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ON PERIODIC SOLUTIONS AND GLOBAL
DYNAMICS IN A PERIODIC DIFFERENTIAL DELAY

EQUATION

ANATOLI F. IVANOV AND SERGEI I. TROFIMCHUK

Abstract. Several aspects of global dynamics and the existence
of periodic solutions are studied for the scalar differential delay
equation x ′(t) = a(t)f(x([t − K])), where f(x) is a continuous
negative feedback function, x · f(x) < 0, x 6= 0, 0 ≤ a(t) is con-
tinuous ω-periodic, [·] is the integer part function, and the integer
K ≥ 0 is the delay. The case of integer period ω allows for a re-
duction to finite-dimensional difference equations. The dynamics
of the latter are studied in terms of corresponding discrete maps,
including the partial case of interval maps (K = 0).

1. Introduction

This paper deals with the global dynamics of solutions of differential
delay equation

(1) x ′(t) = a(t)f(x([t−K])),

where the [·] is the integer value function, and the non-negative in-
teger K is the delay. We shall assume throughout the paper that f
is a continuous real-valued function satisfying the negative feedback
condition

(2) x · f(x) < 0 for all x 6= 0,

and is bounded from one side

(3) f(x) ≤M or f(x) ≥ −M for all x ∈ R and some M > 0.

The coefficient a(t) > 0 is a continuous periodic function with integer
period ω > 0

(4) a(t+ ω) = a(t) for all t ∈ R.

1991 Mathematics Subject Classification. (2010) Primary: 34K11; 34K13;
34K20; 34K23. Secondary: 37E05; 39A21; 39A23; 39A30.

Key words and phrases. Periodic differential delay equations; discretizations;
difference equations; periodic solutions and their stability/instability; global dy-
namics; reduction to discrete and one-dimensional maps; interval maps.
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Equation (1) is closely related to the more general differential delay
equation

(5) x ′(t) = a(t)f(x(t− τ)),

with the same f and a, and where τ > 0 is a constant delay. It can
be viewed as a discrete version of equation (5) [5, 7, 11, 14, 15]. While
the problem of global dynamics and existence of periodic solutions for
general equation (5) is quite difficult to approach, equation (1) ap-
pears to be somewhat simpler to study in this regard. Equation (1)
falls within the class of differential equations with piecewise constant
argument, which have attracted a significant interest in recent years for
their qualitative features and range of applications. Various aspects of
their dynamics have been studied by many authors. Among those re-
lated to present work we would like to mention papers [1, 2, 3, 6, 10, 20].

When a(t) = a0 > 0 is a constant equation (5) is equivalent to the
well studied autonomous equation

(6) x ′(t) = G(x(t− 1)).

It is well known that when G also satisfies the negative feedback con-
dition (2), is one-sided bounded in the sense of (3), and G ′(0) < −π/2,
then the differential delay equation (6) has a slowly oscillating periodic
solution [9, 12, 13, 16, 17]. The proof of this fact is rather non-trivial; it
constitutes a part of an established theory for the existence of periodic
solutions of functional differential equations, called the ejective fixed
point techniques [9, 12, 17].

It is a natural next step to look for the existence of periodic solutions
in similar but periodic functional differential equations of the form (5).
As our initial approaches and analyses have indicated the use of the
standard techniques of the ejective fixed point theory do not appear
immediately applicable to this case. New approaches and techniques
seem to be necessary. Our first step in this direction is to study pe-
riodic solutions and other dynamical properties of somewhat simpler
differential delay equation (1).

The assumption that the period ω is integer is crucial for all principal
considerations of the paper. It simplifies the dynamics of solutions of
equation (1) significantly: they are essentially reduced to the dynamics
of finite-dimensional discrete maps (which can be quite complex by
themselves). At present we don’t have a clear workable idea how to
approach the case when the period ω is not commensurable with the
delay in the equation (K for Eq. (1) and τ for Eq. (5)). Even in
the simplest case of K = 0 and ω being irrational, the corresponding
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equation (1) seems to allow in some cases for the existence of quasi-
periodic solutions.

2. Preliminaries

We shall be using throughout the paper the standard notions and
definitions related to functional differential and difference equations, as
well as to interval maps, most of which can be found in monographs
[4, 8, 9, 12, 18, 19].

For arbitrary initial function ϕ ∈ C := C([−K, 0],R) the correspond-
ing solution x = x(t, ϕ) of equation (1) is easily found by successive
integration for t ≥ 0. One has

x(t) = x(0) + f(ϕ(−K))

∫ t

0

a(s) ds for all t ∈ [0, 1)

with

x(1) = x(0) +

∫ 1

0

a(s) ds f(ϕ(−K)) := x(0) + a1 · f(ϕ(−K)).

Likewise

x(t) = x(1) + f(ϕ(−K + 1))

∫ t

1

a(s) ds for all t ∈ [1, 2)

with

x(2) = x(1) +

∫ 2

1

a(s) ds f(ϕ(−K + 1)) := x(1) + a2 · f(ϕ(−K + 1)),

and so on. Thus one can easily see that the solution x(t, ϕ), t ≥ 0
depends only on the values ϕ(−K), ϕ(−K + 1), . . . , ϕ(−1), ϕ(0) of
the initial function ϕ ∈ C. In Section 3, based on the above calcu-
lations, we derive the explicit form for the translation operator Sω

along the solutions in the case of integer values ω as a discrete finite-
dimensional map on the set of initial values x0 = [x0, x−1, . . . , x−K ] =
[x(0), x(−1), . . . , x(−K)].

The oscillation of solutions of equation (1) is meant in a standard
sense. A solution x(t) is called eventually positive (negative) if there
exists T ≥ 0 such that x(t) > 0 (x(t) < 0) for all t > T . A nontrivial
solution x(t) (x(t) 6≡ 0 for all t ≥ T ) is called oscillatory if it is not
eventually positive or negative. For every T ≥ 0 any oscillating solution
x(t) of equation (1) changes sign on the interval [T,∞). This is easily
seen from the positivity of a(t) and the negative feedback assumption
(2) on f .

The oscillatory nature of solutions of differential delay equations is an
important characteristic which can lead to certain implications such as
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existence of nontrivial periodic solutions. It is a significant component
of the ejective fixed point techniques used to prove the existence of
slowly oscillating periodic solutions to equation (6).

Proposition 2.1 (Eventual Uniform Boundedness). Suppose that
nonlinearity f satisfies assumptions (2) and (3). There is a constant M0

such that for arbitrary initial function ϕ ∈ C there exists time moment
tϕ such that the corresponding solution x = x(t, ϕ) of equation (1)
satisfies |x| ≤M0 for all t ≥ tϕ.

Proof. The proof essentially follows from the fact of one-sided bound-
edness of the nonlinearity f and the periodicity of a(t) (therefore,
the boundedness). Consider two potential possibilities for any solu-
tion x: (i) it has a finite number of zeros on the positive semiaxis
R+ := {t : | t ≥ 0}, and (ii) it oscillates on R+.

In case (i), to be definite one can assume that x > 0 in (t0, t0+K+1],
where t0 is the largest zero of x in R+. Then x(t) is decreasing in
[t0 +K + 1,+∞) with limt→∞ x(t) = 0.

In case (ii), to be definite, assume that f is bounded from below,
f(x) ≥ −M for all x ∈ R and some M > 0. Let a∗ := max{a(t), t ∈
[0, ω]}. If t0 ≥ 0 is a zero of the solution x(t), then x(t) ≥ −a∗M(t−t0)
for all t ∈ [t0, t0 + K + 1], implying that x(t) ≥ −a∗M(K + 1) holds
there. We claim that the inequality x(t) ≥ −a∗M(K + 1) is satisfied
for all t ≥ t0.

Indeed, consider first the case when x(t0 + K + 1) < 0. If x(t) < 0
for all t ∈ (t0, t0 +K+1] then x(t) is increasing in [t0 +K+1, t1] where
t1 is the first zero of x(t) following the point t0 + K + 1. Therefore,
x(t) ≥ −a∗M(K+1) holds in between the two consecutive zeros t0 and
t1 for which also t1−t0 ≥ K+1 is satisfied. In case when x(t) has other
zeros in the interval (t0, t0+K+1), choose t0 as the rightmost zero there,
and repeat the above reasoning to show that x(t) ≥ −a∗M(K + 1) for
all t ∈ [t0, t0 +K + 1].

In the case of x(t0 +K + 1) = 0 one considers t0 +K + 1 as the new
value of the zero t0 and repeats the reasoning to confirm the validity
of the inequality for the values of t in [t0 +K + 1, t0 + 2K + 2].

In the case when x(t0 +K + 1) > 0 there exists the next zero t1 > t0
with x(t) > 0 for all t ∈ (t0, t1). This situation is reduced then to the
previous case when x(t0 +K + 1) = 0.

Thus, a sequence of zeros tk, k = 0, 1, 2, . . . of the solution x(t) can
be identified such that tk+1− tk ≥ K + 1 and x(t) ≥ −a∗M(K + 1) for
all t ∈ (tk+1, tk).

Since the oscillating solution x(t) is now bounded from below for
all t ≥ t0, the negative feedback assumption (2) implies that it is
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also bounded from above for all t ≥ t1, where t1 is a zero satisfying
t1 ≥ t0 + K + 1. Indeed, this follows from the corresponding upper
bound for its derivative and the reasoning similar to that in the first
part of the proof. If one sets M∗ := max{f(x), x ∈ [−M(K + 1), 0]}
then x′(t) ≤ a∗M∗ holds for all t ≥ t0 +K + 1. �

The following two propositions are closely related; they essentially
reflect the fact that all solutions of equation (1) oscillate when either
the coefficient a(t) or the derivative |f ′(0)| is sufficiently large.

Proposition 2.2 (Oscillation). Let f ′(0) = f0 < 0 be fixed. There
exists a0 > 0 such that for arbitrary ω-periodic function a(t) with
a(t) ≥ a0 all solutions of equation (1) oscillate.

Proposition 2.3 (Oscillation). Let the ω-periodic function a(t) > 0
be fixed. There exists f0 < 0 such that for arbitrary function f(x) with
f ′(0) < f0 all solutions of equation (1) oscillate.

Proof. The proofs of both Propositions 2.2 and 2.3 are straightforward
and similar. They use a simple comparison argument which has been
used multiple times in many other papers. We provide its outline here
for the sake of completeness.

Indeed, assuming say x(t) > 0 for all t ≥ t0, one sees that x(t) is
decreasing for t ≥ t0 +K with limt→+∞ x(t) = 0. Comparing equation
(1) with its linearization about x(t) ≡ 0 one concludes that for arbitrary
ε > 0 there exists time moment t∗ such that for all t ≥ t∗ the following
holds

x ′(t) < a∗[f ′(0) + ε]x(t−K − 1) where a∗ := max{a(t), t ∈ [0, ω]}.

Integrating the last inequality on the interval [t−K − 1, t] and letting
t→ +∞ one arrives at the estimate x(t) ≤ [1 + a0f

′(0)] x(t−K − 1).
The latter one contradicts the positiveness of x(t) when a0 f

′(0) < −1.
The case of x(t) being eventually negative is treated in a completely
analogous way. �

Note that Propositions 2.1, 2.2, and 2.3 are valid for the general
equation (5). The proofs are similar to those above and are left to the
reader.

3. Main Results

3.1. Shift by Time ω Operator: Integer Period. In this subsec-
tion we shall explicitly calculate the form of the shift-by-period opera-
tor along solutions of differential delay equation (1), in the case when
the period ω is a positive integer, ω = N .
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Define real numbers ai, i = 1, 2, . . . , N, by the following integral val-
ues over the coefficient a(t)

ai =

∫ i

i−1
a(t) dt.

Introduce next the sequence of maps Fi of the Euclidean space RK+1

into itself by

(7) Fi := [u0, u1, . . . , uK−1, uK ] 7→ [u0 + aif(uK), u0, u1, . . . , uK−1]

with the composite map F defined by

F := FN ◦ FN−1 ◦ · · · ◦ F2 ◦ F1.

Theorem 1 (Existence and Stability of Periodic Solutions).
Differential delay equation (1) has a periodic solution if and only if the
map F has a non-trivial cycle. It has a periodic solution with period ω
if and only if the map F has a fixed point different from u∗ = [0, . . . , 0].
Moreover, the stability of any such periodic solution is the same as the
stability of the corresponding cycle of F .

Proof. The proof is straightforward since the shift operator along so-
lutions of equation (1) in the case ω = N is equivalent to the map F .
Indeed, for arbitrary t0 ∈ [0, ω] one finds the solution satisfying the
initial condition x(t0) = x0 by

x(t) = x0 +

∫ t

t0

a(s)f(x([s−K])) ds.

In particular, for any integer point t0 = i ∈ [0, ω] one has

(8) x(t) = x(i) +

(∫ t

i

a(s) ds

)
f(x(i−K)), ∀t ∈ [i, i+ 1).

Let an initial function ϕ(s) ∈ C = C([−K, 0],R) be given. Set ϕ(0) =
x0, ϕ(−1) = x−1, . . . , ϕ(−K) = x−K . As it is shown in the introduc-
tion, the corresponding solution x(t, ϕ) depends on the values {x0, x−1, . . . , x−K}
only, and doest not depend on values of ϕ(t) at other non-integer times
t ∈ [−K, 0]. By using (8) one easily finds for t ∈ [0, 1)

x(t) = x0 +

(∫ t

0

a(s) ds

)
f(x−K).

At t = 1, by the continuity, one has

x(1) := x1 = x0 +

(∫ 1

0

a(t) dt

)
f(x−K) := x0 + a1f(x−K).
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The shift operator along the solution x(t, ϕ) by time T = 1 is now
defined as

x0 7→ x0 + a1 f(x−K) := x′0
x−1 7→ x0 := x′−1
x−2 7→ x−1 := x′−2
. . . . . .

x−K 7→ x−K+1 := x′−K ,

which is the map F1 applied to the point [x0, x−1, . . . , x−K ].
Likewise, for t ∈ [1, 2) one has

x(t) = x1 +

(∫ t

1

a(s) ds

)
f(x−K+1),

with

x(2) := x2 = x1 +

(∫ 2

1

a(t) dt

)
f(x−K+1) := x1 + a2f(x−K+1).

Therefore, the shift along the solution by time T = 2 is given by the
map

x1 7→ x1 + a2 f(x−K+1)

x0 7→ x1

x−1 7→ x0

. . . . . .

x−K+1 7→ x−K+2,

which is the map F2 applied to the point F1([x1, x0, x−1, . . . , x−K+1]),
that is F2 ◦ F1([x1, x0, x−1, . . . , x−K+1]).

By continuing this step-by-step integration procedure, one finds that
the shift along the solution by period ω = N is given by

F ([x1, x0, x−1, . . . , x−K+1]) = FN ◦· · ·◦F2◦F1([x1, x0, x−1, . . . , x−K+1]).

If there exists an initial vector u∗ = [u0, u1, . . . , uK ] 6= 0 such that
F (u∗) = u∗ then any initial function ϕ ∈ C with ϕ(−i) = ui, i =
0, 1, . . . , K generates a non-trivial periodic solution of equation (1).

If an initial function ϕ ∈ C results in a periodic solution x = p(t)
of equation (1) then the vector u∗ = [u0, . . . , uK ] with ϕ(−i) = ui, i =
0, 1, . . . , K is a fixed point of the map F . Small perturbations ψ of
the initial function ϕ in C, ||ϕ − ψ||C < δ, yield small perturbations
of the vector u∗ in RK+1, ||u∗ − u||RK+1 < δ. And vise versa: small
perturbations of the fixed point (vector) u∗ in RK+1 can be translated
into small perturbations of the corresponding initial function ϕ ∈ C for
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the periodic solution x = p(t). Therefore, the stability of the periodic
solution DDE (1) and of the corresponding cycle of the map F are
the same. They are both either stable, or asymptotically stable, or
unstable.

The same reasoning about the existence and stability applies to cy-
cles of the map F and the corresponding periodic solutions of differen-
tial delay equation (1). �

3.2. Case K = 0. In this subsection we consider a special case of
equation (1) when K = 0 and ω = N is a positive integer

(9) ẋ(t) = a(t)f(x([t])).

We shall also assume throughout this subsection that f(x) is differen-
tiable at x = 0 with f ′(0) < 0.

Given an initial value x(0) = x0 one easily solves equation (9) by the
consecutive step-by-step integration for all t ≥ 0, as described above.

Introduce the following auxiliary functions:

Fi(x) := x+

(∫ i

i−1
a(t) dt

)
f(x) := x+ aif(x), i = 1, 2, . . . , ω

and set

(10) F := Fω ◦ Fω−1 ◦ · · · ◦ F1,

where the ◦ stands for the composition of functions.
It is easy to see that x = 0 is a fixed point of the map F which

corresponds to the trivial solution x(t) ≡ 0 of differential delay equation
(9). Equation (9) has a non-trivial periodic solution if and only if map
F has a nontrivial cycle of any period (including a fixed point). The
stability of a cycle of map F and the stability of the corresponding
periodic solution of differential delay equation (9) are the same.

We shall indicate and derive certain basic properties of the map F
which are based on the properties of function f as a one-dimensional
map.

Theorem 2. (Existence of Globally Attracting Interval). Suppose
that nonlinearity f satisfies the assumptions (2) and (3). Then map F
has a finite globally attracting interval I0 = [α0, β0], α0 ≤ 0 ≤ β0 such
that

F (I0) = I0 and ∩i≥0 F i(U) = I0 for every open bounded set U ⊃ I0.

Note that there is a possibility of interval I0 being a single point,
α0 = β0 = 0. In this case the only fixed point x∗ = 0 of the map F
is globally attracting. The corresponding trivial solution x(t) ≡ 0 of
differential delay equation (9) is then globally asymptotically stable.
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Proof of Theorem 2. We shall prove the theorem in several steps,
starting with the simplest case N = 1. The principal idea is that any
finite number of iterations of maps of the form Fa = x+ af(x), where
a > 0 is a parameter, possesses the same basic property described by
the theorem as the single map Fa does.

Case N = 1. For arbitrary fixed a > 0 map Fa has a closed globally
attracting invariant interval Ia such that

Fa(Ia) = Ia and ∩n≥1 F n
a (J) = Ia

for any interval J (open or closed) such that Ia ⊆ J .

To be definite, assume that f(x) ≥ −M for some M > 0 and all
x ∈ R. The case f(x) ≤ M can be treated similarly (and therefore, it
is left to the reader).

Due to the negative feedback assumption (2) one has that Fa(x) > x
for all x < 0 and Fa(x) < x for all x > 0. Besides, Fa(x) ≥ x −Ma.
Therefore, for every x ≥Ma one has that x > Fa(x) ≥ 0.

Assume first that Fa(x) ≥ 0 also holds for all x ∈ [0,Ma]. Then for
every x0 ≥ 0 the sequence of its consecutive iterations xn := F n

a (x0) is
decreasing with xn+1 ≤ xn, n 6= 0. Therefore, limn→∞ xn = 0.

The particular shape of Fa(x) in (−∞, 0] is now of no importance:
the fixed point x = 0 is globally attracting. Indeed, for any x0 < 0
consider the sequence of its consecutive iterations, xn := F n

a (x0). If
xn < 0 for all n ≥ 0 then limn→∞ xn = 0. If xn0 > 0 for some n0 ≥ 1
then the sequence yn := F n

a (xn0) is nonnegative for all n ≥ 0 and
decreasing with limn→∞ yn = 0.

Suppose next that Fa(x) can assume negative values in the interval
[0,Ma]. Setm = min{Fa(x), x ∈ [0,Ma]}, and let L := max{Fa(x), x ∈
[m, 0]} ≥ 0.

If L = 0 then Fa(x) ≤ 0 for all x ∈ [m, 0]. Therefore, for every
x0 ∈ [m, 0] the sequence of its consecutive iteration xn := F n

a (x0) is
increasing with limn→∞ xn = 0. Thus, for every positive point x0 such
that x0 ≥ 0 or x0 ∈ [m, 0] one has limn→∞ F

n
a (x0) = 0. Choose next

arbitrary x0 with x0 < m. Consider the sequence of its consecutive
iterations xn := F n

a (x0). If xn ≤ 0 for all n ≥ 0 then limn→∞ xn =
0. If xn0 > 0 for some n0 then for the sequence yn := F n

a (xn0) one
has limn→∞ yn = 0, by the above reasoning. Thus, x = 0 is globally
attracting fixed point in the case L = 0.

Assume next that L > 0. Set αa := m and βa := max{L,Ma}.
Then the interval [αa, βa] is mapped into itself. This is evident from its
construction. Set next Ia := ∩n≥0F n

a ([αa, βa]). Ia is a closed invariant
interval (possibly degenerating into a single point {0}) which attracts
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all points from [αa, βa]. We shall show that it is also a global attractor,
i.e. it attracts all other points from R\ [αa, βa]. Indeed, for every point
x0 ≥Ma there exists n0 ∈ N such that F n0

a (x0) ∈ [m, 0]. This is due to
the fact that x > Fa(x) ≥ x−Ma for x ≥ Ma. For every x0 < m the
sequence of its iterations xn := F n

a (x0) is either monotone increasing
with xn ≤ 0 for all n, or xn0 > 0 for some n0 ∈ N. In the first case,
limn→∞ xn = 0. In the second case, a subsequent finite iteration of
y0 = xn0 > 0 belong to the interval [m, 0], due to the reasoning above.
Therefore, every finite interval J ⊃ Ia (closed or open) has the property
that F n0

a (J) ⊂ [αa, βa] for some n0 > 0. Thus ∩n≥0F n
a (J) = Ia.

Case N = 2. Consider two arbitrary maps Fa and Fb, where a > 0
and b > 0 are some fixed values. Let F (x) := Fb ◦ Fa(x) = Fb(Fa(x)).

Note that in general F (x) does not satisfy the inequalities F (x) > x
for all x < 0 and F (x) < x for all x > 0 used in case N = 1, even
though both Fa and Fb do. However, it retains the following two basic
properties that every Fa has:

(i) there exists x+ ≥ 0 such that for all x ≥ x+ function F (x) satisfies

x > F (x) ≥ x−Mab, where Mab = M(a+ b);

(ii) there exists x− ≤ 0 such that for all x ≤ x− one has F (x) > x.

Indeed, since x − Ma ≤ Fa(x) < x for all x ≥ Ma, then for all
sufficiently large x the following inequalities hold

Fa(x)−Mb ≤ Fb(Fa(x)) < Fa(x) < x.

Which in turn implies that

x−M(a+ b) ≤ Fb(Fa(x)) < x

for all x > x+ with some x+ ≥ 0. This proves (i).
In order to prove (ii), note first that for arbitrary but fixed c > −∞

any map Fa has the property that inf{Fa(x), x ∈ [c,+∞)} exists and is
finite. This is due to the fact that limx→+∞ Fa(x) = +∞. Assume, to
the contrary, that (ii) does not hold. Then there exists a sequence xn →
−∞ such that Fb(Fa(xn)) ≤ xn. Since Fa(xn) > xn then Fb(yn) < yn
for the infinite sequence yn := Fa(xn). This implies that the sequence
yn is bounded from below (it all belongs to some interval [c,∞)). But
then the sequence xn = Fb(yn) must also be bounded from below, a
contradiction with xn → −∞.

The properties (i) and (ii) are sufficient to prove the existence of
an invariant globally attracting interval for the map F . To show this,
set max{F (x), x ∈ [x−, x+]} := F+ and min{F (x), x ∈ [x−, x+]} :=
F−. Let α := min{x−, F−} and β := max{x+, F+}. Then interval
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[α, β] is mapped into itself, F ([α, β]) ⊂ [α, β]. This is evident from
its definition. Define I0 = [α0, β0] = ∩n≥0F n([α, β]). I0 is a closed
invariant interval (possibly coinciding with a single point {0}). We
claim that I0 is also globally attracting on R, that is ∩n≥0F n(J) = I0
for every interval J ⊃ I0. Indeed, if the initial value x0 is such that
x0 ≥ β then the sequence xn := F n(x0) is decreasing as long as xn ≥ β.
Since there are no fixed points of F in [x+,∞]), there exists n0 such
that xn0 ∈ [α, β]. Likewise, for any initial value x0 ≤ α the sequence
xn := F n(x0) is increasing as long as xn < α. Then, for some n0 ≥ 1,
either xn0 ∈ [α, β], or xn0 > β. The former means the invariance; for
the latter case the first reasoning above should be applied again.

Case N ≥ 3. The proof is done by induction, by repeating the
reasoning of the case N = 2, as any finite composition of maps of the
Fa type possesses the two properties (i) and (ii). This completes the
proof. �

Remark. As it can be seen from the proof of the case N = 2 of
Theorem 2, the negative feedback condition (2) does not have to hold
for all x ∈ R. Therefore, a globally attracting interval I0 will always
exists for the differential delay equation equation (9) if the nonlinearity
f is bounded from one side and the negative feedback condition is
satisfied for all sufficiently large x: x · f(x) < 0 for all |x| ≥ x0 and
some x0 > 0.

Corollary 3.1 (Uniform boundedness of solutions).
Suppose f satisfies (3). Then all solutions of equation (9) are bounded.
Moreover, for arbitrary ε > 0 and every initial function ϕ ∈ C there
exists time tϕ ≥ 0 such that the corresponding solution satisfies

α0 − ε ≤ x(t) ≤ β0 + ε for all t ≥ tϕ.

The proof is straightforward from the fact of existence of the glob-
ally attracting interval I0 = [α0, β0] and its stability properties. The
corollary is a more refined version of the general Proposition 2.1.

One can derive certain information about the global dynamics in
differential delay equation (9) based on the size of the periodic function
a(t). Some of it is given by the following statements.

Proposition 3.2 (Global asymptotic stability).
Given arbitrary f(x) satisfying assumptions (2) and (3), there exists
a0 > 0 such that if a(t) ≤ a0 ∀t ∈ R then the zero solution of differential
delay equation (9) is globally asymptotically stable.

Proof. Indeed, for all sufficiently small a, 0 < a ≤ a0, any map Fa(x)
has the property that x > Fa(x) > 0 for all x > 0. But then any
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composition Fa1 ◦Fa2 , 0 < a1, a2 ≤ a0 also has the same property. This
implies that x∗ = 0 is globally attracting fixed point. See the case
N = 1 of the proof of Theorem 2 for additional related details. �

The existence of nontrivial periodic solutions of period ω is now given by
the following
Proposition 3.3 (Existence of periodic solutions of period ω).
Differential delay equation (9) has a periodic solution of period ω if and only
if map F given by (10) has a fixed point different from x = 0. The stability
of such periodic solution is determined by the stability of the corresponding
fixed point.

Proposition 3.4 (Existence of periodic solutions of period ω).
Suppose that F ′(0) > 1. Then differential delay equation (9) has at least
two periodic solutions with period ω.

Proof. Recall that I0 = [α0, β0] = ∩n≥0 Fn(I), where I is an invariant
interval of the map F . Note that in this case α0 < β0. Since F (α0) ≥ α0

there exists a point xα ∈ [α0, 0) such that F (xα) = xα. Likewise, there
exists xβ ∈ (0, β] such that F (xβ) = xβ. �

Proposition 3.5 (Existence of periodic solutions of period 2ω).
Suppose that F ′(0) < −1. Then differential delay equation (9) has a periodic
solution of period 2ω.

Proof. The differential delay equation (9) has a periodic solution of period
2ω if and only if the map F has a cycle of period 2. Since interval I is
invariant under F , and x = 0 is a repelling fixed point with the negative
feedback condition satisfied locally

x · F (x) < 0 for all x ∈ [−δ, δ] for some δ > 0,

its instability implies the existence of a cycle of period two [4, 8, 19]. Note
that the stability of such periodic solution is the same as the stability of the
two-cycle. �

The value of F ′(0) is easily calculated as

F ′(0) = [1 + a1f
′(0)] · [1 + a2f

′(0)] · . . . · [1 + aNf
′(0)] := λ.

Based on Propositions 3.4 and 3.5 we can state the following result on
the existence of periodic solutions to equation (9).

Theorem 3. (Existence of Periodic Solutions)
(i) Equation (9) has at least two periodic solutions with period ω when
λ > 1;
(ii) Equation (9) has a periodic solution with period 2ω when λ < −1.

The following corollary provides sufficient conditions for the existence of
periodic solutions of differential delay equation (9) when either a(t) or |f ′(0)|
is sufficiently large. Set a∗ := min{a(t), t ∈ [0, ω]} > 0.
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Corollary 3.6 (Existence of Periodic Solutions).
Suppose that a∗ · f ′(0) < −2. Then
(i) differential delay equation (9) has at least two periodic solutions with
period ω when N is even;
(ii) differential delay equation (9) has a periodic solution with period 2ω
when N is odd.

Remark. It is easy to see that, for respective values of N , the map F can
be made such that λ > 1 holds and it has exactly two additional non-zero
fixed points. Likewise map F can be such that λ < −1 and it possesses
exactly one cycle of period two.
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