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Preconditioning of block tridiagonal matrices

by O. Axelsson1, J. Karátson2

Abstract

Preconditioning methods via approximate block factorization for block tridiagonal ma-
trices are studied. Bounds for the resulting condition numbers are given, and two methods
for the recursive construction of the approximate Schur complements are presented. Illus-
trations for elliptic problems are also given, including a study of sensitivity to jumps in the
coefficients and of a suitably modified Poincaré–Steklov operator on the continuous level.

Keywords: Preconditioning, Schur complement, domain decomposition, Poincaré–Steklov
operator, approximate block factorization

1 Introduction

Block tridiagonal matrices arise in many applications. For instance, such a structure arises when
decomposing the domain of definition of an elliptic operator using unidirectional stripes, or more
generally, for a decomposition such that (in addition to a corresponding portion of the original
boundary) each subdomain has a common boundary only with its previous and next neighbours
in the sequence of subdomains. This subdivision can often be done according to different values
of the coefficients in the differential operator, i.e. different materials in the underlying physical
domain. Each diagonal block in the matrix corresponds to the restriction of the operator to
one of the subdomains, and ordering the nodes in each domain in groups and then the domains
consecutively, results in a block tridiagonal matrix.

Such problems are often split by ordering the interior domain nodes separately from the
interface nodes and ordering all interface nodes last. This in turn results in a block diagonal
submatrix with uncoupled blocks, which are only coupled to the interface nodes ordered last.
The part of the system which corresponds to the different interior node sets can then be solved in
parallel. The elimination of these nodes results, however, in a Schur complement matrix for the
interface nodes, which in general is a full matrix. The corresponding system is often solved by
a direct solution method which, however, can be costly for large-scale problems. Alternatively,
one can construct various sparse preconditioners for the Schur complement matrix and solve
that system by some iterative solution method. Such methods have been dealt with extensively
in the literature, see e.g. [14, 15], based on certain Poincaré–Steklov operators corresponding to
the interface. Also, various modifications for elliptic problems with coefficient jumps have been
developed, see e.g. [9, 10, 12].

In this paper we keep instead the block tridiagonal structure

A =



A11 A12 0 . . . . . . . . . 0
A21 A22 A23 0 . . . . . . 0
0 A32 A33 A34 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . 0 Am,m−1 Amm

 (1.1)

1Department of Information Technology, Uppsala University, Sweden & Institute of Geonics AS CR, Ostrava,
Czech Republic; owea@it.uu.se

2Department of Applied Analysis, ELTE University, H-1117 Budapest, Hungary; karatson@cs.elte.hu
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and apply an appropriate (incomplete) block matrix factorization method. In this method we
only need approximations of the local Schur complements which arise in eliminating one block
matrix to form the next. We shall see that they can be constructed easily and the actions require
little computational effort.

Bounds for the resulting condition number of the preconditioned matrix will be given.
Thereby we show how the upper bound of the eigenvalues of the preconditioned matrix de-
pends essentially only on the number of subdomains but does not depend on mesh size, that is,
the bound is mesh independent. For the lower bound, assuming some additional properties of
the matrix, one readily derives a fixed bound, frequently unity.

We present two methods for the construction of the approximate Schur complements. In
both the action of the matrix on an arbitrary vector is readily computed. In the first method,
called diagonal compensation, we correct the given diagonal block matrix with a diagonal matrix
to preserve its action, compared with the corresponding exact matrix, on a particular positive
vector. The second method involves a sum of actions of inverse matrices, and presents more
accurate approximations.

Some illustrations for elliptic problems are included. We first show that the Schur comple-
ments for (1.1) are not sensitive to coefficient jumps, in contrast to the classical Schur comple-
ment for the interface. Then, turning to the continuous level for the corresponding operators, it
is shown that the Schur complements for (1.1) correspond to dealing with the elliptic operator
on the subdomains and certain modified Poincaré–Steklov operators for the interfaces. A con-
tinuous analogue of the first approximate factorization method is also presented. This illustrates
properly some of the properties discussed on the discrete level.

The paper is organized as follows. Upper eigenvalue bounds for preconditioned matrices un-
der approximate factorizations are given in Section 2. Two methods for the recursive construc-
tion of the approximate Schur complements, and condition number bounds for the corresponding
preconditioned matrices, are presented in Section 3. In Section 4 we study the sensitivity of the
Schur complements to jumps in the coefficients of the elliptic operator. Some analogues on
the continuous level are given in Section 5, and we conclude in Section 6 with some additional
remarks.

Except when it is otherwise stated, the inequalities

A ≤ B, A < B

between two symmetric matrices (of the same order) mean that B−A is positive semidefinite or
positive definite, respectively. The notation %(A) for a symmetric positive semidefinite matrix
A stands for its maximal eigenvalue. The spectral condition number of A is defined by κ(A) =
λmax(A)/λmin(A).

2 Upper eigenvalue bounds for approximate factorizations

We now consider algebraic approaches to define preconditioners and estimate condition numbers
for the corresponding preconditioned matrices.

Let A be a symmetric, positive definite (spd) matrix and partitioned in m×m block form.
We split it as A = DA + LA + LTA where DA is the block diagonal part and LA is the strictly
lower block triangular part of A.

Let X be a spd block diagonal matrix and let L be strictly lower block triangular, both with a
consistent partitioning to A. Let K = A−L−LT and L̃ = X−1/2LX−1/2, K̃ = X−1/2KX−1/2.
The matrices L̃ and K̃ will only be used in the theoretical derivation, to follow. The actual
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construction of X will be discussed later in this paper. We will use the following lemmata, see
[6].

Lemma 2.1 For any symmetric and positive semidefinite matrix

%(A) ≤
m∑
i=1

%(Aii) .

Lemma 2.2 If (I + L̃)−1 + (I + L̃T )−1 is positive semidefinite then

(I + L̃)−1 + (I + L̃T )−1 ≤ 2m.

Let
C = (X + L)X−1(X + LT ) .

The purpose of this paper is to derive estimates of the smallest and largest eigenvalues of the
preconditioned matrix C−1A. We shall thereby assume that X has been constructed to satisfy

σ := %(X−1K) < 2 . (2.1)

For the derivation of an upper bound, we consider the following similarity transformation of
C−1A:

M := X−1/2(X + LT )C−1A (X + LT )−1X1/2 . (2.2)

Then
M = X1/2(X + L)−1A(X + LT )−1X1/2 .

We shall derive two different types of bounds. For the derivation of the first bound, we note
that

A = (K − 2X) + (X + L) + (X + LT ) .

An elementary computation shows that

M = (I + L̃)−1(K̃ − 2I)(I + L̃T )−1 + (I + L̃)−1 + (I + L̃T )−1 .

Then
M ≤ (σ − 2)(I + L̃)−1(I + L̃T )−1 + (I + L̃)−1 + (I + L̃T )−1

=
1

2− σ
I − (2− σ)

(
(I + L̃)−1 − 1

2− σ
I
)(

(I + L̃T )−1 − 1
2− σ

I
)
.

Hence
M ≤ 1

2− σ
I ,

that is, since by the similarity transformation (2.2) the spectra of C−1A and M coincide,

λmax(C−1A) ≤ 1
2− σ

I , (2.3)

which is the first estimate of the maximal eigenvalue.
We shall now derive an estimate which depends explicitly on the number of blocks of A. For

this purpose, let Q be an orthonormal matrix that transforms K̃ to diagonal form,

Λ = QK̃QT

where Λ = diag(µ1, . . . , µm), i.e. µi are the eigenvalues of X−1K. Then

N := QMQT = (I + L̂)−1(Λ− 2I)(I + L̂T )−1 + (I + L̂)−1 + (I + L̂T )−1 ,

where L̂ = QT L̃Q. The following lemma will be used:
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Lemma 2.3 Let B be an arbitrary matrix of order n. Then

(I + L̂)−1B(I + L̂T )−1 = (I + L̂)−1B +B(I + L̂T )−1 −B + (I + L̂)−1L̂BL̂T (I + L̂T )−1 . (2.4)

Proof. Write L̂ and L̂T in the last term of (2.4) as L̂ = (I + L̂) − I, L̂T = (I + L̂T ) − I.
Then the equality in (2.4) follows by an elementary computation.

Using the above lemma for B = Λ− 2I, it follows that

N = (I+ L̂)−1(Λ− I) + (Λ− I)(I+ L̂T )−1− (Λ−2I) + (I+ L̂)−1L̂(Λ−2I)L̂T (I+ L̂T )−1 . (2.5)

Assume now that αC ≤ A for some positive constant α. Then N − αI is positive semidefinite
and it follows that

λmax(C−1A) = λmax(N − αI + αI) ≤ λmax(N − αI) + α .

Further, since the diagonal blocks of (I + L̂)−1 and (I + L̂T )−1 are identity matrices, it follows
from Lemmata 2.1-2.2 and of (2.5) that

λmax(C−1A) ≤ λmax(N −αI) +α ≤ 2
m∑
i=1

(µi− 1) + 2m−
m∑
i=1

µi−αm+α =
m∑
i=1

µi−α(m− 1).

(2.6)
Since, by assumption, µi ≤ 2, we obtain

λmax(C−1A) ≤ (2− α)m+ α. (2.7)

A common case is α = 1, see later. Then

λmax(C−1A) ≤ m+ 1.

However, (2.6) can be more accurate than the bound in (2.7) when several of the eigenvalues µi
are (much) less than 2.

Together with (2.3), we have shown

Theorem 2.1 Let A be a symmetric, positive definite (spd) matrix partitioned in m×m block
form. Let C = (X+L)X−1(X+LT ) where X is spd block diagonal and let L is strictly lower block
triangular, both with consistent partitioning to A. Let µi := λi(X−1K) where K = A−L−LT ,
let σ := maxµi and assume that σ < 2. Then

λmax(C−1A) ≤ min
{ 1

2− σ
,

m∑
i=1

µi − α(m− 1)
}
.

Remark 2.1 A common choice of L is L = LA, which will be assumed in the remainder of the
paper. Then K = DA.
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3 Recursive approximation of Schur complements

Let us consider a symmetric, positive definite (spd) matrix A with tridiagonal block structure
as in (1.1):

A =



A11 A12 0 . . . . . . . . . 0
A21 A22 A23 0 . . . . . . 0
0 A32 A33 A34 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . 0 Am,m−1 Amm

 . (3.1)

Here Aij = ATji for all i, j. The exact block factorization of A takes the form

A = (S + LA)S−1(S + LTA)

where S = blockdiag(S1, . . . , Sm) and the Schur complements Si are determined recursively as

S1 := A11

S2 := A22 −A21S
−1
1 A12

.....

Si := Aii −Ai,i−1S
−1
i−1Ai−1,i

.....

(3.2)

for i ≤ m.
The application of this factorization to solve a linear system involves the solution of the block

triangular factors using a forward and a backward sweap. At each of them, systems with matrices
Si (i = 1, . . . ,m) appear that must be solved. In addition, matrix-vector multiplications with
LA and LTA, respectively, appear. In general, Si are full matrices and their construction and the
computation of actions of S−1

i can be expensive.
Our goal now is to approximate Si with some matrix Xi which is sparse, and such that the

computation ofXi and actions ofX−1
i on vectors are cheap. At the same time, the approximation

must be sufficiently accurate. For instance, it has been shown in [1] that the following lower
bound holds for the condition number: κ(C−1A) ≥ mini κ(X−1

i Si).
In the first method we let Xi be a correction to Aii using a diagonal matrix, such that Xi

takes the same action as the matrix that it approximates, on a certain positive vector. In the
second method we approximate S−1

i using a sum of matrices whose action is cheap.

3.1 Method 1: Diagonal compensation.

First let
Xi := Aii −Di , (3.3)

where Di is a diagonal matrix such that

Divi = Ai,i−1X
−1
i−1Ai−1,i vi (3.4)

for some given positive vector vi.
First, let vi be the eigenvector to Ai,i−1X

−1
i−1Ai−1,i corresponding to the smallest eigenvalue

ξi of this matrix. Then
Divi = ξivi ,
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i.e. Di = ξiIi is a multiple of the identity matrix for the ith block. Since ξi is the smallest
eigenvalue, it follows that Ai,i−1X

−1
i−1Ai−1,i ≥ Di and hence Aii−Ai,i−1X

−1
i−1Ai−1,i ≤ Aii−Di =

Xi. Here, using that L = LA,

C −A = X + LAX
−1LTA −DA

and
(C −A)ii = Xi +Ai,i−1X

−1
i−1Ai−1,i −Aii ≥ 0.

Hence C ≥ A, which yields
%(C−1A) ≤ 1.

In this method we must estimate the smallest eigenvalue of C−1A, which we will not do here as
the choice of X should rather be such that the smallest eigenvalue of C−1A is bounded by unity
or some positive constant α ≤ 1.

Consider now the choice vi := ei = (1, . . . , 1), i.e. ei has all components equal to unity.
Then Xi is obtained from

Xi := Aii −Di (3.5)

where
Diei = Ai,i−1X

−1
i−1Ai−1,iei . (3.6)

Assume here that A is an M -matrix. Then we have componentwise

A−1
ii ≥ 0, Ai,i−1 ≤ 0, Ai−1,i ≤ 0.

It follows by induction that X−1
i−1 ≥ 0 componentwise, hence Aii−Ai,i−1X

−1
i−1Ai−1,i is a Z-matrix

(i.e. all off-diagonal components are non-positive). Since (Aii−Di)ei = (Aii−Ai,i−1X
−1
i−1Ai−1,i)ei,

it holds that if this vector is nonzero then Xi = Aii − Di is positive definite, and also an M -
matrix. Should the matrix lose positive definiteness (by having (Aii − Di)ei = 0), we must
perturb the matrices Aii with some (small) positive number. This will be discussed later.

Assuming that no perturbation is required, we have

Xi = Aii −Di ≤ Aii −Ai,i−1X
−1
i−1Ai−1,i

(here an inequality in a positive semidefinite sense). Therefore

(C −A)ii = Xi +Ai,i−1X
−1
i−1Ai−1,i −Aii ≤ 0,

that is, C ≤ A and
λi(C−1A) ≥ 1.

Hence we have a lower bound. The upper bound follows from Theorem 2.1, so the condition
number of C−1A is bounded as

κ(C−1A) ≤ min
{ 1

2− σ
,

m∑
i=1

µi − α(m− 1)
}
,

where µi := λi(X−1DA) (using that L = LA) and σ := maxµi, further, it is assumed that σ < 2.
In particular, if

Di ≤ %Aii for some % < 1/2, (3.7)

then by (3.5),
Xi ≥ (1− %)Aii

and hence
σ ≤ λmax(X−1

i Aii) ≤
1

1− %
< 2. (3.8)

6



Remark 3.1 The above two choices have somewhat opposite properties. In particular, if ei
is also an eigenvector of Ai,i−1X

−1
i−1Ai−1,i for the smallest eigenvalue, then it can be seen that

Ai,i−1X
−1
i−1Ai−1,i is a multiple of the identity matrix. In the following we assume that this does

not hold.

Remark 3.2 A similar method has been used in [11]. Let

Xi = Aii −Ai,i−1Yi−1Ai−1,i +D′i, i = 2, . . . ,m,

where Yi−1 is a bandmatrix, possibly diagonal, approximation of X−1
i−1, such that the off-diagonal

entries of Yi−1 are not larger than those of D−1
i−1, and D′i is a diagonal matrix determined such

that
D′iei = Ai,i−1(Yi−1 +D−1

i−1)Ai−1,iei .

Here we have D1e1 = A11e1 and

Diei = (Aii −Ai,i−1D
−1
i−1Ai−1,i)ei, i = 2, . . . ,m.

It follows that A− C is a Z-matrix and (A− C)e = 0, so λmin(C−1A) ≥ 1.

Remark 3.3 The above method has been applied in [11] to elliptic problems

− ∂

∂x

(
a1
∂u

∂x

)
− ∂

∂y

(
a2
∂u

∂y

)
= f

on a rectangular domain {(x, y) : 0 < x < a, 0 < y < b} with Dirichlet boundary condition ex-
cept possibly at x = a, where a Neumann boundary condition may hold. It has been proved that
if we use a columnwise ordering starting at the line x = 0, and if x 7→ a1(x, y) is nonincreasing,
then µi ≤ 2 for i = 2, . . . ,m, µ1 = 1 and Theorem 2.1 implies

λmax(C−1A) ≤
m∑
i=1

(µi − 1) ≤ m.

The upper bound %(X−1
i Aii) < 2 may, however, not always hold.

To achieve a sequence Xi for which it holds, the following linear combination of the two
diagonal compensation methods may be used. Let 0 < αi ≤ 1 and

Xi = Aii − αiDi − (1− αi)ξiIi ,

where
Diei = Ai,i−1X

−1
i−1Ai−1,iei ,

Ai,i−1X
−1
i−1Ai−1,i vi = ξivi

and ξi is the smallest eigenvalue of Ai,i−1X
−1
i−1Ai−1,i. We require that

Xi ≥
1
2
Aii . (3.9)

This condition, 2Xi ≥ Aii takes the form

Aii − 2αiDi − 2(1− αi)ξiIi ≥ 0.

7



This matrix is a Z-matrix and is positive semidefinite if ζi := Aiiei−2αiDiei−2(1−αi)ξiei ≥ 0.
Assume that the smallest component of ζi is taken for its jth component (j = ji). Then, letting
êj be the jth unit vector, it holds that

êTj
(
Aiiei − 2αiAi,i−1X

−1
i−1Ai−1,iei − 2(1− αi)ξiei

)
≥ 0

or
2(1− αi)êTj (Ai,i−1X

−1
i−1Ai−1,iei − ξiei) ≥ eTj (2Ai,i−1X

−1
i−1Ai−1,i −Aii)ei .

Hence (3.9) holds if

1− αi = max

{
0,

êTj (Ai,i−1X
−1
i−1Ai−1,i − 1

2Aii)ei
eTj (Ai,i−1X

−1
i−1Ai−1,i − ξi)ei

}
.

It is seen that αi = 1 as long as

êTj Ai,i−1X
−1
i−1Ai−1,iei ≤

1
2
eTj Aiiei ,

i.e. in particular if
1
2
Aii ≥ Ai,i−1X

−1
i−1Ai−1,i .

The actual choice of {Xi} is a balance between a good upper bound and a good lower bound.
Accurate estimates of lower bounds can be difficult. A technique used in [1] is based on per-
turbations of the diagonal of the given matrix. More generally, one can perturb with a positive
semidefinite matrix. For instance, when the given matrix is not an M -matrix, one can perturb
it with semidefinite matrices of the form

β



. . .
1 . . . −1

. . .
−1 . . . 1

. . .


where β > 0 is chosen to make the matrix an M -matrix. This technique is identical to moving
the positive off-diagonal entries to the diagonal in the same row. It has been called diagonal
compensation, see [5], where resulting eigenvalue bounds can be found.

If the matrix is already an M -matrix, then one can add (small) positive entries to its diagonal
and construct the preconditioner for the perturbed matrix. In this way the preconditioner
becomes more ’stable’ (positive definite) than if it had been applied to the unperturbed matrix.

Let A be the given matrix, δ the diagonal perturbation matrix, Ã = A+ δ and let C be the
preconditioner based on Ã. The aim of the perturbation is to limit the upper eigenvalue bound
while still not decrease the lower eigenvalue bound too much. Often the preconditioner satisfies
λmin(C−1Ã) ≥ 1. It holds then λmin(C−1A) ≥ λmin(C−1Ã)λmin(Ã−1A) ≥ λmin(Ã−1A) =
λmin((A + δ)−1A). Estimates of such bounds can be based on the length of certain directed
paths in the matrix graph for A from the node point where a perturbation takes place to a
nearby Dirichlet boundary node, see [1] and the references therein. In general, the amount of
perturbations should be limited by the order of the mesh width. Another application of the
perturbation method can be found in [3].
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3.2 Method 2: Approximation with sums of inverse matrices

We now consider a more accurate approximation of the Schur complements. We note first that
at each stage of the factorization method, we must compute a Schur complement for the matrix(

Xi−1 Ai−1,i

Ai,i−1 Aii

)
(3.10)

(i = 2, . . . ,m), which is positive definite.
The chosen form of the approximation arises from the relation between the inverses of the

Schur complements of a two-by-two block matrix, which relation is based on the Sherman-
Morrison formula, see e.g. [1]. For the matrix in (3.10) it takes the form

S−1
i = A−1

ii +A−1
ii Ai,i−1S̃

−1
i−1Ai−1,iA

−1
ii , (3.11)

S̃−1
i−1 = X−1

i−1 +X−1
i−1Ai−1,iS

−1
i Ai,i−1Ai−1,i−1

where for the standard forms it holds

Si = Aii −Ai,i−1X
−1
i−1Ai−1,i ,

S̃i−1 = Xi−1 −Ai−1,iS
−1
i Ai,i−1 .

For the application of the preconditioner C, we note that we need only actions of the inverses
X−1
i , i.e. we do not need actions of Xi themselves. Therefore the expression in (3.11) is viable if

we can approximate S−1
i−1 in a proper way. The actions of the other matrices in (3.11) are cheap

and the approximate action of S−1
i−1 must also be cheap. The approximation can also not involve

X−1
i−1 as this would lead to a recursive computation, involving matrices on all previous levels.

The approximation we choose is to replace S̃−1
i−1 by A−1

i−1,i−1 + Di−1, where Di−1 is a diagonal
matrix. Then X−1 takes the form

X−1 = D−1
A +D−1

A L(D−1
A +D)LTD−1

A

where we want to determine D ≥ 0 such that

A− C = DA −X − LX−1LT (3.12)

becomes close to zero. However, at the same time we want to limit that choice to satisfy

σ ≤ ‖X−1DA‖∞ = max
i
|X−1DAe|i ≤ 2 , (3.13)

where we have used the fact that X−1 > 0 when A is an M -matrix. Since

X−1DA = I +D−1
A L(D−1

A +D)LT , (3.14)

we require that
D−1
A L(D−1

A +D)LTe ≤ e

or
D−1
A LDLTe ≤ (I −D−1

A LD−1
A LT )e .

Making A− C = 0 in (3.12) gives the relation

X−1DA − I = X−1LX−1LT .
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Relating this to (3.14) gives

D−1
A L(D−1

A +D)LT = X−1LX−1LT .

Therefore we wish to choose D such that

D−1
A LDLT = (X−1LX−1 −D−1

A LD−1
A )LT .

For practical reasons we can only satisfy this relation in a small subspace. We determine here a
diagonal matrix D such that

D−1
A LDLTe = (X−1LX−1 −D−1

A LD−1
A )LTe ,

at the same time limiting that choice to satisfy (3.13). Whereas the computation of actions of
X−1 is now more involved, the increased computational effort is expected to be outweighed by an
increased accuracy of X−1. The computation of D = block(D1, . . . , Dm) takes place recursively
for Di (i = 2, . . . ,m) starting with D1 = 0. The approximation X−1 can be seen as a truncated
Neumann series, X−1

i = A−1
ii +Gi +GiAiiGi + . . . where Gi = A−1

ii Ai,i−1A
−1
i−1,i−1Ai−1,iA

−1
ii and

the matrix term Di−1 tries to compensate for the truncated terms.

4 Schur complements for elliptic problems with jumps in their
coefficients

Let us consider a domain decomposition method for an elliptic problem discretized with FEM,
such that (in addition to a corresponding portion of the outer boundary) each subdomain has a
common boundary only with its previous and next neighbours in the sequence of subdomains.
Let the elliptic operator have constant diffusion coefficients in each subdomain, the value of
which can vary between subdomains. Such problems often arise in the context of various domain
decomposition procedures [2, 8, 9, 10, 12]. Our goal in this section is to study the condition
numbers of the arising Schur complements.

In the classical domain decomposition (DD) approach, the interior domain nodes are ordered
separately from the interface nodes and all interface nodes are ordered last. It has been observed
that the condition number of the corresponding Schur complements deteriorate as the magnitude
of jumps increases. Like in multigrid methods, to avoid this, an efficient method has proved to
be to introduce one or more proper auxiliary coarse spaces that have a global balancing effect,
see e.g. the BDD method [12] and the approach of so-called exotic coarse spaces [9] in a Schwarz
method framework. The definition of these coarse spaces involves the solution of local Dirichlet
subproblems, but it turns out that they can be avoided by using suitable approximate harmonic
extensions, which lead to an optimal solution method (except possibly the solution of the coarse
problem).

An alternative to the above approach is to take the interface nodes into account together with
the previous subdomain in the mentioned sequence of subdomains. This approach, considered
in the present paper, leads to a tridiagonal block structure as in (1.1). In this section it is
verified for a model problem that the condition numbers of the Schur complements are sensitive
to the jump in the first approach (namely, proportional to the magnitude of the jump) but are
not in the second approach. That is, one can have independence of jumps without introducing
auxiliary problems.
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For simplicity, in this section we will study a decomposition of the domain Ω in three sub-
domains Ω1, Ω2 and Ω3. According to the above, we have common boundaries Γ1 := Ω1 ∩ Ω2

and Γ2 := Ω2 ∩ Ω3, but Ω1 and Ω3 have no common boundary.
The discussion below is built up as follows. We will first formulate the block forms of the

stiffness matrix under the two mentioned approaches for an isotropic Poisson equation. Then
we will consider a different diffusion coefficient in each Ωi, rewrite the stiffness matrices, and
study the variation of the corresponding condition numbers.

4.1 Basic block forms for the isotropic Poisson equation

Let us consider the Poisson equation where, in weak form, one seeks u ∈ Vh ⊂ H1
0 (Ω) such that∫

Ω
∇u · ∇v =

∫
Ω
fv (v ∈ Vh). (4.1)

The FEM subspace is chosen with piecewise linear basis functions, assumed either to have node
points on one of Γi or to have its support entirely in one of Ωi.

In the classical DD approach, the stiffness matrix is written in the block form

A =


A11 0 0 A1,Γ1 0
0 A22 0 A2,Γ1 A2,Γ2

0 0 A33 0 A3,Γ2

AΓ1,1 AΓ1,2 0 AΓ1,Γ1 0
0 AΓ2,2 AΓ2,3 0 AΓ2,Γ2

 . (4.2)

Here Ai,Γj = ATj,Γi
for all i, j. Then one lets

AΓ1 := AT1Γ :=
(
AΓ1,1

0

)
, AΓ2 := AT2Γ :=

(
AΓ1,2

AΓ2,2

)
, AΓ3 := AT3Γ :=

(
0

AΓ2,3

)
, (4.3)

AΓΓ :=
(
AΓ1,Γ1 0

0 AΓ2,Γ2

)
(4.4)

and thus obtains the more concise form

A =


A11 0 0 A1Γ

0 A22 0 A2Γ

0 0 A33 A3Γ

AΓ1 AΓ2 AΓ3 AΓΓ

 . (4.5)

The solution of the corresponding linear system can be reduced to solving systems with Σi := Aii
(i = 1, 2, 3) and an additional system with the Schur complement matrix

Σ := AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ −AΓ3A

−1
33 A3Γ . (4.6)

In the other approach, the interface nodes are taken into account together with the previous
subdomain. Under this reordering, the stiffness matrix in (4.2) can be rewritten as

Ã =


A11 A1,Γ1 0 0 0
AΓ1,1 AΓ1,Γ1 A2,Γ1 0 0

0 AΓ1,2 A22 A2,Γ2 0
0 0 AΓ2,2 AΓ2,Γ2 A3,Γ2

0 0 0 AΓ2,3 A33

 , (4.7)
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where we introduce the notations

Ã11 :=
(
A11 A1,Γ1

AΓ1,1 AΓ1,Γ1

)
, Ã12 :=

(
0 0

A2,Γ1 0

)
, (4.8)

Ã21 :=
(

0 AΓ1,2

0 0

)
, Ã22 :=

(
A22 A2,Γ2

AΓ2,2 AΓ2,Γ2

)
, (4.9)

Ã23 :=
(

0
A3,Γ2

)
, Ã32 :=

(
0

AΓ2,3

)
(4.10)

to obtain the concise form

Ã =

Ã11 Ã12 0
Ã21 Ã22 Ã23

0 Ã32 A33

 . (4.11)

In the Schur complement approach, here only the first block remains unchanged: S1 := Ã11,
and the solution of the original system can now be reduced to solving two additional systems
corresponding to Schur complements, determined recursively as

S2 := Ã22 − Ã21S
−1
1 Ã12, S3 := A33 − Ã32S

−1
2 Ã23 . (4.12)

Using notations (4.8)–(4.10) and letting

SΓ1 := AΓ1,Γ1 −AΓ1,1A
−1
11 A1,Γ1 , (4.13)

we obtain

S2 =
(
A22 −AΓ1,2S

−1
Γ1
A2,Γ1 A2,Γ2

AΓ2,2 AΓ2,Γ2

)
. (4.14)

(The similar formula for S3 will not be needed here.)

4.2 Conditioning properties for problems with jumps in their coefficients

Now we can turn to the case of our interest. Instead of the above Poisson equation, we consider
the FEM solution of an elliptic problem with a different constant diffusion coefficient in each
Ωi. That is, in weak form, one seeks u ∈ Vh ⊂ H1

0 (Ω) such that∫
Ω
w∇u · ∇v =

∫
Ω
fv (v ∈ Vh), (4.15)

where w is a weight function on Ω such that

w|Ωi
≡ wi (i = 1, 2, 3).

In our model problem we assume
w1 ≥ w2 ≥ w3 (4.16)

and are interested in the case
w1 >> w2 . (4.17)

When varying these coefficients, in order to avoid the loss of ellipticity in the limit, we also
assume that there exists a constant α > 0 such that

w3 ≥ αw2 . (4.18)
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Below, we will find that if we vary the ratio w1
w2

unboundedly, then the condition numbers also
grow to infinity for the Schur complement in (4.6) but remain bounded for the Schur complements
in (4.12).

Let us first consider the classical DD approach again. The stiffness matrix (4.2) is then mod-
ified as follows. The entries corresponding to basis functions with support in Ωi are multiplied
by the weight wi. For simplicity, assume that for the node points on one of Γi, the support of
the basis function is symmetric w.r.t the node point, and thus its parts intersecting with the
two domains have equal measure. (An opposite case will be mentioned in Remark 4.1.) Then
the entries corresponding to such basis functions are multiplied by (wi + wj)/2. Therefore, the
stiffness matrix has the form

A =


w1A11 0 0 w1A1,Γ1 0

0 w2A22 0 w2A2,Γ1 w2A2,Γ2

0 0 w3A33 0 w3A3,Γ2

w1AΓ1,1 w2AΓ1,2 0 w1+w2
2 AΓ1,Γ1 0

0 w2AΓ2,2 w3AΓ2,3 0 w2+w3
2 AΓ2,Γ2

 . (4.19)

With these modifications, one readily sees that the Schur complement (4.6) becomes

Σ(w) := WAΓΓ − w1AΓ1A
−1
11 A1Γ − w2AΓ2A

−1
22 A2Γ − w3AΓ3A

−1
33 A3Γ (4.20)

where W is the diagonal matrix

W :=
(
w1+w2

2 0
0 w2+w3

2

)
.

Proposition 4.1 There exist constants c1, c2 > 0 independent of w such that

κ(Σ(w)) ≥ c1
w1

w2
+ c2 . (4.21)

Proof. Using (4.3)-(4.4), a simple calculation yields

Σ̃(w) :=
1
w2

Σ(w) =
(w1
w2

Σ1 + 1
2AΓ1,Γ1 0

0 1
2(1 + w3

w2
)AΓ2,Γ2

)
−AΓ2A

−1
22 A2Γ −

w3

w2
AΓ3A

−1
33 A3Γ

(4.22)
where

Σ1 :=
1
2
AΓ1,Γ1 −AΓ1,1A

−1
11 A1,Γ1 .

Here Σ1 ≥ 0 (i.e. it is positive semidefinite) and is not a zero matrix since it is a Schur com-
plement, corresponding to the positive definite matrix Ã11 modified by setting a zero diffusion
coefficient outside Ω1. Further, AΓi,Γi > 0 (i = 1, 2) and 1

2(1 + w3
w2

) ≤ 1 owing to (4.16). Hence,
the matrix

G(w) :=
(w1
w2

Σ1 + 1
2AΓ1,Γ1 0

0 1
2(1 + w3

w2
)AΓ2,Γ2

)
satisfies

λmax(G(w)) ≥ w1

w2
λmax(Σ1), λmin(G(w)) ≤ λmin(AΓ2,Γ2),

which yields for the condition number of G(w) that

κ(G(w)) ≥ w1

w2

λmax(Σ1)
λmin(AΓ2,Γ2)

.
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The condition numbers of the other two terms in (4.22) are bounded. Since κ(Σ(w)) = κ(Σ̃(w)),
we obtain (4.21).

Corollary 4.1 If we vary w1
w2

unboundedly, then

κ(Σ(w)) = O
(w1

w2

)
→∞ as

w1

w2
→∞.

Remark 4.1 The above sensitivity to w1
w2

may be reduced if the supports of the basis functions
on Γ1 are not assumed to be symmetric w.r.t. the node point, but their parts intersecting with
Ω2 have small measure. However, this would in turn lead to inpractically small element widths
and very large gradients of the basis functions near Γ1.

Let us now consider the second approach. We study the Schur complements (4.12) modified
w.r.t. the diffusion coefficient w. The corresponding modification of the matrix Ã in (4.7) comes
by first replacing the considered blocks of (4.2) by the corresponding blocks of (4.19), and then
using the same reassembling as for (4.7). Then the Schur complement S2 in (4.14) becomes
modified as

S2(w) :=
(
w2A22 − w2

2 AΓ1,2 SΓ1(w)−1A2,Γ1 w2A2,Γ2

w2AΓ2,2
1
2(w2 + w3)AΓ2,Γ2

)
, (4.23)

where SΓ1 in (4.13) has been replaced by

SΓ1(w) :=
w1 + w2

2
AΓ1,Γ1 − w1AΓ1,1A

−1
11 A1,Γ1 . (4.24)

Introducing the notation

S11
2 (w) := A22 − w2AΓ1,2SΓ1(w)−1A2,Γ1 , (4.25)

we have

S2(w) :=
(
w2S

11
2 (w) w2A2,Γ2

w2AΓ2,2
1
2(w2 + w3)AΓ2,Γ2

)
(4.26)

Lemma 4.1 There holds SΓ1(w) ≥ w2 SΓ1.

Proof. We have

SΓ1(w) = w2

[1
2
(w1

w2
+ 1
)
AΓ1,Γ1 −

w1

w2
AΓ1,1A

−1
11 A1,Γ1

]
= w2

[w1

w2

(1
2
AΓ1,Γ1 −AΓ1,1A

−1
11 A1,Γ1

)
+

1
2
AΓ1,Γ1

]
.

Since, by assumption, w1 ≥ w2, we obtain

SΓ1(w) ≥ w2

[(1
2
AΓ1,Γ1 −AΓ1,1A

−1
11 A1,Γ1

)
+

1
2
AΓ1,Γ1

]
= w2 SΓ1 .

Similarly to (4.25), let us denote the top left block of (4.14) by

S11
2 := A22 −AΓ1,2S

−1
Γ1
A2,Γ1 , (4.27)

and then let

S̃2 :=
(
S11

2 A2,Γ2

AΓ2,2
1
2(1 + α)AΓ2,Γ2

)
(4.28)

with α from (4.18). Now we can prove the required boundedness:
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Proposition 4.2 The condition number of S2(w) satisfies

κ(S2(w)) ≤ λmax(Ã22)
λmin(S̃2)

,

hence it is bounded independently of w.

Proof. Clearly S11
2 (w) ≤ A22, and 1

2(w2 + w3) ≤ w2 owing to (4.16), hence

S2(w) ≤ w2

(
A22 A2,Γ2

AΓ2,2 AΓ2,Γ2

)
= w2 Ã22 . (4.29)

To find a lower bound for S2(w), note that Lemma 4.1 and the definitions (4.25) and (4.27)
yield

S11
2 (w) ≥ S11

2 . (4.30)

Substituting (4.30) into (4.26), and using (4.18) and (4.28), respectively, we then obtain

S2(w) ≥
(
w2S

11
2 w2A2,Γ2

w2AΓ2,2
1
2(1 + α)w2AΓ2,Γ2

)
= w2 S̃2 .

Here S̃2 > 0, since by the above, w2S̃2 is the Schur complement S2(w) in the case w3 = αw2.
Together with (4.29), we obtain the required statement.

Finally, we consider the second Schur complement S3 from (4.12). When replacing its con-
sidered blocks from (4.2) by the corresponding blocks of (4.19), we observe that each of the
blocks A33, Ã32 and Ã23 is multiplied by w3. Hence the matrix S3 becomes modified as

S3(w) := w3A33 − w2
3 Ã32 S2(w)−1Ã23 . (4.31)

We can easily prove again the required boundedness:

Proposition 4.3 The condition number of S3(w) satisfies

κ(S3(w)) ≤ λmax(A33)
λmin(S3)

,

hence it is bounded independently of w.

Proof. Obviously S3(w) ≤ w3A33. Further, in (4.26) we can estimate each w2 below by
w3 and S11

2 (w) below by S11
2 using (4.30), such that we obtain

S2(w) ≥ w3

(
S11

2 A2,Γ2

AΓ2,2 AΓ2,Γ2

)
= w3 S2 ,

and substituting into (4.31) yields

S3(w) ≥ w3A33 − w3 Ã32 S
−1
2 Ã23 = w3 S3 .

The two bounds imply the desired estimate.
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5 Some model analysis on the continuous level

A continuous analogue of the preceding method is presented on some model problems, including
the introduction of a certain modified Poincaré–Steklov operator for the interfaces. This study
on the continuous level can help the understanding of the properties of the studied factorization
approach.

5.1 Preliminaries: the Poincaré–Steklov operator

As pointed out in Section 4, the analysis of standard domain decomposition methods relies
strongly on the Poincaré–Steklov operator, see e.g. [14, 15]. In this subsection we give a brief
description, following [15].

Let us consider a boundary value problem{
−∆u = f in Ω
u|∂Ω = 0

(5.1)

on a bounded domain Ω with Lipschitz boundary and some f ∈ L2(Ω). The domain Ω is
decomposed in two nonoverlapping domains Ω1 and Ω2, whose common boundary is denoted by
Γ, further, we let Γ1 := ∂Ω1 \ Γ and Γ2 := ∂Ω2 \ Γ.

The Poincaré–Steklov operator is then defined in the following way. Let us choose an arbi-
trary function γ ∈ H1/2

00 (Γ). (For the definition of H1/2
00 (Γ) and other related Sobolev spaces, see

also [14].) Let H1γ and H2γ denote the harmonic extensions of γ in Ω1 and Ω2, respectively,
with zero boundary condition on ∂Ω. That is, Hiγ is the solution of the problem

−∆Hiγ = 0 in Ωi

Hiγ |Γi
= 0

Hiγ |Γ = γ

 (i = 1, 2). (5.2)

Then the Poincaré–Steklov operator is R : H1/2
00 (Γ) → H

−1/2
00 (Γ) that assigns to γ the jump of

the normal derivatives of its harmonic extensions on Γ, i.e.

Rγ :=
∂

∂n
H1γ +

∂

∂n
H2γ on Γ. (5.3)

(The plus sign expresses the jump with the convention that the outward normal vector n w.r.t.
Ω1 is opposite to n w.r.t. Ω2 on Γ, which will be understood throughout this paper. That is, for
a smooth function on Ω, the two normal derivatives are the opposite of each other and hence
the jump on Γ equals zero.)

Remark 5.1 Problem (5.1) can then be reduced to equation

Rγ = ψ (5.4)

with ψ defined as follows. Let T1f and T2f , respectively, denote the solutions of the problems

−∆Tif = f in Ωi

Tif |∂Ωi
= 0

}
(i = 1, 2), (5.5)
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and let
ψ := − ∂

∂n
T2f −

∂

∂n
T1f on Γ

(which is the negative jump of the corresponding normal derivatives). Then u := Hiγ + Tif on
Ωi (i = 1, 2) satisfies −∆u = f on both Ω1 and Ω2 and is continuous on Ω. Hence u solves (5.1)
if and only if its normal derivative has zero jump on Γ, which is equivalent to (5.4).

Remark 5.2 Green’s formula implies that the bilinear form of the Poincaré–Steklov operator
R is

〈Rγ, µ〉 =
∫

Ω1

∇H1γ · ∇H1µ+
∫

Ω2

∇H2γ · ∇H2µ (γ, µ ∈ H1/2
00 (Γ)), (5.6)

whence R is a symmetric and strictly positive operator.

On the discrete level, let us now consider a FEM discretization of problem (5.1) and let us
decompose the stiffness matrix as

A =

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

 , (5.7)

corresponding to the node points in Ω1, in Ω2 and on Γ, respectively. The linear system can be
reduced to the Schur complement

Σ := AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ, (5.8)

i.e. Σ is the Schur complement for Γ w.r.t. both Ω1 and Ω2. Then, as pointed out in [15],
Σ is the discrete analogue of the Poincaré–Steklov operator (5.3). Essentially, the term AΓΓ is
responsible for the boundary values of the considered function and the two other terms represent
the procedures involving the two harmonic extensions.

Remark 5.3 The generalization of the above notions to the case of more (say, k) subdomains
is straightforward. Then the Poincaré–Steklov operator involves harmonic extensions from the
union of interfaces to all subdomains, and its bilinear formulation will contain a sum of k terms,
e.g. for k = 3 the form (5.6) is replaced by

〈Rγ, µ〉 =
∫

Ω1

∇H1γ · ∇H1µ+
∫

Ω2

∇H2γ · ∇H2µ+
∫

Ω3

∇H3γ · ∇H3µ . (5.9)

Similarly, the stiffness matrix (5.7) and the corresponding Schur complement (5.8) will include
k interior blocks Aii: e.g., for the above example k = 3, we have

Σ := AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ −AΓ3A

−1
33 A3Γ (5.10)

as in (4.6).

5.2 The modified Poincaré–Steklov operator

Let us consider again a FEM discretization of problem (5.1). We decompose the domain Ω
in subdomains Ω1, . . . ,Ωm such that, in addition to a corresponding portion of the original
boundary ∂Ω, each Ωi has a common boundary only with its neighbours Ωi−1 and Ωi+1. Denoting
here these common boundaries by Γi−1,i and Γi,i+1, respectively, we decompose the stiffness
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matrix as in (3.1), corresponding to the subdomains Ω1, . . . ,Ωm such that the node points on
Γi,i+1 are taken into account in Aii (i.e. together with Ωi). Our goal is to study the factorization
(3.2). Since, in contrast to the idea of (5.7), the boundary node points are not considered
here separately, the Schur complements in (3.2) are understood recursively as complements
for Ωi w.r.t. Ωi−1. This is an important difference as compared to (5.8), and therefore the
continuous analogues of the Schur complements in (3.2) will also be appropriate modifications
of the Poincaré–Steklov operator (5.3). In fact, the proper operator takes into account the
previous subdomain Ωi−1 only.

First, for simplicity, let us consider the case of two subdomains Ω1 and Ω2, where one
can follow more clearly how the operator in subsection 5.1 is modified. Similarly as therein, the
common boundary of Ω1 and Ω2 is denoted by Γ, further, we let Γ1 := ∂Ω1\Γ and Γ2 := ∂Ω2\Γ.
We wish to define the continuous analogue of the Schur complement S2 := A22 −A21A

−1
11 A12.

Let us take a function u2 on Ω2 such that u2 |Γ2
= 0. Applying the operator −∆|Ω2

to u2

(which corrresponds to the term A22 in S2), we want it to equal f . Let us further consider the
restriction u2 |Γ, and calculate its harmonic extension to Ω1, i.e., let H1u2 be the solution of the
problem

−∆H1u2 = 0 in Ω1

H1u2 |Γ1
= 0

H1u2 |Γ = u2 .

 (5.11)

(That is, we solve the analogue of (5.2) only on Ω1.) Accordingly, the modified Poincaré–Steklov
operator P assigns to u2 the jump of the normal derivative of its harmonic extension and of
itself, i.e.

Pu2 :=
∂

∂n
H1u2 +

∂

∂n
u2 on Γ. (5.12)

Remark 5.4 Similarly as in Remark 5.1, problem (5.1) can now be reduced to the equation

Pu2 = χ (5.13)

where χ := − ∂
∂n T1f with T1f defined in (5.5). Letting u = u1 := H1u2 +T1f on Ω1 and u = u2

on Ω2, it is readily seen that u solves (5.1) if and only if Lu2 = f in Ω2 and (5.13) holds on Γ.

Remark 5.5 The analogue of Remark 5.2 holds if, according to our setting, we handle the
operators −∆|Ω2

and P together. Using Green’s formula, the pair P̃ of these operators satisfies〈
P̃ (u2, u2 |Γ), (ϕ, ϕ|Γ)

〉
≡
〈(−∆

P

)
(u2, u2 |Γ), (ϕ, ϕ|Γ)

〉
=
∫

Ω2

(−∆u2)ϕ+
∫

Γ
(Pu2)ϕ

=
∫

Ω1

∇H1u2 · ∇H1ϕ+
∫

Ω2

∇u2 · ∇ϕ (5.14)

(for all ϕ ∈ H1
D(Ω2) := {ϕ ∈ H1(Ω2) : ϕ|Γ2

= 0}), whence it is a symmetric and strictly positive
operator.

Remark 5.6 For more subdomains, one can define Pi in just an analogous way. Namely, for
simplicity, let Γi−1 denote the common boundary of Ωi−1 and Ωi. Letting ui be defined on Ωi such
that ui |∂Ωi\Γi−1

= 0, we consider ui |Γi−1
= 0 and solve the Dirichlet problem on Ω1 ∪ · · · ∪Ωi−1

with this boundary condition (which can be reduced to previous subproblems in a recursive way,
just as is the Schur complement reduced to previous Schur complements), and finally calculate
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the jump of the corresponding normal derivatives on Γ. Here the bilinear form that replaces
(5.14) will thus include a term on Ω1 ∪ · · · ∪Ωi−1 and a term on Ωi: for instance, in the case of
three subdomains, we have〈

P̃3 (u3, u3 |Γ), (ϕ, ϕ|Γ)
〉

=
∫

Ω1∪Ω2

∇H12u3 · ∇H12 ϕ+
∫

Ω3

∇u3 · ∇ϕ (5.15)

(for all ϕ ∈ H1
D(Ω3) := {ϕ ∈ H1(Ω3) : ϕ|∂Ω3\Γ2

= 0}) where H12u3 denotes the harmonic
extension of u3 |Γ2

to Ω1 ∪ Ω2.

Remark 5.7 For problems with jumps in the diffusion coefficients, the conditioning properties
observed in Section 4 are in accordance with their analogues on the continuous level. This will
be outlined here. Namely, we have observed in Section 4 that the condition numbers of the
Schur complements are sensitive to jumps in the first approach but not in the second approach.
Accordingly, one can indicate for the same example that the standard Poincaré–Steklov operator
is sensitive to the jumps whereas the modified Poincaré–Steklov operator is not.

Let us therefore consider the model problem of Section 4. The domain Ω is decomposed in
three subdomains Ω1, Ω2 and Ω3, such that there are common boundaries Γ1 := Ω1 ∩ Ω2 and
Γ2 := Ω2 ∩ Ω3, but Ω1 and Ω3 have no common boundary. We consider an elliptic problem,
formally as −div (w∇u) = f with u|∂Ω = 0, with weak form (4.15), where w is a weight function
on Ω such that w|Ωi

≡ wi (i = 1, 2, 3). We assume w1 ≥ w2 ≥ w3 and, varying the coefficients,
we are interested in the case w1/w2 →∞.

The standard Poincaré–Steklov operator can be extended directly to such piecewise constant
coefficient problems, such that one considers weighted normal derivatives on the interfaces with
weights wi. Considering the bilinear form for our model problem with three subdomains, the
form (5.9) is replaced by

〈R(w)γ, µ〉 = w1

∫
Ω1

∇H1γ · ∇H1µ+ w2

∫
Ω2

∇H2γ · ∇H2µ+ w3

∫
Ω3

∇H3γ · ∇H3µ . (5.16)

Factoring out w2, we see that R(w) is the constant multiple of an operator where the first term is
proportional to w1/w2 and the other two terms are bounded as w1/w2 →∞, i.e. R(w) behaves
similarly as Σ(w) in Corollary 4.1.

The modified Poincaré–Steklov operator can be extended similarly to piecewise constant
coefficient problems, using the same weighted normal derivatives as above. The bilinear form
for our model problem with three subdomains is the proper modification of (5.15):〈

P̃3(w) (u3, u3 |Γ), (ϕ, ϕ|Γ)
〉

=
∫

Ω1∪Ω2

w∇H12u3 · ∇H12 ϕ+ w3

∫
Ω3

∇u3 · ∇ϕ (5.17)

for all ϕ ∈ H1
D(Ω3) := {ϕ ∈ H1(Ω3) : ϕ|∂Ω3\Γ2

= 0} where H12u3 denotes the ”w-harmonic”
extension of u3 |Γ2

to Ω1 ∪ Ω2, that is, H12u3 = v if and only if v|Γ2
= u3 and v|∂(Ω1∪Ω2)\Γ2

= 0,
and further∫

Ω1∪Ω2

w∇v · ∇φ ≡ w1

∫
Ω1

∇v · ∇φ+ w2

∫
Ω2

∇v · ∇φ = 0 ∀φ ∈ H1
0 (Ω1 ∪ Ω2). (5.18)

Let us now consider an arbitrary test function ϕ ∈ H1
D(Ω3) as required for (5.17), and denote

by ϕ̃ an extension of ϕ to Ω such that ϕ̃|Ω1
≡ 0 and ϕ̃|∂Ω ≡ 0. Then ϕ̃ coincides with the

w-harmonic extension H12ϕ on Γ2, and also on ∂(Ω1 ∪Ω2) \ Γ2 since both vanish on the latter.
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Hence H12ϕ − ϕ̃ equals zero on the entire ∂(Ω1 ∪ Ω2), i.e. H12ϕ − ϕ̃ ∈ H1
0 (Ω1 ∪ Ω2). Setting

φ := H12ϕ− ϕ̃ in (5.18) and using ϕ̃|Ω1
≡ 0, we obtain∫

Ω1∪Ω2

w∇v · ∇H12ϕ =
∫

Ω1∪Ω2

w∇v · ∇ϕ̃ = w2

∫
Ω2

∇v · ∇ϕ̃ .

Since by definition H12u3 = v, we have just obtained an equality for the first term of (5.17).
Substituting this into the whole expression in (5.17), we obtain a form for P̃3(w) that contains
integrals only on Ω2 and Ω3 with respective weights w2 and w3:〈

P̃3(w) (u3, u3 |Γ), (ϕ, ϕ|Γ)
〉

= w2

∫
Ω2

∇v · ∇ϕ̃+ w3

∫
Ω3

∇u3 · ∇ϕ . (5.19)

To sum up, the behaviour of the Schur complements under jumps in Section 4 follows that
of their continuous analogues.

5.3 Approximate modified Poincaré–Steklov operator on a model problem

In this subsection we consider a continuous analogue of the procedure (3.5)-(3.6), and show
on a model problem that it can be carried out in a similar way as on the discrete level. This
gives an alternate illustration for the fact that the condition numbers in Theorem 2.1 are mesh
independent.

Let us consider the 3D model problem{
−∆u = f in B

u|∂B = 0
(5.20)

where B ⊂ R3 is the unit ball. Let us fix a positive integer k and numbers 0 = R0 < R1 < · · · <
Rk−1 < Rk = 1. Using notation r := |x| for the Euclidean norm of vectors x ∈ R3, we define
annular subdomains

Ωj := {x ∈ B : Rk−j < r < Rk−j+1} (i = 1, . . . , k). (5.21)

First, for simplicity, let k = 2 and R1 = 1/2. Then (3.6) becomes D2e = A2,1A
−1
11 A1,2e for

the constant vector e = (1, . . . , 1). Its continuous analogue, with the notations of subsection
5.2, is to find an operator D̂2 such that

D̂2e = Pe on Γ (5.22)

for the constant function e ≡ 1. Here Γ := {x ∈ R3 : r = 1/2}, and P is defined in (5.12) and
the procedure before that. We have

Ω1 = {x ∈ B : 1/2 < r < 1} and Ω2 = {x ∈ B : 0 < r < 1/2}, (5.23)

further, Γ1 := ∂Ω1 \Γ = ∂B and Γ2 := ∂Ω2 \Γ = ∅. Then Pe can be calculated explicitly. First,
the harmonic extension of e to Ω1 is H1e =: v, where v is the solution of

−∆ v = 0 in Ω1

v|∂B = 0
v|Γ = 1 .

(5.24)
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Here we use the form of the Laplace operator in 3D spherical coordinates, which reduces to
∆v = 1

r2
∂
∂r (r2 ∂v

∂r ) for radially symmetric functions. Then an elementary calculation yields

v(r) =
1
r
− 1

hence by (5.12) and using that now ∂
∂n = − ∂

∂r on Γ, we obtain Pe = −
(
∂v
∂r + ∂e

∂r

)
|r=1/2

= 4.
That is, Pe is constant on Γ, i.e. we can write Pe = 4e on Γ, which means that the operator
required in (5.22) can be defined as

D̂2 := 4I (5.25)

where I is the identity operator on Γ.
Our goal now is to verify a continuous analogue of condition (3.7). According to the above,

the operator 4I corresponds to D2, further, as seen before, the analogue of A22 is the operator
−∆ such that homogeneous Dirichlet boundary conditions are considered on ∂Ω2 = ∂B. Hence
the required analogue of (3.7) reads as

4I ≤ −%∆ for some % < 1/2. (5.26)

Denoting by λ1 the smallest eigenvalue of −∆ with the given boundary conditions, and taking
into account the condition % < 1/2, inequality (5.26) is equivalent to 8 < λ1. Here the eigenfunc-
tions of −∆ are the restrictions to Ω2 of the eigenfunctions on B with homogeneous Dirichlet
boundary conditions on ∂B. The first eigenfunction is the first three-dimensional Bessel function
w(r) := sinπr

πr with eigenvalue λ1 = π2 > 8, therefore (5.26) is satisfied.
Now let us consider more subdomains. Here by (5.21),

Ωk := {x ∈ B : 0 < r < R1}. (5.27)

In order to determine the operator Pk, problem (5.24) has now to be solved with Γ replaced by
Γk−1 = {x ∈ R3 : r = R1}. The solution is

v(r) =
1
r − 1
1
R1
− 1

,

hence the constant 4 in (5.25) is replaced by 1
R1(1−R1) , and accordingly, the above property

8 < π2 is replaced by condition
2 < π2R1(1−R1). (5.28)

If this holds then the operator D̂k := 1
R1(1−R1) I satisfies the required analogue of (3.7), i.e.

D̂k ≤ −%∆ for some % < 1/2. Analogous calculations can be carried out to find D̂1, . . . , D̂k−1.
Inequality (5.28) is satisfied if, up to four digits, 0.2824 < R1 < 0.7176. Concerning the

case of several subdomains, one may define Rj := ( jk )1/3 in (5.21) to have equal volume of the
subdomains for technical convenience. Then the condition 0.2824 < R1 = ( 1

k )1/3 is satisfied up
to k = 44, i.e. (5.28) is satisfied for any reasonable number of subdomains.

6 Concluding remarks; multilevel methods and parallelism

Using pure algebraic tools, condition number bounds have been established for approximate
block factorizations for matrices in block tridiagonal form. The condition number of the corre-
sponding preconditioned matrix depends linearly on the number of blocks but does not depend
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on the order of the system. An important application is for the solution of elliptic problems
where the domains have been partitioned in substructures using unidirectional stripes. For
discontinuous coefficient problems, the partitioning can often be done so that the diffusion co-
efficient is constant on each subdomain. The condition number then depends at most linearly
on the number of subdomains. The method is applicable for both 2D and 3D problems. Each
subdomain problem can be solved readily by a direct solution method or possibly by some, inner,
iterative method. It has been shown in various publications, see e.g. [7], that this influences
little the rate of convergence. The performance of the standard domain decomposition method
using iterative methods for the resulting global Schur complement matrix depends on the ratios
of diffusion coefficients, while the present method, using only local Schur complements, does not
depend on those.

Although this has not been dealt with in the paper, the proposed method can be coupled
with a multilevel approach. For the standard global Schur complement domain decomposition,
this has been considered in a number of publications, see e.g. [9, 12]. Here the local subdomain
problems are coupled with a coarse problem that, as in multigrid methods, is used to propagate
the information globally. In this way the bounds become independent of coefficient jumps
between subdomains and may grow only with the square of the number of subdivisions.

The present method can also be combined with a multilevel approach. Assuming for sim-
plicity just two levels of meshes, we order the meshpoints that are not in the coarse set first and
the matrix takes the form (

Â11 Â12

Â22 Â22

)
.

This matrix can be factorized approximately and the arising Schur complement matrix Â22 −
Â21Â

−1
11 Â12 can be preconditioned by the coarse mesh FE matrix. For the solution of the

matrix Â11, which corresponds to all meshpoints that are not in the coarse mesh, we can use
the incomplete factorization method presented in this paper. It suffices normally to make a
subdivision with few blocks. Each subdomain problem can be solved by a direct solution method
or some inner, iterative method based on another incomplete factorization method.

One advantage with domain decomposition methods is that it can have a high degree of
parallelism. As the present method makes use of a recursive computation, possible parallelism
is available only on the local subdomain level, if a proper version of incomplete factorization,
such as based on a red-black reordering of meshpoints, is used there. An additional parallelism
is achieved if the substructures are ordered from both ends of the domain, preferably both with
Dirichlet boundary conditions, to meet in the middle of the domain. This enables a two-fold
parallel implementation. For certain elasticity problems in 2D or 3D, one can use a precondi-
tioning method based on separate displacements, enabling the solution of the 2 or 3 separate
displacement problems, arising in the preconditioner, in parallel. See [4] for further details on
separate displacement preconditions.
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