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Abstract Letwg(t) =t%e!, a > —1, be the Laguerre weight function, ajid|w,
denote the associatéd-norm, i.e.,

1l = ('/(;mwa(t)|f(t)|2dt)l/2.

Denote by, the set of algebraic polynomials of degree not exceediige study
the best constam},(a) in the Markov inequality in this norm,

1P llwe < Cn(@) [[Pllwe»  PE P,

namely the constant
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Cn(a) = Suip )
peEZn ”p”Wa
p#0

and we are also interested in its asymptotic value
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In this paper we obtain lower and upper bounds for lmaflar) andc(a).

Note that according to a result of P. Dorfler from 200@y) = [j(o,,l)/z’l]*l, with
jv.1 being the first positive zero of the Bessel functiiz), hence our bounds for
c(a) imply bounds forj 1)/ 1 as well.

1 Introduction and Statement of the Results

The Markov inequality (or, to be more precise, the inequatit the brothers
Markov) has proven to be one of the most important polynoimedjualities, with
numerous applications in approximation theory, numesaalysis, and many other
branches of mathematics. In its classical variant it readsliows:

The inequality of the brothers Markov. If p € &, then for k=1,...,n,
1p%) < T8 @)1l

The equality is attained if and only if $ cT,, where T is the n-th Chebyshev
polynomial of the first kind, oTx) = cosnarccox, x € [—1,1].

Here, &, is the set of algebraic polynomials of degree not exceediagd || - ||
is the uniform norm in[—1,1], || || := sup{|f(X)| : x € [-1,1]}.

Proved fork = 1 in 1889 by Andrey Markov [14], and fdt > 1, in 1892, by
his kid brother, Vladimir Markov [15], throughout the yedriarkov inequality has
got many alternative proofs and various generalizations.tRe intriguing story
of Markov’s inequality in the uniform norm, and twelve of psoofs, we refer the
reader to the survey paper [27]. Another survey on the stisj§2]. For some recent
developments, see [3, 17, 18, 20, 21, 22, 23, 24].

Generally, Markov-type inequalities provide upper boufatsa certain norm
of a derivative of an algebraic polynomiple &7, in terms of some (usually the
same) norm of. Our subject here is Markov-type inequalitiedistnorms for the
first derivative of an algebraic polynomial. For a weightdtianw on the finite or
infinite interval (a,b) with all moments finite, let| - || be the associatdd-norm,

Il ([ woltoPa)

and letcy(w) be the best (i.e., the smallest) constant inlth&arkov inequality

1P lw < ca(W) [[Pllw,  PE Pn.

This constant possesses a simple characterization: i¢ itbest singular value of
a certain matrix, see, e.g., [7] or [16], however the exatitasmof the best Markov
constants are generally unknown even in the cases of the@hweight functions

of Laguerre and Jacobi, and, in particular, of Gegenbauer.
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The Hermite weight wy (t) = e*tz,t € R. This is the only case where both the
sharp Markov constant and the extremal polynomial are kndlamely, in this case
the sharp Markov constantég(wy ) = v/2n, and the unique (up to a constant factor)
extremal polynomial is the-th Hermite polynomiaHn(t) = (—1)"é2(%)ne*t2.
The extremality oH,, persists in thé, Markov inequalities for higher order deriva-
tives,

k
1™ gy < 8 (W) [ Pllwyg s k=1,....,

. . ) Kk o \Y2
with the sharp Markov constants given h@ (W) = (2 W) . The reason

for this case to be trivial comes from the fact that the déirres of Hermite’s poly-
nomials are Hermite’s polynomials of lower degrees [28,[h3], and as a result,
the sharp Markov constant is simply the largest entry in gafial matrix.

The Gegenbauer weightw (t) = (1-t?)* %2, A > —1/2 t € [-1,1]. Neither
the sharp Markov constant nor the extremal polynomial amkrmexplicitly in that
case. FoA = 1/2 (a constant weight function) E. Schmidt [25] found tightrestes
for the Markov constant, which in a slightly weaker form Idide

1 2 1 2

7T(n+3/2) < Cn(Wyyp) < n(n+2) , n>>5.
Recently, A. Kro0 [13] turned back to this case, identitym (wy2) as the largest
positive root of a polynomial of degre®e This polynomial was found explicitly (to
some extent) by Krod.

Nikolov [19] studied two further special casgs= 0 andA = 1; in particular,

he obtained the following two-sided estimates for the cgromding best Markov
constants:

0.4721357 < cy(Wp) < 0.478849n +2)?,
0.24854%? < ¢y(wy) < 0.256861(n+3)2.

In [1] we obtained an upper bound faf(w, ), which is valid for allA > —1/2:

(n+1)(n+2A+1)
2V22 +1 ’

however it seems that the correct order with respedt should beO(1/A). Also,
it has been shown in [1] that the extremal polynomial in theMarkov inequality
associated withw, , is even or odd when is even or odd, accordingly (for > 0
this result was established, by a different argument, if)[19

The Laguerre weight wy (t) =t% !, t € (0,%), a > —1. In the present paper
we study the best constant in the Markov inequality for th&t fiterivative of an
algebraic polynomial in the,-norm, induced by the Laguerre weight function. We
denote this norm by} - ||w,

Il = ([ oot Per) ™ @

Cn(W)\ ) <
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Further, we denote bg,(a) the best constant in the Markov inequality in this
norm, /
Cn(a) = sup H p ”Wa

pezn ||Pllwg
p#0

Before formulating our results, let us give a brief accoumtite known results

on the Markov inequality in the,; norm induced by the Laguerre weight function.
P. Turan [29] found the sharp Markov constant in the @ase0, namely,

(@)

tn(0) = (2sin 4n’i 2)71. (3)

In 1991, Dorfler [8] proved the inequalities

n2
(a+1)(a+3)

< [en(@)]? < ;g;%g ()

(the first one in a somewhat stronger form), and in 2002 hedd@hthe sharp
asymptotic ofcn (o), namely,

qa)=fmS@__ 1 (5)
n—e N J(@-1)/21

wherejy 1 is the first positive zero of the Bessel functidy({z) .

In a series of recent papers [4, 5, 6] A. Bottcher and P. Bostudied the asymp-
totic values of the best constantslip Markov-type inequalities of a rather general
form, namely 1) they include estimates for higher ordenddiies and 2) different
L,-norms of Laguerre or Jacobi type are applied to the polyabanid its deriva-
tives (i.e. at the two sides of their Markov inequalities).

Precisely, they proved that those asymptotic values araléguhe norms of
certain \olterra operators. It seems, however, that fintieghorms of these related
\olterra operators explicitly is equally difficult task. & provide also some upper
and lower bounds for the asymptotic values, but they do ndtimighey are similar
to those given in (4)).

Our main goal is upper and lower bounds for the Markov constgm ) which
are valid for alln anda.

In this paper we prove the following.

Theorem 1.For all o > —1 and ne N, n> 3, the best constant,¢a) in the
Markov inequality

1P llwe < n(a@)]Pllwg » peE P
admits the estimates

2(n+%) (n- %%
(@+1)(a+5)

< [cn(a)}2< (n+1)(n+%) .
(a+1)((a+3)(a+5))3

)
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where for the left-hand inequality it is additionally assesrthat n> (o + 1) /6.
Forn=1, 2, the exact values are readily computable:

1 3(a+2)++/(a+2)(a+10)

2 2
) =15 [ea@)’= 2(a+1)(a+2)

Compared to Dorfler’s result (4), we improve the lower bodiadc,(a) by the
factor of v/2, and obtain for the upper bound the ord@fn/a®®) instead of
Oo(n/al/?).

As an immediate consequence of Theorem 1 we obtain the fiolgpw
Corollary 1. The asymptotic Markov constar(d) = limp_,.{n"1c,(a)} satisfies
the inequalities

V2 1

olar) = Va+1)(a+5) < ela) < Va+1¥(a+3)(a+5)

@rD)(ars =ca). (©)

Let us comment now on the bounds o) given by Corollary 1. First of all,

. T(a)
oM ) L

a>-1 —

3

which indicates that for smadl our bounds are pretty tight. In particular, in the case
a =0, when we have(0) = 2/ (see (3)), the relative errors satisfy

€0 _ VIO “0)__n
O = < 1.006585 o )= Z{VE<1'000242

Second, Corollary 1 gives rise to the question: what is thbtrorder ofa in
c(a) asa — o ? The answer follows below:

Theorem 2. For the asymptotic Markov constante) we have ¢a) = O(a~1) as
a — co. More precisely, (o) satisfies the inequalities

—\/é cla 72
T Y iz

a>1. (7
Proof. The lower bound forc(a) is simplyc(a) (in fact, the left-hand inequality

in (7) holds for alla > —1). For the right-hand inequality in (7), we recall that,
by Dorfler's result (5).c(a) = [j(a-1)/2.1] ~1 with jv.1 being the first positive zero
of the Bessel functiod, (z) . On using some lower bounds for the zeros of Bessel
functions, obtained by Ifantis and Siafarikas [11] (see Edh. (1.6)]), we get

1 2
- < , a>1.
J(a-1)/2,1 a+2m-2

The inequalities in (7) imply that(a) = O(a~!) asa — . O
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Notice that the lower bounel{ o) has the right order with respectéoasa — co.

Moreover, from (7) it follows that, roughly, this lower bodican only be improved
by a factor of at most/2.

r (o)
2.0F

1.8f

161

1.2F

100 200 300 400 500

Fig. 1 The graph of the ratio(a) = %.

The upper boun@(a) does not exhibit the right asymptotic ofa) asa —
. Nevertheless;(a) is less than the upper bound in (7) forc [2.04547.762.
Moreover, the ratio(a) =t(a)/c(a) tends to infinity asxr — o rather slowly; for
instancey(a) is less than two for1 < a < 500 (see Fig. 1).

Finally, in view of (5), Corollary 1 provides bounds f¢y 1, the first positive
zero of the Bessel functiod,, which, for some particular values of are better
than some of the bounds known in the literature (e.g., theetdvound below is
better than the one given in [10, egn. (1.6)] foe [0.53,23.39)).

Corollary 2. The first positive zero,j; of the Bessel function,Jv > —1, satisfies
the inequalities

22V 1Y/ (v+2)(V+3) < ju1 < 2+ 1) (v+3).

The rest of the paper is organized as follows. In Sect. 2 wegmtesome prelim-
inary facts, which are needed for the proof of Theorem 1. Ict.S21 we quote a
known relation between the best Markov constayiitr) and the smallest (positive)
zero of a polynomiaQn(x) = Qn(x, a) of degreen, defined by a three-term recur-
rent relation. By this definitionQ, is identified as an orthogonal polynomial with
respect to a measure supportedfon In Sect. 2.2 we give lower and upper bounds
for the largest zero of a polynomial, which has only positieeos, in terms of a few
of its highest degree coefficients. In Sect. 3 we prove foamdibr the four lowest
degree coefficients of the polynomi@}. The proof of our main result, Theorem 1,
is given in Sect. 4. As the proof involves some lengthy tougaightforward cal-
culations, for performing part of them we have used the &s®ie of a computer
algebra system. Section 5 contains some final remarks.
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2 Preliminaries

In this section we quote some known facts, and prove sométsashich will be
needed for the proof of Theorem 1.

2.1 A Relation Between c,(a) and an Orthogonal Polynomial

As was already said in the introduction, the best constaat.inMarkov inequality

for polynomials of degree not exceedings equal to the largest singular value of
a certainn x n matrix, sayAp. The latter is equal to a square root of the largest
eigenvalue oA A, (or ||An]|2, the second matrix norm ). However, finding
explicitly ||An||2 (and for alin € N) is a fairly difficult task, and this explains the lack
of many results on the sharp constants inlthéarkov inequalities. To avoid this
difficulty, some authors simply try to estimaffé||», or use other matrix norms,
e.d.,||An||~, the Frobenius norm, etc.

Our approach to the proof of Theorem 1 makes use of the fatigtieorem:

Theorem 3 ([9, p. 85]).The quantityl/[cn(a)]? is equal to the smallest zero of the
polynomial Q(x) = Qn(x, a), which is defined recursively by
Qnt1(X) = (X—0n)Qn(X) —
Q*l(x) = Oa QO(X) =1,

a
do=14+a, dyi=2+—
0 + 9 n +n+1a

Ao > 0 arbitrary A2 := 1+% n>1.

A2Qn 1(X), Nn>0;

n>1,;

[ee]

By Favard’s theorem, for ang > —1, {Qn(X,a)};_, form a system of monic
orthogonal polynomials, and, in addition, we know that thpport of their ortogo-
nality measure is ifR ... Theorem 3 transforms the problem of finding or estimating
cn(0r) to a problem for finding or estimating the extreme zeros diagbnal poly-
nomials, or, equivalently, the extreme eigenvalues ofaietri-diagonal (Jacobi)
matrices. For the latter problem one can apply numerous olveethods such as
the Gershgorin circles, the ovals of Cassini, etc. For metail$ on this kind of
methods we refer the reader to the excellent paper of vanrij86i.

However, we choose here a different approach for estim#ttemgmallest positive
zero of Qn(X, a), which seems to be efficient, too.
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2.2 Boundsfor the Largest Zero of a Polynomial Having Only
Positive Roots

In view of Theorem 3, we need to estimate the smallest (pegigero of the poly-
nomial Qn(x, a). On using the three-term recurrence relation{iQm}_q, We can
evaluate (at least theoretically) as many coefficient®qik) as we wish (and thus
coefficients of the reciprocal polynomidl Qq(x 1), too). Our proof of Theorem 1
makes use of the following statement.

Proposition 1. Let P(x) = X" — by X" 1 4 bpx"2 — ... + (=1)" by _1x+ (—=1)"by,
be a polynomial with positive roots X x; < --- < X, . Then the largest zerq,f
P satisfies the inequalities:

() 2 <x<by;
(i) by-222 <o < (B - 20r)3;
1
b§—3b1b2+3b3

< ¥ < (b3 —3byby+b3)3 .
b%—sz > An (1 102 + 3)

(iii)
Proof. Part (i) follows trivially from

b1 Xi+X+-+Xn
n

<Xn < Xp+Xo+ -+ X =Dby.

For the proof of parts (ii) and (iii) we make use of Newton'siitities to obtain
XX+ +xe=bf—2b), G+ +--+x = Db} —3byby + 3bs.

Now (ii) follows from

b?—2b, X2+x3+---
b1 X+ X+

+X2 1 1
+X” <X < (X34 +x2)2 = (b7 —2by)?2
n

and (iii) follows from

b —3b1bp+3bs 3+ +53 L 3
1 b2i22b2 3:x5+...+x2SXn<(X§+---+Xﬁ)%=(b§—3b1b2+3b3)%.
1 1 n

It is clear from the proof that the lower bounds fgr are attained only when
X1=Xp=--=X,. 0O
3 The Lowest Degree Coefficients of the Polynomi&y, o

Let us denote by, = axn(a), k=0,...,n, the coefficients of the monic polyno-
mial Qn(X) = Qn(X, a), introduced in Theorem 3, i.e.,
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Qn(X) = Qn(x, &) =X"+an_1nX" 24+ agnX+ agnX® +an X+ agn.
For the sake of convenience, we 8gfn =1, m> 0, and
am=0, if k<0 or k>m.
From the recursive definition @, we haveQp(x) =1, Q1(X) =x—a — 1, thus
a1=—-0a-1,

and forn € N we obtain a recurrence relations for the coefficient®gf,, Qn and

Qni1:

A n+1 = A—1,n— (2+ ni—i-l) An— (1+%)ak,n—17 k=0,...,n. 8)

Now recurrence relation (8) will be used to prove conseeliformulae for the
coefficientsayn, 0 <k < 3.

Proposition 2. For all n € Ny, the coefficient g, of the polynomial Q is given by

aon=(—1)" i!j (1+ %) }

Proof. We apply induction with respect ta Sinceago = 1 andag; = —(1+ a),
Proposition 2 is true fon = 0 andn = 1. Fork = 0 the recurrence relation (8)
becomes

a a
(e (e D, e
aon+1 ( +n+1 aon +n an-1, heN

Assuming Proposition 2 is true fon < n, for m= n+ 1 we obtain

n n-1

aon1 = —(2+ #1) (—1)" le<1+ %) ~(1+ %) (—1>”*1k|:|1 (1+ %)
n n+1 a
= (-1 +lk|:|1(1+F),

hence the induction step is done, and Proposition 2 is provad

Before proceeding with the proof of the formulae fgf,, 1 <k < 3, let us point
out to the relation
a

ao,m+1:—(1+m—H)ao,m, me Np, )

which follows from Proposition 2, and will be used in the probthe next proposi-
tions.
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Proposition 3. For all n € Ny, the coefficient @, of the polynomial Q is given by

a n(n+1)
L= "ot 1) o

Proof. Again, we apply induction on. Proposition 3 is true fon= 0 andn= 1.
Indeed, by our conventiom; o = 0, andas 1 = 1 also obeys the desired representa-
tion, asag; = —(1+ a) . Assume that Proposition 3 is true for< n, me N. From
the recurrence relation (8) (witk= 1), the induction hypothesis and (9) we obtain

81n+1=80n— (2+ %1) ain— (l—i— %) ain-1
a \ nin+1) ay (n—1)n
= aO,n+ (2+ n——H.) 2(a+1) aO,n+ (1"’ ﬁ) m aO,n—l
_ a \nn+1) (n—1)n
=agn [1+ (2+ n+1) P T 2(a+1)}
_ _on _ (N+2)(n+a+1)
= 5@t [P+ (a+3)n+2(a+1)] =aon )
_ (n+1)(n+2) a ~ (n+1)(n+2)
- 2(a+1) (1+n+1) fon= "oy ANt

Hence, the induction step is done, and the proof of Proposgiis complete. O
Proposition 4. For all n € Ny, the coefficient &, of the polynomial Q is given by

(n—1)n(n+1)
24a+1)(a+2)(a+3)

an= [3(ar+2)n+2(a+6)] aon.

Proof. The claim is true fom = 0, 1 (according to our convention), and also for
n=2, as in this case, taking into account tlagb = 1/((1+ a)(1+a/2)), the
above formula produces » = 1. Assume now that the proposition is true fior< n,
wheren € N, n > 2. We shall prove that it is true fon= n+ 1, too, thus proving
Proposition 4 by induction. On using the recurrence retafR) (with k = 2), the
inductional hypothesis, Proposition 3 and (9) we obtain

Any1=8a1n— (2+ ni—i—l) an— (1+ %) an-1
nin+1) a \ (n=1)n(n+1)[3(a+2)n+2(a+6)]
2(a+1) n+ 1) 24a+1)(a+2)(a+3)
(n—2)(n—1)n[3(a+2)(n—1)+2(a+6)]

24(a+1)(a+2)(a+3)

agn— (2+

,n

n
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~n(n+1) | n+1 ,, @ ("*—1)[3(a+2)n+2(a +6)]
Thratl 2(a+1)+( +n+1) 24(a+1)(a+2)(a+3)
(n—=2)(n—1)[3(a+2)(n—1)+2(a+6)]

- 24(a + 1)(a +2)(a +3) on+1-

After some calculations the expression in the big bracketplffies to

(n+2)(n+a+1)[(3(a+2)(n+1)+2(a+6)]
24(a+1)(a+2)(a+3) '

and substitution of this expression yields the desired tdarfor az ;1. The induc-
tion proof of Proposition 4 is complete O

Proposition 5. For all n € Ny, the coefficient g, of the polynomial Q is given by
the expression
(n—2)(n—1)n(n+1) [5(a+2)(a+4)n(n+1)+8(7a+20)n+12(a+20)]
240(a + 1)(a + 2)(a + 3)(a + 4)(a + 5) &

Proof. Again, induction is applied with respect o The formula foraz, is easily
verified to be true for & n < 3. Then, assuming that this formula is true fo n,
wheren € N, n > 3, we prove that it is true also fon = n+ 1, too. The induction
step is performed along the same lines as the one in the pirlBobposition 4. First,
we make use of the recurrence relation (8) vkith 3 to expressiz n41 as a linear
combination ofay , a3 n andagn—1. Next, we apply the inductional hypothesis and
(9) to represerdiz 41 in the form

—(n—1)n(n+1) r(n)
240a+1)(a+2)(a+3)(a+4)(a+5 n+a+1

azn+l = aoni1,

wherer(n) =r(n,a) is a polynomial of 4-th degree. With some lengthy though
straightforward calculation (we used a computer algebognam for verification)
we obtain that

r(n)=(n+2)(n+a-+1) [5(a+2)(a+4)(n+1)(n+2)+8(7a+20) (n+1)+12(a+20) |

and this expression substituted in the above formula impkie desired representa-
tion of ag n1. To keep the paper condensed, we omit the details.

4 Proof of Theorem 1

For the proof of Theorem 1 we prefer to work with the (constawidtiplier of)
reciprocal polynomial 06,

Pr(X) =Ph(x,a) = (—=1)" (ao’n)flx”Qn(xfl) .
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Clearly, P, is a monic polynomial of degre®g

Pa(X) = X" — by X" X2 — X3 4.
and, in view of Propositions 2-5, its coefficiebts b, andbs are

n(n+1) (n—1)n(n+1)
YT 2a+1) 2T 24(a+1)(a+2)(a+3)
(n—2)(n—1)n(n+1) [5(a+2)(a+4)n(n+1)+8(7a+20)n+12(a+20)]
240(a +1)(a+2)(a+3)(a+4)(a+5) '

[3(a+2)n+2(a+6)],

bs =

As was indicated in Sect. 2.Qn(x, a) is identified an orthogonal polynomial
with positive and distinct zeros. Therefore, the same casaikfor the zeros of,
(as reciprocal of)y). If x, is the largest zero d®,, then, according to Theorem 3,

we have[cy(a)] L~
Now Proposition 1 (iii) applied t® = B, yields immediately the following

Proposition 6. For all n € N, n> 3, the best Markov constan}@) satisfies

b? —3by by +3b3

7o < [ca(a)]? < (3 — 30y by + 3bg) 3
7_

with by, by and by as given above.

The estimates fot,(a)| in Theorem 1 are a consequence of Proposition 6. For
the proof of the lower bound, we obtain that

b3 — 3b; by 4 3bz — n+

CEICESL A
1 5
~ @ @ 2@ @ Aars &N

20{)(n o+1

=== ) (b~ 2by)

with
Ki(a) = ;0(1+ a)2(10a® +100a? + 321a + 1620),
Ko(ar) = 316 (1+a)(4a*+ 3503+ 166a° +417a + 660),
K3(a) = 514 (4a°+36a*+192a° + 62502+ 1527a + 1332,
Ka(a) = 25 (a*— a®+157a2 4 579a + 780),
Ks(a) = 30( 34+ 7a?%+136a +280).

Obviously, kj(a) > 0 for a > —1, 1< j <5, and hence the lower bound holds:
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2 b? —3b1 by +3bs 2 20 a+1
(o(@)]"> b —2b, ><a+3>(a+5)(”+?)(”‘T)

For the proof of the upper bound fof(a) in Theorem 1, we find that

1 20@+1)\3 3
1)3(n+ =——"=) — (b3—3b;b,+3b
@r13a+3a+s T (=) bz +303)
1 > J-
(a+1)2(a+2)(a+3)(a+4)(a+5) J; i(@)
where
vo(a) = 8 (1+a)’2+a)(4+a);
0 125 ’
vi(a) = 2i0(1+a)(16013+1520{2+4390{—52)
vo(a) = 500(960{ 4+ 1363a° 4 565602+ 9167a + 2828),
va(a) = 250(160{ +363a° 4 250602 + 7167a 4 4708,
va(a) = — (230> +446a° + 1657a + 2164,

100
3
vs(a) = 3 (50 +16).

We shall show now that

5 .
zovj(a)nlzo, n>2, a>-1. (10)
i=

Notice that, unlike the case with the coefficiets; (o) ?:1, which are all pos-
itive for all admissible values ofr, i.e., a > —1, here the coefficients;(a),
1 < j <3, assume negative values for somes (—1,0) (vi(a) is negative also
for somea > 0).

Sincevys(a) and vs(a) are positive fora > —1, for n > 2 we have

25 vi(a)n > (4vs(a)+2va(a) + va(a))n® =: V3(a) nd,
i=
where

vs(a) = 125(8(1 423903+ 236802 + 92260 + 12564

Sincevs(a) > 0 for a > —1, we have
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where

32a* 4 655a° + 492002 + 16595 + 20668 .

U2(0) = e

Now, from v,(a) > 0 for o > —1, we obtain

i vi(a)n > (2Vx(a) +vi(a))n=:Vi(a)n, n>2,
=1

with

N 1
vi(a) = ﬁ)(1600:4+ 332303+ 2505602 + 842920 +103184 >0, a > —1.

Hence,zﬁ-_’:ovj(a)nj > vi(a)n+vo(a) > 0, and (10) is proved. From (10) we
conclude that

1
(a+1)3(a+3)(a+5)

3
2(0'; 1)) > b3 — 30y by + 3bs,

(n+ 1)3(n+
In view of Proposition 6, the latter inequality proves thepapbound forcy(a) in
Theorem 1.

5 Concluding Remarks

1. Our main concern here is the major terms in the bounds for és¢ Markov
constantcy(a), obtained through Proposition 1. We did not care much abwait t
lower degree terms, where perhaps some improvement iymssi

2.Obviously, Dorfler's upper bound fap(a) in (4) is a consequence of Proposition
1 (i). Dorfler’s lower bound forc,(a) in [8], which is slightly better than the one

given in (4), is obtained from Proposition 1 (ii). Both ounler and upper bounds

for the asymptotic constam{ o), given in Corollary 1, are superior for afl > —1

to Dorfler's bounds obtained from (4) .

3. The upper bounds for the largest zegpof a polynomial having only real and
positive zeros in Proposition 1 (ii) and (i) admit some imgement. For instance,
in Proposition 1 (ii) one can apply the quadratic mean — arétic mean inequality
to obtain

(E‘r:ll'Xi')z o2 (b—%)?

n-1
b? — 2by = x2 X > %2 X
1 2 n+i;|— nt n—1 = n n—1 _°
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which yields a (slightly stronger) quadratic inequality fg (actually, for any of the
zeros of the polynomidp),

nxX¢ — 2by Xy + 2(n— 1)by — (n—2)b? < 0.

The solution of the latter inequality,

%[bl—\/(n—l)Zbg—z(n—l)nbz} <X < %[bl—f— \/(n—1)2b§—2(n—1)nb2} ,

provides lower and upper bounds for the zeros of an arbiteslyroot monic poly-

nomial of degrea in terms of its two leading coefficientsg andb,. This result, due

to Laguerre, is known also as Laguerre-Samuelson ineg{&dit more details, see
e.g. [12] and the references therein).

In a similar way one can obtain a slight improvement for theargoound in
Proposition 1 (iii). However, in our case this improvemennegligible (it affects
only the lower degree terms in the upper bounddgn)).
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