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A GENERALIZATION OF THE DISCRETE VERSION OF
MINKOWSKI’'S FUNDAMENTAL THEOREM

BERNARDO GONZALEZ MERINO AND MATTHIAS HENZE

In memory of Hermann Minkowski on the occasion of his 150th birthday

ABSTRACT. One of the most fruitful results from Minkowski’s geometric
viewpoint on number theory is his so called 1st Fundamental Theorem.
It provides an optimal upper bound for the volume of an o-symmetric
convex body whose only interior lattice point is the origin. Minkowski
also obtained a discrete analog by proving optimal upper bounds on
the number of lattice points in the boundary of such convex bodies.
Whereas the volume inequality has been generalized to any number of
interior lattice points already by van der Corput in the 1930s, a corre-
sponding result for the discrete case remained to be proven. Our main
contribution is a corresponding optimal relation between the number
of boundary and interior lattice points of an o-symmetric convex body.
The proof relies on a congruence argument and a difference set estimate
from additive combinatorics.

1. INTRODUCTION

A convex body in the Euclidean vector space R™ is a compact convex set K
whose set of interior points, denoted by int K, is nonempty. The convex hull
of a subset S C R" is written as conv.S. We say that a convex body is
strictly convex if its boundary does not contain a proper line segment, and
we write K for the family of o-symmetric convex bodies in R", that is,
convex bodies K with K = —K, where tK = {tx : € K}, for any t € R.

Motivated by the fundamental inequalities of Minkowski and its various
generalizations and extensions, we are interested in the relation of an o-
symmetric convex body to the lattice Z™ consisting of all points in R™ with
only integral coordinates. Such a point is shortly called lattice point in
the sequel. Minkowski [7] proved that the cube C), = [—1,1]" has maximal
volume (Lebesgue-measure) among all convex bodies in K with the property
that the origin is their only interior lattice point. In symbols,

(1) vol(K) <wvol(C,) =2", forevery K € K} with int K N Z" = {0}.
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2 BERNARDO GONZALEZ MERINO AND MATTHIAS HENZE

This inequality lies at the heart of Minkowski’s geometric viewpoint on num-
ber theoretical questions. Its wide applicability, reaching beyond geometry
and number theory, inspired the quest for generalizations and analogous re-
lations ever since. Minkowski moreover obtained a discrete version of this
fundamental inequality, saying that the cube also maximizes the total num-
ber of lattice points G(K) = #(K NZ"™) in o-symmetric convex bodies K
obeying the above condition. More precisely,

(2) G(K)<G(C,) =3" forevery K € K, with int K NZ" = {0},
and
(3) G(K) < 2" —1, if K is moreover strictly convex.

It has been shown in [3] that equality holds in (2) if and only if K is uni-
modularly equivalent to the cube, that is, there exists an invertible matrix
A € Z™™ with integer entries such that K = AC,. A suitable smoothing
of the convex hull of [0,1]" and [—1,0]" shows that the inequality (3) is also
best possible. Besides Minkowski’s original monograph [7], the book by Gru-
ber & Lekkerkerker [6], in particular Sections 9.4, 26.2 and the Supplements
to Chapter 4, is an excellent reference for the theory that developed out of
these results. More recent developments are covered in [5].

Another way of saying that K € K contains only the origin as an interior
lattice point is that its first successive minimum

AM(K) =min{A > 0: AK NZ" # {0}}

is at least one. Clearly, A\;(tK) = 1M\ (K), for every t > 0. Together
with the relation vol(K') = lim;_,o, G(tK)/t", this shows that the following
result by Betke, Henk & Wills [2] is a common generalization of Minkowski’s
inequalities above. They proved that for K € K7, we have

2 n
4 G(K) < +1| ,
® () {M(K) J
and if K is strictly convex, then

2 n
5 G(K)<2 —
) ) <2 | 2|

Here, the floor function |x| and the ceiling function [x] of a real number z
denote, as usual, the largest integer smaller than or equal to x, and the
smallest integer bigger than or equal to x, respectively.

Another perspective on extending Minkowski’s volume inequality has al-
ready been taken by van der Corput [14], who showed that for every K € KV
holds

(6) vol(K) < 2" (G(int K) + 1),

with equality for the stretched cube Cj,—1 x [—¢,¢], where ¢ € N. This is
related to the results of Betke, Henk & Wills because for any o-symmetric
convex body K, and any of its lattice points z € K NZ", we find that the
open line segment (—z, z) contains at most G(int K) lattice points. That is,
#([0,2) NZ™) < (G(int K') + 1)/2 and therefore

2
——— < G(int K)+1, forany K € KJ.
N S (int K) y
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A combination of this observation with the bounds (4) and (5) shows that,
analogous to van der Corput’s inequality, there is also an upper bound
on G(K) in terms of the number of interior lattice points of K. The best
possible such upper bound is a linear function in G(int K). This follows from
a series of investigations for the general, not necessarily o-symmetric case,
that culminated in the work of Pikhurko [8]. He proved that

22n+1

(7) vol(P) < (8n)"15" G(int P),
and
(8) G(P) < n!(8n)"15"*""" G(int P) + n,

whenever int P N Z" # () and P is a lattice polytope in R™, that is, the
convex hull of finitely many lattice points. Although the minimal factor in
front of G(int P) admitting inequalities of this type is known to be dou-
bly exponential in n, the above bounds are assumed to be far from tight.
The determination of the exact bound is only solved for (7) in the case of
lattice simplices with exactly one interior lattice point [1] (see [8] for more
information and references).

Therefore, it is desirable to understand the special yet important case of
o-symmetric convex bodies more thoroughly. As an exact analog to van der
Corput’s inequality (6) and an extension of (2) and (3), our main result is
the following.

Theorem 1.1. Let K € K.
i) We have

G(K) < 3" 1 (G(int K) +2),

and equality holds if and only if K is unimodularly equivalent to the
parallelepiped Cp—q1 X [—£,¢], for some £ € N.
it) If K is strictly convez, then

G(K) < 2" (G(int K) + 1) — 1.

Note that Scott [10] obtained an inequality that implies the first result
above in the case n = 2.

Our proof of Theorem 1.1 is based on two main ingredients. The first
is an extension of an elegant congruence argument, for which we say that
two lattice points x,y € Z™ are congruent modulo m € Z, if x —y € mZ™.
Observe that the points of Z" are partitioned into precisely m™ congruence
classes, also often called residue classes. In order to illustrate the method,
we recall Minkowski’s proof of (2): Assume that for some K € K7, we have
G(K) > 3" Then there are z,y € K NZ", x # y, that are congruent
modulo 3. By symmetry and convexity of K, this shows that (x —y)/3 is
a non-zero interior lattice point of K, contradicting the assumptions on the
body. The second ingredient is an estimate on the size of difference sets
of non-collinear finite point sets to which the next section is devoted. The
details for Theorem 1.1 are then carried out in Section 3.
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2. THE EQUALITY CASE IN A PLANAR DIFFERENCE SET ESTIMATE

In this section, we discuss a combinatorial result on the minimal number
of difference vectors generated by a non-collinear point set. To this end, we
let U —U ={u—wv:u,v €U} be the difference set of a subset U C R™. It
is easy to see that, if U is finite and #U = k, we have

#(U -U) > 2k — 1.

This is best possible if U is an arithmetic progression which means that there
exist u, s € R™ such that U = {u,u+s,...,u+(k—1)s}. Freiman, Heppes &
Uhrin [4] showed that if we assume that U has affine dimension d, then one
can improve this bound to

() #(U—U)Z(dJrl)k:—(d;l).

Note that the authors of [4] apply this inequality to sharpen a classic result of
Blichfeldt on the number of lattice points in the difference set of an arbitrary
Lebesgue-measurable set. For d = 1, 2, the estimate above cannot be further
improved, but it is conjectured that for any d > 3 there is a better bound.
In fact, revising a conjecture of Freiman, Stanchescu [12]| claims that, for
every d > 2, the maximal factor in front of £ in an inequality of the type (9)
is given by 2(d — 1) + 1/(d — 1) and proves this for the case d = 3. Such
difference set estimates embed in the currently very active field of additive
combinatorics, where people study more generally the structure of subsets A
of some abelian group whose sum-sets or difference-sets A + A have either
very small or very large cardinality. For instance, generalizing an earlier
result by Freiman, Ruzsa found an optimal lower bound on #(A + B), for
two given subsets A and B, which includes (9) as a special case (see [9]
for a survey on this and related problems). The interested reader may also
consult the book of Tao & Vu [13] that covers the recent developments and
their various applications in many branches of mathematics.

For our purposes, we need to investigate the case d = 2 of the inequality (9)
more closely. We have seen that Freiman, Heppes & Uhrin obtained the
optimal lower bound on the size of the difference set in this case. Moreover,
for the case that #U is even, Stanchescu [11] characterized the point sets U
attaining equality. However, in order to be able to prove Theorem 1.1, we
also need to characterize the point sets of odd size with minimal value of
#(U — U). To the best of our knowledge this has not been worked out
before, and thus we give the complete proof of all three statements for the
readers convenience. Before we can state the result, we need to introduce
a notion of a generalized arithmetic progression. We say that a point set
U C R™ is an arithmetic progression of type (k,l) if there exists an anchor
point u € R™ and two linearly independent vectors s,t € R™ such that U =
VU(V+t)u.. .U(V+(—-1)t), where V = {u, u+s,...,u+(k—1)s}. Moreover,
we say that a point set U C R" is an incomplete arithmetic progression of
type (k,1), if there is some x € R™ such that U U {x} is an arithmetic
progression of type (k,!) and z is a vertex of conv{U U {z}}.
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FIGURE 1. The equality cases in Theorem 2.1, for k even
(left) and k odd (middle and right).

Theorem 2.1. For any set U C R™ of k non-collinear points, we have

3k —3 if k is even,

#U-U) 2 {Bk —2 ifk is odd.

Equality holds for even k if and only if U is an arithmetic progression of type
(k/2,2), and for odd k if and only if U is either an incomplete arithmetic
progression of type ([k/2],2) or an arithmetic progression of type (3,3).

Proof. First of all, we can reduce the problem to subsets U of R2. Indeed,
since U is finite, we can always find a two-dimensional subspace S of R"
such that the projection U|S of U onto S is a non-collinear point set with
#(U|S) = #U. Clearly, #(U —U) > #(U|S — U|S) and hence it suffices to
prove the bound and also the equality characterization for U|S. Therefore,
in the following we assume that U C R2.

Consider a set V C R? of ¢ points lying on a common line. It is easy to
see that #(V — V) > 2¢ — 1 with equality if and only if the points in V are
equally spaced on the line.

Consider now two parallel lines L and L' containing ¢ and m points, re-
spectively, where £ > m > 1 and ¢ > 2. Then, the number of vectors
+(v — w), where v is one of the points in L and w is one of the points in L/,
is at least 2(¢ +m — 1). This is at least 4m — 2 > 3m, for m > 2, and at
least 2 > 4 > 3m, for m = 1. We find exactly 3m such difference vectors if
and only if £ = m = 2, and the two points on L have the same distance as
the two points on L.

Based on these two basic observations, we set up an inductive argument
as follows. Let L be a supporting line of an edge of convU and let L' be
the parallel supporting line to L on the other side of convU. Note, that
L # L' since U is non-collinear. Let us assume first, that every point of U is
contained in either of those two parallel lines, and without loss of generality
let t=#{UNL)>#UNL)=m>1. Then, we get that

#U-U)>#(UNL)—(UNL)+2l+m—1)

>2—142(l+m—1)=40+2m — 3.
If k = #U is even, we thus get #(U —U) > 3({ + m) — 3 = 3k — 3, with
equality if and only if £ = m, the points U N L are equally spaced and
the point set U N L' is a translate of U N L. That is, U is an arithmetic
progression of type (k/2,2). If k is odd, we have ¢ > m + 1, and thus
#(U —U) > 3(( +m) — 2 = 3k — 2. Here, equality holds if and only if
¢ =m+ 1, the points U N L are equally spaced and every difference vector
generated by U N L’ can be generated by U N L. The latter condition holds if
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and only if UNL' is a translate of (UNL)\ {p}, for some endpoint p € UNL,
and thus, U is an incomplete arithmetic progression of type ([k/2],2).

Now, we study the case that U # (U N L) U (U N L'). Without loss of
generality, we let m = #(UNL') < #(UNL) and we write U' = U\ (UNL').
As we have seen before, we have at least 3m difference vectors of the form
+(v—w), where v € UNL and w € UNL'. By construction, the projection
of these difference vectors onto the orthogonal line to L is different from the
projection of any difference vector generated by points of U’, and thus they
were different in the first place. Since the points in U’ are non-collinear, we
inductively get that

(10)  #U-U)>#U —U)+3m>3(k —m)—3+3m =3k — 3.

As #(U —U) is always odd, we obtain the desired bound #(U —U) > 3k —2
in the case that k = #U is odd.

Characterization of equality.
We need to distinguish some cases.

Case 1: k is even and #(U —U) = 3k — 3.

This holds precisely, if we have #(U" — U’) = 3(k — m) — 3 and there
are exactly 3m difference vectors of the form +(v — w), where v € UN L
and w € U N L'. By induction hypothesis, the first condition implies that
k—m is even and that U’ is an arithmetic progression of type ((k—m)/2,2).
Moreover, from the second condition we get m = #(U N L) = 2 and the
distance of the two points U N L is the same as the distance of the points
UNL. Let S and S’ be the two parallel lines that contain the set U’,
and without loss of generality assume that these are horizontal lines, with S
being the lower one. Since L supports an edge of convU and #(U N L) = 2,
it supports one of the edges of conv U’ that contain exactly two points of U.
We claim that the two points U N L' are distributed on S and S’. In order
to see this, let us assume that w € U N L' does not lie on any of the lines S
and S’. Since U is not completely contained on the lines L and L', there is
another line L” parallel to L that is different from these two and contains
a point z of U’ N S. But then the difference vector w — z can neither be
generated by U’ nor by points from U N L and U N L/, contradicting the
equality assumption. Therefore, w € S U S’, say w € S, and moreover, it
is easy to see that the distance from the closest point in U’ N S to w must
be the same as the (equal) distance of any neighboring points in U’ N S.
Hence, U is an arithmetic progression of type (k/2,2).

Case 2: k is odd and #(U —U) = 3k — 2.
Looking at (10), there are two options.

Case 2.1: #(U'—U’") = 3(k—m) — 3 and there are exactly 3m+ 1 difference
vectors of the form +(v —w), where v € UNL andw e UNL'.

The first condition implies by induction that & —m is even, thus m is odd,
and that U’ is an arithmetic progression of type ((k —m)/2,2). As above,
we assume that U’ is equally distributed on the horizontal lines S and S’.
In general, there are at least 2(¢+m — 1) difference vectors (v — w), where
¢ =#UNL) > #(UNL') = m. This is exactly 3m+1 if either = m = 3, or
¢ =2 and m = 1. Since L supports an edge of conv U’, we see that in the first
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case we have L = S or L = §’, and thus k — m = 6. Therefore, U is a set of
nine points equally distributed on three parallel lines and a similar argument
as in Case 1 above shows that U must be an arithmetic progression of type
(3,3) in order to avoid additional difference vectors besides those generated
by two points in U’ or one point each from U N L and U N L’. In the second
case, L intersects U’ in exactly two points and thus supports a short edge of
conv U’. Again, we argue similarly as in Case 1 in order to see that the point
UNL' must lie on one of the horizontal lines S and S’, say it lies on S, having
the same distance from the closest point in U’ N S as the (equal) distance
of any neighboring points in U’ N S. Hence, U is an incomplete arithmetic
progression of type ([k/2],2).

Case 2.2: #(U" —U') = 3(k —m) — 2 and there are exactly 3m difference
vectors of the form (v —w), wherev e UNL and w e UN L.

The first condition implies by induction that £ — m is odd and that U’ is
either an incomplete arithmetic progression of type ([(k —m)/2],2) or an
arithmetic progression of type (3, 3). From the second condition we infer that
m=4{=+#(UNL) =2, and since L supports an edge of conv U’ and contains
exactly two points of U, the set U’ cannot be an arithmetic progression of
type (3,3). Hence, writing ¥’ = [(k—m)/2], we have that U' = VU (V' +1t),
where V. = {u,u+ s,...,u+ (K — 1)s} and V' = V \ {u+ (K — 1)s},
for suitable u,s,t € R%. Moreover, it is no restriction to assume that L
intersects U’ in the points u,u+t, and we let U N L' = {v,w}. Again by the
same argumentation as in Case 1, we see that v and w must be contained on
the lines spanned by V and V', respectively, and moreover v = u + k’s and
w = u+t+ ks, or vice versa. But now we find that the pair of difference
vectors +(w — (u + s)) = +(t + (K’ — 1)s) can neither be generated by U’
nor by points from U N L and U N L/, contradicting that U is a point set
attaining equality. Eventually, this shows that this last case cannot occur,
finishing our proof. (]

3. PROOF OF THE GENERAL DISCRETE MINKOWSKI THEOREM

The case of strictly convex bodies is easier, so we shall prove it first.

Proof of Theorem 1.1 ii). Assume that G(K) > 2""'k for some k € N.
Then, K contains, besides the origin, at least 2"k pairs of lattice points
x,—x. If at least k of these pairs are congruent to 0 modulo 2, then the
points j:%x are interior lattice points of K and hence G(int K) > 2k + 1.
Therefore, let us assume that at most & — 1 of these pairs are congruent
to 0 modulo 2. By the pigeon hole principle this means that there is an-
other congruence class modulo 2 containing at least k£ 4+ 1 of these pairs.
Let them be vy,...,v541 € K NZ" in lexicographically increasing order,
and note that v; # —v; for every 4, j. Since K is strictly convex, the points
:I:%(vi —wv1) are pairwise different interior lattice points of K and hence again
G(int K) > 2k 4+ 1.

In summary, assuming that G(int K) = 2k — 1 implies that G(K) <
2nHlE — 1 =27 (G(int K) + 1) — 1, as desired. O
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Proof of Theorem 1.1 i). The proof splits up into several cases.

Case 1: The interior lattice points of K are contained in a line L.

By the symmetry of K, the number of interior lattice points in K is always
odd, hence G(int K) = 2t — 1, for some t € N. Any two points v,w € K NZ"
from the same residue class modulo three give rise to a lattice point (v—w)/3.
Since K is convex and o-symmetric, this lattice point belongs to the interior
of K and hence to L. This implies that all lattice points of K belonging to
the same residue class modulo three are contained in a line parallel to L.
Each lattice line contains lattice points from exactly three different residue
classes. Now, let L' be such a parallel lattice line to L that contains two
different lattice points v,w € K from the same residue class R;. Then,
the segment [v,w] contains at least two lattice points in its interior and in
fact one from each of the two other residue classes Ry and Rs3 that have
points on L’. This shows that either there are at most three lattice points
of K that fall into one of the classes Ry, Ry and Rg, or all such lattice
points are contained in the same line L’. Now, any such line can contain
no more than 2t 4+ 1 > 3 lattice points, as we otherwise would get more
than 2t — 1 interior lattice points of K by its o-symmetry. There are 37!
groups of three residue classes with points in the same parallel line to L.
By counting the lattice points in K by containment in these groups, we get
G(K) <3" 1 (2t +1) = 3" 1 (G(int K) + 2) which is the inequality we want
to prove.

Case 2: The interior lattice points of K are non-collinear.

Let us assume that G(K) > 3"k, for some k € N. Then, there exists
a residue class modulo three that contains at least k£ + 1 different elements
ug, U1, - .., up € KNZ"™ We show that this forces K to contain at least 3k+1
interior lattice points. There are two different scenarios to consider.

Case 2.1: The points ug, ..., u, are collinear.

We assume that the points ug,...,u; are labeled in increasing order on
their common line L. Since they belong to the same residue class modulo
three, there are at least two lattice points between any pair u; and u;41 on L,
and hence the line segment [ug, ug] contains at least 3k + 1 lattice points. By
symmetry of K, we see that the central slice of K parallel to L contains at
least 3k — 1 interior lattice points. Because the interior lattice points of K
are assumed not to be collinear, there must be an additional pair, and thus
G(int K) > 3k 4+ 1.

Case 2.2: The points ug, . ..,ur are non-collinear.

By Theorem 2.1 there are, depending on the parity of k, at least 3k or
3k + 1 difference vectors of the form u; —u;, 4,5 € {0,1,...,k}. Since the
u; belong to the same residue class modulo three, the points (u; — u;)/3
are interior lattice points of K. Hence, if k is even, we obtain G(int K) >
3k + 1 as desired. If k is odd and Theorem 2.1 gives us exactly 3k difference
vectors, then its equality characterization shows that U = {ug,...,ux} is an
arithmetic progression of type ((k 4+ 1)/2,2). In order to show that also in
this case K contains more than 3k interior lattice points we need to take
more care.
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Knowing that G(int K') > 3k, gives the desired estimate if K contains not
too many more lattice points than 3"k. In fact, if G(K) < 3"k+2-3""1 -1,
then G(K) < 3" ! G(int K)+2-3""! -1 < 3" ! (G(int K) + 2). Hence, we
now assume that G(K) > 3"k+2-3""1—1, and moreover that no residue class
contains k + 2 lattice points of K, since otherwise we get G(int K) > 3k 43
from the considerations before. Let ¢ be the number of residue classes with
precisely k41 elements in K. Then, G(K) < c(k+1)+ (3" —c)k =3"k+c¢
and hence ¢ > 2-3""1 Let Uy,...,U, be the sets of lattice points of K
corresponding to these ¢ residue classes. By assumption #(U; — U;) = 3k,
for all 2 = 1,...,¢, and hence they are all arithmetic progressions of type
((k+1)/2,2). We now assume that G(int K') = 3k and derive a contradiction.

We claim that under this condition the U; need to be translates of each
other. To this end, we write U; = {uf, ... ,u};}, fori=1,...,¢, and up to
a translation their anchor points lie at the origin. Thus, there are pairs of
linearly independent vectors s’,t* € R™ such that u} =1[-t" and u2k+1)/2+l =
s"+1-t forl=0,...,(k—1)/2. From this explicit description one derives
Ui —Up = {0, &t ... £E521 U (5T 4 {0, 28, ..., £55147}) that is, the
difference vectors in U; — U; are equally distributed on three parallel lines.
In order for all of them to generate the same set of interior lattice points
of K, we need to have U; — U; = U; — Uj, for i,j = 1,...,c, which readily
implies s' = s/ and t' =/, for i,j = 1, ..., ¢, and hence our claim.

Every two-dimensional lattice plane contains lattice points from exactly
nine different residue classes. For every U;, its affine hull S; = aff U; is
a lattice plane that actually contains at least one lattice point of K from
each of the nine residue classes that are present in S;. Since ¢ > 2 - 3771,
there must be one of them, say U; such that S; contains a lattice point
from five of the other sets, say Us,...,Us. Because Uy, ..., Us are translates
of each other this means that there is a lattice line either parallel to L; =
aff{u(l), u%k+1)/2} containing at least 6 points of Uy U ... U Ug, or parallel to
Lo = aff{uf, ... 7”%k—1)/2} containing at least 3(k —1)/2+ 3 lattice points of
Uy U...UUs. By symmetry of K, either the central slice C; of K parallel
to Lq contains at least 4 interior lattice points, or the central slice Cy of K
parallel to Lo contains at least 3(k — 1)/2 + 1 interior lattice points. On the
other hand, only 3 lattice points in C and only k lattice points in Co are
derived from U; —U;. As 3(k—1)/2+1 > k for every k > 3, this contradicts
our assumption that G(int K) = 3k.

Summarizing our investigations in Case 2, we have seen that under the
assumption G(K) > 3"k, we find G(int K) > 3k+1. We know that G(int K)
is always some odd number. Every odd number can be written as either 3k
for k odd, as 3k — 1 for k even, or as 3k — 2 for k odd. Therefore, we obtain
G(K) < 3"k = 3" 1 G(int K), or G(K) < 3"k = 3" 1 (G(int K) + 1), or
G(K) < 3"k = 3" 1 (G(int K) + 2), depending on which of the three repre-
sentations G(int K') admits. This finishes the proof of the desired inequality
for arbitrary K € K7.

Characterization of the equality case.
For the characterization of the equality case, we henceforth assume that
we consider some K € K7 such that G(K) = 3""! (G(int K) + 2).
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Case 1: The interior lattice points of K are non-collinear.

The previous paragraph shows that in order for equality to hold there
needs to be some odd k such that G(int K) = 3k — 2, and in particular
G(K) = 3"k. Moreover, k > 3 due to the non-collinearity. If there exists a
residue class modulo three that contains at least k+1 lattice points of K, then
we have seen that G(int K) > 3k + 1, clearly a contradiction. This means
that each of the 3" residue classes contains exactly k lattice points of K.
Let U be the set of the k lattice points of K belonging to the residue class
37", and assume that the points in U are non-collinear. From the symmetry
of K, we see that U must be an o-symmetric point set. By Theorem 2.1, we
have #(U — U) > 3k — 2 and in fact we must have equality as G(int K) =
3k — 2. Thus, the set U either is an incomplete arithmetic progression of
type ([k/2],2), or an arithmetic progression of type (3, 3).

The first situation cannot occur, since no incomplete arithmetic progres-
sion of type ([k/2],2) is o-symmetric. In the latter situation, we have k =9,
and the origin is the central point in U. The lattice points in the relative
interior of conv U are interior lattice points of K, but it may happen that
conv U contains exactly 3k — 2 = 25 relative interior lattice points. In this
case, all of the eight other residue classes with a point in the plane lin U
have less than k lattice points in conv U. By assumption, fixing one of these
residue classes R, there must be some lattice point in K, contained in the
class R, which does not lie in convU. Then, either one of the eight points
U\ {0} is an interior lattice point of K, or the class R generates an interior
lattice point that is not contained in lin U. In both cases, we get more than
the assumed 3k — 2 interior lattice points in K and thus a contradiction.

Now, assume that the points in U are contained in a line L. Let V be
the k lattice points of K contained in one of the other two residue classes
with points in L. Then, L contains at least k — 1 lattice points of V. Indeed,
it contains exactly k — 1 such points, since otherwise K N L contains at least
3k — 2 interior lattice points and hence the interior lattice points of K would
be collinear which we assumed not to be the case. This means, that there is
one point of V' outside of L. Since k—1 > 2, there are at least three pairwise
linearly independent vectors in the difference set V' — V| hence implying
the same structure for the set of interior lattice points of K. But this a
contradiction again, because K N L contains 3k — 4 interior lattice points
of K and hence there is only one pair of opposite interior lattice points
outside of L.

In conclusion, there is no equality case K € K whose interior lattice
points are non-collinear.

Case 2: The interior lattice points of K are collinear.

In the case G(int K) = 1 equality has been characterized in [3]. In fact,
there is a unimodular transformation A such that AK = C,. Therefore,
we assume that £ = G(int K) > 3, and we let L be the line containing the
interior lattice points of K. The lattice points of K are distributed in 3" sets
each of which containing only lattice points of a fixed residue class modulo
three. Let these sets be labeled R;;, fori=1,..., 371 and j =1, 2,3, such
that for every lattice line L’ parallel to L there is some i € {1,...,3" "1}
so that L' contains only points of R;;, for j = 1,2,3. As observed in the
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beginning of the proof, each R;; is contained in a line parallel to L. Moreover,
it #R;; > 2, then between two consecutive points in I;; there are another
two lattice points corresponding to the other two residue classes present on
the line containing R;;. Hence, R;1, R;2 and R;3 have to be contained in
the same line which contains at most ¢ + 2 = G(int K) + 2 lattice points
of K in total. Note, that there cannot be some i € {1,...,3" "'} such that
#R;; <1, for all j = 1,2, 3, because this would imply

3n—=1 3 3n=l_q
GE)=> > #R;< > ({+2)+3<3"((+2)=G(K),
i=1 j=1 i=1
a contradiction. Thus, for every i € {1,...,3" "'} there is a line L; parallel

to L containing all the points in R;;, 7 = 1,2, 3, and this line must contain
exactly £ 4 2 lattice points of K in order for K to attain equality in Theo-
rem 1.1 1). Since ¢ is odd, we can write L; = z; + L, where z; € K N Z" is
the midpoint of L; N K NZ"™. Without loss of generality, we let z; = 0, and
hence L1 = L.

We now claim that H = lin{z; : i = 1,...,3" 71} is (n — 1)-dimensional.
To this end, we let v € L NZ" \ {0} be of minimal length and we relabel
the z; such that zs,..., z, are linearly independent. This is always possible
since K NZ" is n-dimensional. The points (({ +1)/2)v £ z;, i = 1,...,n,
are lattice points of K and ((¢£ 4 1)/2)v is contained in the relative interior
of conv{((¢{ +1)/2)v £z : i = 2,...,n}, but it is not an interior lattice
point of K. Let H' = lin{zs,...,2,} and assume that there is some k €
{1,...,3" 1} such that z; = u + v, for some v € H' and, without loss of
generality, some A\ > 0. Then, ((¢ + 1)/2)v + 2 is strictly separated from
the origin by the hyperplane ((¢ + 1)/2)v + H'. As a consequence, we have

((t+1)/2)v eintconv{(({+1)/2vt z i€ {1,...,n}U{k}} Cint K,

a contradiction. So we have H' = H, which proves the claim.

Since K is convex, @ = conv{R;; : i = 1,...,3"1j = 1,2,3} C K.
Moreover, @ is a prism with basis parallel to H and height (¢ + 1)||v|| in
the direction L = lin{v}. Observe that none of the lines z; + L, for i > 1,
intersects K nor () in the interior, because otherwise we would find interior
lattice points of K outside L. In order to finish the proof, let us consider
Q' = conv{z;+v :i=1,...,3""'}. We clearly have G(intQ') = 1 and
G(Q') = 3", and thus there exists a unimodular transformation A such that
AQ' = C,. Since A maps parallel lines to parallel lines, up to a suitable
rotation, we have AQ = Cp—1 x [-(( +1)/2,(¢ + 1)/2]. We finally remark
that @ = K. If this would not be the case, then let p € K\Q be strictly
separated from () by a hyperplane parallel to the facet of () containing
Aley, ..., A7 e,y or A7Y((€ +1)/2)e, in its relative interior. Here, for
i = 1,...,n, the ¢th coordinate unit vector is denoted by e;, and it is the
center of a suitable facet of Cj,. In any of the cases above, conv{p, @} and
thus also K would contain the respective point in its interior, arriving again
to a contradiction. Hence ) = K as desired. O
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