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NONCOMMUTATIVE TOPOLOGICAL ENTROPY OF
ENDOMORPHISMS OF CUNTZ ALGEBRAS

ADAM SKALSKI AND JOACHIM ZACHARIAS

ABSTRACT. Noncommutative topological entropy estimates are obtained for
‘finite range’ endomorphisms of Cuntz algebras, generalising known results for
the canonical shift endomorphisms. Exact values are computed for a class of
polynomial endomorphisms related to branching function systems introduced
and studied by Bratteli, Jorgensen and Kawamura.

The notion of noncommutative topological entropy for an automorphism of a
C*-algebra was introduced by D. Voiculescu in [Vo] (we refer to the book [NS] for
extensive discussion and many examples). In [BG] F. Boca and P. Goldstein showed
that the noncommutative topological entropy of the canonical shift endomorphism
of the Cuntz algebra Oy is equal to log N. Their methods have been extended
in [SZ] to determine the values of noncommutative entropy and pressure for the
multidimensional shifts on C*-algebras associated with higher-rank graphs. In both
of these papers explicit descriptions of the shift endomorphisms were used.

Endomorphisms of Cuntz algebras are known to be in bijective correspondence
with unitaries in the algebra ([Cu]). A particularly interesting class is formed by
those which leave the UHF-subalgebra of Oy invariant. Besides the canonical shift
this class contains recently introduced and intensively studied in [BJ] and [Ka]
permutative polynomial endomorphisms, induced by ‘permutation unitaries’ in Oy .
We refer to the references above for description of the connections with branching
function systems and permutative representations of Oy .

In the first part of this paper we adapt the arguments from [BG] and [SZ] to give
an upper bound of the topological entropy of polynomial endomorphisms leaving
the UHF subalgebra invariant. We note also in passing that the same methods
apply to ‘finite-range’ endomorphisms of Cuntz-Krieger algebras, graph and even
higher-rank graph C*-algebras.

In the second part we obtain exact values of the entropy for all polynomial en-
domorphisms of Oz coming from permutations of rank 2 (fully classified in [Kal).
They all leave the canonical maximal abelian subalgebra Cy of Oy invariant, but
contrary to the case of the shift endomorphism it may happen that the entropy of
the endomorphism is greater than the entropy of its restriction to Cs. In general
there are only few known examples of C*-dynamical systems for which the non-
commutative topological entropy is strictly greater than the supremum of entropies
over all classical (commutative) subsystems. It can be deduced from the results
of Chapter 12 in [NS] that a natural shift on a C*-algebra of a bitstream has this
property for a big class of bitstreams.

Permanent address of the first named author: Department of Mathematics, University of L6dZ,
ul. Banacha 22, 90-238 Lé6dz, Poland.
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Considerations above lead to the following question: is the entropy of an arbi-

trary endomorphism of Oy leaving Fy invariant always equal to the entropy of its
restriction to Fn? We conjecture that the answer is yes, but were unable to prove
it.
Acknowledgement. This research was done at the Mathematisches Forschungsin-
stitut Oberwolfach during a stay within the Research in Pairs Programme from
April 6 to April 19, 2008. The generous support of the Institute is gratefully ac-
knowledged.

1. BASICS ON ENDOMORPHISMS OF CUNTZ ALGEBRAS

Fix N € N. For k € N the set of multindices of length k with valuesin {1,..., N}
will be denoted by Ji, so that Jx = {1,..., N}¥; we write Jo = {0} and J =
UkeN, Jk- Sometimes we will also use letters p, v for multiindices. The canonical
generators for Oy will be denoted by s; (i =1,...,N). For J € Ji, J = (j1,---,Jk)
we write sy = sj, ---s;, (and sp := 1). The standard UHF subalgebra of Ox
generated by {s;s% : k € N,I,J € J} will be denoted by Fy and the standard
masa (maximal abelian subalgebra) generated by {s;s} :J € J} by Cn.

Besides the standard masa Cn we will consider some other masas in Fpn. Recall
that a masa D in Fp is called canonical if it is of the form ®fi1 C; where each C;
is a masa in M,,. Any two canonical masas are approximately unitarily equivalent
but will be conjugate only in exceptional cases. Special canonical masas are of the
type C = ®;’il C; where C; = C; for all 4,5 € N. It is not hard to see that each
such C is isomorphic to the algebra of continuous functions on the standard full
subshift on N letters (further denoted by €), the canonical shift endomorphism 6
leaves C invariant, the restriction is induced by the classical shift transformation
(on (€) and thus the entropy of the restriction is equal log N.

It is known ([Cu]) that there is a bijective correspondence between endomor-
phisms of the Cuntz algebra Oy and unitaries in Oy. Given a unitary u € Oy the
corresponding endomorphism p,, is given by continuous *-preserving multiplicative
linear extension of the formula:

pu(si) =us;, i=1,...,N.

A description of the action of p, on higher monomials can be given as follows: if
p € N and we write

(1.1) up = ub(u) ... 00 (u)

(where 6 is the canonical shift endomorphism), then p,(sp) = u,sp for all P € J,.
If x € Fy then p,(x) = lim; oo w;zul; it is also known that p,, preserves Fy if and
only if u € Fy ([Cu]). It follows that T oEo p, = 7 o E where E the conditional on
Fn and 7 the unique trace on it, provided u € Fy.

We need to introduce some more notations. Put (p,! € Np)

(1.2) Api={spsi :Pe J,,Le T}
Recall that Up’leNO Ap is total in Op; write also
(13) FpJ = LinApJ.

Let also ¥y denote the canonical embedding of Oy into Myt ® On:

Ui(X)= Y exm ®@siXsu, X €O,
K,MeJy
2



where ex s denote the matrix units in My«.

The following lemma is very elementary, but also crucial for what follows. It
shows that neither in Lemma 2 of [BG] nor in Lemma 2.2 of [SZ] was it essential
that one dealt with the shift-type transformations.

Lemma 1.1. Let k,p,l € N, k > max{p,l}. Suppose that X € F,;. If p>1 then
(1.4) Up(X)= Y Ty®sy,
JeTp—1
where | Ty|| < || X|| for each Ty € Mywx; if p <l then
Up(X)= Y Ty®sy,
JETp
where | Ty|| < || X|| for each Ty € My Finally if p=1 then
U(X)=T®1,
where | T|| < || X|| for T € Myx,.
Proof. Suppose that p > [ and let X = ZPEJP,LE._% vp,.5ps],, where yp 1 € C.
Then
Ui (X)

* *
E E YP,LeK,M Q SxSPS[,SM
K,MeJ, PeJy,LeT:

*
E E YP,LEPK' LM’ & SgiSM/
PET,LET, K'€Th—p,M'€Th_y

E E YP,LEPK' LK'L' @ SJ.
PeJ,, LT K'€Tk—p,JETp—1

This shows that (1.4) holds for some Ty € My«.
Observe now that for each n,k € N and a family of complex n x n matrices
{ay: J € T} we have

1) as@syP=1()] as®@s) (), ax@sk)

JETm JETm KeJm
= Y ajaxesiskl=1 Y ajasei=] Y ajal,
JKETm JETm JETm

so in particular for any fixed K € J,, we have

laxll <1 Y ar@ sl
JETm
Now connecting the above with the fact that Uy is a *-homomorphism, we get for
each J € J,,
ITs1] < [ Te(ON < [|X]]

and the proof is finished. The cases p <[ and p =1 follow in a similar way. (I

Analogous result remains true in the context of the Cuntz-Krieger, graph and
higher-rank graph C*-algebras. It can be used to estimate the entropy of a com-
pletely positive contractive map on the C*-algebra of one of the types listed above
if only we have control on ‘how far’ the map sends the canonical matrix units. The
last statement is made formal in the next lemma, where we show that an appropri-
ate assumption is satisfied by endomorphisms of Oy associated to unitaries in the
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finite part of the UHF subalgebra. Recall the notations (1.2) and (1.3) and write
F, = Fk,k-

Lemma 1.2. Let k € N and let u € Fy be a unitary. Then for all m,p,l € N
Pu (Fp1) C Fogm(k—1),14m(k—1)-

Proof. 1t is clearly enough to prove the inclusion above in the case m = 1. For
i€{l,...,N} we have p,(s;) = us; € FxF1 o C Fyp—1. Further Fy _1Fy -1 C
Fry1,5—1 and inductively one can show that p,(sp) € Fitp—1,,-1 for P € Jp. In
this case

Pu(sPSL) € Frtp—1,k+1-1,
whenever P € J,,L € J,. O

Note that Lemma 1.2 also follows from the fact that p,(sps}) = upspsju;,
where u, € Fpyr—1 and w; € Fi4_1 are defined as in (1.1).

A particular class of the endomorphisms of Oy, the so-called permutative en-
domorphisms arises as follows. Suppose that o is a permutation of the set 7.

Put
Uy = Z S0(1)57-
JETk

It is easy to check that wu, is a unitary in Opn. The permutative endomorphism
po corresponding to o is simply p,, . Several examples will be discussed in detail
in the last section of this note. Remark here only that identity, canonical shift
endomorphism and quasi-free automorphisms exchanging the generators all fall
into this class.

Lemma 1.3. Let o be a permutation of Jy, p,l,m € N. Then
(1~5) P?(Ap,l) c Fp+m(k—1),l+m(k—1)'

Further p, leaves both Fn and Cn invariant.

Proof. Since u, € Fj, all that remains to show is that p,(Cy) C Cy. This can
be understood as follows: u,; = us0(us)...0° 1 (u,) describes a permutation of
Jk+i—1 which correspond to a permutation of points in the spectrum of Cy. Thus
Po(S181%) = Uy iS183uk ; € Cn, whenever I € J;.

Here is a more explicit formula for this. We need to introduce some further nota-
tion: for J = (j1,...,Jk) € Ji write Ji := j, J1 :=j1 and J~ := (J1,...,Jk—1) €
Ji—1- Moreover for i € {1,..., N} write i.J = (¢, j1,...,k) € Tr+1-

Fix k € N and a permutation o of Ji. Let | € {1,...,N}. Then

Po(s1) = Uuss) = Z So(J)S781 = Z Se(g)Sy_ = Z Se(IL)ST-
JeTk JeTk;J1=1 LETk 1
Further for 1,5 € {1,...,N}
Po(s155) = D Soun)SL D SaGNST= D Solle())SeGInST
LETr-1 JETk-1 JETk -1
From this one deduces inductively that for any p € N, 41,...,4, € {1,..., N}
Po(8iy "'Sip) = Z So (i1 JV)So(iaJ?)y "So(i,,_lJp—l)k.Sa(z'pJp),CST;,

JETk-1
4



where
JP=J and J =o(i, 1 JH)T, r=1,...,p—1.

The last formula generalises immediately to the following (p,! € N, 41, ...,4p,51,...,01 €
{1,...,N})
(1.6) Po(Siy - 80, (85, -+ 85,)") =

* * * *
Z So(iyJ1)So(ind?), 'Sa(ip,lJP—l)kSo(iin’)sg(lelé)sg(j,’_lTl—l)k ce So(joZ)kSa(lel)’
JETk-1

where J" are as above and
T'=J and T" =o0(ip I, r=1,...,m—1.

The above allow to see directly that p, : Cy — Cn, po : FN — Fn-
O

If a unitary u € Fj, is not a permutation matrix, the endomorphism p,, need not
leave Cy invariant.

2. ENTROPY ESTIMATE

Let A be a unital C*-algebra. We say that (4,1, C) is an approximating triple
for A if C is a finite-dimensional C*-algebra and both ¢ : C — A, ¢ : A — C are
unital and completely positive (ucp). This will be indicated by writing (¢, %, C) €
CPA(A). Whenever () is a finite subset of A (2 € F'S(A)) and € > 0 the statement
(¢,9,C) € CPA(A,Q,¢) means that (¢,1,C) € CPA(A) and for all a € Q

[¢otp(a) —al <e.
Nuclearity of A is equivalent to the fact that for each Q € FS(A) and £ > 0 there
exists a triple (¢, 1, C) € CPA(A,Q,¢). For such algebras one can define

rep(Q,€) = min{rank C : (¢,0,C) € CPA(A,Q, )},

where rank C' denotes the dimension of a maximal abelian subalgebra of C'. Let us
recall the definition of noncommutative topological entropy in nuclear unital C*-
algebras, due to D.Voiculescu ([Vo]). Assume that A is nuclear and v: A — Ais a
ucp map. For any Q € FS(A) and n € N let

(2.1) orb™(Q) = Q") = O A (9).
j=0

Then the (Voiculescu) noncommutative topological entropy is given by the formula:

ht(y) = sup lim sup (l log rcp(Q(”),s)) .
e>0,Q€FS(A) n—oo \TM

As shown in [Vo] Proposition 4.8 the approximation entropy coincides with classical

topological entropy in the commutative case (see [Wa] for the definition of the

latter). Another important property to be used in the sequel is the fact that the

entropy decreases when passing to invariant subalgebras. More precisely, if B C A

is a subalgebra with v(B) C B then ht(v|g) < ht(y).

For the details of the above, extensions to the case of exact C*-algebras and
various related topics we refer to [NS]. Note that Oy as a unital nuclear C*-algebra
falls into the class considered above.
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The main general result of this note is the following theorem. The proof is a
generalisation of that of Theorem 2.4 of [SZ] (see also [BG]), now using Lemmas 1.1
and 1.2 instead of Lemma 2.2 of that paper. We reproduce it for the convenience
of the reader.

Theorem 2.1. Let k € N and u € Fy, be a unitary. Then
ht(pa) < (k— 1)log N.

In particular if o is a permutation of [Ji, then this estimate holds true for the
corresponding permutation endomorphism p,.

Proof. Put for each n € N

wp = U;lmq:lAp’q.
Fixl € N, § > 0. As Oy is nuclear, there exists a triple (¢o, 0, M¢,) € CPA(On,wi, ﬁé).
Fix further n € N and let

W™ = h(w).
p=0

Put m = n(k — 1) +{. Nuclearity of Oy implies that there exists d € N and
ucp maps 7 : ¥,,(On) — My and 1 : My — O such that for all a € U,,(p* (w)),
k<n,

_ 0
[nov(a) =¥, a)] < 3
Let p: Mym @ Oy — Mg be a ucp extension of v. Consider the following diagram:

\Il_l
On o ¥, (On) ¥, (On) = On
\ ] i My /n'
Mym @ On Mym @ ON 1

\{:@wo id®y

MNnL ® MC]

Consider now any X € w; and let p € N, p < n. Then

60 ¥ (p (X)) = pu(X)||
= |lnopo(id® o o) o U (ph (X)) — (V7' 0 W) (o (X))

< d® o 0 0) 0 T (P (X)) ~ L (LX) + 5.

Lemma 1.2 implies that p2(X) € F,,, where ¢,r <1+ (k—1)p < m. We can
assume that for example ¢ > r. Then Lemma 1.1 implies that

0 1h(p2(X)) — p2 (X))
< H Z Ty ® ((¢00¢0)(8J)—5J)"+g

JETq—r
o d
2N ——— + ==
< 4N™ * 2 ’
6



and we proved that
(2.2) (6,9, Myn ® Mc,) € CPA(On,w}™.,0).
This shows that rcp(wl(n), 5) < C;N™,
logrcp(wl("), 0) < Cr+mlogN =C;+ ((k—1)n+1)logN
and finally
hfl—?olip (% 1ogrcp(wl(n), 5)) < (k—=1)logN.

The Kolmogorov-Sinai property for noncommutative entropy (Theorem 6.2.4 of
[NS]) ends the proof. O

The proof above remains valid for any unital completely positive map on Oy
which satisfies the conclusions of Lemma 1.2, and again can be suitably adapted
to the context of (higher-rank) graph algebras Ox. As we are not aware of any
interesting and natural examples of such ucp maps for O, (apart from the canonical
shifts in various directions analysed in [SZ]), we decided to present the result in the
context of specific endomorphisms of Oy .

If the endomorphism p,, leaves the canonical masa Cy invariant, it is also possible
to obtain, exactly as in [SZ], estimates for the noncommutative pressure ([KP]) of
any selfadjoint element of Cn. Note that in this case however the estimate will
not necessary be optimal nor will it have to coincide with the pressure of the
corresponding element computed in Cy viewed as the commutative subalgebra.
This can be deduced from results in the next section.

It is easy to see that it is both possible to have ht(p,) = 0 (for the identity
endomorphism) and ht(p,,) = (k—1) log N (for the endomorphism given by (k—1)-
th iterate of the canonical shift). Note that as p,, need not leave the canonical masa
in Oy invariant, we cannot always use the classical topological entropy to obtain
the estimates from below (as was done in [BG] and [SZ]).

Let us stress once more that the examples below will show that even if p, leaves
Cy invariant it is not necessarily true that ht(p,) = ht(pulcy )-

3. EXAMPLES FOR Oy

This section is devoted to computing entropy of the endomorphisms p, : Oy —
Os for o being a permutation of J5. These endomorphisms were listed and classified
up to unitary equivalence in [Ka]. Theorem 2.1 implies that ht(p,) < log2. Below
we will compute the actual value of ht(p,) (and of ht(ps|£,), ht(ps|c,)). The nota-
tion will coincide with that of [Ka]; we identify J» = {(1,1), (1,2),(2,1),(2,2)} with
{1,2,3,4}. The subscripts in the symbols denoting permutations (e.g. 0(12),(34)) will
then correspond to the cycle decomposition of the permutation.

By Lemma 1.3 each p, leaves the canonical masa invariant and we always have
a ‘commutative model’ for our endomorphism. To be more precise, the algebra
Cy is *—isomorphic to the algebra C(€) of continuous functions on the full shift
¢ = {(wr)2, : wr € {1,2}} (equipped with the usual metric making it a 0-
dimensional compact space). The standard isomorphism is given by the linear
extension of the map sys7 — Xz,, where Z; denotes the set of these sequences in €
which begin with the finite sequence I. Each of the endomorphisms p, restricted
to Cy corresponds therefore to a continuous map 7, : € — €. Note that if we want
to determine for a given o what exactly T, looks like we need to analyse the values

7



pa(sls?) for I € J; if Pa(SIS?) = 3118?1 4+ 4 slms?m then T, : U;nzl ij — 7.
Thus for each k € N, i € {1,2}

(To(w))r = if and only if w € U Zy,,
1=0

where

m
po( Y sush) =Y snsi
=0

JE€Tk,jr=1

This will be used to identify what the entropy of p,|c, is. We will often also make
use of the following remark: suppose that T : € — € is a continuous map such that
if k€ N, v,w € € and wj41] # v[p41) then either (Tw)|y # (T)|x or wlx # vly-
Then the usual argument with the (n,e€) separated subets of € (see [Wal) shows
that hyop(T") > log 2.

The following table modelled on that of [Ka] summarises the results of the en-
tropy computations. The rest of the section will be devoted to explaining how the
values in the table were obtained. In all cases ht(p,|7,) = ht(ps).

Table 1. Entropy of the ‘rank 2’ permutative endomorphisms of Os.

Po Pd(sl) PU(SQ) ht(pg) ht(pg|(;2)
Pid s1 52 0 0
P12 s12,1 + 811,2 82 log 2 0
P13 $21,1 +812,2 S11,1 +8222  log?2 log 2
P14 8221 +812,2 S21,1 +S11,2  log2 log 2
P23 $11,1 +821,2 S12,1 +8222  log?2 log 2
p24 $11,1 +822,2 8211 +s12,2  log?2 log 2
P34 s1 s22,1 + 21,2 log2 0
P123 $12,1 +821,2  S11,1 + S22,2 log 2 log 2
P132 s21,1 +811,2  S12,1 + 22,2  log2 log 2
p124 $12,1 +822,2  S21,1 + S11,2 log 2 log 2
P142 $22,1 +811,2  S21,1 +S12,2  log2 log 2
P134 8211 +812,2  S221 +s11,2  log2 log 2
P143 $22,1 +812,2 S11,1 + 21,2 log2 log 2
p234 $11,1 +821,2  S22,1 +S12,2  log2 log 2
P243 s11,1 +822,2  S12,1 + 21,2  log2 log 2
P1234 $12,1 +821,2  S22,1 + S11,2 log 2 log 2
P1243 s12,1 + 8222 s11,1 +s21,2  log2 log 2
p1324 82 s12,1 +s11,2  log2 0
1342 s21,1 + 11,2 s22,1 +s12,2  log2 log 2
P1423 $22,1 + 821,2 s1 log 2 0
1432 s22.1 + 11,2 s12,1 + 21,2  log2 log 2
P(12)(34) S12,1 +S11,2  522,1 +821,2 0 0
P(13)(24) 52 s1 0 0
P(14)(23) 22,1 +S21,2  S12,1 +511,2 0 0

Identity map. Entropy 0.

Shift endomorphism. Arises from o93. The entropy is equal to log2 (see [BG]).
The shift 6 leaves the canonical masa invariant and ht(6) = ht(0|£,) = ht(0]c,).
8



Flip transformation. Arises from o(;13(24), acts as py(s1) = 82, po(s2) = s51. The
entropy is 0; this follows immediately from general results of [DS], but can be also
easily deduced directly.

The transformation induced by o15. Denote it simply by . It is defined by

P(s1) = s18287 + 518185, Y(s2) = sa.
We have (n,m € N)
U(sT) = s1sist + sushlsas, w(sy) = s
(the first formula can be easily shown inductively, the second is obvious). This
leads to
i1 J1 Jl—1 Jixy\ _ i1—1 j1—1 Jek—1—1 i —1 * Qg %
(s8] sy - 85 T ST) = s185 T S8y T - 818 s1(s5 78185 + s5°87),

i1 J1 Jk—1 ik Jk\ _ i1—1 Ji—1 Jr—1—1 ip—1 Jr—1
(Tt sy -5y 8T sy ) = s185 T Ts1sht - 818y S189° " $159

(keN, iy, ... igj1,--.,j& € N). Further if s, = si's]' - sg’“_lsi’“ then
Y(8,8),) = 81,5, + S5y,
where ‘
Sp, = s150 tspsl T s sl T g s T gy
Sy, = 51331‘151%‘1*1 . 'slsé""rlsls;’“.

This shows immediately that

P(susy) = susy,

where 4
sy = sw?‘lslsérl e sls;’“’l_lslsé’“l.
If we have an index ending with 2, so that s, = si's}' - -- )1 st gdk | then
7/’(5u5:¢) = sﬁs;'kla
where ‘
sp = s1sh Tss) T slsé""rlslsg"'_lslsg’“_l.

Note that each occurrence of s in w(sus;) is caused by a ‘change’ in the sequence
represented by p (if we assume that all sequences p have so as the 0-th element).
This observation implies that any sequence p ending in 2 gives an output sequence
with an even number of 1’s (even number of changes), so that ¢|c, is induced by
the transformation of € given by

1 if#{j < k:w; =1} is odd,
2 if#{j <k:w; =1} is even.

(Ty(w))k = {

It is easy to see that hiop(Ty) = 0, so also ht(¢|c,) = 0.

We will see that there is another masa in Oy which is left invariant by ¢ and
such that the corresponding restriction has entropy log2. Let X = s155 + s2s7.
Then

WY(X) = 515287155 + 51515555 + S251555] + S2528757 = 51X 85 + $2X s7.
Moreover if 6 : O3 — O3 denotes the canonical shift endomorphism then

P(O(X)) = P51 X 57452 X 55) = P(s1)(s1 X 55452 X 57)9p(s7) +529(X) 55 = O0((X)).
9



We will now show that for each k € N
(3.1) 0" () (X)) = (0" (X))
Suppose we have shown for some n € N that 0™ (¢(X)) = (0" (X)). Then

GEX) = 3 (s Xs)

HETn+1
= > (W(s1)(su Xs5)P(sT) + s21)(s, X 53 )53)
vETn
=1(s1) > su(X)siih(s1)" + 52 Y sup(X)s)s3
vETn vETn
= 3 s(X)s, = 07 (X)),
HETn+1

The second last equality follows if we notice that ¥ (s1)s, = s1s5, where U equals v
but with the first letter ‘switched’.
The formula (3.1) will become useful when we view the UHF algebra F» as the

tensor product @;-, M2(7) Define first
1 1

It is clear that F and F' are minimal projections in the first matrix factor of the
UHF algebra. Thus the algebra generated by {6™(E),0™(F) : n € Np} is a masa,
further denoted by Cg r. Because of (3.1) we immediately see that also

0" (V(E)) = p(0"(E)), 0" (F)) = (0" (F))
for all k € N. As in the tensor picture ¥(X) = X ® X, it is easy to see that
YE)=EQE+F®F, Y(F)=FQF+EQE.

In conjunction with the previous statement this implies that 1) leaves Cg, r invariant.
The algebra Cg r is isomorphic to C(€). The isomorphism may be given for example
by identifying E with xz, and F with xz, so that for example EQ F @ E® FE is
mapped to Xz,,,,. It is easy to show that Tr r, the induced continuous map on €,
is given by the formula:

1 ifwkzwkH,
2 ifwk#wk_H.

(Tp,r(w))k = {

A comparison of this formula with the remarks in the beginning of this section shows
that ht(vc, ) = htop(Tr,F) = log2. Together with Theorem 2.1 this implies that

ht() = ht(¢|7,) = log 2.

The transformation induced by oi1324. Let ¢ denote again the endomorphism
induced by o12 and let ¢’ denote the one induced by o1324. Then

V(1) = U(s2), ' (s2) =1 (s1).

10



Note that this implies in particular that on the masa Cg r introduced earlier the
endomorphisms 1’ and ¢ coincide. Indeed, ¥/(F) = ¢'(E) and also

G OME) = (Y suBsh) = > W (s,)0 (E)Y (s))

WETn HETn
= 3 Gl u(B)(sh) = v (0"(E)).
HETn

Thus ht(¢") > ht(¢'|cs ») = ht(Y|cy ) = log2 and we obtain
ht() = hi(6]z,) = log2.

Note that as ¢'(3 ;¢ 7 . —1575%) = V(X ez =2 5757), the restriction of 4’ to
C, is isomorphic to the map given by

2 iff{j <k:w; =1}is odd

(Tyr(w)k = e

1 iff{j <k:w;=1}iseven

and thus ht(¢/'|¢,) = 0.

The transformation induced by o(14),(23). It is shown in [Ka] that this endo-
morphism is given by the conjugation with the unitary s;s3 + sos7. Thus it leaves
each of the subalgebras F),; (p,! € N) invariant and one can easily deduce using
the Kolmogorov-Sinai property that its entropy is 0.

The transformation induced by o(12) 34)- This one is the composition of the
flip automorphism and of p, for o(14) (23). As they both leave F},; invariant, the
entropy is 0.

The transformations induced by o014, 0132, 0124, 0143, 0234, 01243, 01342. Let o
be one of the permutations from the above list. It is easy to show inductively that
for any k € N and J € J there is

(32) pU(SJ) = SJ1ST +SJ2537

where Jp, Jy are certain multiindices in Ji. This implies, as we will show below,
that in some special cases the formula for the map 7, : € — € induced by the
restriction of ¢ to Cy is determined already by the value of 1)(s1s7). Let us formulate
it in a lemma:

Lemma 3.1. Suppose that the endomorphism p, : O2 — Og satisfies the condition
(3.2). Then if py(s157) = 1828587 + $2828555, then
1 Zf Wr41 = 2,
(Ty, (w))k = . _
2 Zf Wr41 = 1.
If py(s187) = s151878T + sas157s5, then
1 Zf Wk+1 = ]-a
(Ty, (w))k = . _
2 Zf Wr41 = 2.
Proof. Tt is enough to consider the first case, the second follows in an analogous
way. Suppose that J € J and Jp, J are as in the formula (3.2). Then
Po(55515155) = (52,51 + 5,53 (51825557 + 5252353 (5157, + 5257,)
= 57,525557, + 57,525557,.

11



This implies that
po( > sssh) = > sis
JETk,jr=1 I1€Tk+1,1ky1=2
and the considerations from the beginning of this section end the proof. O
The analysis of the values at s;s; together with Theorem 2.1, Lemma 3.1 and

remarks in the beginning of this section show that for any ¢ from the following list:
014, 0132, 0124, 0143, 0234, 01243, 01342 there is

ht(ps) = ht(pslc,) = log2.

The transformation induced by o;13. Let 0 = 013. It is easy to see that actually
in this case the formula (3.2) can be made more precise so that we obtain for any
k€ Nand J € Jj

* *
Po(s7) = 57,5181 + 57,5255,
where now Ji, Jo € Jr_1. Moreover we have
* * % * %
Po(8187) = S1828587 + $2818] 85,
so that
Xk * * kK kK * k0 k
Po(8781578%) = (87,5187 + 7,825 ) (81528587 + S2518755) (87,5187 + SJ,8255)
* k% k k%
= 57,515259515 ), + 5J,525151525,-

This implies easily that p, restricted to Cs is isomorphic to the map

1 if wy # wgt1,
(Too (W) = . o
2 if Wk = Wi+1-

As in the last subsection we obtain
ht(po) = ht(ps|c,) = log 2.

The transformation induced by o1432. The endomorphism is the composition
of the inner automorphism ps,,,, With ps,,. This implies that p, restricted to C,
is isomorphic to the map

(To,

(w) 1 if k> 2 and wg # wgy1 or k=1 and wy = wa,
w))e —
4§ 2 ifk>2and wp = wgsq or k=1 and wy # wa,

and we obtain
ht(po) = ht(ps|c,) = log 2.

The transformation induced by o123. The endomorphism is given by the for-
mulas

Po(81) = 515287 + 825155, po(s2) = 518187 + 25255,
so that
Po(5187) = S182558] + S28157 85,
Po(8285) = $181578] + S2825585.
It is also easy to check that it has the property described in (3.2). Moreover we

have the following lemma holds:
12



Lemma 3.2. Let k € Ny, J € Ji. Then
pU(SJslsy{SL*I) = 8J18§1 + 8J28§27
where Jy, Jo are certain indices in Ji+1 such that the number of constant sequences

in J1 is even and the number of constant sequences in Jo is even.

Proof. The statement will be proved by the induction on k. The case k = 0 follows
from the explicit formulae before the lemma. Let then J € J; and compute
Po(515787587) = (515287 + 525155)(87, 87, + 57,57,) (515287 + 525155)".
Suppose first that J; = 1K for some K € J;. Then
(515257 + 525155) (57,57, ) (515287 + 525185)" = 51525 K S 5557

We want to count the constant sequences in the multiindex 12K. A moment of
thought shows that it has either equally many constant sequences as 1K (if K
began with 2) or two more (if K began with 1). Similarly if J; = sosk for some
K € Jr—1 we have

(515257 + 525155) (57,87, ) (515257 + 525185)" = 82515K S 5153,
and again the multiindex 21K has either equally many constant sequences as 2K
(if K originally began with 1) or two more (if K originally began with 2).
It remains to consider what happens when on the left we add 2 instead of 1:
Po(525787585) = (515187 + 525255)(57, 87, + 57,57,) (515187 + s15157)".
Suppose first that J; = s1si for some K € Ji. Then
(515187 + 525255) (57,57, ) (515187 + 525255)" = 51515K S 5157

The multindex 11K has obviously equally many constant sequences as 1K. An
analogous argument suffices if J; = sosx for some K € Jr_1 and the inductive
proof is finished - the parity of the number of constant sequences in the multiindices
appearing in the (k+ 1)-th stage is the same as in those which appeared in the k-th
stage. O

The lemma above implies that the map on € induced by ps|c, is given by the
formula:

(Tp,

(w)) 1 if the number of constant sequences in w|k+1] is even,
w))k = . . .
2 if the number of constant sequences in w| k+1) is odd.

This implies again that
ht(po) = ht(ps|c,) = log 2.
The transformation induced by o;42. We will apply the method analogous to
that used for o123. Here the endomorphism is given by the formulas
Po(81) = 828287 + 815185, po(S2) = S28187 + 15255,

so that

Po(8187) = S2825585 + s18157s7,

Po(8255) = S2815785 + S1825587.
It is also easy to check that it has the property described in (3.2).

The next lemma is analogous to Lemma 3.2.
13



Lemma 3.3. Let k € Ny, J € Ji. Then
Po(57518187) = 85,87, + 81,87,
where Ji,Jo are certain indices in Jry1 such that k+ the number of constant se-

quences in Jy is even and k+ the number of constant sequences in Jo is even.

Proof. Again the case k = 0 follows from the formulas listed before the lemma. Let
then J € J; and compute

* % * * * * * *\ %
Po(51575787) = (525287 + 515155)(57,87, + 57,57,) (525257 + 515185)".
Suppose first that J; = s1sk for some K € J,. Then
* * * * *\ % * k%
(528257 + 515185) (57,57, ) (525257 + 515185)" = 52825k 55 5555.

The multiindex 22K has either one more constant sequence then 1K (if K began
with 1) or one less (if K began with 2). Similarly if J; = saosk for some K € Ji_1
we have

* * * * 0\ % k k%
(528257 + 515185) (57,57, ) (525257 + 515185)" = 518515K 5551571,

and again the multiindex 11K has either one more constant sequence then 2K (if
K began with 2) or one less (if K began with 1).
Further

* % * * * * * %\
Po(82575785) = (525187 + 518255)(57, 87, + 57,87,) (525157 + 515185)".
Suppose first that J; = s1si for some K € J;. Then
(525157 + 515285) (57,57, ) (525187 + 5152585)" = 52815K 5§51 55-

The multindex 21 K has obviously one more constant sequence than 1/K. An anal-
ogous argument applies if J; = sosi for some K € Ji_1. The inductive proof is
finished, as now we have shown that at every step parity of the number of constant
sequences changes. O

1 if k 4 the number of constant sequences in w|g 1 is odd,
(Tp, (w))e = { ]

2 if k + the number of constant sequences in w|j41 is even.

Thus we once more obtain
ht(po) = ht(ps|c,) = log 2.

The transformations induced by o034,01423,024,01234,0243 and o134. Arise
from respectively o12,01324,013,01432,0123 and o142 just by 1 and 2 switching
places. The entropy values can be thus read from the earlier computations.

Remark 3.4. Asin all the cases above the maximal value of the topological entropy
is achieved on a commutative subalgebra, the variational principle has to hold for
all p;. Recall that this means that ht(ps) = sup, hg(ps), where the supremum is
taken over all states on O left invariant by p, and he(ps) denotes the dynamical
state entropy of Connes and Stgrmer (see [NS]). It can be easily seen that in each
case the supremum is realised by the state 7o E.
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