisms. For subspaces U ⊆ A, V ⊆ B and a natural number n,
the condition

dim(f(U) ∩ V ) ≥ n

defines a closed subset in M.

Proof. Recall that for a natural numberm, the condition rank(f) > m defines
an open subset in Homk(A,B) since it is given by the non-vanishing of a
minor in the matrix representing f . By restricting that matrix to a basis for U
and a basis for the complement of V , we see that the condition dim f(U)+V

V
>

m also defines an open subset in Homk(A,B). Let now m = dimU − n.

From the isomorphism f(U)+V
V
∼= f(U)

f(U)∩V we obtain that the subset defined by
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dim f(U)
f(U)∩V > m is open, in particular it is open when restricted toM. Since

onM, all spaces f(U) have the same dimension (f is a monomorphism), the
condition is equivalent to

dim f(U) ∩ V < dim f(U)−m = n.

The complementary condition dim f(U) ∩ V ≥ n defines a closed subset of
M. �

Proposition 3.4. For all natural numbers i, `, n, the subset⋃{
VΓ : Γ satisfies (γ(i))′1 + · · ·+ (γ(i))′` ≥ n

}
in Vβ

α,γ(k) is closed.

Proof. Denote by P ` the k[T ]-module k[T ]/T ` with only one Jordan block,
so

B/f(T iA) =
⊕
j

P γ
(i)
j ,

where B = Nβ, A = Nα and f ∈ Vβ
αγ. Recall that dim Homk[T ](P

`, Pm) =

min{`,m} = dim P `

TmP `
. Thus:

(γ(i))′1 + · · ·+ (γ(i))′` =
∑
j

min{γ(i)
j , `}

= dim Homk[T ](B/f(T iA), P `)

= dim
B/f(T iA)

T `(B/f(T iA))

= dim
B/f(T iA)

(T `B + f(T iA))/f(T iA)

Using the isomorphism T `B+f(T iA)
f(T iA)

∼= T `B
T `B∩f(T iA)

we obtain

(γ(i))′1 + · · ·+ (γ(i))′` = dimB − dim f(T iA)− dimT `B + dimT `B ∩ f(T iA).

Since dimB − dim f(T iA) − dimT `B = c is constant on Vβ
αγ, Lemma 3.3

implies that the set⋃{
VΓ : (γ(i))′1 + · · ·+ (γ(i))′` ≥ n

}
=
{
f ∈ Vβ

αγ : dimT `B∩f(T iA) ≥ n− c
}

is a closed subset of Vβ
αγ. �
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Proof of Theorem 3.1. We assume that Γ6≤domΓ̃ and show that VΓ̃ ∩VΓ = ∅.
By assumption, there exist i, ` such that

n = (γ(i))′1 + · · ·+ (γ(i))′` > (γ̃(i))′1 + · · ·+ (γ̃(i))′`

holds. By the proposition, U =
⋃{

VΓ̂ : (γ̂(i))′1 + · · ·+ (γ̂(i))′` ≥ n
}

is a closed
subset of Vβ

αγ such that

VΓ ⊆ U and U ∩ VΓ̃ = ∅.

Thus, VΓ̃ ∩ VΓ = ∅. �

We conclude this section with a result for later use.

Lemma 3.5. Suppose f, g : Nα → Nβ are objects in Vβ
α,γ. Let W be a subspace

of Nβ which is invariant under all automorphisms of Nβ as a k[T ]-module.
If Of ⊂ Og then

dim Imf ∩W ≥ dim Img ∩W.

Examples of possible invariant submodules of Nβ are the powers of the radical
T rNβ, powers of the socle T−s0, and their intersections T rNβ ∩ T−s0.

Proof. Let hλ : Nα → Nβ be a one-parameter family of objects in Vβ
α,γ such

that hλ ∼= g for λ 6= 0 and h0
∼= f . Put n = dim Img ∩W .

Any isomorphism hλ ∼= g (λ 6= 0) induces an isomorphism Imhλ ∩ W ∼=
Img ∩W since W is invariant under automorphisms of Nβ. By Lemma 3.3,
the set {

h ∈ Vβ
α,γ : dim Imh ∩W ≥ n

}
is closed in Vβ

α,γ, so with hλ, λ 6= 0, also h0 is in the set. This shows
dim Imf ∩W = dim Imh0 ∩W ≥ n. �

3.2. The closure-relation may not be transitive

In general, the relation for LR-tableaux given by

VΓ̃ ∩ VΓ 6= ∅

is not transitive. In this section, we provide an example.
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Example: Let α = (3, 1), β = (4, 3, 2, 1), γ = (3, 2, 1). There are three
LR-tableaux:

Γ1 :
1

1
2

3

Γ2 :
1

2
1

3

Γ3 :
1

2
3

1

Distributed over those three tableaux are five pairwise nonisomorphic em-
beddings Nα → Nβ. Four of those are direct sums of poles, the fifth has an
indecomposable summand which has a subspace that is not cyclically gener-
ated. Namely in the category S4, there is exactly one indecomposable object
X with this property [10, (6.4)]:

X : • •
• ΓX :

1
3

2
1

Thus, the object M2 = X ⊕ P 3
0 ⊕ P 1

0 has LR-tableau Γ2. (The LR-tableau
of a direct sum is obtained by merging the rows of the LR-tableaux of the
summands, starting at the top, and by sorting the entries in each row.)

The remaining four embeddings are direct sums of poles. Note that the height
sequence of each pole is determined by the Klein tableau (since there is no
row in any of the Klein tableaux which has the same entry twice, each with
a different subscript). Moreover by [2, Theorem 24], each pole is determined
uniquely, up to isomorphism, by its height sequence. Also note that Γ1 can
be refined in two different ways to a Klein tableau, and hence gives rise to
two different pole decompositions. We are dealing with the following five
isomorphism types of embeddings.

M1 = P 4
3 ⊕ P 3

0 ⊕ P 2
0 ⊕ P 1

1 ,

M12 = P (0, 2, 3)⊕ P 3
0 ⊕ P 2

1 ,

M2 = X ⊕ P 3
0 ⊕ P 1

0 ,

M23 = P (0, 1, 3)⊕ P 3
1 ⊕ P 1

0 ,

M3 = P 4
1 ⊕ P 3

3 ⊕ P 2
0 ⊕ P 1

0

The notation is such that Mi or Mix has LR-tableau Γi. For the convenience
of the reader, we picture the poles P (0, 2, 3) and P (0, 1, 3) and their LR-
tableaux.
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P (0, 2, 3) : • • ΓP :
3
2

1

P (0, 1, 3) : • • ΓP :
3

2
1

We show the containment relation of orbit closures is as follows.

M1

M12

M2

M23

M3

@
@
@

@
@
@

︸ ︷︷ ︸
Γ1

︸ ︷︷ ︸
Γ2

︸ ︷︷ ︸
Γ3

The short exact sequence

0 −→ P 2
1 −→M2 −→ P (0, 2, 3)⊕ P 3

0 −→ 0

shows that O(M12) ⊂ O(M2), hence VΓ1 ∩ VΓ2 6= ∅ and Γ1 >
∗
closure Γ2.

Similarly, the short exact sequence

0 −→ P 3
1 −→M3 −→ P (0, 1, 3)⊕ P 1

0 −→ 0

shows that O(M23) ⊂ O(M3), hence VΓ2 ∩ VΓ3 6= ∅ and Γ2 >
∗
closure Γ3.

However, VΓ1∩VΓ3 = ∅. The only possible orbit in the intersection isO(M12),
since there are only two orbits in VΓ1 , and since the other orbit O(M1) has
the same dimension as VΓ3 = O(M3).

Note that the module M12 = (U ⊂ V ) has the property that dimU ∩ T 2V ∩
socV = 1, while for the module M3, the corresponding dimension is 2. It
follows from Lemma 3.5 with W = T 2V ∩ socV that O(M12) 6⊆ O(M3).

This finishes the example which illustrates that in general, the condition for
LR-tableaux that VΓ̃ ∩ VΓ 6= ∅ may not define a partial order. �
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4. Partial orders on the set of LR-tableaux

For modules of a fixed dimension over a finite dimensional algebra the three
partial orders

≤ext, ≤deg, ≤hom

have been studied extensively, see for example [1], [9]. In particular, the
partial orders are available for invariant subspaces in Vβ

αγ, see [5, Section 3.2].
For the convenience of the reader we recall these definitions. Let f, g ∈ Vβ

αγ.

• The relation f ≤ext g holds if there exist embeddings hi, ui, vi in Vβ
αγ

and short exact sequences 0 → ui → hi → vi → 0 of embeddings such
that f ∼= h1, ui ⊕ vi ∼= hi+1 for 1 ≤ i ≤ s, and g ∼= hs+1, for some
natural number s.

• The relation f ≤deg g holds if Og ⊆ Of in V β
α,γ(k).

• The relation f ≤hom g holds if

[h, f ] ≤ [h, g]

for any embedding h in Vβ
αγ, where [h, f ] denotes the dimension of the

linear space Hom(h, f) of all homomorphisms of embeddings.

They induce three preorders on the set T βαγ: ≤∗ext, ≤∗deg, ≤∗hom which, as
we will see, are in fact partial orders.

Definition: Suppose Γ, Γ̃ are two LR-tableaux of shape (α, β, γ). We write
Γ ≤∗ext Γ̃ (Γ ≤∗deg Γ̃; Γ ≤∗hom Γ̃) if there is a sequence

Γ = Γ(0),Γ(1), . . . ,Γ(s) = Γ̃

such that for each 1 ≤ i ≤ s there are f ∈ VΓ(i−1) , g ∈ VΓ(i) with f ≤ext g
(f ≤deg g; f ≤hom g).

It follows from the corresponding properties for modules that:

• Γ ≤∗ext Γ̃ implies Γ ≤∗deg Γ̃ and

• Γ ≤∗deg Γ̃ implies Γ ≤∗hom Γ̃.

Also, it is easy to see that

• Γ ≤∗deg Γ̃ implies Γ ≤∗closure Γ̃.

We have seen in Section 3.1 that the closure-relation implies the dominance
order ≤dom. In the following section we show that also the hom-relation
implies the dominance order.
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4.1. Hom-relation implies dominance order

We start with an abstract result.

Denote by N the category modk[T ](T ) of all nilpotent linear operators, and
by S = S(k[T ](T )) the category of all invariant subspaces. For each i ∈ N,
there is a pair of functors

Ri : S → N , (A ⊂ B) 7→ B

T iA
Li : N → S, X 7→ (soc iX ⊂ X).

Lemma 4.1. For each i ∈ N, the functors Ri, Li form an adjoint pair.

Proof. Given an operator X ∈ N and an invariant subspace (A ⊂ B) ∈ S,
we need to show that there is a natural isomorphism

HomS((A ⊂ B), Li(X)) ∼= HomN (Ri(A ⊂ B), X).

A morphism in S is given by a commutative diagram:

A
f |A−−−→ soc iXy y

B −−−→
f

X

It gives rise to the commutative diagram:

radiA −−−→ 0y y
B −−−→

f
X

Hence we obtain a morphism in N :

f̄ :
B

radiA
−−−−−→ X.

Conversely, the morphism in N gives rise to a commutative diagram and
hence to a morphism in S. Clearly, the two constructions are inverse to each
other. �
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We recognize that the objects of the form P `
i = Li(P

`) are pickets.

Proposition 4.2. Suppose the objects (A ⊂ B) and (Ã ⊂ B̃) have LR-
tableaux Γ and Γ̃, respectively. The following assertions are equivalent:

1. Γ ≤dom Γ̃

2. For each picket P `
i the inequality holds:

dim HomS((A ⊂ B), P `
i ) ≤ dim HomS((Ã ⊂ B̃), P `

i )

Proof. By the definition, given above the proof of Theorem 3.1, the condition
Γ ≤dom Γ̃ is equivalent to

(γ(i))′1 + · · ·+ (γ(i))′` ≤ (γ̃(i))′1 + · · ·+ (γ̃(i))′` for each i and `.

Let i and ` be natural numbers. We obtain from Lemma 4.1 and from the
equality in the proof of Proposition 3.4 that

(γ(i))′1 + · · ·+ (γ(i))′` = dim HomN (B/T iA,P `) = dim HomS((A ⊂ B), P `
i )

The claim follows from this and from the corresponding equality for (Ã ⊂ B̃).
�

It follows that the covariant hom-relation implies the dominance order. Here
is what we have. So far, we have not imposed any conditions on the triple
(α, β, γ).

(dominance)

(covariant hom*) (closure*)

(deg*)

(ext*)

↓

↙ ↘

↘ ↙
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4.2. The ext- and deg-relations are not equivalent

It is well-known that for modules, the ext-relation ≤ext implies the deg-
relation ≤deg. In general for modules, the converse is not the case. Here
we give an example for embeddings of linear operators.

Example: For α = (4, 2), β = (6, 4, 2), γ = (4, 2), there are three LR-
tableaux:

Γ1 :

3
4

1
2

1
2

Γ2 :

2
4

1
3

1
2

Γ3 :

1
2

3
4

1
2

We show that the partial orders given by ≤ext and ≤deg are as follows:

ext:

Γ1

Γ2 Γ3

A
A
AA

�
�
��

deg:

Γ1

Γ2

Γ3

(In each case, Γ1 is the largest element in the poset.)

First we describe the embeddings which realize the tableaux. From [10] we
know that there is a one-parameter family of indecomposable embeddings
M2(λ) occurring on the mouths of the homogeneous tubes with tubular index
0; they all have type Γ2. There are two additional indecomposables, they
occur in the tube of circumference 2 at index 0; the modules are dual to each
other and have type Γ1 and Γ2, respectively. We sketch the modules, using
the conventions as in [10].

M12 : • •
• • M23 : • • •

•

In addition, there are three decomposable configurations; note that M1 is the
dual of M3 while M123 is self dual.

M1 : • • M123 : • •
• M3 :

•

•
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The modules M1 = P 6
4 ⊕ P 4

0 ⊕ P 2
2 and M123 = P (0, 1, 4, 5) ⊕ P 4

2 have type
Γ1, and M3 = P 6

2 ⊕ P 4
4 ⊕ P 2

0 has type Γ3.

Consider the short exact sequences

0 −→ P 4
2 −→M23 −→ P (0, 1, 4, 5) −→ 0

and
0 −→ P 4

2 −→M3 −→ P (0, 1, 4, 5) −→ 0.

In each, the sum of the end terms is M123. It follows that Γ1 ≥ext Γ2 and
Γ1 ≥ext Γ3, respectively. Note that Γ2 6>extΓ3 since there is no decomposable
module of type Γ2.

Since the ext-relation implies the deg-relation, it remains to show that Γ2 ≥deg

Γ3. As mentioned, the modules M1 and M3 are dual to each other, so their
orbits have the same dimension. As OM3 = VΓ3 , and since all varieties given
by LR-tableaux are irreducible of the same dimension, it follows that OM1

is dense in VΓ1 . In particular, OM1 contains OM12 in its closure. Applying
duality again, we obtain that OM3 contains OM23 in its closure. Thus, OM23

is in the closure of VΓ3 . �

5. Box-relation and ext-relation

We introduce box moves and the box-relation for LR-tableaux. We will show
in the remainder of this paper that the box-relation is stronger than the
ext-relation.

5.1. Box moves

Definition: We say an LR-tableau Γ̃ is obtained from the LR-tableau Γ via
a box move if Γ = Γ′ ∪ Γ′′ ∪ Γ′′′ and Γ̃ = Γ̃′ ∪ Γ̃′′ ∪ Γ̃′′′ are (rowwise) unions of
LR-tableaux with the following properties:

• Γ′, Γ′′, Γ̃′, Γ̃′′ have no multiple entries.

• Γ′∪Γ′′ and Γ̃′∪ Γ̃′′ have the same shape, but two entries are exchanged.

• Γ′′′ = Γ̃′′′.
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We write Γ >box Γ̃ if Γ has the smaller entry in the higher row. The box-
relation is the reflexive and transitive closure of the relation given by box
moves.

Example: Consider the following LR-tableaux

Γ :

1 11
2 2

2 3
1

and Γ̃ :

1 11
2 2

1 2
3

We set

Γ′ :

1
2

3 Γ′′ :
1

Γ̃′ :

1
2

3
Γ̃′′ : 1

and

Γ′′′ = Γ̃′′′ :

11
2

2

Note that

Γ′ ∪ Γ′′ :

1
2

3
1

Γ̃′ ∪ Γ̃′′ :

1
2

1
3

Γ = Γ′ ∪ Γ′′ ∪ Γ′′′ and Γ̃ = Γ̃′ ∪ Γ̃′′ ∪ Γ̃′′′. Therefore Γ̃ >box Γ.

This definition generalizes the example of a box move given in the introduc-
tion:

Lemma 5.1. Let Γ, Γ̃ be LR-tableaux of the same shape (α, β, γ) where β \ γ
is a horizontal strip. If Γ̃ is obtained from Γ by exchanging two entries (and
by resorting the rows if necessary), then Γ and Γ̃ are in box-relation.

Proof. First note that the (unordered) lists of columns in Γ and Γ̃ agree with
the exception of two columns, which we call c′, c′′ and c̃′, c̃′′, respectively.
We assume that c′ and c̃′ have the same length, say s, and that c′′ and c̃′′

have the same length, say r, where r < s. If Γ <box Γ̃, then the entries v of
c′ and u of c′′ satisfy u < v. The corresponding entries in Γ̃ are u in c̃′ and v
in c̃′′.
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To define Γ′, take the column c′, and successively the first column on the left
starting from c′ which contains an entry v + 1, v + 2, etc., up to the largest
possible entry. In addition, take successively the first column on the right of
c′′ which contains an entry v − 1, v − 2, etc. For Γ̃′′, take Γ′ with column
c′ replaced by c̃′. Similarly, for Γ′′, take the column c′′ and successively
from among the remaining columns the first column on the left of c′ which
contains an entry u+1, u+2, etc. In addition, take successively from among
the remaining columns, starting at c′′, the first column on the right which
contains an entry u− 1, u− 2, etc. Let Γ̃′′ be Γ′′ with c′′ replaced by c̃′′. The
remaining columns in Γ and Γ̃ form Γ′′′ and Γ̃′′′, respectively.

Since both Γ, Γ̃ are LR-tableaux, so is Γ′′′. �

Lemma 5.2. Suppose embeddings X ′, X ′′ have LR-tableaux Γ′, Γ′′, respec-
tively. Then the direct sum X = X ′ ⊕X ′′ has LR-tableau Γ = Γ′ ∪ Γ′′.

Proof. This is a consequence of the additivity of Formula 2.2. �

Returning to the set-up in the definition, since Γ′, Γ′′, Γ̃′, Γ̃′′ have no mul-
tiple entries, each is the LR-type of a sum of a pole and a possibly empty
sum of empty pickets. Moreover, each of these four tableaux determines an
embedding uniquely, up to isomorphy.

5.2. Examples

We present two examples where the box-relation implies the ext-relation.

In the first example, the LR-tableau Γ̃ is obtained from Γ by exchanging a
box u where u = 2 occurs in row r = 5 with a v with v = 3 in row s = 7.
Since in Γ, the box with the smaller entry is in the higher position, we have
Γ >box Γ̃.

Γ :

3 4

3

2

2

1 1

Γ̃ :

3 4

2

3

2

1 1

Our goal is to show that Γ >ext Γ̃.
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Note that Γ is the LR-tableau for X ⊕ Z where X = P (0, 4, 8) and Z =
P (0, 2, 6, 8), while Γ̃ is the LR-tableau for X̃ ⊕ Z̃ where X̃ = P (0, 6, 8) and
Z̃ = P (0, 2, 4, 8).

We picture the four poles.

X :
• • •

Z : • • • • X̃ :
• • •

Z̃ : • • • •

Let Ỹ be given by the following diagram. (Clearly, it is an extension of Z̃ by
X̃.)

Ỹ :
• • • •

• • • •

The statement Γ >ext Γ̃ is a consequence of the following two facts which we
will show in a more general set-up in Section 5.4:

1. There is a short exact sequence 0→ X → Ỹ → Z → 0.

2. The LR-tableau for Ỹ is Γ̃.

Note that in the above example, the modules X, Z, X̃, Z̃ are all indecompos-
able. We present a second example in which X, Z, and X̃ are poles, hence
indecomposable, but Z̃ is the direct sum of a pole and an empty picket.

Example:

Γ :
2

1
1

Γ̃ :
1

2
1

Here, Γ̃ is obtained from Γ by exchanging u where u = 1 in row r = 2 by
v where v = 2 in row s = 5.

X = P (1); X̃ = P (4); Z = P (0, 4); Z̃ = P (0, 1)⊕ P 5
1 .
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In this example we can put Ỹ = X̃ ⊕ Z̃, then Ỹ has the same LR-tableau Γ̃
as X̃ ⊕ Z̃. It is easy to see that Ỹ occurs as the middle term of a short exact
sequence 0→ X → Ỹ → Z → 0.

X :
•

X̃ :
•

Z̃ : • Z : • • Ỹ :
•
•

5.3. Gradings

To prove the main result of this section we need to work in the category of
graded embeddings. Therefore we recall some facts and definitions.

Let modZ
0k[T ] denote the category of graded nilpotent k[T ]-modules where

T has degree 1. Each indecomposable object Pm[d] has support given by
an interval [d, d + m − 1]; the object is generated as a k[T ]-module by a
homogeneous element (often denoted by gm) in degree d. For B ∈ modZ

0k[T ],
we denote the vector space in degree ` by B`.

By SZ we denote the category of graded embeddings between objects in
modZ

0k[T ]. LetH be a height sequence, i.e. a finite strictly increasing sequence
of nonnegative integers. We show that the pole P (H) is given by a graded
embedding, also denoted by P (H), by forgetting the grading. Here we choose
the grading such that the subspace generator is in degree zero.

Definition: We say that a height sequence H = (H(i))i=1,...,s has a jump at i
if H(i+ 1) > H(i) + 1, for 1 ≤ i ≤ s− 1, or if i = s.

The pole P (H) is constructed as follows. Let j1 < · · · < jt be the list of all
jumps. Put

B(H) =
t⊕
i=1

PH(ji)+1[ji −H(ji)− 1]

a(H) = (TH(ji)+1−ji)i=1,...,t =
t∑
i=1

gH(ji)+1TH(ji)+1−ji

A(H) = a(H)k[T ]

Lemma 5.3. For each height sequence H, there is a pole P (H), unique up
to isomorphy, which is gradable and which has height sequence H. It is
isomorphic to the embedding (A(H)→ B(H)).
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Proof. The embedding (A(H)→ B(H)) as above is degree preserving; clearly,
the submodule generator a(H) has height sequence H.

We show that the embedding is indecomposable. Note that the number of
summands in B(H) is the number of jumps in H (including the last jump at
s). It suffices to show that each jump gives rise to an additional summand
of B. Suppose H(` + 1) > H(`) + 1. Then there is y ∈ B and u ∈ N such
that T `+1a = T uy but T `a 6= T u−1y. Thus, the map T : B` → B`+1 is a
not a monomorphism. Hence there is a summand in B which has support in
degree ` but not in degree `+ 1.

The uniqueness statement follows from Kaplansky’s Theorem. �

Here is an example of a graded pole; the second picture is explained below.

Example: The grading for the pole P (0, 2, 4, 5) is as follows.

(A ⊂ B) :
• • •

3
2
1
0
−1
−2

(A+T 3B
T 3B

⊂ B
T 3B

) :
• • •

·········
·········
·········

The height sequence H = (0, 2, 4, 5) gives rise to the jump sequence j1 = 1,
j2 = 2, j3 = 4, hence to the embedding given by A(H) = P 4, B(H) =
P 1 ⊕ P 3[−1]⊕ P 6[−2], a(H) = (1, T, T 2).

Graded embeddings facilitate the computation of the numbers dim B
T `A+T rB

in Formula 2.2 which determine the LR-tableau of an embedding (A ⊂ B):
The numbers dimB/(T `A+ T rB) can be computed componentwise for each
degree i as the dimension of the subspace (T `A + T rB)i/(T

rB)i within
Bi/(T

rB)i. Note that in the diagrams, Bi/(T
rB)i is given by the unshaded

boxes in degree i, while the space (T `A+T rB)i/(T
rB)i is given by the graded

shifts of the dotted lines which mark the images of the generators of A in B.

In the above example, to verify that dim (A+T 3B)1
(T 3B)1

= 1 we read off from the

picture in degree 1, • •········· , that A1, being diagonally embedded, is not contained
in the shaded region corresponding to (T 3B)1.

5.4. Box-relation and ext-relation

We assume the set-up from the beginning of this chapter. To fix notation,
suppose that the LR-tableau Γ has two boxes u and v in rows r and s
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where u < v and r < s. We assume that Γ = Γ′ ∪ Γ′′ ∪ Γ′′′ is obtained by
merging the rows of three LR-tableaux such that

(a) Γ′ and Γ′′ each have no multiple entries.

(b) Γ′ contains u in row r but no entries in rows r+ 1, . . . s, and no other
entry in the column of u .

(c) Γ′′ contains v in row s but no entries in rows r, . . . , s− 1 and no other
entry in the column of v .

Then the tableau Γ̃ obtained by replacing the boxes u and v in Γ has the
LR property.

Our goal is to construct a short exact sequence

0 −→ X −→ Ỹ −→ Z −→ 0

such that the LR-type of X ⊕ Z is Γ and the LR-type of Ỹ is Γ̃.

Each tableaux Γ′, Γ′′ is the LR-tableau of a direct sum of a pole and one or
several empty pickets. As we have seen in the second example in Section 5.2,
some empty pickets are needed to perform a box move. We move all redun-
dant empty pickets from Γ′ and Γ′′ to Γ′′′. Moreover, we may assume that Γ′′′

is empty since an embedding which has LR-tableau Γ′′′ can be added later
to both Ỹ and Z. Thus we may assume:

(d) Γ′ is the LR-tableau of an embedding X where either X = P (HX) is
a pole if the box with entry u − 1 occurs in a row less than r − 1; or
X = P (HX) ⊕ P r−1 is the direct sum of a pole and an empty picket
P r−1 of height r − 1.

(e) Γ′′ is the LR-tableau of an embedding Z where either Z = P (HZ) is a
pole if the box with entry v + 1 occurs in a row larger than s + 1; or
Z = P (HZ) ⊕ P s is the direct sum of a pole and an empty picket P s

of height s.

(f) Γ′′′ is empty.

Let Γ̃′ be the tableau obtained from Γ′ by replacing the column containing
u in row r by a column containing u in row s. Because of (b), Γ̃′ is an LR-
tableau. Similarly, let Γ̃′′ be the tableau obtained from Γ′′ by replacing the
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column containing v in row s by a column containing v in row r. Because
of (c), Γ̃′′ is an LR-tableau.

Let HX̃ be the height sequence obtained from HX by replacing r−1 by s−1.
Then Γ̃′ is the LR-type of X̃, which is the pole P (HX̃) or, in the case where
s+ 1 occurs in HX̃ , the direct sum of P (HX̃) and an empty picket of height
s. Similarly, let HZ̃ be the height sequence obtained from HZ by replacing
s− 1 by r − 1. Then Γ̃′′ is the LR-type of Z̃ where Z̃ is the pole P (HZ̃) or,
in the case where r− 1 occurs in HZ̃ , the direct sum of P (HZ̃) and an empty
picket of height r − 1.

We summarize the definitions in a table.

module tableau entry in row? module if NO: if YES, add:
X Γ′ r − 1 P (HX)[v − u] P r−1[v − r]
Z Γ′′ s+ 1 P (HZ) P s[v − s]
X̃ Γ̃′ s+ 1 P (HX̃)[v − u] P s[v − s]
Z̃ Γ̃′′ r − 1 P (HZ̃) P r−1[v − r]

Observation: The embedding X embeds into X̃ as follows. Namely, HX and
HX̃ differ by only one entry which gives X̃ a column that is by s− r longer
than the corresponding column in X. Note that if there is an entry in the
r − 1-st row in Γ′, then HX̃ has an additional jump, hence the ambient
space for X̃ has an additional summand P r−1[v− r]. Similarly, if there is an
entry in the s+ 1-st row in Γ′, then HX has an additional jump, resulting in
the ambient space for X having an additional summand P s[v − s]. On the
ambient spaces, the inclusion map is as follows.

ιX,X̃ : Xamb → X̃amb, g`X 7→
{
gs
X̃
T s−r if ` = r

g`
X̃

otherwise

Here, griX denotes a homogeneous generator of the i-th summand in Xamb =⊕
i P

ri . Note that cok(ιX,X̃) is an empty picket of height s− r.
Dually, Z̃ embeds into Z with cokernel also an empty picket of height s− r.

ιZ̃,Z : Z̃amb → Zamb, g`
Z̃
7→
{
gsZ T

s−r if ` = r
g`Z otherwise

It remains to choose homogeneous submodule generators hX , hZ , hX̃ and
hZ̃ for X, Z, X̃ and Z̃, respectively, such that the following compatibility
conditions are satisfied.
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• ιX,X̃(hX) = hX̃

• ιZ̃,Z(hZ̃) = hZ

• If hX̃ =
∑

` g
`
X̃
T d`µ` and hZ̃ =

∑
` g

`
Z̃
T e`ν`, then µs = νr holds.

(The conditions are satisfied if X, Z, Z̃, Z̃ are poles as defined in Section 5.3.
The compatibility conditions may give rise to nonzero coordinates in the
empty pickets; they will not affect the height sequence of the submodule
generator.)

We can now introduce the module Ỹ . Define the ambient space for Ỹ as the
sum Ỹamb = X̃amb⊕ Z̃amb of graded modules, and let Ỹsub = (hX̃ , g

r
Z̃
T v−uνr) +

(0, hZ̃). The maps in the short exact sequence

E : 0 −→ X
ιX,Ỹ−−−−−→Ỹ

πỸ ,Z−−−−−→Z −→ 0

are the following.

ιX,Ỹ : Xamb → Ỹamb, g`X 7→
{
gs
X̃
T s−r + gr

Z̃
if ` = r

g`
X̃

otherwise

This map preserves the embedding since ιX,Ỹ (hX) = (hX̃ , g
r
Z̃
T v−uνr).

πỸ ,Z : Ỹamb → Zamb, g
`
X̃
7→
{

0 if ` 6= s
−gsZ if ` = s

and g`
Z̃
7→
{
g`Z if ` 6= r
gsZ T

s−r if ` = r

This map preserves the embedding since πỸ ,Z(hX̃ , g
r
Z̃
T vνr) = 0 and πỸ ,Z(0, hZ̃) =

ιZ̃,Z(hZ̃) = hZ .

It is straightforward to verify that the sequence E is exact. Namely, ιX,Ỹ is
a monomorphism, πỸ ,Z is an epimorphism, and the composition is zero.

It remains to show that the LR-tableau for Ỹ is Γ̃. We have already seen
that X̃ ⊕ Z̃ has LR-tableau Γ̃. So we show that Ỹ and X̃ ⊕ Z̃ have the same
LR-tableau. We write Ỹ = (A ⊂ B) and X̃ ⊕ Z̃ = (C ⊂ D). Recall that
by construction, B = D. We have seen above in Section 5.3 that we need to
verify that for each degree d, and for all exponents `, q the subspaces(

T `A+ T qB

T qB

)
d

and

(
T `C + T qD

T qD

)
d
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have the same dimension. Note that the subspace generators are very sim-
ilar: A = (hX̃ , g

r
Z̃
T v−uνr) + (0, hZ̃) versus C = (hX̃ , 0) + (0, hZ̃); obvi-

ously, dimAd, dimCd ≤ 2. Note that the subspaces differ only in degrees
v − u ≤ d < v. More precisely, the addition of (0, gr

Z̃
T v−uνr)d to the first

generator (hX̃ , 0)d changes the dimension only if (hX̃ , 0)d ∈ (T qB)d.

Note that (hX̃ , 0)d ∈ (T qB)d and (0, gr
Z̃
T v−uνr)d 6∈ (T qB)d is only possible if

d = v − 1 (here we use that u is the only entry in its column in Γ′). One
can check that in this case, the ambient space (B/T qB)d has dimension at
most one. Note that whenever ` is such that T `(0, gr

Z̃
T v−uνr)d is nonzero in

(B/T qB)d, then so is T `(0, hZ̃)d. Hence, also in the case d = v − 1, the two
subspaces have the same dimension.

This finishes the proof that Ỹ has LR-tableau Γ̃, as desired. As a corollary
we obtain:

Theorem 5.4. Let Γ, Γ̃ be LR-tableaux of shape (α, β, γ). If Γ ≤box Γ̃, then
Γ ≤∗ext Γ̃.

Proof. The theorem follows from the arguments given above. �

6. Combinatorial properties of the order ≤box

In this section we study combinatorial properties of the posets (T βα,γ,≤box)
and (T βα,γ,≤dom), mainly in the case where β \ γ is a horizontal and vertical
strip. Recall that according to Conjecture 1.3, the two posets are equivalent
in this case, and hence equivalent to all the algebraic and geometric poset
structures considered in this paper.

Notation: Let Γ be an LR-tableau of shape (α, β, γ). Consider the chain ωΓ

consisting of the entries of Γ as they occur in Γ when read row-wise from the
bottom up, and in each row from left to right. Note that given the shape
(α, β, γ), this chain ωΓ uniquely determines the tableau Γ.

6.1. An example

Consider the poset (T βα,γ,≤box), where β = (6, 5, 4, 3, 2, 1), γ = (5, 4, 3, 2, 1)
and α = (3, 2, 1). All LR-tableaux of this shape have entries: 1, 1, 1, 2, 2, 3.
The Hasse diagram of (T βα,γ,≤box) is the following (instead of Γ we write ωΓ):
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Consider the LR-tableaux in frames. One is obtained from the other by
a single box-move, but there is no chain of neighboring moves, i.e. moves
that exchange neighbors. Moreover note that:

• β \ γ is a horizontal and a vertical strip;

• in this poset there exists exactly one maximal and exactly one minimal
element;

• all saturated chains have the same length;

• this poset is not a lattice;

6.2. Maximal and minimal elements

We have seen in [6, Proposition 5.5] that the poset (T βα,γ,≤dom) has a unique
maximal and a unique minimal element in the case where all parts of α are
at most 2. We show that this statement also holds true if β \γ is a horizontal
and vertical strip.

Lemma 6.1. Assume that β \γ is a horizontal and vertical strip. In the poset
(T βα,γ,≤box) there exists:

1. exactly one maximal element: the LR-tableau Γ such that the coeffi-
cients in ωΓ are in non-increasing order,
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2. exactly one minimal element: the LR-tableau Γ such that ωΓ has the
form (pk11 , p

k2
2 , . . . , p

kn
n ), for some k1, . . . , kn, where pi = (i, i− 1, . . . , 1)

and pk = (p, p, . . . , p) (k times ).

Proof. 1. Let Γ be such that the coefficients in ωΓ are not in non-increasing
order. Then there exist j such that ωj−1 < ωj, where ωΓ = (ω1, . . . , ωn).
Then Γ <box Γ̃, where

ωΓ̃ = (ω1, . . . , ωj−2, ωj, ωj−1, ωj+1, . . . , ωn)

and Γ is not maximal.
2. Note that the element of the required form (pk11 , p

k2
2 , . . . , p

kn
n ) is created as

follows. Starting from the right hand side we always take the largest possible
entry. Let Γ be such that ωΓ has not the required form. Choose i maximal
with the property that ωi is not the largest possible entry. Choose j < i
maximal with the property that ωj is the largest possible entry that can be
on the place i. It follows that j < i and ωj > ωk for all k = j − 1, . . . , i. We
can replace ωj and ωj−1 and get an LR-tableau Γ̃ such that Γ̃ <box Γ. This
finishes the proof. �

Example: 1. The first example shows that the condition that β \ γ be a
horizontal strip is needed for the uniqueness of the maximal element
in T βα,γ. Consider the partition triple β = (5, 4, 2, 1), γ = (4, 2, 1)
and α = (3, 2). The Hasse diagram of the poset (T βα,γ,≤dom) has the
following shape:

1
1

2
3

2

1
2

1
2

3

1
2

1
3

2

�
�
���

@
@

@@I

2. The second example shows that in Conjecture 1.3, the condition that
β \ γ be a horizontal and vertical strip is necessary. We also see that
for horizontal strips, the poset (T βα,γ,≤box) may have several minimal
and several maximal elements.
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Let β = (4, 3, 3, 2, 1), γ = (3, 2, 2, 1) and α = (3, 2). There are two
LR-tableaux of type (α, β, γ):

1
2

1 3
2

1
1

2 2
3

They are incomparable in ≤box relation, but

1
2

1 3
2

≤dom

1
1

2 2
3

6.3. Saturated chains

We prove that, if β \ γ is a horizontal and vertical strip, then all saturated
chains in the poset (T βα,γ,≤box) have the same length.
Throughout this subsection (α, β, γ) is a triple of partitions such that β \ γ
is a horizontal and vertical strip.

Lemma 6.2. Let y < x.

1. If the words

ω = (ω1, . . . , ωi−1, y, ωi+1, . . . , ωj−1, x, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn),

ω′ = (ω1, . . . , ωi−1, x, ωi+1, . . . , ωj−1, x, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn)

have the lattice permutation property, then the word

ω′′ = (ω1, . . . , ωi−1, x, ωi+1, . . . , ωj−1, y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn)

has the lattice permutation property.

2. If the words

(ω1, . . . , ωi−1, y, ωi+1, . . . , ωj−1, y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn),

(ω1, . . . , ωi−1, x, ωi+1, . . . , ωj−1, y, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn)

have the lattice permutation property, then the word

(ω1, . . . , ωi−1, y, ωi+1, . . . , ωj−1, x, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn)

has the lattice permutation property.
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Proof. We prove only the statement 1. The proof of the statement 2 is
similar. It is clear that the word ω′′(j+1) = (ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn)
has the lattice permutation property, because ω has this property. Note that

#{a ∈ ω′′(j+1) ; a = y − 1} = #{a ∈ ω′(j+1) ; a = y − 1} ≥

≥ #{a ∈ ω′(j) ; a = y} > #{a ∈ ω′′(j) ; a = y}.

Therefore ω′′(j) = (y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn) has the lattice permuta-
tion property. Moreover, for any s = i+ 1, . . . , j − 1, we have

#{a ∈ ω′′(s) ; a = x+ 1} = #{a ∈ ω′(s) ; a = x+ 1} ≤

≤ #{a ∈ ω′(s) ; a = x} = #{a ∈ ω′′(s) ; a = x}.

Now, we easily conclude that ω′′ has the lattice permutation property. �

Lemma 6.3. Let y < z < x and let the words

ω = (ω1, . . . , ωi−1, y, ωi+1, . . . , ωj−1, z, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn),

ω′ = (ω1, . . . , ωi−1, x, ωi+1, . . . , ωj−1, z, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn)

have the lattice permutation property. If z + 1 6∈ {ωi+1, . . . , ωj−1}, then

ω′′ = (ω1, . . . , ωi−1, z, ωi+1, . . . , ωj−1, y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn),

ω′′′ = (ω1, . . . , ωi−1, z, ωi+1, . . . , ωj−1, x, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn)

have the lattice permutation property.

Proof. Note that the words (ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn) and (ωj+1, . . . ,
ωk−1, y, ωk+1, . . . , ωn) have the lattice permutation property, because ω and
ω′ have this property. Similarly as in the proof of Lemma 6.2 we prove that
(y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn) and (x, ωj+1, . . . , ωk−1, y, ωk+1, . . . , ωn) have
the lattice permutation property. Since z + 1 6∈ {ωi+1, . . . , ωj−1}, it is easy
to conclude that ω′′ and ω′′′ have lattice permutation property. �

For a LR-tableau Γ denote by xΓ the numbers of pairs i < j such that
ωi < ωj.

Lemma 6.4. If Γ <box Γ̃, then xΓ > xΓ̃.
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Proof. Let ωΓ = (ω1, . . . , ωi−1, y, ωi+1, . . . , ωk−1, x, ωk+1, . . . , ωn) and ωΓ̃ =
(ω1, . . . , ωi−1, x, ωi+1, . . . , ωk−1, y, ωk+1, . . . , ωn) for y < x. Denote by

a = #{t ∈ {i+ 1, . . . , k − 1} ; y < ωt < x}

b = #{t ∈ {i+ 1, . . . , k − 1} ; y < ωt > x}
c = #{t ∈ {i+ 1, . . . , k − 1} ; y > ωt < x}
d = #{t ∈ {i+ 1, . . . , k − 1} ; ωt = x}
e = #{t ∈ {i+ 1, . . . , k − 1} ; ωt = y}

and note that xΓ = xΓ̃ − 1− 2a− d− e. We are done. �

Proposition 6.5. If Γ <box Γ̃, then there exist LR-tableaux Γ1, . . . ,Γm such
that

Γ = Γ1 <box Γ2 <box . . . <box Γm−1 <box Γm = Γ̃

and xΓi = xΓi+1
− 1, for all i = 1, . . . ,m− 1.

Proof. Assume that ωΓ = (ω1, . . . , ωi−1, y, ωi+1, . . . , ωk−1, x, ωk+1, . . . , ωn) and
ωΓ̃ = (ω1, . . . , ωi−1, x, ωi+1, . . . , ωk−1, y, ωk+1, . . . , ωn) for y < x. If there ex-
ists j = i + 1, . . . , k − 1, such that ωj = x, then by Lemma 6.2 there exists
the LR-tableau Γ′ with

ωΓ′ = (ω1, . . . , ωi−1, x, ωi+1, . . . , ωj−1, y, ωj+1, . . . , ωk−1, x, ωk+1, . . . , ωn),

Γ <box Γ′ <box Γ̃ and xΓ > xΓ′ > xΓ̃. Therefore we can assume that
x 6∈ {ωi+1, . . . , ωk−1}. Similarly we can assume that y 6∈ {ωi+1, . . . , ωk−1}.
Moreover, we may assume that there exists z ∈ {ωi+1, . . . , ωk−1} such that
y < z < x, because otherwise xΓ = xΓ̃ − 1 (compare with the formula
in the proof of Lemma 6.4) and we are done. Therefore there exists j =
i+1, . . . , k−1 such that y < ωj < x. Choose j minimal with this property and
denote z = ωj. From our assumptions it follows that z+1 6∈ {ωi+1, . . . , ωj−1}.
Indeed, if z+ 1 ∈ {ωi+1, . . . , ωj−1}, then z+ 1 = x or z+ 1 < x. If z+ 1 = x,
we get a contradiction, because x 6∈ {ωi+1, . . . , ωk−1}. If z + 1 < x, then we
get a contradiction with the choice of j.
Finally, by Lemma 6.3, Γ <box Γ′′ <box Γ′′′ <box Γ̃, where ωΓ′′ = ω′′ and
ωΓ′′′ = ω′′′ (see Lemma 6.3). We finish by using induction. �

As a corollary we get the following fact.

Theorem 6.6. If β \ γ is a horizontal and vertical strip, then all saturated
chains in the poset (T βα,γ,≤box) have the same length.
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