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LEGENDRIAN LENS SPACE SURGERIES

HANSJÖRG GEIGES AND SINEM ONARAN

Abstract. We show that every tight contact structure on any of the lens

spaces L(ns2 − s + 1, s2) with n ≥ 2, s ≥ 1, can be obtained by a single

Legendrian surgery along a suitable Legendrian realisation of the negative
torus knot T (s,−(sn− 1)) in the tight or an overtwisted contact structure on

the 3-sphere.

1. Introduction

A knot K in the 3-sphere S3 is said to admit a lens space surgery if, for some
rational number r, the 3-manifold obtained by Dehn surgery along K with surgery
coefficient r is a lens space. In [17] L. Moser showed that all torus knots admit lens
space surgeries. More precisely, −(ab ± 1)-surgery along the negative torus knot
T (a,−b) results in the lens space L(ab± 1, a2), cf. [21]; for positive torus knots one
takes the mirror of the knot and the surgery coefficient of opposite sign, resulting
in a negatively oriented lens space. Contrary to what was conjectured by Moser,
there are surgeries along other knots that produce lens spaces. The first example
was due to J. Bailey and D. Rolfsen [1], who constructed the lens space L(23, 7) by
integral surgery along an iterated cable knot.

The question which knots admit lens space surgeries is still open and the subject
of much current research. The fundamental result in this area is due to Culler–
Gordon–Luecke–Shalen [2], proved as a corollary of their cyclic surgery theorem:
if K is not a torus knot, then at most two surgery coefficients, which must be
successive integers, can correspond to a lens space surgery. For more recent work,
relating this question to Floer theory, see [12, 14, 18, 20], for instance.

The converse question, which lens spaces can be obtained by a single surgery on
the 3-sphere, is of course trivial in the topological setting: the lens space L(p, q),
as an oriented manifold, is the result of a (−p/q)-surgery along the unknot.

In the present note we consider this converse question for contact manifolds:
which tight contact structures on a given lens space can be obtained by a single
contact (−1)-surgery (also known as Legendrian surgery) along a Legendrian knot in
S3 with some contact structure? Here the topological restrictions become relevant
in the search for contact structures on lens spaces that cannot be constructed in
this way.

J. Rasmussen proved in [20, Corollary 4] that the only integral surgery on S3

that produces the lens space L(4m+ 3, 4) is surgery along the negative torus knot
T (2,−(2m+1)) with coefficient −(4m+3). (The statement about the surgery coef-
ficient is not contained in [20], but this follows immediately from [17], because other
surgery coefficients lead to a different lens space or a Seifert manifold with three
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2 H. GEIGES AND S. ONARAN

multiple fibres.) Beware that Rasmussen uses the opposite orientation convention
for lens spaces.

Based on Rasmussen’s result, O. Plamenevskaya claimed in [19, Proposition 5.4]
that only one of the three, up to isotopy, (positive) tight contact structures on
L(7, 4) can be obtained via Legendrian surgery on some contact structure on S3.
This assertion, as we shall see, is erroneous. The main result of this note is the
following.

Theorem 1.1. For any pair of integers n ≥ 2, s ≥ 1, every tight contact structure
on the lens space L(ns2 − s+ 1, s2) can be obtained by a single Legendrian surgery
along a suitable Legendrian realisation of the negative torus knot T (s,−(sn − 1))
in some contact structure on S3.

Remark 1.2. (1) On the lens space L(ns2−s+1, s2) there are, for s ≥ 2, precisely
(s+ 1)(n− 1) distinct tight contact structures up to isotopy ; for s = 1 the number
is n − 1. (One reason why we restrict attention to these lens spaces is that the
arithmetic for determining the number of tight structures is simple.) As we shall
be realising these structures by different contact surgery diagrams, it may not seem
to be clear how to distinguish non-isotopic but diffeomorphic structures. However,
those different contact surgery diagrams will correspond to the same topological
surgery diagram, and this fixes the resulting manifold, so that the notion of isotopy
becomes meaningful.

(2) There is a more fundamental reason for considering only the lens spaces
L(ns2−s+1, s2): a major share of the tight contact structures stem from exceptional
realisations of the torus knot T (s,−(sn−1)) (i.e. as Legendrian knots L ⊂ (S3, ξot)
in an overtwisted contact structure with ξot|S3\L tight), and systematically we can
only produce them for those particular torus knots. One can expect that the lens
spaces L(ns2+s+1, s2), coming from surgery along the torus knots T (s,−(sn+1)),
may be treated in the same fashion.

(3) The maximal Thurston–Bennequin number of Legendrian realisations of the
negative torus knot T (a,−b) in the tight (S3, ξst) equals −ab, so the maximal
topological surgery coefficient for a Legendrian surgery is −(ab + 1). It seems
reasonable to conjecture that the theorem holds true for all lens spaces L(ab+1, a2).

We assume that the reader is familiar with the elements of contact topology on
the level of [7]. In particular, our argument depends on the presentation of contact
3-manifolds in terms of contact (±1)-surgery diagrams, see [4] and [7, Section 6.4].

2. Contact structures on lens spaces

As explained in the introduction, lens spaces come with a natural orientation.
When we speak of a ‘contact structure’ ξ on an oriented 3-manifold, we always
mean a positive, oriented contact structure, i.e. ξ = kerα with α ∧ dα > 0, and α
is given up to multiplication by a positive function.

The number of tight contact structures on lens spaces has been determined
independently by E. Giroux [9] and K. Honda [13].

Theorem 2.1 (Giroux, Honda). On the lens space L(p, q) with p > q > 0 and
gcd(p, q) = 1, the number of tight contact structures is given by

(a0 − 1) · · · (ak − 1),
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where the ai ≥ 2 are the terms in the negative continued fraction expansion

p

q
= a0 −

1

a1 −
1

a2 − · · · −
1
ak

=: [a0, . . . , ak].

For our family of lens spaces, this number is easy to compute.

Corollary 2.2. The number of tight contact structures on L(ns2 − s + 1, s2) is
n− 1 for s = 1, and (s+ 1)(n− 1) for s ≥ 2.

Proof. The case s = 1 is clear. For s ≥ 2, we claim that

ns2 − s+ 1
s2

= [n, s+ 2, 2, . . . , 2︸ ︷︷ ︸
s−2

].

The result then follows from Theorem 2.1.
Inductively one sees that

[2, . . . , 2︸ ︷︷ ︸
s−2

] =
s− 1
s− 2

.

Then

[n, s+ 2, 2, . . . , 2︸ ︷︷ ︸
s−2

] = n−
1

s+ 2−
1

[2, . . . , 2]

=
ns2 − s+ 1

s2
,

as was claimed. �

Our aim is to find Legendrian realisations of the torus knot T (s,−(sn − 1)) in
some contact structure on S3 such that Legendrian surgery on the knot produces a
tight contact structure on the lens space L(ns2−s+1, s2). This requires, first of all,
that the Thurston–Bennequin invariant tb of these realisations equals −s(sn− 1),
so that topologically we perform a surgery with framing −(ns2 − s+ 1). Secondly,
a necessary condition for the contact structure on the surgered manifold to be tight
is that we start with the standard tight contact structure ξst on S3, or with an
exceptional realisation of T (s,−(sn − 1)) in an overtwisted contact structure; see
Remark 1.2 (2) for the definition of exceptional Legendrian knots – these are also
referred to as nonloose Legendrian knots.

We shall be representing T (s,−(sn − 1)) as a Legendrian knot L in a contact
surgery diagram of some contact structure on S3. One will then see directly that
Legendrian surgery on this knot produces a contact surgery diagram for a tight
contact structure on L(ns2− s+ 1, s2). Thus, with hindsight the contact structure
on the complement of L was tight.

In order to distinguish the contact structures obtained in this fashion, we need
two well-known homotopical invariants of tangent 2-plane fields on 3-manifolds.
The first is the Euler class, which modulo 2-torsion detects homotopy over the
2-skeleton; the second is the so-called d3-invariant.
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Example 2.3. The Euler class suffices to settle the case s = 1 of the theorem.
In (S3, ξst) there are n − 1 Legendrian realisations of the (oriented) unknot with
tb = −n+ 1, with rotation numbers in the range

rot ∈ {−n+ 2,−n+ 4, . . . , n− 4, n− 2},
given by adding n − 2 zigzags, distributed on the left and the right, to the stan-
dard front projection picture of an unknot with tb = −1 and rot = 0. Legen-
drian surgery on these knots produces the lens space L(n, 1). The almost complex
structure on the corresponding symplectic handlebody X, which has cohomology
H2(X) ∼= Z, has first Chern class equal to rot, and by [15, Theorem 1.2], this
distinguishes the n− 1 contact structures on L(n, 1) up to isotopy.

Recall from [10, Section 4] that one can associate with any oriented tangent 2-
plane field η on a closed, orientable 3-manifold Y a homotopy invariant d3(η) ∈ Q,
provided the Euler class e(η) is a torsion class. This is the homotopy obstruction
over the 3-skeleton of Y in the sense that two such 2-plane fields that are homotopic
over the 2-skeleton are homotopic over Y if and only if they have the same d3-
invariant.

Suppose the contact manifold (Y, ξ) is given in terms of a surgery presentation
L = L+ t L− ⊂ (S3, ξst), i.e. L is a Legendrian link, and (Y, ξ) is the result of
performing contact (±1)-surgery along the components of the sublinks L±. In this
situation, the d3-invariant can be computed as follows, see [4, Corollary 3.6], where
X is the 4-dimensional handlebody determined by the surgery description, χ(X)
its Euler characteristic, and σ(X) its signature.

Proposition 2.4. Suppose that the Euler class e(ξ) is torsion, and tb(Li) 6= 0 for
each Li ∈ L+. Then

(1) d3(ξ) =
1
4
(
c2 − 3σ(X)− 2χ(X)

)
+ q,

where q denotes the number of components of L+, and c ∈ H2(X) is the cohomology
class determined by c(Σi) = rot(Li) for each Li ⊂ L.

For the computation of the rational number c2, write M for the linking matrix
of the link L, with diagonal entries given by the topological surgery framings. Let
rot be the vector of rotation numbers of the link components. Solve the linear
system Mx = rot over Q. Then c2 = xtMx.

3. The lens space L(7, 4)

In order to see where the error occurs in [19], we begin with Plamenevskaya’s
example L(7, 4), i.e. the case n = 2, s = 2. This lens space admits three tight
contact structures.

According to Rasmussen’s result cited in the introduction, the only way to obtain
L(7, 4) by an integral surgery on S3 is a (−7)-surgery along a left-handed trefoil
knot T (2,−3). We therefore need to look for Legendrian realisations of the left-
handed trefoil with tb = −6 either in (S3, ξst) or as an exceptional knot in an
overtwisted contact structure on S3.

By [6, Section 4.1], −6 is the maximal Thurston–Bennequin number for Legen-
drian realisations of the left-handed trefoil knot in (S3, ξst), and there are precisely
two realisations (as oriented Legendrian knots) with this maximal tb, distinguished
by their rotation numbers rot = ±1. They are shown in Figure 1.
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Figure 1. The left-handed trefoils in (S3, ξst) with tb = −6.

An exceptional realisation L ⊂ S3 of the left-handed trefoil is shown in Figure 2.
We shall check in a moment that tb(L) = −6; Legendrian surgery along L then
produces L(7, 4).

L

+1
+1

−1

−1

−1

Figure 2. An exceptional left-handed trefoil L with tb = −6.

The Kirby moves to verify the topological part of this statement are shown in
Figures 3 and 4. The latter shows how to separate L from the surgery link by
1 + 2 handle slides (where in the first step we slide both strands simultaneously),
turning it into a left-handed trefoil in S3. The two-component surgery link does
indeed represent the 3-sphere, since surgery along the 0-framed meridian cancels
the (−2)-surgery; for instance, one can use a slam-dunk [11, Figure 5.30].

To see that L is exceptional, observe that – by the cancellation lemma [3], cf.
[7, Proposition 6.4.5] – contact (−1)-surgery along L in Figure 2 cancels one of
the contact (+1)-surgeries. Then the remaining surgery diagram contains only
a single contact (+1)-surgery along a standard Legendrian unknot, which by [4]
produces the unique tight (and Stein fillable) contact structure on S1×S2, and the
further contact (−1)-surgeries then produce a Stein fillable and hence tight contact
structure.

On the other hand, the contact structure on S3 given by the surgery diagram in
Figure 2 (without any surgery along L) is overtwisted, since its d3-invariant is 3/2
(recall that d3(ξst) = −1/2). Indeed, the linking matrix (ordering the knots from
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−2

−3
−3

−1 0

0

−2

−2

−2 1
1

1

−2

−2

−2

−1

−2

−1

−1 +1

−2

−1
−1

+1

−2

0

+2

−2

0

Figure 3. Kirby moves for Figure 2.

bottom to top) is

M =


0 −1 −1 −1 0
−1 0 −1 −1 0
−1 −1 −3 −1 0
−1 −1 −1 −3 −1
0 0 0 −1 −2


with signature σ = −1 (instead of computing σ from the matrix one can see this
from the Kirby moves in Figure 3 by keeping track of the blow-ups and blow-
downs). Since we are adding five 2-handles to the 4-ball, the Euler characteristic
of the handlebody is χ = 6. The vector of rotation numbers is rot = (0, 0, 1, 1, 0)t,
and the solution of Mx = rot is x = (−7,−7, 3, 4,−2)t. This gives c2 = xtMx = 7,
and hence d3 = 3/2 with formula (1).

We still need to check that tb(L) = −6. For this we may use the formula from
[16, Lemma 6.6], cf. [8, Lemma 3.1] and [5]. Consider the extended linking matrix

M0 =


0 −1 −1 −1 −1 0
−1 0 −1 −1 −1 0
−1 −1 0 −1 −1 0
−1 −1 −1 −3 −1 0
−1 −1 −1 −1 −3 −1
0 0 0 0 −1 −2

 ,

which now includes L as the first link component, with the first diagonal entry set
to zero. Write tb0 for the Thurston–Bennequin invariant of L as a knot in the
unsurgered copy of S3, i.e. here tb0 = −1. Then, in the surgered manifold (which
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−2

0

−2
−2

0

0 −2

−2

0

−2

−2

2 times

−2

Figure 4. The final handle slides.

here is another copy of S3) one has

tb(L) = tb0 +
detM0

detM
= −1 +

5
−1

= −6.

Remark 3.1. Alternatively, one can determine tb(L) by keeping track of the
framing of L during the Kirby moves. Start with a Legendrian push-off L′ of L in
the original diagram, which has linking −1 with L. In the last diagram of Figure 3,
we then have linking number lk(L,L′) = 2 (as knots in the unsurgered S3). After
the handle slides in Figure 4, the parallel knot L′ will likewise pass twice through
the (−2)-box, so two strands of L′ will each receive a (−2)-twisting relative to two
strands of L, resulting in tb(L) = 2− 23 = −6.

Proposition 3.2. Legendrian surgery along the three left-handed trefoil knots in
Figures 1 and 2 produces the three tight contact structures on L(7, 4).

Remark 3.3. A word of clarification is in order. The result of a surgery along a
knot does not depend on the orientation of the knot. In what sense, then, can the
two knots in Figure 1 be said to correspond to two non-isotopic contact structures
on a given copy of the lens space L(7, 4)?

In an integral surgery diagram, read as a Kirby diagram for a 4-dimensional
handlebody X, a choice of orientation on a knot K amounts to a choice of positive
generator in the corresponding Z-summand of H2(X), represented by an oriented
Seifert surface for K glued with the core disc in the handle.

The left-handed trefoil, like all torus knots, is a reversible knot, i.e. it is isotopic to
itself with reversed orientation. This means that the two oriented knots in Figure 1
are topologically isotopic. The time-1 map of this isotopy gives us an identification
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of the two handlebodies such that either knot corresponds to the positive generator
of H2(X). It is with respect to this identification that we compare the resulting
contact structures; likewise for the contact structure coming from Figure 2.

The same comments apply to the general case discussed in the subsequent sec-
tions. In particular, once an orientation of the torus knot has been fixed, we can
use the Euler class to distinguish contact structures on the lens space resulting from
surgery, without any need to consider the action of diffeomorphisms on the second
cohomology group.

Proof of Proposition 3.2. First of all, observe that Legendrian surgery along the
examples in Figure 1 produces Stein fillable and hence tight contact structures on
L(7, 4). Tightness of the contact structure obtained by surgery along the excep-
tional left-handed trefoil in Figure 2 was explained above; this was our argument
for seeing that the Legendrian knot L is indeed exceptional.

For the examples in Figure 1 we compute d3 = −2/7 from M = (−7), χ = 2,
σ = −1, and c2 = −1/7. By [10, Proposition 2.3], the first Chern class of the Stein
surface (X, J) described by the respective diagram evaluates to rot = ±1 on the
positive generator of H2(X). The Euler class of the respective contact structure
induced on the boundary ∂X = L(7, 4) then equals ±1 ∈ H2(L(7, 4)) = Z7, so the
two contact structures are non-isotopic.

For the example in Figure 2, Legendrian surgery cancels one of the contact
(+1)-surgeries. The remaining diagram has linking matrix (ordering the knots
from bottom to top)

M =


0 −1 −1 0
−1 −3 −1 0
−1 −1 −3 −1
0 0 −1 −2


with signature σ = −2. The Euler characteristic of the handlebody is χ = 5, and
the vector of rotation numbers is rot = (0, 1, 1, 0)t. The solution of Mx = rot is
given by x = (−1, 0, 0, 0)t, hence c2 = xtMx = 0, and d3 = (0 + 6− 10)/4 + 1 = 0,
which distinguishes this contact structure from the other two. �

Remark 3.4. For Legendrian surgery diagrams of the three tight structures on
L(7, 4) involving two-component links see [19, Figure 6]. The error in [19] occurs
in the computation of the d3-invariant for the contact structure coming from the
examples in Figure 1; Plamenevskaya obtains d3 = 0 and then argues, correctly,
that the two structures with d3 = −2/7 cannot come from an exceptional trefoil.

4. The lens spaces L(4m+ 3, 4)

As a first generalisation, we now prove Theorem 1.1 for s = 2 but arbitrary n.
Here we shall distinguish the contact structures by their Euler classes. For no-
tational convenience, we set m = n − 1, so instead of L(4n − 1, 4) we consider
L(4m+ 3, 4) with m ≥ 1.

The lens space L(4m+ 3, 4) is obtained by −(4m+ 3)-surgery on the torus knot
T (2,−(2m+ 1)), so we need to find Legendrian realisations of this torus knot with
tb = −(4m+ 2).

The following result is due to Etnyre–Honda [6, Section 4.1], where the reader
can also find explicit front projection diagrams of the knots in question.
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Proposition 4.1 (Etnyre–Honda). The maximal Thurston–Bennequin invariant
of Legendrian realisations of T (2,−(2m + 1)) in (S3, ξst) is −(4m + 2). Up to
Legendrian isotopy, there are 2m realisations with this maximal tb, with rotation
number in the range

rot ∈ {−2m+ 1,−2m+ 3, . . . , 2m− 3, 2m− 1}.

Legendrian surgery on these knots yields 2m tight contact structures on the lens
space L(4m+3, 4), distinguished by their Euler class in H2(L(4m+3, 4)) = Z4m+3,
which, as above, is given by the reduction of the rotation number modulo 4m+ 3.

The remaining m tight contact structures on L(4m + 3, 4) have to come from
exceptional realisations of the torus knot T (2,−(2m + 1)) in some overtwisted
contact structure on S3.

Proposition 4.2. For (k, l) ∈ N0 × N0 with k + l = m − 1, the Legendrian knot
L shown in the contact surgery diagram of Figure 5 is an exceptional realisation of
T (2,−(2m+ 1)) in S3 with tb = −(4m+ 2).

.

.

.

.

.

.

−1

k l

−1

−1

+1
+1

L

Figure 5. Exceptional realisations of T (2,−(2m+ 1)), m = k + l + 1.

Remark 4.3. Exceptional realisations of the torus knots T (2,−(2m + 1)) have
previously been described in [16]. The Kirby moves in Figure 3 are those of [16,
Figure 18]. However, the purported exceptional realisations in [16, Figure 17] do
not actually correspond to this Kirby diagram.

Proof of Proposition 4.2. The Kirby moves in Figures 3 and 4 once again confirm
the topological part of the statement. Simply replace the (−2)-framing in the first
diagram of Figure 3 by −(m+ 1) = −n, which remains unchanged throughout the
moves, and instead of the 1 + 2 slides in Figure 4 perform 1 + n slides. Likewise,
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the argument that surgery along L in Figure 5 produces a tight contact structure
is as before.

For the computation of tb(L) in the surgered S3, observe that only the last
diagonal entry −2 in the matrices M and M0 (before Proposition 3.2) needs to be
replaced by −(m + 1). By expanding the respective determinants along the last
row, one finds that detM = −1 remains unchanged, and detM0 = −3+4(m+1) =
4m+ 1. This gives tb(L) = −(4m+ 2), as desired.

Next we compute the d3-invariant of the surgered S3. As before we have σ = −1
and χ = 6. We have

rot = (0, 0, 1, 1, l − k)t,
and the solution of Mx = rot is given by

x = (−6k − 2l − 7,−6k − 2l − 7, 3k + l + 3, 3k + l + 4,−2)t.

It follows that d3 = 2k + 3/2, so the contact structure is overtwisted, and L is
exceptional. �

The following proposition shows that Legendrian surgery along these exceptional
knots produces the required m tight structures on L(4m + 3, 4), distinct from the
2m we found previously.

Proposition 4.4. Legendrian surgery along the knot L shown in Figure 5 (for the
various choices of k, l) produces m tight contact structures on L(4m + 3, 4) with
Euler class in H2(L(4m+ 3, 4)) = Z4m+3 in the range

−2m+ 2,−2m+ 6, . . . , 2m− 6, 2m− 2 mod 4m+ 3.

Proof. We compute the Euler class of the contact structures on L(4m + 3, 4) ob-
tained via Legendrian surgery along these exceptional knots. To this end, we need
to compute the rotation number of L as a knot in the overtwisted S3 obtained by
surgery along the link in Figure 5. According to [16, Lemma 6.6], cf. [8, Lemma 3.1],
this rotation number is given by

rot(L) = rot0 − 〈rot,M−1lk〉,
where rot0 denotes the rotation number of L in the unsurgered copy of S3 (here
rot0 = 0), and lk is the vector of linking numbers of L with the components of the
surgery link. We give L the clockwise orientation in the diagram, then

lk = (−1,−1,−1,−1, 0)t

and
M−1lk = (−4m− 2,−4m− 2, 2m+ 1, 2m+ 2,−2)t.

This yields

rot(L) = −(4m+ 3) + 2(l − k) ≡ 2(l − k) mod 4m+ 3.

Hence, modulo 4m + 3, the rotation number can take on m distinct values in the
range

rot ∈ {−2m+ 2,−2m+ 6, . . . , 2m− 6, 2m− 2}. �

Here is an alternative way to compute the Euler class of the contact structure on
L(4m+ 3, 4) obtained by surgery on the link in Figure 5 (including a contact (−1)-
surgery along L), which is more direct than computing rot(L) in the surgered S3.

Write X for the 4-dimensional handlebody described by this diagram, so that
∂X = L(4m + 3, 4). The first homology group H1(∂X) = Z4m+3 is generated by
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the classes of the meridians [µL], [µ1], . . . , [µ5], and the relations are given by the
linking matrix, cf. [4]. For ease of notation, we change all signs in that matrix:

2 1 1 1 1 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 3 1 0
1 1 1 1 3 1
0 0 0 0 1 m+ 1

 ·


[µL]
[µ1]
[µ2]
[µ3]
[µ4]
[µ5]

 =


0
0
0
0
0
0

 .

This yields the relations

(4m+ 3)[µ4] = 0, −[µL] = [µ1] = [µ2] = 2[µ4], [µ3] = −[µ4], [µ5] = −4[µ4],

so that indeed H1(∂X) = Z4m+3, generated by the class [µ4]. The class [µL] can
likewise be taken as a generator, since −2(m+ 1)[µL] = (4m+ 4)[µ4] = [µ4].

Now, as discussed in [4], the Poincaré dual of the Euler class e(ξ) of the contact
structure on ∂X is given by the vector of rotation numbers of the link components,
expressed in terms of the classes of meridians, that is,

e(ξ) = [µ3] + [µ4] + (l − k)[µ5] = 2(l − k)[µL],

which confirms the calculation in the foregoing proof.

5. The lens spaces L(ns2 − s+ 1, s2)

Finally, we deal with the general case n ≥ 2, s ≥ 2 of Theorem 1.1. The relevant
result from [6] can now be phrased as follows.

Proposition 5.1 (Etnyre–Honda). The maximal Thurston–Bennequin invariant
of Legendrian realisations of T (s,−(sn− 1)) in (S3, ξst) is −s(sn− 1). Up to Le-
gendrian isotopy, there are 2(n−1) realisations with this maximal tb, with rotation
number in the range

{−(n− 1)s+ 1,−(n− 3)s± 1, . . . , (n− 3)s± 1, (n− 1)s− 1}.

As in the case s = 2, Legendrian surgery along these knots gives us 2(n − 1)
tight contact structures on L(ns2 − s + 1, s2). It remains to find (s − 1)(n − 1)
exceptional realisations of T (s,−(sn − 1)) in S3 that will gives us the remaining
tight structures on the lens space.

Proposition 5.2. For (k, l) ∈ N0 × N0 with k + l = n − 2 and (p, q) ∈ N0 × N
(sic!) with p+q = s−1, the Legendrian knot L shown in Figure 6 is an exceptional
realisation of T (s,−(sn− 1)) in S3 with tb = −s(sn− 1).

Proof. For the topological aspect of the statement, see the Kirby moves in Figure 7.
The effect of the final 1 + n handle slides is now shown in Figure 8. Before, we
explained that the cancellation of the two surgeries (after the handle slides) can
be interpreted as a slam-dunk of the 0-framed meridian, which turns the (−n)-
framed unknot into an unknot with surgery framing −n− 1/0 =∞. Alternatively,
we can actually interpret the complete move (handle slides and cancellation of the
surgeries) as a slam-dunk of the (−n)-framed meridian to the 0-framed unknot.
This turns the latter into an unknot with framing 0− 1/(−n) = 1/n, and leaves L
unchanged. The (1/n)-surgery along the unknot is equivalent to removing a tubular
neighbourhood of the unknot, twisting the neck −n times, and then regluing the
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Figure 6. Exceptional realisations of T (s,−(sn− 1)).

solid torus with the identity map. This results in the diagram on the right of
Figure 8.

The linking matrix, which we need for the computation of various invariants, is
now

M =



0 −1

s− 1︷ ︸︸ ︷
− 1 −1 . . . −1 −1 0

−1 0 −1 −1 . . . −1 −1 0
−1 −1 −3 −2 . . . −2 −1 0
−1 −1 −2 −3 . . . −2 −1 0
...

...
...

...
. . .

...
...

...
−1 −1 −2 −2 . . . −3 −1 0
−1 −1 −1 −1 · · · −1 −s− 1 −1
0 0 0 0 · · · 0 −1 −n


.

In order to verify that L is exceptional, we compute the d3-invariant of the con-
tact structure on S3 described by the surgery diagram in Figure 6. The number of
2-handles in this Kirby diagram is s+ 3, so the Euler characteristic of the handle-
body is χ = 4 + s. The signature is σ = −1− (s− 2) = 1− s since, compared with
with the diagram in Figure 5, we have s− 2 additional (−1)-framed unknots from
the blow-downs shown in Figure 7.
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Figure 7. Kirby moves for Figure 6.

The vector of rotation numbers is

rot = (0, 0, 1, . . . , 1︸ ︷︷ ︸
s−1

, q − p, l − k)t,

and the solution x of Mx = rot is given by(
−1− su,−1− su, u, . . . , u︸ ︷︷ ︸

s−1

, u+ 1,−2q
)t
,

where u := k − l + 2qn− 1. It follows that

c2 = xtMx = 4nq2 + 4q(k − l)− s+ 1,

and

d3 = nq2 + q(k − l)− 1
2
.
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−n

0
−n

Figure 8. The final handle slides as a slam-dunk.

For q ≥ 1, as assumed in the proposition, we have d3 > −1/2 = d3(ξst), so this
diagram does indeed define an overtwisted contact structure on S3.

For the computation of tb(L) in the surgered S3, one determines the deter-
minants of M and the extended matrix M0 by a simple row reduction. One finds
detM = (−1)s−1 and detM0 = (−1)s−1

(
1−s(sn−1)

)
. The formula from Section 3

then yields tb(L) = −s(sn− 1). �

Remark 5.3. Analogous to Remark 3.1, one can alternatively compute tb(L) from
the effects of the Kirby moves on the framing given by a Legendrian push-off L′

of L in the original diagram. After the moves in Figure 7, we have lk(L,L′) = s
(as knots in the unsurgered S3). After the slam-dunk in Figure 8, s strands of the
parallel knot L′ receive a (−n)-twist relative to each of the s strands of L, so we
arrive at tb(L) = s− ns2 = −s(sn− 1).

The final lemma tells us that the tight contact structures on L(ns2 − s + 1, s2)
obtained by Legendrian surgery on these (s − 1)(n − 1) Legendrian realisations of
T (s,−(sn − 1)) in S3 can be distinguished from one another – and from the ones
coming from Proposition 5.1 – by their Euler class. This completes the proof of
Theorem 1.1.

Lemma 5.4. The Euler class of the tight contact structure ξ = ξk,l,p,q on the lens
space L(ns2 − s + 1, s2) obtained by surgery on the link in Figure 6, including a
contact (−1)-surgery along L, is

e(ξ) = (p− q + 1)ns+ (l − k)s mod ns2 − s+ 1.

Remark 5.5. Notice that l − k takes values in the range

l − k ∈ {−n+ 2,−n+ 4, . . . , n− 4, n− 2};
for p− q + 1 the range is

{−s+ 2,−s+ 4, . . . , s− 4, s− 2}.
So the first summand in the expression e(k, l, p, q) for e(ξ) varies in steps of size 2ns,
whereas the second summand ranges between ±(n − 2)s. This means that there
are no duplications in this list of Euler numbers, at least before reducing modulo
ns2 − s+ 1.

In Z we have

emin := −ns2 + (n+ 2)s ≤ e(k, l, p, q) ≤ ns2 − (n+ 2)s =: emax,
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so emax − emin < 2(ns2 − s + 1). When we bring the negative e(k, l, p, q) modulo
ns2−s+1 into the range (0, ns2−s+1), they are congruent to 1 modulo s, whereas
the positive e(k, l, p, q) are divisible by s, so there are no duplications even modulo
ns2 − s+ 1. Moreover, we have

emin + ns2 − s+ 1 = (n+ 1)s+ 1 > (n− 1)s− 1

and
−(n− 1)s+ 1 + ns2 − s+ 1 = ns2 − ns+ 2 > emax,

which implies that there are also no duplications with the Euler numbers (modulo
ns2 − s+ 1) coming from Proposition 5.1.

Proof of Lemma 5.4. We label the meridional classes corresponding to the knots in
Figure 6 from bottom to top as

[µL], [µ1], [µ2], [ν1], . . . , [νs−1], [αs], [βn].

We then compute the relations between these generators from the matrix M as in
Section 4, to obtain

[µ1] = −[µL], [µ2] = −[µL], [ν1] = . . . = [νs−1] = (1− ns)[µL],

[αs] = −ns[µL], [βn] = s[µL], (ns2 − s+ 1)[µL] = 0.
From the vector rot we then compute

e(ξ) = [ν1] + · · ·+ [νs−1] + (q − p)[αs] + (l − k)[βn]
=

(
(p− q + 1)ns+ (l − k)s

)
[µL],

as claimed. �

Remark 5.6. In the proofs of Propositions 4.2 and 5.2 we used the d3-invariant
to show that L lives in an overtwisted contact structure on S3, and hence L is
exceptional, since Legendrian surgery along L produces a tight contact structure.
The information that L is exceptional was not actually necessary for proving The-
orem 1.1. Rather, the converse is true: the fact that the resulting tight contact
structure on L(ns2 − s+ 1, s2) is different from any structure obtained from a Le-
gendrian realisation of T (s,−(sn− 1)) in (S3, ξst) gives an alternative criterion for
establishing the exceptional character of L.

Acknowledgements. The research for this paper was done during an enjoyable
Research in Pairs stay at the Mathematisches Forschungsinstitut Oberwolfach, 27
March – 9 April 2016. We thank the Forschungsinstitut for its support, and its
efficient and friendly staff for creating, once again, an inspiring environment.

S.O. is partially supported by the grants HÜBAP FBB-2016-9429 and TÜBİTAK
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