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VECTOR BUNDLES ON DEGENERATIONS OF ELLIPTIC
CURVES AND YANG-BAXTER EQUATIONS

IGOR BURBAN AND BERND KREUSSLER

ABSTRACT. In this paper we introduce the notion of a geometric associative r-
matrix attached to a genus one fibration with a section and irreducible fibres. It
allows us to study degenerations of solutions of the classical Yang-Baxter equa-
tion using the approach of Polishchuk. We also calculate certain solutions of the
classical, quantum and associative Yang-Baxter equations obtained from moduli
spaces of (semi-)stable vector bundles on Weierstraf} cubic curves.

1. INTRODUCTION

There are many indications (for example from homological mirror symmetry) that
the formalism of derived categories provides a compact way to formulate and solve
complicated non-linear analytical problems. However, one would like to have more
concrete examples, in which one can follow the full path starting from a categorical
set-up and ending with an analytical output. In this article we study the interplay
between the theory of the classical Yang-Baxter equation and properties of vector
bundles on projective curves of arithmetic genus one, following the approach of
Polishchuk [40].

Let g be the Lie algebra sl,(C) and A = U(g) its universal enveloping algebra.
The classical Yang-Baxter equation (CYBE) is

[ (), 7 (@ + )] + [ (@ + ), 7 ()] + [ (2), r* (y)] = 0,

where 7(2) is the germ of a meromorphic function of one variable in a neighbourhood
of 0 taking values in g ® g. The upper indices in this equation indicate various
embeddings of g ® g into A ® A ® A. For example, the function r'? is defined as

i C - gRg S AR AR A,

where Ti3(z ® y) = * ® 1 ® y. Two other maps r'? and 7?* have a similar meaning.
In the physical literature, solutions of (CYBE) are frequently called r-matrices.
They play an important role in mathematical physics, representation theory, inte-
grable systems and statistical mechanics.
By a famous result of Belavin and Drinfeld [7], there exist exactly three types
of non-degenerate solutions of the classical Yang-Baxter equation: elliptic (two-

periodic), trigonometric (one-periodic) and rational. This trichotomy corresponds
1



2 IGOR BURBAN AND BERND KREUSSLER

to three models in statistical mechanics: XYZ (elliptic), XXZ (trigonometric) and
XXX (rational), see [6].

Belavin and Drinfeld have also obtained a complete classification of elliptic and
trigonometric solutions, see [7, Proposition 5.1 and Theorem 6.1]. A certain classi-
fication of rational solutions was obtained by Stolin [46, Theorem 1.1].

This article is devoted to a study of degenerations of elliptic r-matrices into
trigonometric and then into rational ones. We hope that this sort of questions
will be interesting from the point of view of applications in mathematical physics.
In order to attack this problem we use a construction of Polishchuk [40]. After
certain modifications of his original presentation, the core of this method can be
described as follows.

Let E be a Weierstra} cubic curve, M = Mpg(n,d) the moduli space of stable

bundles of rank n and degree d, assumed to be coprime, and let P = P(n,d) €

VB(E x M) be a universal family of the moduli functor Mgl’d). For a point v € M

we denote by V = P|gx, the corresponding vector bundle on E. Consider the
following data

e two different points vy, v9 € M in the moduli space;
e two distinct smooth points yi, y2 € Ereg such that Vi(y2) 2 Va(1:).

Using Serre Duality, the triple Massey product
HomE(Vl, Cy1) X EXt]lE((Cyl , Vz) X HomE(VZ, (Cw) — HomE(Vl, Cw),

induces a linear map
TV1,V2 : HomE(Vl, Cyl) ® HomE(Vg, (CyQ) — HomE(Vg, (Cy1) ® HomE(Vl, (C-yz)

Y1,Y2
This map can be rewritten as the germ of a tensor-valued meromorphic function in
four variables, defined in a neighbourhood of a smooth point o of the moduli space
M x M x E x E (the choice of o will be explained in Corollary 6.9)

PV (C x €2,0) & ((M x M) x (E x E), 0) — Mat,(C) ® Mat,(C)

Y1,Y2
and satisfying the so-called associative Yang-Baxter equation (AYBE)

13 23 12 13 23
()™ (i)™ = ()™ (i)™ o ()™ (i)™ = 0

viewed as a map
HomE(vl’ (C’yl) & HomE(VQ’ (cyz) ® HomE(Vi’n Cys) —

— HomE(VZ’ (Cyl) ® HomE(V?n Cyz) ® HomE(Vh (Cy:a)
Since the complex manifold Mg(n, d) X Ey is a homogeneous space over the algebraic
group Pic’(E) x Aut(E), it turns out that

T;jll:;}; = T(U1:U25y15y2) ~ T(Ul — V2,Y1 — y2) = T(U,y),

with respect to a certain equivalence relation on the set of solutions.
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Let G = Pic’(F) and e be the neutral element of G. It was shown by Polishchuk
[40, Lemma 1.2] that the function of one variable

7(y) = lim(pr @ pr)r (v, y) € 56, (C) @ s1,(C)

is a non-degenerate unitary solution of the classical Yang-Baxter equation. More-
over, under certain restrictions (which are always fulfilled at least for elliptic curves
and Kodaira cycles of projective lines), for any fixed value ¢ # e from a small
neighbourhood U, C G of the neutral element e, the tensor-valued function

r: ({g} x G,e) — Mat,(C) ® Mat,,(C)
satisfies the quantum Yang-Baxter equation, see [41, Theorem 1.4].

The aim of our article is to study a relative version of Polishchuk’s construction.
Although most of the results can be generalised on the case of arbitrary reduced
curves of arithmetic genus one having trivial dualizing sheaf, in this article we shall
concentrate mainly on the case of irreducible curves.

Let F be Weierstraf cubic curve, i.e. a plane projective curve given by the equation
2y? = 4% — goxz® — g323. Tt is singular if any only if A := g5 —27¢2 = 0.

Unless g, = g3 = 0, the singularity is a node, whereas for go = g3 = 0 it is a cusp.

A connection between the theory of vector bundles on cubic curves and exactly
solvable models of mathematical physics was observed a long time ago, see for ex-
ample [33, Chapter 13| and [35] for a link with KdV equation, [18] for applications
to integrable systems and [9] for an interplay with Calogero-Moser systems. In
particular, the correspondence

elliptic elliptic
trigonometric || nodal
rational cuspidal

was discovered at the very beginning of the algebraic theory of completely integrable
systems.

In this article we follow another strategy. Instead of looking at each curve of
arithmetic genus one individually, we consider the relative case, so that all solutions
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will be considered as specialisations of one universal solution. Our main result can
be stated as follows.

Let E — T be a genus one fibration with a section having reduced and irreducible
fibres, M = Mg/r(n,d) the moduli space of relatively stable vector bundles of rank
n and degree d. We construct a meromorphic function

r: (M xp XM X1 E X7 E, 0) — Mat,(C) ® Mat,(C)

in a neighbourhood of a smooth point o of M X7 XM X7 E X1 E, which satisfies
the associative Yang-Bagxter equation for each fized value t € T and (v, ve, y1,Yy2) €
((MEt X Mg,) x (E; x Et),o). Moreover, ri(vy,ve,y1,Yy2) depends analytically on t,
s compatible with base change of the given family E — T and the corresponding
solution of the classical Yang-Bazter equation 7(y) is

e clliptic iof E; is smooth;

e trigonometric if E; is nodal;

e rational if Ey is cuspidal.

We also carry out explicit calculations for vector bundles of rank two and degree
one on irreducible Weierstrafl cubic curves. In the case of an elliptic curve F = FE,
the corresponding solution is

6:(0|7) [61(y + v|T) 02 (y + v|7)
(v y) = 101+ 29U o h
=50 | aen O hwn O
O5(y + v|T) 04(y + v|T)
+ 93(v|7') ocQo+ + 94(v|7') TRQT|,

where 1 = eq; + €2, h = €11 — €22,0 = i(eg1 — €12) and T = ey1 + €19.

In the case of a nodal cubic curve we get

(v;y) Sin(‘%Lv)( ® eq1 + e ® €9) ! (€11 ® €92 + €92 ® €11)+
Tirg (V3 Y) = ——————F+ (e e e €99) — e e e e
trg (V3 Y sin(y) sin(v) 11 11 T €22 @ e cos(v) 11 ® €22 + €22 11
1 .
+ ——(e12 ® ea1 + €21 @ e12) +sin(y + v)ex @ ern
sin(y)

and in the case of a cuspidal cubic curve, the associative r—matrix is

1
Trat (V5 Y1, Y2) = 511 ® 1+ (11 ® €11 + €22 @ €99 + €12 ® €21 + €91 @ e12)+

Y2 — %
+(v—y1)ean ®h+ (v+y2)h @ e +v(v — y1) (v + y2)ear ® eay.
Our results imply that up to a gauge transformation the trigonometric and rational

solutions 7g(v;y) and 7 (v;y1,y2) are degenerations of ren(v;y), which seems to
be difficult to show by a direct computation.
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Moreover, for a generic v the tensors re;(v;y), g (v; y) and 7 (v; Y1, Yo) satisfy
the quantum Yang-Baxter equation and are quantisations of the following classical
r—matrices:

e Elliptic solution of Belavin:

_ oy en(y) 1+ dn(y)
%Mw__ﬂﬂwh®h+ sn(y)

e Trigonometric solution of Cherednik:

1 —dn(y)

sn(y)

(e12®e91+e€91 ®e19)+ (e10®e€12+€91 ®ea1).

1 1 )
Terg (V) = 3 cot(y)h @ h + ——(e12 @ €21 + €21 @ e12) + sin(y)es; @ eq.

sin(y)

e Rational solution of Stolin:

1
(5}1 Rh+ea®er + e @ 612) + Y2h @ ea1 — Y1621 @ h.

This paper is organised as follows. In Section 2 we briefly collect some known
material about various types of Yang-Baxter equations. Section 3 gives a short
introduction into a construction of Polishchuk which provides a method to obtain
solutions of Yang-Baxter equations from triple Massey products in a derived cate-
gory. In order to be able to calculate solutions explicitly, this construction has to be
translated into another language, involving residue maps. In Section 4 we explain
the corresponding result of Polishchuk whereby we provide some details which are
only implicit in [40]. The understanding of these details is crucial for the study of
the relative case, which is carried out in Sections 5 and 6. Theorem 6.6 is the main
result of this article. We also explain in this section how to trivialise the universal
bundle in order to obtain what we call the geometric associative r-matriz.

In Section 7 we recall some classical results about holomorphic vector bundles on
a smooth elliptic curve. Using the methods described before, we explicitly compute
the solution of the associative Yang-Baxter equation and the classical r—matrix cor-
responding to a universal family of stable vector bundles of rank two and degree one.
These solutions were computed by Polishchuk in [40, Section 2] using homological
mirror symmetry and formulas for higher products in the Fukaya category of an
elliptic curve. Our direct computation, however, is independent of homological mir-
ror symmetry. We are lead directly to express the resulting associative r—matrix in
terms of Jacobi’s theta-functions and the corresponding classical r—matrix in terms
of the elliptic functions sn(z), cn(z) and dn(z). Sections 8 and 9 are devoted to
similar calculations for nodal and cuspidal Weierstra3 curves. Our computations
are based on the description of vector bundles on such curves in terms of so-called
matrix problems, which was given by Drozd and Greuel [20] and Burban [13]. We
conclude this article with a brief summary in Section 10 and with an appendix (Sec-
tion 11) in which we provide a proof of the representability of a relative moduli
functor in the analytic case for which we were unable to find a reference.

1
frat (yla y2) -
Y2 — U1
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Notation. Throughout this paper we work in the category of analytic spaces over the
field of complex numbers C, see [39]. However, most of the results remain valid in
the category of algebraic varieties over an algebraically closed field k of characteristic
zero. If V. W are two complex vector spaces, Lin(V, W) denotes the vector space of
complex linear maps from V to W.

If X is a complex projective variety, we denote by Coh(X) the category of coherent
Ox-modules and by VB(X) its full subcategory of locally free sheaves (holomorphic
vector bundles). The torsion sheaf of length one, supported at a closed point y € X,
is always denoted by C,. By D2, (X) we denote the full subcategory of derived cat-
egory of the abelian category of all Ox-modules whose objects are those complexes
which have bounded and coherent cohomology. The notation Perf(X) is used for the
full subcategory of D2, (X) whose objects are isomorphic to bounded complexes of
locally free sheaves. If F;, F, are coherent sheaves on X, we denote by add (.7-'1 69.7-"2)
the full subcategory of Coh(X) whose objects are isomorphic to F2™ @& Fy"* for
some non-negative integers ni, ns.

A Weierstrafl curve is a plane cubic curve given in homogeneous coordinates by an
equation 2y? = 4x3 — g,x2? — g323. Such a curve is always irreducible. It is a smooth

elliptic curve if and only if A(gs, g3) = g5 — 27g2 # 0.
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(RiP-stay January 1st - 20th, 2007) and during the visits of the second-named au-
thor at the Johannes-Gutenberg University of Mainz supported by Research Seed
Funding at Mary Immaculate College. The first-named author was also supported
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2. YANG-BAXTER EQUATIONS

In this section we are going to recall some standard results on Yang-Baxter equa-
tions. Let g be a simple complex Lie algebra (throughout this paper g = sl,(C)),
( , ):gxg— C the Killing form. The classical Yang-Baxter equation is
(1) [P (Y1, 92), 7 (Y2, ys)] + [ (yr, w2), 772 (y1, ws)] + [ (w1, w3), 7 (92, y3)] = 0,
where r(x,y) is the germ of a meromorphic function of two complex variables in a
neighbourhood of 0, taking values in g ® g. A solution of (1) is called unitary if

2 (y1,92) = =1 (y2, 1)

and non-degenerate if r(y1,y2) € g® g = g* ® g = End(g) is invertible for generic
(y1,2). On the set of solutions of (1) there is a natural action of the algebra of
holomorphic function germs ¢ : (C,0) — Aut(g) given by the rule

(2) (Y1, y2) = (6(y1) ® d(ya)) (Y1, y2)-

Proposition 2.1 (see [8]). Modulo the equivalence relation (2) any non-degenerate
solution of the equation (1) is equivalent to a solution r(u,v) = r(u —v) depending
only on the difference (or the quotient) of spectral parameters.

This means that equation (1) is essentially equivalent to the equation
(3) [r?(z), 1 (z + y)] + [rP(z +y), 7 (y)] + [ (2), 7 (y)] = 0.

Although the classical Yang-Baxter equation with one spectral parameter is better
adapted for applications in mathematical physics, it seems that from a geometric
point of view equation (1) is more natural.

Theorem 2.2 (see Proposition 2.1 and Proposition 4.1 in [7]). Let r(2) be a non-
degenerate solution of (8). Then

e Ifr(z) is non-constant, then it has a simple pole at 0. Moreover,

res,—o(r(2)) =al €g®g
where o € C* and ) is the so-called Casimir element.
e r is automatically unitary, i.e. r'?(z) = —r*(=2z).
As it was already mentioned in the introduction, there is the following classifica-

tion of non-degenerate solutions of (CYBE) due to Belavin and Drinfeld.

Theorem 2.3 (see Proposition 4.5 and Proposition 4.7 in [7]). There are three
types of non-degenerate solutions of the classical Yang-Bagzter equation (3): elliptic,
trigonometric and rational.

Let us now consider some examples. Fix the following basis

h_lO _01 _00
—0_1;612—00,621—10
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of the Lie algebra g = sly(C). Note that Q = %h Q@ h+ e19 ® eg; + €91 @ eq9 is the
Casimir element of sly(C).

e Historically, the first solution ever found was the rational solution of Yang
1/1
Trat(z) = ; <§h X h —+ €19 X €921 + €921 X 612> .
e Next, in 1978 Baxter discovered the trigonometric solution

1 1
rtrg(z) = 5 COt(Z)h ®h+ m(em Kea +6e21 @ 612)-
e A few years later, Belavin found a solution of elliptic type:

cn(z 1+ dn(z 1 —dn(z
Teu(z) = SHEZ;h®h+Tz)()(€12®621+€21®€12)+W)()(€12®612+621®621),

where cn(z),sn(z) and dn(z) are doubly periodic meromorphic functions on C with
periods 2 and 27. These functions also satisfy identities of the form f(z+1) = £ f(2)
and f(z+7) = ef(z) with e = £1.

At first glance, all these solutions seem to be completely different. However, it is
easy to see that

1 z

lim 7, (—) = Tpat(2),

t—oo t t
hence the solution of Yang is a degeneration of Baxter’s solution. Moreover, there
exist degenerations dn(z) — 1, cn(z) — cos(z) and sn(z) — sin(z), when the
imaginary period 7 tends to infinity, see for example [32, Section 2.6].
Hence, both solutions of Baxter and Yang are degenerations of Belavin’s solution.
However, as we shall see later, the theory of degenerations of r—matrices is more
complicated as it might look like at first sight.

In this article we deal with a new type of Yang-Baxter equation, called associative
Yang-Bazter equation (AYBE) introduced by Aguiar [1] and Polishchuk [40].

Definition 2.4. An associative r-matrix is the germ of a meromorphic function in
four variables
r: (C,0) — Mat,(C) ® Mat,(C)
satisfying the equation
@) (v, vs391,93) Pr(vs, vas Y1, y2) P = 7 (01,025 91, y2) P (01, 035 92, ya) P+
=0

+7(v2, V33 Yo, Y3) 7 (v1, v2; Y1, Ys) " .
Such a matrix is called unitary if

T(U17U2;ylay2)12 = _T(U2:U1;y27y1)21'

On the set of solutions of the equation (4) there exists a natural equivalence
relation.
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Definition 2.5 (see section 1.2 in [40]). Let ¢ : (C?,0) — GL,(C) be the germ of a
holomorphic function and 7(vq, vo; 41, y2) be a solution of (AYBE) then

v (01, v2; Y1, ¥2) = (9(v1, y1) @ B(v2, y2)) 7 (01, v2; Y1, Y2) (G (v2, 91) ™' @ B(v1,42) ")

is a new solution of (4). Two such tensors r and r’ are called equivalent.

Assume we have a unitary solution r of (AYBE) such that
7(v1, V25 Y1, Y2) = (V2 — V15 Y1, Y2) = (V5 Y1, Ya2)-
Then the equation (4) can be rewritten as
(5) (4 0391, 95) (=05 91, 42) ' — (w591, 42) P (w4 039, 5) P

+1(v; Y2, y3) P (u; 1, y3) " = 0.
If, in addition, it holds r(vy, vo;y1,y2) = 7(v2 — v1;Y2 — ¥1), then the associative
Yang-Baxter equation reduces to the form

(6) r(u+ v +y) Pr(—vs )" = r(u;2) Pr(u+ vy y) P+
+r(v;9)Br(u;z + )2 = 0.
For the sake of convenience we reprove the following lemma.

Lemma 2.6 (see Lemma 1.2 in [40]). Let r(v;y1,y2) be a unitary solution of the
associative Yang-Bazter equation (5), and let pr : Mat,(C) — sl,(C) be the pro-
jection along the scalar matrices, i.e. pr(A) = A — ttr(A) - 1. Assume that
(pr ® pr)(r(v; y1,y2)) has a limit as v — 0. Then

7(y1,92) = lim (pr @ pr)r(v, y1, y2)
is a unitary solution of (1).

Proof. Let T be the automorphism of Mat,(C) ® Mat,(C) given by the formula
7(a ® b) = b® a. Applying 7 ® 1 to the equation (5) we get

(w4 vy, ¥s) P r(—v; 91, ¥2)?t — 7 (us 1, y2) 2 r (U 4 v; 50, ys) P+
+7(v; Y2, y3) Pr(u; 11, y3)* = 0.
Moreover, by unitarity of r it holds
—r(u+ v; 91, Y3) 21 (V5 Y2, y1) 2+ 7 (—us vz, 11) P (u + 03 4, ys) P

+7(v; 92, 43) P (w3 91, 93)* = 0.
Since this equation is fulfilled for all values of u,v and ¥, ys,ys taken in a neigh-
bourhood of zero, we can use a change of variables u <> v, y; <> 4o, y3 <> y3. This
gives us the relation
=1 (u 4 v; Y2, Y3) 27 (U5 91, 92) "2 + (=05 91, 42) P (u + 03 91, ps) P

+7(u; Y1, y3) 2 (v; Yo, y3) > = 0.
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Subtracting this equation from (5) we get
[r(=v; 91, 92) %, 7 (u + w391, 43) ] + [r(u; 41, 42) 2, 7 (u =+ 03 92, 93) |+

+lr(us g1, y3)™, 7 (vs 42, 3) 7] = 0.
The claim follows by applying pr ® pr to this equation and taking the limit u,v —
0. O

Let U C (C?U;y1 2) be a small open neighbourhood of 0 and denote by M the algebra

of meromorphic functions on U holomorphic on U="U \ {v- (y2 —y1) = 0}. With
A = Mat, (M), a quantum R-matrix is a tensor R € A ® A such that

(7) RIQ(Ua Y1, 92)R13(U, Y1, y3)R23(Uﬂ Y2, l/3) -
R (v, ya, y3) R (v, y1, y3) R (v, Y1, y2)-

Definition 2.7. A solution r(yi,y2) of the equation (3) has an infinitesimal sym-
metry, if there exists an element a € g such that

r(z),a®1+1®al =0.
For example, let 7(2) = ra4(2) = 2 be Yang’s solution for sl,(C), then
r(2),e®1+1®a]=0

for any a € g.
The raison d’étre for the equation (6) is explained by the following theorem of
Polishchuk.

Theorem 2.8 (see Theorem 1.4 of [41] and Theorem 6 of [40]). Let r(v;y) be a
non-degenerate unitary solution of (6) and assume there exists a Laurent expansion
of the form

(8) r(v;y) = %]1@]l—l—ro(y)+vr1(y)+vzr2(y)+....

Then the following holds.
e The function
7o(y) == (pr ® pr)(ro(y))
1$ a non-degenerate unitary solution of the classical Yang-Baxter equation.

o If 7o(y) is either periodic (elliptic or trigonometric), or without infinitesimal
symmetries, then r(v;y) satisfies the quantum Yang-Bazter equation (7).

e If7o(y) does not have infinitesimal symmetries and if r'(v;y) is another such
solution of (6) of the form (8) and such that 7o(y) = (pr ® pr)(ry(y)), then
there erist ay € C* and ay € C such that r'(v;y) = oy exp(agvy)r(v;y).
In other words, under these conditions r(v;y) is determined by To(y) up to
rescaling.
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Remark 2.9. It was proved by Polishchuk in [40] that any elliptic solution of
the classical Yang-Baxter equation (3) can be lifted to a solution of (6) having
a Laurent expansion of the form (8). However, Schedler showed in [43] that there
exist trigonometric solutions of (3), which can not be lifted to a solution of (6).

The following proposition is straightforward.

Proposition 2.10. Let r : (C3,0) — Mat,(C) ® Mat,(C) be a solution of the
associative Yang-Bazxter equation having a Laurent expansion of the form

1
r(v; Y1, Y2) = ;]1 ® 1+ 1o(y1,y2) + vri(y1, yo) + v°ra(y1, y2) + - - -,

and To(y1,y2) the corresponding solution of the classical Yang-Bazter equation.
If ¢ : (C?,0) — GL,(C) is a holomorphic function such that

7' (v, v2; Y1, y2) 1= (d(v1,91) ® P(v2, Y2))7r (V5 Y1, y2) (B (va, y1) ™' & P(v1,92)7")

1S again a function of v = vy — vy, then

1
(v Y1, Y2) = ;1 @ 1+ 74(y1, y2) + vri (Y1, y2) + 07y (Y1, y2) + - .-
and moreover, 7o(y1,y2) and 74(y1,y2) are equivalent under (2).

This means, that the requirement for a solution r(v; y1, y2) of the associative Yang-
Baxter equation (6) to have a Laurent expansion of the form (8) is very natural from
the point of view of applications to the theory of the classical Yang-Baxter equation.

3. POLISHCHUK’S CONSTRUCTION

Let X be a reduced Gorenstein projective curve, D2, (X) the bounded derived
category of coherent sheaves and Perf(X) its full subcategory of perfect complexes.
We denote by wx the dualising sheaf on X. This means (see for example [26, Section
I11.7]) that we have an isomorphism ¢ : H'(wx) — C, also called a trace map, such

that for any coherent sheaf F € Coh(X) the pairing
HY(F) x Hom (F,wx) — H'(wx) = C
is non-degenerate.

Remark 3.1. Such a map t is defined only up to a non-zero constant. However,
it will be explained later that in the case of reduced Gorenstein projective curves
there exists a “canonical” choice for ¢.

By [2, Chapter VIII] or by [19, Appendix B] the dualising sheaf wx is isomorphic
to the sheaf of regular or Rosenlicht’s differential 1-forms Qx = QY. If X is
smooth, then (2x coincides with the sheaf of holomorphic 1-forms. For E singular
the definition is as follows.
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Definition 3.2. Let X be a reduced Gorenstein projective curve, n : X — X its
normalisation. Denote by Q) and Q%[ the sheaves of meromorphic differential 1-

forms on X and X respectively. Observe that QY = n.(Q%). Then Qyx is defined
to be the subsheaf of QY such that for any open subset U C X one has

Ox (U) = {w € Q¥ (n Y(U))

Vp e UVf € Ox(U Zresp (fon) ):0},

1=1
where {p1,p2,...,p:} =n"1(p).

A reduced projective curve F whose canonical sheaf ) is isomorphic to the struc-
ture sheaf has arithmetic genus one. For example, reduced plane cubics, Kodaira

cycles and generic configurations of n+1 lines in P* passing through a given point are
of this type. In what follows, for such a curve E we fix a global section w € H°(Qp)

giving an isomorphism w : @ — Qg and a trace map H'(0) — H'(Qg) - C, also
denoted by ¢.

A characteristic property of reduced projective curves with trivial dualising sheaf
is a very special form of the Serre duality.

Proposition 3.3. Let E be a reduced projective curve with trivial dualising sheaf
and £, F € Perf(E). Then the map
t

(, Ve.r : Hom(E, F) ® Hom(F, £[1]) == Hom(€, E[1]) =5 H'(0) -5 C
where

Tre : Hom (€, E[1]) = Hom (O, €Y ® &[1]) —s Hom (O, O[1]) = H'(0),
1S a non-degenerate pairing.

Remark 3.4. The pairing ( , )¢ # coincides with the composition
(, Vre : Hom(E, F) ® Hom(F, E[1]) — Hom(F, £[1]) ® Hom(&[1], F1]) =
— Hom(F, F[1]) =5 HY(0) 5 C.

Remark 3.5. The choice of non-degenerate pairings ( , )¢ is actually not unique,
see the proof of Proposition 1.2.3 in [42]. In particular, { , )7 ¢ depends on the choice
of a global section of the dualising sheaf (2p.

The bounded derived category of coherent sheaves D:':’oh(E) can be identified
with the bounded from the left homotopy category Hotcoh (Inj(E)) of injective Of -
modules having bounded coherent cohomology. Because the curve E is Gorenstein,
the triangulated category of perfect complexes Perf(F) is equivalent to the bounded

homotopy category Hot2,, (Inj(E)). Note that
Hc't:;:)oh (an(E)) = H" (Comcoh (an(E)))
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where Com®,, (Inj (E)) is the dg-category of the bounded complexes of injective mod-
ules with coherent cohomology. By the homological perturbation theory (see [24, 28])
the category Perf(E) = Hot®, (Inj(E)) is equipped with an A,,-structure such that

coh
mp = 0.

Proposition 3.6. The constructed Ay, — structure on Perf(E) is cyclic, see [30]. In
particular, this means

<m3(f1,91,f2)a92> = _<f1,m3(91,f2,92)) = _<m3(f27927f1)ag1>
for any objects &1, Ey and Fi, Fy € Perf(E), and any morphisms

fi € Hom(&;, F;) and g; € Hom(F;, & 4[1]),i =1, 2.

Now we recall the main construction of [40]. Take a reduced projective curve E with
trivial dualising sheaf and fix the following data:

e Two vector bundles V; and V, of the same rank n such that Homg(V;,V,) =
0 = Ext;(Vi, Va).

e Two distinct smooth points ¥, y» € Eie lying on the same irreducible com-
ponent of E and such that Hompg (V1 (y2), Vg(yl)) =0 = Ext}, (V1 (y2), Vg(yl)).

Remark 3.7. This “orthogonality” assumption on vector bundles V; and Vs, might
seem to be quite artificial. The natural example of such data is the following. Let
(n,d) € N x Z be a pair of coprime integers, Mg(n,d) the moduli space of stable
vector bundles of rank n and degree d on a Weierstrafl curve E. Let P(n,d) be
a universal family on E x Mg(n,d). For points v; € Mg(n,d) denote by V; the
corresponding stable vector bundle P(n, d)|gx,; on the curve E. Then, for any two
distinct points vy, vy € Mg(n,d), we have Homg(Vi, V5) = 0 = Ext(Vy, Vy).

Actually, one can also consider a more general situation. Namely, for any pair
(n,d) € N x Z, not necessarily coprime, one can take indecomposable semi-stable
vector bundles of rank n and degree d having locally free Jordan-Holder factors. The
orthogonality condition between non-isomorphic bundles of this type follows from
the following lemma.

Lemma 3.8 (see [16]). Let (n,d) be as above, m = ged(n,d) and n =mn',d = md'.
Let V be an indecomposable semi-stable vector bundle of rank n and degree d on a
WeierstrafS curve E with locally free Jordan-Holder factors. Then all these factors
are isomorphic to a single stable vector bundle V' € Mg(n',d"). Moreover, it holds
V2V ® A,, where A, is the indecomposable vector bundle of rank m and degree
0 defined recursively by the non-split extension sequences

0—0—Ap1 — Ay —0 m>1,
where A; = O.
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Let us return to Polishchuk’s construction. Since Homg(Vi, Vs) = 0 = Exty(Vy, V),
we have a linear map

ms : Homg(Vi,Cy, ) ® Ext}g((Cyl,VQ) ® Homg(V,, Cy,) — Homg(V1,C,,)

called the triple Massey product and defined as follows. Let a € Exty(C,,,Va),
g € Homg(V1,C,y,), h € Homg(V,, Cy,) and let

0—W-5A42¢, —0

be an exact sequence representing the element a. The vanishing of Homg(V;, V) and
Exty,(V1, Vs) implies that we can uniquely lift the morphisms g and h to morphisms
g: Vi — Aand h: A— C,,. So, we obtained a diagram

Vi

S

a:0 | Cy, 0

A

Cyo

and the triple Massey product is defined as ms(g ® a ® h) = h§. Note that a
determines an extension only up to an automorphism of the middle term, but the

action of Aut(A) leads to the same answer for ms(g ® a ® h) = m}1*(g ® a ® h).

V1,V2

Now one can use a sequence of canonical isomorphisms in order to rewrite m, !

in another form:

Lin(Homgz(V1, Cy, ) ® Exty(Cyy , V2) ® Homp(Vy, Cy, ), Homg(V1, Cy,))
Lin(Homg(V1, Gy, ) ® Homg(Vs, Cy, ), Ext(Cy, , V2)* ® Homp(V1, Cy, )

Lin(Homgz(V1, Cy, ) ® Homg(Vs, Cy, ), Homg(V2, Gy, ) ® Homp(V1, Cy, ),

where we use the Serre duality formula Extj,(C,,, Va)* = Homg(Vs, C,,) given by
the bilinear form (, )y, ¢, from Proposition 3.3. Let m)"> be the image of m)!»2
under this chain of isomorphisms.

o

I

Theorem 3.9 (see Theorem 1 in [40]). The tensor m)»* satisfies the following
“triangle equation” (associative Yang-Bazter equation)

(9) () 2(AY)S — (AP () 2 + (yin) S (ya) = 0,

The left-hand side of this equation is a linear map
Homg(V1, Cy, ) ® Homg(Vs, C),) ® Homg(Vs, Cy, ) —
— HomE(VQ: (Cyl) ® HomE(V37 Cy2) ® HomE(Vla Cys)
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Moreover, the tensor mvhv2 18 non-degenerate and skew-symmetric:
~V1,V2\ ~V2,V1
T(myl :?42 ) my2 ,’yl ’

where T 1s the isomorphism

Homg(V1,Cy, ) @ Homg(V,, Cy,) — Homp(Vs, Cy,) ® Homg (W1, Cy,)
given by T(f®9) =9 ® f.
Idea of the proof. This equality is a consequence of the A, - constraint

mso(mMsRLQRL+1@m3®1+1Q1Qm;3) =0,

Vl,

and skew-symmetry of m, »> follows from the cyclicity of the A, -structure. [

Note that for a vector bundle VY and a smooth point ¥y € E we have canonical
isomorphisms

Homg(V, C,) = Homg(V ® C,Cy) = Homc(V|y, C) = VJ;.
In these terms 7,12 is a linear map

mylye Vil @ Valy, — Wi @ Vi3,

Now we use the canonical isomorphism

« Hom@(Vg|y1,V1|y1) X Hom@(Vl\yQ,Vg\w) — Hom@(Vl\ ® V2| V2| ® V1‘ )

Y2’
mapping a simple tensor f; ® fo to f{ ® fi. Then the tensor

T;};,’yvzz = (m;}jll,,;?) € Hom@(V2|y1,V1|y1) ® Hom(C(V1|y2’ V2|y2)

satisfies the equation

(10) () O — ORI + () Rty = 0

and the unitarity condition
V1 ,V2) J— v2avl
Y1,92 Y2,y1 °

On the set of solutions of this equation we have an equivalence relation as in Defi-
nition 2.5.

T(r

Remark 3.10. Since the functorial isomorphism of vector spaces Hom¢ (U, V) —
Hom¢ (V*, U*) is contravariant, the tensors ry-> and m):"> appear in inverse order
in Equations (9) and (10).

Note that the bilinear map
tr : Hom¢ (U, V) x Home(V,U) — C,  (f,g) — tr(f o g)
is non-degenerate and induces an isomorphism

Hom¢ (U, V)* = Homc(V, U).
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Using this we get a chain of canonical isomorphisms

HomC(V2|y1’ Vllyl) ®Hom@(V1 |y2’ V2|y2) = HomC(V1|y1’ V2|y1)* ®H°mC(V1 |y2’ V2|y2) =
=~ Lin(Hom(c(V1|y1, V2|y1), Hom@(V1|y2, V2|y2))

We let fV1,V2 c Lin(Hom(V1|y1, V2|y1), Hom(V1|y2, V2|y2)) be the image of ,,,Vl,V2'

Y1,Y2 Y1,Y2

Remark 3.11. Note that the triple Massey product ms is canonical, however the

tensor 72> depends on the choice of a global section w € H°(€2g).

Our next aim is to answer the following questions:

Q1 How does the tensor r)':"> depend on trivialisations of V; and V,?

Q2 What is a geometrical interpretation of the equivalence relation given in
Definition 2.57

Q3 How can we view V; and V, as variables?

Q4 Ts there a practical way to compute r)!>2?
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4. GEOMETRIC DESCRIPTION OF MASSEY PRODUCTS

Let E be a reduced projective curve with trivial dualising sheaf. Asin the previous
section, we fix the following data:

e two vector bundles V; and V, of rank n such that Homg(V;,V,) = 0 and
EthE(Vl, VQ) =0.

e two distinct smooth points yi,ys € Ere lying on the same irreducible com-
ponent of E such that HomE(V1 (y2), Vg(yl)) = Exty, (V1 (y2), Vg(yl)) =0.

The main goal of this section is to get an alternative description of the linear map

77;/}11,’;)22 : HomC(Vl‘yUVZ‘yl) - Hom@(vl‘ywv2|y2)

introduced in Section 3. Let Qp = Q}E’R be the sheaf of regular differential 1-forms
on E. For any smooth point z € F we have an exact sequence

0 — Qp — Qp(z) =5 C, — 0,

where res; is the residue map for differential 1-forms. It induces the coboundary
map

6, H°(C,) — H' ()
which is an isomorphism. Let w, = 6,(1,) € H'(2g). By a result of Kunz it holds
Theorem 4.1 (see Satz 4.1 in [31]). The element w, does not depend on .
Let w = w, and ¢t : H'(Qg) — C be the isomorphism mapping w to 1. We fix a

global regular differential form w : O — Qg, which induces for any two perfect
complexes &, F € Perf(E) a non-degenerate pairing (see Proposition 3.3)

(,)er:Homg(&E, F) ® Homg(F,E[1]) — C.

Y1.V2 t6 the tensor m21:Y?

Recall that, when passing from the triple Massey product m," e

we have already used these bilinear forms.

The alternative description of F;’ll,’;;"’ involves two isomorphisms. In order to describe

the first of them, we consider the composition map

O(yl) L) QE(yl) m (Cy13

which we also denote by res,,. The exact sequence

0—>O—>O(y1)reiﬁ<cyl—>0

induces an exact sequence

Va
0— V2 — Vg(yl) 41! V2 ®(Cy1 — 0.
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Since Hompg(V1, V,) = Extp(V1, V,) = 0, all maps in the commutative diagram

Homg(Vi, V(1)) — Home(V1, V2 ® Cy, )

W l

Hom@(vl |Z/1’ V2|y1)

are isomorphisms. In what follows, we shall frequently abuse notation and write

i V1,V2
res,, instead of res, 1" (w).

In order to describe the second isomorphism needed below, we start with the stan-
dard exact sequence

0— VQ(yl — yz) — Vz(yl) — Vz(y1) () Cw — 0.

Because HomE(Vl, Vo(yr — y2)): Extl, (Vl, Va(yr — yg)): 0, the horizontal arrow in
the following commutative diagram

HomE(Vl, Vz(?ﬂ)) E—— HomE(Vla VZ(yl) ® (Cyz)

l (Tyo )

HomE(Vl, VQ ® (Cy2)

|

HOm(C(Vl |y2a VQ‘ZID)’

is an isomorphism. The vertical arrows in this diagram are isomorphisms as well,
where (7,). is induced by the embedding O — O(y1).

The following theorem [40, Theorem 4] is the key statement to explicitly compute
the tensor 77;}11,’;’22 describing triple Massey products.

Theorem 4.2. The diagram
HomE (Vl, VQ(yl))

Vi1,Va

V1:Va (w) evy,

resyl

V1,V
Tyiys (W)

HomC(V1|y1’V2|y1) HomC(V1|y2’V2|y2)

18 commautative.

Since this result plays a crucial role in our approach to degeneration problems,
we decided to give a detailed proof of this statement, stressing those points which
are implicit in [40]. Before we start, several technical lemmas have to be proved.
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Lemma 4.3. Let E be a reduced projective curve with trivial dualising sheaf, x €
a smooth point. Then we have an isomorphism of functors VB(E) — Vectc:
T, : Ext,(C,, —) — Homp(C,, — ® Cy)
Proof. Let V be a vector bundle on E of rank n. ;From the exact sequence
0— 0 — O) =3C, — 0

we get
0—V—V@)—VeC, —0

and then
0 = Homg(Cy, VRC,) -2 Extl,(Cy, V) = Exth(C,, V(z)) = Extl(Cy, VRC,) — 0.

Because Ext};(C,, V(z)) = H(Ext'(C,, V(2))) and Exty(C,,V ® C,) are both of
dimension n = rank(}), we conclude that d, is an isomorphism. Moreover, this map
is functorial and we can put 7, = 4, . O

Remark 4.4. By the construction of the functor 7, we have a commutative diagram
0 V A C, 0

e

resy
0—V—>V()—VeC —0,

where the upper exact sequence corresponds to the element a € Exty(C,, V).

In order to justify our calculations in Sections 7 and 9 we need to establish an
explicit link between the “categorical trace map” of Proposition 3.3 and the usual
trace from linear algebra.

Let X be a reduced Gorenstein projective curve, £ € X a smooth point, V a
vector bundle on X. From the exact sequence

0—)QX —)Qx(lﬁ) ﬂ@w —0
we get a commutative diagram

Try

EXtﬁ((V, V ® QX)

| o

Homx(V,V ® C;) v

T T :

Homc(V|z, V|2) i Hom¢(C, C)
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where ¢ is the trace map from Theorem 4.1 and tr is the ordinary trace of an
endomorphism of the vector space V|,. The commutativity of this diagram gives us
the following result.

Lemma 4.5. For an element f € Homx(V,V ® C;) we have:
t(TrV(dz(f))) = tr(fac)a

which s the required link between the categorical trace and the usual trace for vector
spaces.

Lemma 4.6. Let E be a reduced projective curve with trivial dualising sheaf, x € E
a smooth point, V € VB(E) a vector bundle and

S : Exty(C,,V) — Homg(V,C,)*

the isomorphism induced by the bilinear form (, Yy c,. Then the following diagram
18 commutative:

Exty(Cg, V) Homg(V, C,;)*

HomE(Cw,V) HomE(V® Cwa(cw)*a

where tr is induced by the canonical isomorphism of vector spaces
Hom¢ (U, V)* = Home(V, U).

Proof. Let & € Homg(V,C,) and a € Ext(C,,V). Then T,(a): C, - V ® C, and
&V C, — C, satisfy:

tr(& 0 Tp(a)) = tr(Tx(a) 0 &) = Try(6:(Tx(a) © £)),
where the last equality holds by Lemma 4.5. O

Now, after proving these preliminary statements we are ready to prove Theorem
4.2. Let (V1, Vs, y1, Y2) be the data fixed at the beginning of the Section. Recall that
we have to compare the triple Massey product

mYY2 . Homp(V1, C,, ) ® Extp(Cy, , Vo) ® Homg(V, C,,) — Homg(V1,C,,)

Y1,Y2

with the map

7"511’;/22 1= evy, oTes,, HomC(Vl\yl, Valyy) — Home (Vi lyy, Valy, )-

Proposition 4.7. If g € Homp(V1,C,,), h € Homg(V,,C,,) and a € Exty(C,,, V2),
then
hy, © TZI]J)II,ZZQ(TZUI (a)gyl) = ( ;/)11’;)22(9 ®a® h))
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Proof. Let us first explain our notation. We have a composition map

g Ty, (a)
V1|y1 L (Cyl 91_) V2|y1’

hence we may consider

V1,V
Tyl (Ty1 (a)gyl)

V1|y2 > VQ‘:'M'

Let 0 — Vy -2 A 2 C,, — 0 be an exact sequence representing a € Ext},(C,, , V2).
Then we have a commutative diagram

0 0
VQ = V2
Vi J A : Va(y1)

where g is the unique lift of g and the two columns on the right form a transposed
version of the diagram from Remark 4.4. Since

reszjll’v2 : Homg(V1, Va(y1)) — Homg(V, ® C,,, V2 ® Cy,)
is an isomorphism, by definition we have
resgjﬁ (Tyl (a’)gyl) =£g.

Moreover, tensoring the whole diagram with C,, we obtain a new commutative
diagram

Vo ® (Cy2 = Vo ® (Cw

ay, l J/Tyz

VI®C, 22 AR C, — 2 = V(1) ®C,,,
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from which the identity ev,,(eg) = ay_21§y2 follows. By the definition of Massey
products we have a commutative diagram

0 Vs A Cy 0

|

YV
Y2 “ma(gwamh)

which finally implies
(m;/)lly,;); (I®a® h))y2 = hy, 0 O‘g;; 0 gy, = hy, 0 7:“2//11,}3)22 (Ty1 (a)gw)-

O

Now we are ready to finish the proof of Theorem 4.2. Our goal is to keep track
of the linear map m;’;;’z > under a long chain of canonical isomorphisms. Let us do it
step by step.

Each linear map
m € Lin(Homg(V1, Cy, ) ® Exty,(Cy,, Vo) ® Homg(Vs, Cy, ), Homp (V1 ky,))
corresponds to an element
n € Lin(Homg(V1, Cy, ) ® Homg(Vs, €y, )*, Lin(Homg(V2, Cy, ), Homg(Vi, Cy,))
which is related to m by the formula
n(g ® 5(a))(h) =m(g ®a® h),

where S : Extj(C,,,V2) — Homg(V,,C,,)* is given by the bilinear form ( , )y, ,,
from Proposition 3.3. By Lemma 4.6, the element S(a) € Homg(V,, C,, )* is mapped
to T'(a) € Hom¢(C, Vs |y, ) under the chain of isomorphisms

Homp(V2, Gy, )" — Homp(V2.®C,,,C,, )" — Hom¢(Valy,, ©)* — Home(C, Valy,)-
This implies that the linear map n corresponds to
L € Lin(Hom¢(V1ly,, C) ® Hom(C, Vs, ), Lin(Homg (Vs ly,, C), Home (Vi ]y,, C)) )
given by {(g,, ® T'(a))(hy,) = m(9 ® a ® h),,. But since
Homc (V1 ©) ® Hom(C, Va1,,) — Home(Vily,, Valy,)
is an isomorphism and
Lin(Homc (Vz2y,, C), Home (Vi ly,, €)) = Home(Vily,, Valy,),
we obtain a linear map

ke Lin(HomC(vl‘y1’V2|y1)7 HomC(Vl‘yzv V2|y2))
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such that for any elements g, a and h the following diagram commutes

k(T(a)gy,)
Vily, " Vsl
h’ 2
m(gRa®h)y, !
Cy, -

With m = 71> we obtain now, using Proposition 4.7,

k= ,FVI,VQ — ;VI,V2

_ -1
Y1,Y2 Y1,.y2 €Vy, O resyl ’

~V1,V2

where the map 7,2 was defined in Remark 3.10. This completes the proof. U

5. ON A RELATIVE CONSTRUCTION OF GEOMETRIC TRIPLE MASSEY PRODUCTS

Our next goal is to extend the definition of the map 7';}11;}2 > to case of genus one
fibrations. We achieve this by generalising the construction of Theorem 4.2 to the
relative case. Throughout this section we work either in the category of locally
Noetherian algebraic schemes over an algebraically closed field k or in the category

of complex analytic spaces.

5.1. The relative residue map. Let p : X — S be a smooth map of complex
analytic spaces or of algebraic schemes. Assume p has a section 7 : § — X, let D
be the image of ¢ equipped with the ringed space structure induced from S. Recall
that the sheaf of relative differentials Q% /s is defined via the exact sequence

p*Qg — Q% — Qﬁ(/s — 0,

see [2, Chapter 7], [26, Section II.8 and Section III.10] and [39] for definitions and
basic properties of smooth morphisms and Kahler differential forms. In particular,
for any closed point s € S it holds: Q%/¢|x, = QY, and Qg is locally free.

Assume additionally that p has relative dimension one and X itself is smooth.
Our aim is to define a canonical epimorphism of Ox—modules

resp : Qk/S(D) — Op,

later called the residue map. We shall explain our construction in the case of alge-
braic schemes, whereas its generalisation on the case of complex analytic spaces is
straightforward.

Let x € D C X be a closed point, then we can find affine neighbourhoods U =
Spec(B) of x € X and V = Spec(A) of f(z) € S such that the map p|ly : U — V is
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induced by the ring homomorphism p* : A — B:
U = Spec(B)—— X

W]

V = Spec(A)—— &S.

Then the sheaf Q% / ¢|v is isomorphic to the sheafification of the B-module of Kéhler
differentials Qg 4.
Let i* : B — A be the ring homomorphism corresponding to the section 7 and

I = ker(i*). Then the map C := B/I 4 Aisan isomorphism and I is the ideal,
locally defining the subscheme D. By Krull’s Hauptidealsatz, since U is smooth and
V(I) C U has codimension one, shrinking the open sets U and V if necessary, we
can achieve that I is generated by a single element a € A. ;From the exact sequence

1/12 i)QB/A(X)BC—>Q(;/A — 0

where §([b]) = d(b) ® 1 and the fact that Q¢ 4 = 0 it follows that the C—module
Q1p/4 ®p C is generated by a single element d(a) ® 1.

Definition 5.1. Let p : X — S be a smooth map of relative dimension one,
i:S — X asection of p and D = i(S). We define the sheaf homomorphism

resp : Q}(/S(D) — Op
to be the composition of the canonical map Qy ¢(D) — Q% 5/p ® O(D)|p and the

morphism Q4 15lp ® O(D)[p — Op locally defined as follows.

In the notation as above let M = {¥ | u € B} = T'(U,0x(D)) C Q(B), where
Q(B) is the field of fractions of the domain B. The map

resp : (QB/A Rp C) ® (M Rp C) —C
is given by the formula (d(a) ® 1) ® (4 ®1) —u®1=u:=u mod I.

It is easy to see that the morphism resp is C-linear, surjective and does not depend
on the choice of a generator of the ideal I.

Proposition 5.2. Let p: X — S be a smooth map as above, i : S — X a section
of pand f : 8" — S any morphism. Let X' = X xg S andi' : ' — X' be the
section defined by the universal property of pull-backs:
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and D' =14'(S"). Then the following diagram is commutative:

g (U s(D)) 2220 4 (0))

% -

Qﬁ(’/s' (D) = Op

where the vertical arrows are canonical isomorphisms.

Proof. The problem is local, so we can assume, without loss of generality, X =
Spec(B), X' = Spec(B’), S = Spec(A) and S’ = Spec(A’). Then, we have a Cartesian
diagram of rings and ring homomorphisms

B’ B
(o
A A

where B'=B®4 A', p"(d') =1®d’ and g*(b) = b® 1. Denote C := B/ker(i*) and
C' := B'/ker(i"*) then we have an isomorphism of C’'-modules C ® g B' — C".
Let d : B — Qpq and d' : B’ — Qp//x be the universal derivations from the
definition of Kahler differentials. By the universal property we obtain a uniquely
determined B-module homomorphism Q3,4 — 2p/4 and an induced B'-module
isomorphism ¢* : Qp/4 ®p B' — Qg4 making the following diagram

B Qp/a QB/A ®p B’
ft e
v ooz 9
B’ _— QB’/A’

commutative, in particular g*(d(b) ® 1) = d(g*(b)). Moreover, we have a canonical

homomorphism g}, : M ®p B' — M', given by g}“vf(% ® 1) = Z:EZ?, where

M:{%MEB}CQ@)mﬂﬁfz{

7@ v E B’} C Q(B").

We know that the C-module Q5,4 ® C' is generated by the single element a ® 1.
Hence the commutativity of the diagram

g*(resp)

(/4 ®p B') ® (M ®p B') C®p B

9*®gy l ‘(

resps

Qpra @ M' (o4
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can be checked on the generator:

(da)@1) @ (Lo1) = =y
§*®g}‘\41 1
dla* 2 g:‘((u) : res s . .
(9°(a)) g (a) g*(u)
and the proposition is proved. U

5.2. On the sheaf of relative differential forms of a Gorenstein fibration.
Let p: X — S be a proper and flat morphism of relative dimension one, either in
the category of complex analytic spaces or of algebraic schemes over an algebraically
closed field k. Assume additionally that for all closed points s € S the fibres X are
reduced and we have an embedding

X——Y
x /
S

where ¢ : Y — S is a proper and smooth morphism of the relative dimension two.

Remark 5.3. Since for any s € S the surface Y, is smooth and X, C Y, has
codimension one, the curve X has hypersurface singularities and is in particular
Gorenstein.

Recall that for a smooth morphism g we have an exact sequence
Qs — Oy — Qy g — 0

where Q%// ¢ is a locally free Oy—module of rank two.

Definition 5.4. The relative dualising sheaf is defined by the formula
wX/S = (/\QQ%//S &® Oy(X)) |X-

Proposition 5.5 (see Chapter II in [5]). For any s € S the sheaf wx/s|x, is the
dualising sheaf of the projective curve Xs.

Remark 5.6. It can be shown that up to the pull-back of a line bundle on S this
definition of wx,s does not depend on the embedding X — Y.

Let X be the regular locus of p, then j : X — X is an open embedding and
the morphism X — S is flat but in general not proper. Our aim is to define an

injective map of Ox-modules clg : wx/s — j*(Q}(/S).
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For a closed point = € X let U C Y be an open neighbourhood of x and Sy an
open neighbourhood of f(z) in S. Choose local coordinates (u,v,s) on U such that
we have a commutative diagram

((C2 X S()) =U Y
Prl Lq
So S

where pr(u,v, s) = s and du| 3 # 0, dv| ¢ # 0. Assume that the closed subset X NU
is given in U by an equation f(u,v,s) =0. Then

of of
—du+ ——d v =0
(8u ut ov v) X
where the left-hand side of this equality is viewed as a local section of QL

X/s
Consider the composition map 7 : X 4LXx 5y

Definition 5.7 (see Section II.1 in [5]). The Poincaré residue map is the morphism
of Oy—modules

res’ : /\QQ%//S(X) — i*Qﬁ?/S
locally defined as follows. Let U C Y be an open neighbourhood of = € X as above

and V:=UnN X, then the map
res” : T'(U, /\2ﬂly/S(X)) — I'(V, Q}(/s) =T(U, i*Qﬁv{/S)
is given by the formula

hdu .. Of
hdu A dv W|V if 8_1)(“77)75)7&07
- v
hdv 0
f _8f|v if a—i(u,v,s);é(].

Remark 5.8. Since for any point s € S the fibre X, is a smooth curve, the set
V(f,0uf,0uf) C X, is empty and the map res? is well-defined. Moreover, res? is
independent of the choice of a local equation f € Oy (U) for X C Y and also of the
choice of local coordinates (u, v, s) on Y, see for example [5, Section I1.1].

., From what was said above it follows:

Corollary 5.9. The commutative diagram of Oy —modules

00— /\QQ%,/S — /\QQ%//S(X) —— A2Q%//S(X)|X —0

PA

- 1
Z*Q)”( /S
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induces an injective morphism of Ox-modules
ClS : wX/S = /\2Q%//S(X)|X — j*QAl)?/S

Remark 5.10. In what follows the morphism clg will be called the class map.
For a Gorenstein projective variety X of dimension n let Mx denote the sheaf of
meromorphic functions on X. Angéniol and Lejeune-Jalabert construct a morphism
% — wx which induces an isomorphism

Q}@Mxi)w)(@/\/lx

also called “class map”, see [3]. The relationship between this class map and the
class map constructed above will be discussed elsewhere.

The following proposition can be shown on the lines of [5, Section II.1].

Proposition 5.11. Let p: X — S be a Gorenstein fibration of relative dimension
one satisfying the conditions from the beginning of this subsection. If g : 8" — S
1s any base change, we obtain the Cartesian diagram

vty
dI
s —=s.
Then, the following diagram is commutative
F1 (N0, 5(X)|x) = N Q6 (X7 x0
f*(CIS)l lclsl
*(7 OL ‘101

X/s!
where the upper horizontal isomorphism is canonical and the lower one is induced
by the base-change property.

IR

The reason to introduce the map clg is explained by the following proposition.

Proposition 5.12 (see Proposition 6.2 in [5]). Let p : X — S be as in Proposition
5.11, t € S a closed point and cl; : wx, — jt*Q}Q the class map constructed in
Corollary 5.9. Then it holds

(1) If the fibre X; is smooth, then the image of cl; is the shean%Q of holomorphic
differential one-forms on Xj.

(2) In the case X, is singular, the image of cly is the sheaf of Rosenlicht’s dif-
ferential forms, see Definition 3.2. In particular, im(cl;) is a subsheaf of the

sheaf of meromorphic differential one-forms on X; reqular at smooth points
Of Xt'
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The following definition is central for our construction of associative geometric
r—matrices. Let p : X — S be flat and proper morphism such that
e All fibres X;, t € S are reduced projective Gorenstein curves.

e There exists an embedding
Xe————Y
DA
S

where g : Y — S is a proper and smooth morphism of relative dimension two.

Definition 5.13. Let j : X — X be the inclusion of the smooth locus of p,
i:S — X asection of p and D = i(S). Then the residue map

resp : wx/s(D) s, Js (Qﬁv(/S(D)) — Op

is defined as the composition of the class map clg from Corollary 5.9 and the residue
map for smooth morphisms of relative dimension one from Definition 5.1.

Propositions 5.2 and 5.11 imply the following corollary.

Proposition 5.14. Letp: X — S and 1 : S — X be as in Definition 5.13 and
g:S" —> S be any base change. Denote X' = X x5, f: X' — X, i : 8 — X'
the pull-back of i and D' = i'(S"). Then the following diagram is commutative

J*(resp)

f*(wx/s(D)) f*(Op)
ul _ lu
wxr /g (D) Opr

where the vertical maps are canonical tsomorphisms.

5.3. Geometric triple Massey products. Let E — S be a genus one fibration
embedded into a smooth fibration of surfaces, i.e we have a commutative diagram

E——Y
N
S

where p is a proper and flat map, for all ¢ € S the fibre E; is a reduced projective
curve with trivial dualising sheaf and ¢ is a smooth and proper map of relative
dimension two.

Let E be the regular locus of p. Assume S is chosen sufficiently small, so that
wg/s = Op. Fix the following data:

e A non-zero global section w € H®(wg/s).
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e Two holomorphic vector bundles ¥V and W on the total space E having the
same rank and such that for all ¢ € S it holds:
HomEt (VEt, WEt) =0= EXt]lEt (VE‘” WEt)

e Two sections hy, hy : S — E of p such that for all ¢ € S it holds: hy(t) #
ho(t) and hi(t), ha(t) belong to the same irreducible component of E;. We
additionally assume that

Hompg, (Vk, (ha(t)), Wi, (h1(t))) = 0 = Exty, (V, (ha(t)), We, (h1(t)))-
The main result of this section is the following theorem.
Theorem 5.15. There exists an isomorphism of vector bundles on S
7’:1’}/,‘:2 (w) = 7’:1’3/,‘;2 . hiHomg(V, W) — hsHomg(V, W)

such that for any base change diagram

EILE

ol
Sl L S

the following diagram is commutative:
9" (7% (w)

g hHomg(V, W) (%) g hsHomge(V, W)
gl Hol @) l%
R Homp(f*V, f*W) —= hyHomg(f*V, f*W)
where hi,hiy : S — E' are sections of p' obtained as pull-backs of hy and hs.

The vertical arrows are canonical isomorphisms and the section w' € H*(wg/g) is
defined via the commutative diagram

fr 05— Op

f*(w)l lw’

~

f*CUE/S = WE /s

Moreover, for any s € S the morphism f:f&lgsh:)(s) coincides with the morphism

describing triple Massey products constructed in Theorem 4.2. Here, we denote
Fs = F|g, for any vector bundle F on E.

Proof. The construction of the morphism 77,1;1’}/,‘:2 is the following. Let D; = h(S),
then the exact sequence

rele

0— WE/s — wE/S(Dl) —_— ODI —0
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induces an exact sequence
0— W®U)E/5 — W®OJE/S(D1) —)W@ODI — 0.

Since Ext5,(V, W) = 0 and wg/s = O, applying the functor Homg(V, — ) we obtain
the exact sequence

(11) 0— ’HomE(V, W) — ’HomE(V,W@)wE/S(Dl)) — ’HomE(V, W ODl) — 0.

Lemma 5.16. In the notations of the theorem it holds:

ps(Homp(V,W)) = R'p, (Home(V,W)) 2 0.
Proof of the lemma. It suffices to show that Rp, (HomE(V, W)) = 0 viewed as an
object of the derived category of coherent sheaves D2, (S). Note that a complex

L
F € D2, (S) is zero if and only if for all points ¢ € S it holds: F ® C; = 0. Since

coh
the morphism p is flat, by a base-change isomorphism it holds

L
Rp, (Homg(V,W)) ® C; = RHompg, (V|g,, W|g,) 20,

where the last equality follows from the assumption Extl;, (V|g,, W|s,) = 0 for all
t€Zandtes. O

Hence, applying the left-exact functor p, to the exact Sequence (11) we obtain an

isomorphism p,Hompg (V, W® wE/S(Dl)) = pHoOmE (V, We ODI). Combining it
with the canonical isomorphisms

Home(V,W & Op,) — hi,Homs(h[V, ;W) — hy hiHome(V, W)
we obtain an isomorphism
rele’W : psHome(V, W ® wg/s(D1)) =5 hiHomg v, w).
Moreover, the choice of a global section Op —= wg /s induces an isomorphism
rele’W(w) . pHomg(V, W(Dy)) = K Homp (v,w),
which we shall frequently denoted by res}il’w.
The construction of another isomorphism
evzz’W : p*HomE(V, W(Dl)) = hsHomg (V,W)
is similar. We start with the exact sequence
(12) 0 — Og(D; — Dy) — Og(D;) — Og(D;) ® Op, — 0.

For any Weil divisor D C E view the line bundle Og(D) as a subsheaf of the sheaf
of meromorphic functions Mg. Then there exists a canonical exact sequence

0 — O — Op(Dy) =24 Op, (D1) — 0
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inducing an isomorphism Op, — Ogr(D;)®0Op,. Tensoring the exact sequence (12)
with the vector bundle W and applying Hompg(), —) we obtain an exact sequence

0 — Homg (Y, W(D:1 — D,)) — Homg (Y, W(D1)) = Homg(V, W ® Op,) — 0.
By the same argument as in Lemma 5.16 one can show that
pHomg(V,W(D; — D)) 2 R'p,Homp(V, W(D: — D5)) 20
which implies that we obtain an isomorphism of vector bundles on S
vy pHomp(V,W(D))) — hiHomg(V,W).
The isomorphism of vector bundles
o =i (W) : hiHomp(V, W) — hiHomg(V, W)
is defined by the commutative diagram of vector bundles on S

pHompg (V, W(Dl))

~V,W
Thl ,ho ((/J)

hiHomg(V, W) hyHomg(V, W).

Now let us prove the compatibility of 7’};1’}/,\:2 with respect to base-change. We start
with the commutative diagram of coherent sheaves on E’

f* (reSDl )

f*(wgys(Dy)) f*(Op,)
wprys (D) o Op;

obtained in Proposition 5.14 and then apply the functor
p.Homp (f*V, f*W® —): Coh(E") — Coh(S").

This yields a commutative diagram

p.Hompg (f*V, fwWwe f*(wE/s(D1))) — pHomp (f*V, f'We f*ODl)

gl lg

P, Homp (f*V, f*W ® wpys(D})) P Homp (f*V, f*W ® Op)

in Coh(S"). Next, we have an isomorphism of functors
Homy (f*V, fWR f*(—-)) — fHomp(V,W® —)
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between the categories of coherent sheaves Coh(F) and Coh(E’). Composing these
functors with p) and then applying them to the residue map wg,s(D;) — Op, we
obtain a commutative diagram

pfkf*’HomE(V,W@wE/g(Dl)) p;f*”HomE: (V,W@ ODl)

| -

piHomp (f*V, f W f*(wrs(D1))) — piHomp (f*V, f*W @ f*Op,).

Il

Finally, there exists a natural transformation of functors (base-change) g*p, —
pl.f*, which is an isomorphism of functors on the category of S—flat coherent sheaves
on F. Since both sheaves ’HomE(V,W ® wE/g(Dl)) and Homp(V,W ® Op,) =
hi,Homg(hiV, hiW) are flat over S, we obtain a commutative diagram

g*pHomp(V, W ® wiys(D1)) g*pHomg(V, W ® Op,)

%l lg

P Home (fV, W @ winys1(D})) — pHomu (f*V, f'W @ Op).

Using similar arguments one can show that the following diagram is commutative:

o

g*pHomp(V,W ® Op,) g hiHoms(V, W)

gl i%

pLHomp (f*V, f*W® Op) = hy Homp (f*V, f*W),

in which all arrows are canonical isomorphisms. Summing everything up we obtain
the compatibility of 1"es};1’W with base change, i.e. the diagram

g* (resy ™)
g'pHomp(V, W ® wg/s(D1)) g* ki Home (V, W)
El resf*v’f*w lg
hll 1% * *
pLHomg (f*V, f*W @ wps (D)) Wy Homp (f*V, f*W)

in which the vertical arrows are compositions of the natural isomorphisms con-
structed above, is commutative. The proof of naturality of rele’W(w) and evZ;W is
completely analogous and therefore is left to the reader. This finishes the proof of

the theorem. O
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yw _ VW . ~V W . . .
Let 1., = 14, (w) denote the image of 7, under the canonical isomorphism

Homg (hiHomg(V, W), ksHomg(V, W))

|

L' (S, ki Homr(W, V) ® hiHomg(V, W)).
iFrom Theorem 5.15 we immediately obtain the following corollary.

Corollary 5.17. In the notation of Theorem 5.15 let nyy : g* (hI’HomE(W, V) ®
hsHom(V, W)) — k" Homg(f*W, f*V) ® hy*Homg(f*V, f*W) be the canonical
1somorphism of bifunctors. Then it holds:

) *V’ W
mw(g (rp ) = Tf{a,hgf :

The following properties of the morphism F,fl’m can be proved in a similar way.

Proposition 5.18. Let E 2+ S, V,W and hy, hy be as in Theorem 5.15. Then the
isomorphism 7’};’,@ : hiHomg(V, W) — hiHomg(V, W) is functorial with respect
to isomorphisms YV — V' and W — W'. Moreover, for any line bundle L on E

the following diagram is commutative

=V, W

hiHomg(V, W) ot hsHomp(V, W)
| Frogos -
hiHome(V @ LW R L) 2 hiHomg(V @ LW ® L),

where the vertical arrows are induced by the canonical isomorphism

Homp(V, W) — Homp(V @ LLW® L).

6. GEOMETRIC ASSOCIATIVE r—MATRIX

The main goal of this section is to define the so-called geometric associative r-
matrix attached to a genus one fibration. We start with the following geometric
data.

e Let E 25 T be a flat projective morphism of complex spaces of relative
dimension one and denote by E the smooth locus of p.

e Assume there exists section i : T —» F of .

e Moreover, we assume that for all points t € T the fibre FE; is a reduced and
wrreducible projective curve of arithmetic genus one.

e The fibration E 2+ T is embeddable into a smooth fibration of projective
surfaces over T' and wg/r = OF.
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For a pair of coprime integers (n,d) € N x Z let M = Mgr(n,d) be the moduli
space of relatively stable vector bundles of rank n and degree d. It is well-known
that M = E, see Appendix 11. Let P = P(n,d) € VB(M x4 E) be a universal
family and denote P; = P|u, (n,a)x i, for any t € T,

In these notations we have the following Cartesian diagram of complex spaces

MXTMXTEXTEXTE FE

(Il p
)

M xp M xp Exp E T.

Observe that g : M xo M XTE XTE Xt E — M x7 M XTE' XTE is also a genus
one fibration satisfying all the conditions above. Let us fix some notation.

Definition 6.1. The diagonal map A : E — Ex¢F induces two canonical sections
hl,hQZ MXTMXTEU’XTEHMXTMXTEV’XTEXTE

of the morphism ¢, given by the rule h;(v1, va, y1, y2) = (v1, V2, Y1, Y2, ;) for i = 1,2.
Let divisor D; denote the image of h;. Next, consider two projection maps

pT‘iZMXTM XTEXTEXTE—)MXTE

given by pri(vi,va, y1,Y2,y) = (vi,y) for i = 1,2 and denote V; = priP. Then
both vector bundles V; and )V, are relatively stable and for any base point x =
(v1,v2,Y1,92) € M xp M xp E xp E it holds: V;|g-1z) = Piliviyxm =: P”, where
t=g(z).

Lemma 6.2. The set of points
A = {:L' EM X7 M X E XT Eu' | Vl(D2)|q—1($) = VQ(Dl)‘q—l(w)}
15 a closed analytic subset of M xXp M X E X E.

Proof. Since the morphism ¢ is projective, the sheaf q*Hom(Vl(DQ),VQ(Dl)) is
coherent. Moreover, if ¥V and W are two stable vector bundles on an irreducible
projective curve E; of arithmetic genus one having the same rank and degree, then
Hompg, (V, W) # 0 if and only if V = W. Since the sheaf Hom(Vi(Ds), Va(D1)) is
locally free, it is flat over M X M X E X E and the base-change formula implies
that for a point © = (v1, v9;y1,%2) € M X7 M X E x7 E and t = g(t) it holds:

g Hom (V1(D2), Va(D1)) ® Cp = Hompg, (V1| g, (y2), Vg, (11))-

Therefore, the set A coincides with the reduced support of ¢, Hom (V1 (Do), Vz(Dl)),
hence it is a closed analytic subset. 0
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For further purposes we shall need some more notation. Let
AQ = {$EMXTM XTEXTE|V1|q V2|q—1(z}
Ay = {z=(v1,v2,91,%2) € M xp M XTEXTE|y1—y2}

and A = Ay UA; UA,. Consider the open set B = M xq7 M X Exr E \ A and
the induced genus one fibration:

X———— M xy M xg E xg E x3 E E
qx Ql p
B¢ M xg M x7 E xg E T
By abuse of notation we shall write V; = V;|x for i = 1,2 and denote the two

canonical sections hy,hs : B — X and the corresponding divisors Dl, D, by the
same letters as for M X M ><TE ><TE X B — M X7 M ><TE ><TE

Definition 6.3. Let w € H(wg/r) be a nowhere vanishing section of the dualising
sheaf wg/r and f*(w) € H%(wx/p) its pull-back on X. Then we have a canonical
isomorphism of vector bundles on B:

F=iyn(w) =i (ff(w): hiHomx (Vi, Vo) — hiHomx (V1, Vs)
and a canonical section
r= 7“,1;11;3( ) € H*(hiHomx (Va, V1) ® hiHomx (V1, V2))

constructed in Theorem 5.15.

Remark 6.4. Let ¢;; denote the composition map
Bes M xp M xp Exe B2 Mxp MxpExpExEZS MxpE
then r is an element in I'(B, Homg (¢}, P, ¢, P) ® Homp (5, P, ¢5,P)).

The constructed section r has the following base-change property. Let g: 7" — T
be any morphism and

EILE

sl

A
the corresponding base-change diagram. Since the functor M( /T) is representable

(see Appendix 11), there exists a unique morphism

M, = ME//TI(TL,d) i) M = ME/T(TL,d)
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making the following diagram

M xp B —" M, E
T d T

commutative and such that P’ := (mx f)*P is a universal vector bundle on M’ xp FE'.
In fact, M' = M x¢ T" and m is the projection and the above diagram is Cartesian.
Denote j=mxmx fxfxf: X' —Xandjgg=mxmx fx f: B —s B,
then we obtain a new Cartesian diagram

x'—21-x

| |o

9B

B'— B.

Note that there exists canonical isomorphisms ¢; : §*V; — V!, where V| = pri*P’
in the notation of Definition 6.1.

Proposition 6.5. Let w € H(wg)r) and w' = f*(w) € H(wg /1), then the image
of the section

r= r}jll ,:}2( ) € H*(hiHomx (V2, V1) ® hiHomx (V1, V2))

under the chain of morphisms
HO (h’{?—[omx (VQ, Vl) X h;'HomX(Vl, Vg))

H°(g5(hiHomx (Vo, Vi) ® hsHomx (V1, V2)))

H° (h'l*%OmX' (9V2,5"V1) ® hIQ*HomX’ 9V, Q*VQ))

HO° (h’l*”}-[omxr V5, V1)) @ hy*Homx: (V] Vé))

isr’ = 7“:,1’:,2 (w"), where the first arrow is induced by the functor gy, the second by the

canonical isomorphisms of functors gyht = hi*§* and the third by the isomorphisms
of vector bundles ¢; : g*V; — Vi, i = 1,2.

Proof. This proposition is an immediate consequence of Corollary 5.17. O
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Now we introduce further notation. Let
pziMXTM o M Xp Exp Exp E —s M xq M x4 E xg E
be the projection pz(vl, V2, U3, Y1, Y2, Y3) = (Vi, Vj, Yk, Y1) and
Yij i M xXo M Xp M xXq EXp Exp E —s M xp E
be the composition
MxrMxrM XTEXTE XTE ﬂ) MxrMxpM XTEV' XTE XTE Xt F 2, MxrFE,
50 i (v1, V2, U3, Y1, Y2, y3) = (v;,y:). We also take

3
C = ﬂ (p;c]l)il(B) - M X M XT M XT Ev] XT Eu' XT E
ij k=1

Note that - 3

V12 0D = Vi, P11 0D = Yk
and 3 3

P21 OPZJZ = Yy, Y22 OP;CJZ = wlj-
Hence, the section r = r};ll;g (w) € F(B, Homp ((p’{{P, 011 P) @ Homp (s P, g0§2"P))
defines elements 7} := (p})*(r) lying in

L (C, Hom(1y; P, v P) © Hom (P, i P)).

Let x = (v1, v2, U3, Y1, Yo, y3) be a point in C, then the fibre r;fl(x) is an element of
the tensor product Homg(P%|,,, P¥|,, ) ® Homg(PY |y, P |y,)-

The following theorem is the main result of this article.
Theorem 6.6. The section
r=nh () € T(B, Homp (¢1,P, ¢1,P) @ Homp (5, P, ¢5,P))
satisfies the geometric associative Yang-Baxter equation
(13 (P2 - ()28 + (P =0,
where the left-hand side of this equation takes values in
D (C, Hom(u,P, Y1, P) @ Hom(3,P, 13,P) ® Hom(y5, P, v3,P)).
Moreover, this section is unitary, which means that
Pt (@) = 0" (r2n (@),
where o + M xo M XTE’ XTE' — M X+ M XTE XTE 1s defined by the rule
o (vi,v2, Y1, Y2) = (v2, V1, Y2, Y1)
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Proof. In our notation, {3 is a section of Hom(vi3P,¥5,P) @ Hom (3P, 13,P)

and 733 is a section of Hom (Y7, P, ¥} P) @ Hom(¢ssP, 15, P), so their composition
(r13)13(r?2)'? is indeed a section of
Hom(v1,P, 11 P) ® Hom(v3sP, ¢35, P) @ Hom (¢35, P, 133 P).

The arguments for the remaining two summands of the left-hand side of equation
(13) are analogous.

To prove the Yang-Baxter relation, take any point x = (v1,vs,%1,¥2) € B and
denote t = g(x) € T. Then we obtain a commutative diagram

Jo

E; X E
| qt |
Specan(C) —* B d T,

where E; = El,-1¢. By the base-change property of r (see Proposition 6.5) we
obtain:

Jz(r) = T;T;;Pvz € HomC(PW‘yupvl |y1) ® Homc (P" |y2a P |y2)

Moreover, we know that ji(r) satisfy the associative Yang-Baxter equation, hence
the equality

(14) (R ER)2 - (2P + (B2 rD?) =0
holds for any point x = (v1,vs, y1,¥y2) € B.

Since equation (13) holds for all points z € B and B contains an open ball in C",
n = dim(B), Lemma 6.7 below implies that the geometric associative Yang-Baxter

equation (13) also holds globally. The unitarity of r can be shown in a similar
way. Il

The proof of the following lemma is straightforward.

Lemma 6.7. Let U C C" be an open ball, £ a holomorphic vector bundle on U and
s € HYU,E). If for all z € U the element s(z) € £|, is zero, then s = 0. O

Our next goal is to explain the dependence of the tensor r on the trivialisation of
the universal family P = P(n, d).

Proposition 6.8. Different trivialisations of the universal bundle P lead to equiv-
alent associative r—matrices in the sense of Definition 2.5.

Proof. Recall that for each 7,5 € {1,2} we have defined the map ¢;; to be the
composition

Mxp MxEXxE LS Mxp MxExExgE2 Mxp E
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and 7 is a distinguished section in F(B, Homp(p1P, 11 P) @ Homp(v5 P, (ngp)).

Consider a small open set V C M X E such that there exists an isomorphism of

vector bundles 7 : P|y =4V x C" and an isomorphism V 2 C2? x Ty such that the
following diagram, where 7 C 71" is an open subset, is commutative

o

M xr E 74 — C? x T()
\ l lpr
T 1.

Let By = ﬂ%j:lgpi_jl(V), then the trivialisation 7 induces trivialisations ¢j;(n) :

1
¢;;P — Bp x C" and the section r can be written as a tensor

T =1¢(v1, V95 Y1, Y2) = Z af (v1, va; Y1, y2) @ b (v1,v2; Y1, ¥2) € Mat,(C) ® Mat,(C),

v

where the functions a; = ay (v, ve; y1,y2) and by = b} (v, v2; Y1, y2) are holomorphic
on By and are defined via the following commutative diagrams

¢T2P|BO @T1P|Bo 90;1P|Bo ¢§2P|Bo
©1a(m) l J{w’h (n) ©31(n) J{ lwéz(n)
BO x C" @ B() x C" and B() x C" b B() x C".

Let P|yv 13 V x C" be another trivialisation of P, then we obtain a commutative
diagram

Plv

idXx ¢ (v3y)

vy

V xCr V xC",

where ¢y(v;y) : V — GL,(C) is a holomorphic function. Identifying trivialisations
n: Ply =5 V x C" and ©5;(n) © 9P — By x C* we obtain a commutative
diagram:

at

c? c?
Tn(vz,yl) n(v1,y1) T

$r(v2,u1) | P2y, Py, | oe(v1,m1)
ln’ (va,y1) ’ n' (v1,91) l

ay

cr cr
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and similarly a diagram for b;:

by

cr cr
TW(UI Y2) n(v2,y2) T
be(v1,y2) | P |y2 Pv2|y2 $t(v2,y2)
ln’ (v1,y2) 7' (v2,y2) l
b
cr c,

which imply the transformation rules

a, = ¢i(vi,y1)ady " (v2,y1),
by = ¢t(U2,y2)bt¢;1(U1,y2)-

This means that the choice of a different trivialisation of P leads to the transforma-
tion rule

Te(v1, Va3 Y1, Y2) (¢t(U1: Y1) ® ¢ (v2, yz))Tt(Ula Vo Y1, Y2) (¢t(v2: Y1) ' ® ¢y (v1, yz)fl)-

Proposition is proved. O

Corollary 6.9. Let E -2 T be as at the beginning of the chapter, Mg/’dT) the

moduli functor of relatively stable vector bundles of rank n and degree d, ﬂOE/T
and EdE/T the Picard functors. Then the section i : T — E induces an iso-
morphism EOE/T — EdE/T. Combining it with the isomorphism induced by the
natural transformation of functors det : Mg/’dT) — ﬂdE T, we obtain a section
1: T — M xXp M Xp E Xy E. Let o be any point belonging to the image of 1.
Taking an arbitrary trivialisation of the universal family P(n,d) we obtain a germ
of a holomorphic function

T (M XT M X7 E X7 E\A,O) — Matn((C) X Matn(C)
satisfying the equation
. 12 . 13 . 23 . 12
rt(U3:U2;ylay2) T't(vl,v?nylay?,) - Tt(U1,U3,y1ay3) Tt(U1,U2,y1;y2) +
+ri(v1, v2; Y1, Y3) Pre(ve, V33 Y2, y3) 2 = 0.

The function r¢(vi,ve; y1,ye) depends analytically on the parameter t and different
choices of trivialisations of P(n,d) lead to equivalent solutions.

Remark 6.10. The construction of the geometric associative r—matrix can be car-
ried out in the category of algebraic schemes over C. This means that if the complex-
analytic fibration £ — T is a complexification of an algebraic fibration, then the
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. . riP,prsP .
canonical section 7 =r} ', **" leads not only to a holomorphic tensor-valued func-

tion on B = (M X M X1 E XT E) \ A but also to a meromorphic function

r: (M xg M xr E x7 F,0) — Mat,(C) x Mat,(C).

Our next goal is to show in the absolute case that there always exists a triviali-
sation of the universal family P such that the geometric associative r-matrix will
depend only on the difference v = v —v;. Namely, we are going to prove that for any
geometric r—matrix r(vy, va; Y1, y2) € Mat,(C) ® Mat,(C) attached to a Weierstrafl
cubic curve E and a pair of coprime integers (n,d) € N x Z there exists a gauge
transformation ¢ : (C?,0) — GL,(C) such that the function

(QS(UD Y1) ® d(vy, y2))7’(01, V23 Y1, yz)(¢(?}2, y1) ' ® p(vy, 92)71)
is invariant under transformations (v1,vs) — (v; + v,v9 + v). The key idea of the
proof is to look at the behaviour of the geometric r—matrix under the action of the
Jacobian G = Pic’(E).
Let F be a Weierstraf} cubic curve and Ans denote the category of complex analytic
spaces. For a pair of coprime integers (n,d) € N x Z let be St (E) be the set of
stable vector bundles of rank n and degree d on E.

Recall that the moduli functors Mg’d), E% : Ans — Sets are given by

F is S-flat /
Flpxs € St (E)

where F ~ F ® pri(L) for any £ € Pic(S). In our notation it holds Pic% = M{?.

For any pair of coprime integers (n,d) the functors Mg“d) and Pic), are repre-

sentable by the complex curve M = E,, = G, see Appendix 11. This means that
we have two isomorphisms of functors

a: M s Mor(—, M) and f:Pic% — Mor(—,G).

Let P = P(r,d) be a vector bundle on M X E representing the equivalence class of
the element o(M)1(15). In a similar way, let £ = 8(M)~'(1) € VB(G x E) be
a universal family of line bundles on E having degree zero.

Mg’d)(S) = { iso-classes of F € Coh(E x S)

Recall that for two functors F, G : Ans — Sets we can take their product F' x G :
Ans — Sets defined by (F x G)(S) = F(S) x G(S). Taking the tensor product
provides us with a natural transformation of functors

72 Pict x MY —s M
given by 75(N, F) = N'® F for a complex space S and N € Pic%(S), F € Mg’d)(S).
Since for any pair of complex spaces S,T € Ans it holds

Mor(—,S) x Mor(—,T) = Mor(—,S x T),
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the natural transformation 7 induces a map of complex spaces 7 : G x M — M
making the following diagram commutative:

BXxa

Pic%, x M%) Mor( —,G) x Mor(—, M) Mor(—,G x M)

M) « Mor( —, M),

where we have used Yoneda’s Lemma
Hom(Mor(—,G x M), Mor(—, M)) = Mor(G x M, M).

Moreover, we have an isomorphism of functors det : Mg’d) — Pic%, see Appendix

11. If G4 = E.eg is the complex space representing EdE then the following lemma
holds.

Lemma 6.11. Using the notation introduced above, the following diagram is com-
mutative

GxM-—"——M

lxdetl ldet
G x G —= G,
where o : G x G¢ — G? is induced by the natural transformation of functors
o : Pic), x Pict, — Pic}, which sends (L', L") to L'®" ® L".
Proof. This result follows from Theorem 7.1, Remark 8.16 and Remark 8.31. O
Recall that the Jacobian G = Pic’(E) has the following description:

C/T" if E is elliptic,
G C* if E isnodal,
C if E is cuspidal.

Let 0 € M be any point and e the neutral element of GG. If we identify appropriate
open neighbourhoods of 0 and e with open subsets of G' as described above, the map

o from Lemma 6.11 takes the form o(g,v) = ¢" o v, where o is the group operation
of G.

Lemma 6.12. Consider the following diagram of complex spaces:

M x E

TTXI

GxMxEFE

| e

Mx FE Gx E GxM
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where p; are natural projections, i = 1,2,3. Then piP Q@ p5L ~ (T x 1)*P, i.e. there
ezists a line bundle N € Pic(G x M) such that

PP QpyL @ piN = (1 x 1)*P.
Replacing G and M by small open neighbourhoods of e € G we even obtain
PiP @ psL = (T x 1)*P.
Proof. Note that we have the commutative diagram

Mor(G x M, G) x Mor(G x M, M)

BXo \

Pic% (G x M) x M (G x M) Mor(G x M,G x M)
TGle ln
M (G x M) e Mor(G x M, M)
MED (1) _— Mor(M, M).
Since T, (lgxm) = 7" (1) = 7, we obtain piP Q p3L ~ (1 X 1)*P. O

The following proposition is crucial.

Proposition 6.13. Let E be a Weierstrafy cubic curve, M = Mg(n,d) the moduli
space of stable vector bundles of rank n and degree d, G = Pic’(E) the Jacobian of
E. Let U C G be an open neighbourhood of the neutral element e € G and V a
small open set in the moduli space M such that we have an isomorphism

¢ : (PIP @ P3L)|vxvxr = pi(Plvsr) ® p3(Lluxe) — (T X 1)*Plvxuxe
constructed in Lemma 6.12. Identify V with an open subset of G and such that
T:UXV — V is given by the rule 7(l,v) = I"ov, where o is the group operation of
G. Then there exists a small neighbourhood W C E and trivialisations Py xw =
(Vx W) xC" and Llyxw — (U x W) x C with respect to which the morphism ¢
1s given by the identity map.

Proof. This proposition is follows from a case-by-case analysis made below for each of
three types of Weierstrafl cubic curves, see Corollary 7.4, Remark 8.20 and Remark
8.30. 0

Theorem 6.14. Let E be a Weierstrafl cubic curve, E its smooth part, (n,d) € NxZ
a pair of coprime integers, M = Mg(n,d) the moduli space of stable vector bundles
of rank n and degree d, G = Pic®(E) the Jacobian of E and

r: (M x M x E x E,0) — Mat,(C) x Mat,(C)



46 IGOR BURBAN AND BERND KREUSSLER

the geometric associative r—matriz. Then there exists a trivialisation of P such that
7(vi, V2391, Y2) ~ (V5 Y1, Ya),
where v = v9 — vy in G and there exists the limait
T(y1, y2) = li_Ig(Pr ® PT)T(U; Y1, y2) € sl,(C) ® sl,(C)
satisfying the classical Yang-Baxter equation.

Proof. Let P = P(n,d) be a universal family on M x E and £ € VB(G x E) a
universal line bundle,

prl,prQ:MxMxExExE—>M><E
the two projection maps,
h/l,hQ:MXMXEXEHMXMXEXEXE
the two canonical sections and V; = pr;P. In a similar way, denote
ﬁl,ﬁFQ:GxMxMxExExEHMxE

and
ﬁl,ﬁg:GxMxMxExE—M}xMxMxExExE

and put l,)z:f)\rfp Let
D:GXMXxMxEXEXE—GxE

and
A GXMXMxEXE -—SMxMxExE

be the canonical projections. Then we have a commutative diagram

GXMXMxEXEXE—MxMxExExE lf
Gx MxMxExE—= MxMxExE Specan(C),

where all arrows are canonical projections. Moreover, it induces a commutative
diagram of vector bundleson G x M x M x E x E :

awr=V1,V
A (Fhyhy )

#*(hyHom(V1, V) #* (hyHom(V1, V)

1.9 l
l ,,.AIAZ

B{Hom(ﬁl, 172) AR B;’Hom(ﬁl, 172)

l ;ﬁ1®p*[«,\72®11*£ l/

iL‘{’Hom(i}l ® p*L, 172 ®p*L) ot B;’Hom(ﬁl ® p*L, 92 ®p*L),
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where all vertical morphisms are canonical isomorphisms from Theorem 5.15 and
Proposition 5.18. Let

P GXMXMxEXE—MxMxExE

be given by 7(I,v1,va, y1,y2) = (7(l,v1),7(,v2),y1,72). Taking open sets U and V
in G and M as in Proposition 6.13 we obtain a new commutative diagram

Fﬁl ®p* £, Vy®p* L
k1,

hiHom(V) ® p*L, Vs ® p*L) hyHom(Vy @ p*L, Vs ® p*L)

J, VLV, l

R Hom(7*V,, 7*V,) hiHom((7* V1, 7*Vs)

where the vertical maps are induced by the isomorphism

o~

PI(Plvxe) @ p5(Lluxe) — (T X 1)"Plyxuxs-
Since we have assumed 7 : U x V' — V is given by 7(l,v) = I" o v, the geomet-
ric associative r—matrix 77}1;11,1522 is given by a holomorphic function 7(vy, vo;y1,ya) :

Mat,,(C) — Mat, (C) such that the following diagram

7(v1,02;91,Y2)

Mat, (C) Mat, (C)
idl lid
Matn((C) F(Iouy, IMovs; y1,y2) Matn (C)

is commutative for all [, vy, v9, y1, yo. But this implies that r(vi, ve; y1,y2) = r(ve —
v1; Y1, Y2). By [40, Theorem 2] there exists a limit

7(y1,2) = lim (pr ® pr)7 (v 1, y2)
satisfying the classical Yang-Baxter equation. Theorem is proved. U

Remark 6.15. Unfortunately, we have not found a “conceptual way” to prove
Proposition 6.13, without going to a case-by-case analysis. In particular, we do not
know whether this result generalises to the relative case.

It is also natural to conjecture, that a similar statement holds for the other pair
of spectral variables (y;,y2) and a geometric associative r—matrix can always be
transformed into the form r(vy,vo;y1,y2) = 7(v2 — v1;Y2 — y1); compare with the
corresponding result for the classical r—matrices [8].

Definition 6.16. Let r(v;y1,y2) € Mat,(C) ® Mat,(C) be a non-degenerate uni-

tary solution of the associative Yang-Baxter equation such that there exists a limit

7(y1,y2) = lim (pr ® pr)r(v; Y1, y2). We say that r is of elliptic type if 7 is an elliptic
v—e

classical r-matrix, trigonometric if 7 is trigonometric and rational if 7 is rational.
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It was shown by Polishchuk [40, 41] that in the case of elliptic curves one always
gets an associative r—matrix of elliptic type and in the case of Kodaira cycles a
solution of trigonometric type.

Corollary 6.17. Let E C P? x C? — C2 be the elliptic fibration given by the
equation zy®> = 4z — gox2® — g32°, A(g2,93) = g5 — 2793 the discriminant of this

=

This fibration has a section (gs,g3) — ((O :1:0), (92,93)). Fiz a pair of coprime
integers (n,d), then there exists a meromorphic function

r=r™) (C* x C?,0) — Mat,(C) x Mat,(C)

such that

o The tensor r := r(v1,ve; Y1, Y2) := 7(v1, Ve; Y1, Y2; t) Satisfies the associative
Yang-Baxter equation with respect to the variables vi,v9; Y1, yo for any fized
value of t = (g2, g3) in a neighbourhood of (0,0).

e The poles of r lie on the divisors vi = vy and y; = yo. Moreover, r is
holomorphic with respect to the parameters g, and gs.

e The tensor r is of elliptic type if A(ga,g3) # 0 and of trigonometric type if
the fibre is nodal.

Remark 6.18. It is natural to conjecture that for any pair of coprime integers (n, d)
the geometric r—matrix corresponding to a cuspidal cubic curve is always of rational

type.

The goal of the following three sections is to get an explicit form of the geometric
r—matrix attached to the Weierstraf} fibration zy? = 422 — gox2? — g32® and the pair
(n,d) = (2,1) at any fixed point (go, g3) € C?.

7. ELLIPTIC SOLUTIONS OF THE ASSOCIATIVE YANG-BAXTER EQUATION

In this section we are going to compute the solution of the associative Yang-Baxter
equation and the corresponding classical r—matrix, obtained from the universal fam-
ily of stable vector bundles of rank two and degree one on a smooth elliptic curve.
In [40, Section 2] Polishchuk computed the corresponding triple Massey products
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using homological mirror symmetry and formulas for higher products in the Fukaya
category of an elliptic curve.

It is very instructive, however, to carry out a direct computation of the geometric
triple Massey products, independent of homological mirror symmetry for an elliptic
curve. This approach allows us to express the resulting associative r—matrix in terms
of Jacobi’s theta-functions and the corresponding classical r—matrix in terms of the
elliptic functions cn(z), sn(z) and dn(z).

In order to carry out the necessary calculations we recall some standard results
about holomorphic vector bundles on one-dimensional complex tori, a description
of morphisms between them in terms of theta-functions etc.

7.1. Vector bundles on a one-dimensional complex torus. We start with
some classical results about vector bundles on smooth elliptic curves.

Theorem 7.1 (Atiyah, Theorem 7 in [4]). Let E be a smooth elliptic curve over C
and 'V a vector bundle on E.

e IfEndg(V) = C then ged (tk(V), deg(V)) =1, V is stable and is determined
by (rk(V),deg ), det(V ) € N x Z x E, where we use the isomorphism
Pic!(E) = E.

o If V is indecomposable and m = ged(rk(V),deg(V)) then there eists a
unique stable vector bundle V' such that ¥V = V' ® A,,, where A, is the
idecomposable vector bundle of rank m and degree 0 recursively defined by
non-split the exact sequences

0—A,1—A,—0—0, A =0

In the complex-analytic case one can give an explicit description of the stable
holomorphic vector bundles on a one-dimensional complex torus.

Theorem 7.2 (Oda, Theorem 1.2 in [38]). Let E = E, = C/(1,7) be an elliptic
curve and m, : B, — E, the étale covering of degree n induced by the inclusion of
lattices.

o If V is a stable vector bundle on E, of rank n and degree d, then there
exists a line bundle L € Pic*(E,;) such that V = m,.(L). Conversely, if
ged(n, d) = 1, then for any L € Pic*(E,,) the vector bundle V = 7,,(L) is
stable.

o If LN € PicY(E,,) satisfy mps(L) = Tny(N), then

(LONHE 2Oy

A very convenient way to carry out calculations with vector bundles on complex
tori is provided by the theory of automorphy factors, see [34] or [37, Section I.2].
Let 7 € C be a complex number such that Im(7) # 0, A, = Z @ Z7 C C? the
corresponding lattice, E = E; = C/A,; and 7 : C — E, the universal covering of
E,.
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The holomorphic map C — C* which sends z to exp(2miz) identifies C* with
C/Z. 1t sends 7 to ¢*, where ¢ = exp(miT). Hence, it induces an isomorphism E, &
C*/q* where the quotient is formed modulo the multiplicative subgroup generated
by ¢>.

Holomorphic vector bundles of rank n on E; are described by pairs (V, ®), where
V = C" is a vector space and & : C — GL(V') a holomorphic function (also called
automorphy factor) such that ®(z + 1) = ®(z). The corresponding holomorphic
vector bundle £(V, ®) is defined as the quotient C x V/ ~, where the equivalence
relation is (z,v) ~ (z + 1,v) ~ (2 + 7, ®(2)v). Using this description, we have the
following commutative diagram of complex manifolds

(CXV—>(€(V,(I)):CXV/N

prvt l

C B E,.

In these terms

A is holomorphic
Hompg, (E(V,®),E(W,¥)) = A: C— Lin(V,W) | A(z+1) = A(z)
Az +1)0(2) = ¥(2)A(z)

In particular, if ®(z) is an automorphy factor and A : C — GL,(C) is a holomorphic
function such that A(z + 1) = A(z), then ¥(z) = A(z + 7) '®(2)A(z) defines an
isomorphic vector bundle £(C*, ®) = £(C*, V).

In the case of line bundles, automorphy factors are holomorphic functions ¢ :
C — C* which satisfy p(z + 1) = ¢(z). We simplify notation and write L(yp) :=
E(C, ).

Line bundles of degree zero can be given by constant automorphy factors. Because
the function a(z) = exp(2miz) satisfies a(z + 1) = a(z) and a(z + 7) = ¢*a(z) with
q = exp(miT) as above, the constants ¢ € C* and ¢*¢ define isomorphic line bundles
on F;. In fact, the map

E, :=C"/¢* — Pi°(E,)
which sends ¢ € C* to L(¢) € Pic®(E;), is an isomorphism.

To describe line bundles of non-zero degree, we denote py = 1 _5 T € C and let

[po] be the corresponding point in E,. The automorphy factor

vo(2) = exp(—miT — 2miz)
satisfies L(po) = Ogr([po]). To see this, recall that, by the definition,

f is holomorphic
H°(L(po)) = Hom(L(1),L(po)) = f: C—=C| f(z+1) = f(2)
fz+7) = po(2)f(2)



VECTOR BUNDLES AND YANG-BAXTER EQUATIONS 51

and that this one-dimensional vector space is generated by the basic theta function

0(z|T) = O3(2|7) = Z exp(min®T + 2winz),

nez

see for example [36]. It is well-known that 6(z|7) vanishes at py = 1 '57_ and that
this is the only zero in the fundamental parallelogram of A .
Because 6 (z + 5= — z| 7) has its unique zero at [z] € E,, we obtain

C&@O§E<%(z+127—x>>.

This gives a complete description of Pic'(E;).

Finally, any line bundle of degree d can be written as O, ([(d — 1)po] + [po — )
for some point x € E,. To complete the description of Pic(E;,), it remains to observe
that

Op([po — z] + (d — 1)[po]) = L (50 - 0§ '),
where t¢o(2) 1= po(z + ).

The following properties of vector bundles on a one-dimensional complex torus
FE.. are very useful in our calculations below. They follow by a direct calculation.

(1) EV,2)@EW, V) ZEV W, 20 ).
(2) If m, : E,r — E, is the étale covering given by the inclusion of lattices
Anr C Ar, then 7 (E(V, ®)) = E(V, ®), where
B(z2) =Bz + (n—1)7) ... - B(z +7)®(2).

(3) The direct image . (E(V, ®)) = E(VE™, ®) of a vector bundle is given by

070 .0
0017 ...0
o= : & :
0 00 ... I
® 00 ... 0

Our next aim is to get a formula for an automorphy factor describing the set of
stable vector bundles of rank n and degree d on E, where gcd(n, d) = 1. Interpreting
Oda’s description from Theorem 7.2 in terms of automorphy factors we immediately
obtain the following proposition.

lwe thank to Oleksandr Iena for helping us at this point
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Proposition 7.3. Let (n,d) € NXZ and ¢p, q4(2) := exp(—mindr — 2midz — 2miz),
where x € C/(1,nt) and ged(n,d) = 1. Then, the automorphy factor

0 10 ... 0

0 01 0

(I)n,d,w(z) = T S
0 00 ... 1

@n,d,w 00 0

describes the set of stable vector bundles of rank n and degree d on the complex torus
E.. Note that 5(@”, @n,d,w) i E(C”, @n,dyw/) if and only if x — x' € A,.

However, this automorphy factor is not compatible with the action of the Jacobian
Pic’(E,). In order to overcome this problem we denote gz = exp(—%#) and let

1 0 0 0
0 g= 0 0
A—10 0 q% 0
0 0 0 gt
Then
0 g= 0 0
0 0 go 0
Bpaa(z) = A 1D, 4,(2)A = S |,
0 0 0 gz
qz¢na 0 0 0

where ¢, 4(2) = exp(—mindT — 2midz).

Corollary 7.4. We have exp(—2miy)®n,4.(2) = P aziny(2), hence the trivialisa-
tion of the universal family E(V, @y, 44)zecr, induced by the isomorphism

™ (S(C", @n,d@(z))) — CxC
s compatible with the action of PicO(ET).
This leads to the following result about the associative r-matrices of elliptic type.

Corollary 7.5. Let r be an associative r—matriz obtained from a universal family
of stable vector bundles on an elliptic curve, then it always holds (v, ve; Y1, y2) ~
r'(vy — v1; Y1, Y2 ), where T’ is an equivalent associative r—matriz.
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7.2. Rules to calculate the evaluation and the residue maps. Let £ = E; be
a complex torus, Qg the sheaf of holomorphic differential 1-forms, w = dz € H°(Qp)
a global section. Recall that for two non-isomorphic stable holomorphic vector
bundles V; and V, of rank n and degree d and two distinct smooth points y; and
yo we have defined a holomorphic function 7(v1,ve; 41, ¥2) : Mat,(C) — Mat, (C)
using the following commutative diagram

Hompg (V1, V2(?/1))

res‘,‘jl1 V2 ev‘;z1 V2
HomC(V1|y1’V2‘y1) Hom@(V1|y2,V2|y2)
l 7(v1,v2;91,y2) l
Mat, (C) — Mat, (C),
where res;jll’vz’ and evzj};’V2 are canonical maps and the vertical isomorphisms are

induced by a trivialisation of the universal bundle P(n,d) € VB(E x Mg(n,d)).

Recall that the exact sequence 0 — Qp — Qg(y) By C, — 0 and the differen-
tial form w induce a commutative diagram

00— HomE‘(Vla V2 ® QE(?J)) Homp (V1,12 ® Cy)

V1,V2

Hompg(V1, Va(y)) Homg(V: ® Cy, Vo ® Cy).

vla

v V2 observe that we have a commutative

In order to compute the horizontal map res
diagram of coherent sheaves

o

Hompg (V1, Vo ® QE(y)) ’HomE(Vl, VQ) QRN ® OE(y)

7
4 l%
—~ V1,Vy

Homp(V1, Va(y)) (i) Home(V1 ® C,, Va @ Cy),

where, on the level of presheaves, the map

res;, : Homgp(Vi,V2) @ Qg ® Op(y) — (iy)« Home(V1 ® Cy, Vo ® C)
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sends F®w ® f to (v res,(fw)F(v)). Moreover HO(rés) ") = res)»"2 and we

Y Y
obtain the following commutative diagram:

120
resy 1’72

Homz (Vi, Va(y)) Homz(V1 ® Cy, V2 ® Cy)

res.

Homo, (V1)y, (V2)y) ®o, (2E)y ®0, (O(v)),

where F, denotes the stalk of a coherent sheaf F at the point y.

Let V; and V, have the automorphy factors ®;(z) and ®4(z) respectively, and let
VYy(2) = — exp(—2miz + 2miy — 2miT)

be the automorphy factor of Og(y). The theta function 6,(z) = 0 (2 + 4T — y| 7)
is a global section of Og(y). Using this notation, we can describe the space of
morphisms from V; to V;(y) as follows

F is holomorphic
Homp (V1i,Va(y)) =S F: C" - C* | F(z+1) = F(2)
F(z+ 7)®1(2) = ¢y (2)D2(2) F(2)
Using the trivialisations of V; and Vs, induced by the maps 7*V; = Cx C we
obtain that
res;)l’v2 : Homg (VI,VQ(y)) — Mat, (C)

is given by

F(Z) . F(y) _ F(y)
F(z) — res, <9y(z) dz) C0,y) o (M)

In a similar way one can show that the evaluation map
ev}l};’v2 : Homg (W1, Va(y1)) — Mat,,(C)
is given by the formula

F(y2) _ F(ye)
Oy (y2) Oy + 57|7)
Remark 7.6. Note that the resulting map 7 (v, vo; y1, y2) : Mat,(C) — Mat,(C) is

invariant under the rescaling 6, (z) — cf,(z),c € C* of the global section of the line
bundle Og(y).

F(z) —
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7.3. Calculation of the elliptic r—matrix corresponding to Mg(2,1). Let
V1 =V,, and V, = V,, be two non-isomorphic simple vector bundles of rank two and
degree one on the elliptic curve £ = E,, y; and y, two distinct points. In what fol-
lows we denote ¢ = exp(miT), ¢, = exp(—7ix), e(z) = exp(—2miz), ¢(z) = e(z + 7),
T=29— 1 and y = yo — y1.

As we have seen in the previous subsection, one can write V; = E(CZ, Do 14, (z)),
where

P1,0,(2) = G ( (p?z) (1) ) =: ¢, 9(2),

and the line bundle Og(y;) corresponds to the automorphy factor
Yy, (2) = —e(z + 7 — ).
Recall that Homp (Vl, Vg(yl)) =

{A(z) - ( Z(é)) ;’((ZZ)) )‘ Az +1) = A(2), Az +7)8(2) = guthy, (2)B(2) A(2) }

This leads to two systems of functional equations

{U(Z+T) = &z {90(2)@(2+T) = @GPy (Hw(z)
tz+7) = @iy (2)u(z) wiz+71) = qe(2)dy, (2)v(2)

which are equivalent to

u(z+27) = a(2)u(z) v(z+271) = b(2)v(z)
u(z+1) = (U(j_) ) and viz+1) = v(z)( )
_oulz+T oz
e vB = L@ et

where

2

a(z) = exp (—2%2’7’ — 2mi (z + 2 _2}_7- - y1>) and
: : x 2

b(z) = exp (—27m7- — 2mi (z + i yl)) :

Lemma 7.7. Let E = E, be an elliptic curve, ¢o(z) = exp(—miT — 2miz), | €
N. Then H°(L(g))) has a basis {0 [%,0] (Iz|i) |0 < a <l,a € Z}, where we use
Mumford’s notation

0a,b](z|7) = _exp(mi(n + a)’r + 2mi(n + a)(z +b)).

neL
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In the particular case of bundles of rank two and degree one it is convenient to
use instead the four classical theta-functions of Jacobi:

0, (z|7) = 2¢i i (=1)ng"*Vsin((2n + 1)7z2),

n=0

o
B2(2|7) = 2g7 Y "D cos((2n + 1)72),
n=0

05(z|7) =14+2Y ¢ cos(2mnz),
n=1
0,(z|7) =1+ 23 (=1)"¢"" cos(2mnz).
n=1
Remark 7.8. In Mumford’s notation it holds:
01(2|7) = —0 [5, 3] (2I7) 02 (2|7
03(z[r) = 0[0,0] (z|7) Ou(z|7) =
In what follows we shall express all our computations in terms of Jacobi’s theta-
functions. From Lemma 7.7 and Remark 7.8 we immediately obtain:

Corollary 7.9. If we let
) )= (2 (e )|o)

i (2) = 05 (2 (z—y1+ x;”)
i) ) =0 (2 (s -+ ) |ar)
and

uo(z) = By (2 (z—y1+ x—H—)
uk(z) 0 0 vk(z)
Fe(z) = | o wlet7) |,G(2) = | _¥(2) wz) 0 |0 k=12

2
qwlﬁyl (Z) quyl (Z)
then Fi(z), F5(z), G1(2), G2(2) is a basis of Homg (Vi, Va(y1)).

The following proposition sums up the main properties of Jacobi’s theta-functions
which we need in our calculation of the associative r—matrix corresponding to the
universal family of stable vector bundles of rank two and degree one.

Proposition 7.10 (see [21] and Section 1.4 in [32]). The transformation rules for
shifts of theta-functions are given by the table

\0 [ 0(=2) |0(z+1)] O(z+7) [0(z+1+7)|0(z+3)] 0(z+1) |
01(2) || =01(2) | =01(2) | =p(2)01(2) | p(2)61(2) | 0a(2) |iq(2)04(2)
02(2) || 02(2) | —0>(2) | p(2)02(2) | —p(2)0a(2) | —01(2) | q(2)05(2)
5

2) || 03(2) | O5(2) | p(2)bs(2) | p(2)bs(2) | 0u(2) | q(z
2) || 0u(2) | 0u(2) |—p(2)0a(2) | —p(2)0a(2) | O5(2) |14(2)0:(2)
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where p(z) = exp(—mi(2z + 7)) and q(z) = exp(—mi(z + ZT[)) Moreover, Jacobi’s
theta-functions satisfy the so-called Watson’s determinantal identities:

03(2x|27')02(2y|27') 05(2y|27)02(2x|27) = 61 (x + y|7)0:(x — y|7),
01 (22|27)04(2y|27) — 01(2y|27)04(22|27) = O2(x + y|7)01(x — y|7),
01 (2x|27)04(2y|27) + 61 (2y|27)04(22|27) = 01 (z + y|7)b2(x — y|T),
04(22|27)04(2y|27) — 01(2y|27)01 (22|27) = O3(x + y|7)04(x — y|7),
04(2|27)04(2y|27) + 01(2y]27)01(22|27) = Ou(x + y|7)03(x — y|7).

By Corollary 7.9 any element of Hompg (Vl, Vz(yl)) can be written as a sum
A(z) = aFi(z2) + BFa(z) + 7G1(z) + 0Ga(z)

for some «, 3,7, € C. In order to calculate the geometric associative r—matrix
r(z1,x9; y1,y2) We have to solve the system of linear equations

res,, (A(z)) = ( °“! ) .

Then the linear map 7(z1, Z2; y1,y2) : Mate(C) — Maty(C) is given by the rule

a b resy, evy 1
(& ) 540 gy

It is easy to see that the system of linear equations

resy, (aFi(2) + BF(2) +1G1(2) + 6G2(2)) = ( CcL fl )

splits into two independent systems

resy, (F(2)) = ( 8 2 ) and  resy, (G(z)) = ( 2 8 > ,
where F(z) = aFi(z) + BF3(z) and G(z) = 7G1(z) + 6G2(z).

Computation of the “diagonal terms”. The system of linear equations

res,, (F(2)) := %F(yl) = ( 8 2 )

63(57)
reads as
O3(z + T|AT)a + Oy (z + T|47) B = O4(HT|1)a
0y(z + 3r/AT)a + Op(x + 37|4T)8 = —e(r + 505 (157 [7)d

By a Watson’s identity the determinant of this system is

03(37 +T|4T) 92($+T‘4T)
03(37 + 3T|4T) 02(37 + 37'|47')

= e(x + 7)01(x|27)0,(T|27)

A, = b61(x + 27|27)0,(—7|27) =
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and we obtain:
a = ( (z +37|47)a + (1 + £)0s(x + 7|47)d)
/ 1+ T
B = —”3‘; 7 (05(z + 3r|47)a + e(r + 2)0s(z + T/47)d).

This implies:
- a 0
T($1,$2;yl,y2) [( 0 d >] =

0, (L) r 052y + = + 7)47) 0
2 A X p1(2) 0 _ 03(2y + = + 37]47)
! e(x/2+y+T)

022y + x + 7|47) 0
—pa(2) _ 02(2y + x 4 37]47)

0 e(w/2+y+7)

where

p1(z) = O2(x + 37)47)a + e(x/2 + 7)02(x + T|47)d,

po(2) = O3(x + 37|47)a + e(x/2 + 7)03(x + T|47)d.
In order to calculate the “diagonal part” of the corresponding tensor r(x1, z2; 1, y2)
we use the inverse of the canonical isomorphism

Mat,(C) ® Mat,(C) —» Lin(Maty(C), Mat,(C))
given by the formula X @ Y +— tr(XY)Y. It is easy to see that under the map
Lin(Mats(C), Mat»(C)) — Mat,(C) ® Maty(C)
a linear function €ij — O./Z] €k, af} € C* corresponds to the tensor afjleji & ex-
Again, Watson’s identities imply:
e The coefficient at e1; ® ey is
032y + = + 7|47)02(x + 37|47) — 02(2y + x + 7|47)03(x + 37|47) =
01 (x + y+ 27|27)01 (y — 7[27).
e The coefficient at e9y ® €99 i
e(—y) (0s(x + 7]47)02(2y + x + 37|47) — b2(x + T]47)05(2y + z + 37|47) =)
=0,(x +y + 27|27)0, (y — 7|27).
e The coefficient at esy ® €17 is
e(x/2+7)(02(z + TAT)03(2y + = +7) — O3(z + T[4T)0:(2y + z + 7)) =
=e(x/24+1)0(y + x + 7|27)0, (y|27).
e The coefficient at e;; ® €99 is

e(—y—x/2—7)(02(2y +x +37)|47)05(z + 37|47) — 63(2y + x + 37(47)b5(x + 37|47)) =
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=e(z/2 4+ 1)0(y + x + 7|27)0: (y|27).
Now observe that
O1(x +y+27|27)01 (y — 7|27) = ie(x + y/2 4+ 57/4)01(x + y|27)04(y|27)
and

e(x/2+7)01(y + z + 7|27)01 (y|27) = ie(z + y/2 + 57/4)0,(x + y|27)61 (y|27).

Hence, the “diagonal part” of r(z1, zo; y1,y2) is
C [91 (x4y|27)04(y|27) (e11 ®e11 +e22 ®enn) +04(x+y|27) 6, (y|27')(611®622+622®611)],

where . ;
B Ir)el + 3 +5)

03 (y + HTT |T)A1
;From the identities 63(y + £|7) = i exp(—mi(y + 7/4))0:(y|7) and 6;(0|7) = 0 it
follows: 65(*£7|7) = ie(%)0'(0|7). Using the transformation rules from Proposition
7.10 we get:

C

o 61(0]7) _ 61(0|7)
0,(027)01 (z[27)01 (y|T) (g‘ T) 0, (g‘ T) 6, (y|r)

where we have used the Landen’s transform
0,(0(27)6: (2z|27) = 01 (x|7)0s(z|T).

It remains to observe that A(ej;; ® €11 + €92 ® €92) + B(e11 @ exg + €29 R €11) =

1 1
(A + B)(enn + e22) ® (e11 + e22) — o (A — B)(enr — e22) ® (en1 — e22),
and that by Watson’s identities it holds
X X
01(z + y[27)04(y|27) + Ou(z + y|27)0:1 (y[27) = 61 (y + 5‘ T) 0y (5‘ T)
and
X X
01 (z + y[27)04(y|27) — Ou(z + y|27)6: (y]27) = 6 <y n 5‘ T) 0, (5‘ T) ,

so the contribution of the “diagonal terms” is

107(0]7) 01 (y + 5[7) 107(0|7) O2(y + 5I7)
— = 1®1+ = —
20:(y|T) 6(5]7) 20,(y|T) 6(5]7)

h® h.

Contribution of the “skew terms”. We have to solve the system of linear
equations

res,, (Y61 (2) + 6Ga(2)) = ( ’ 8 ) .
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In an explicit form this system reads as

Os(z|47)y + O9(z|47) = 05(2T|n)b
Os(z +274T)y + Oy (z + 2747)6 = —e(x/2 — yl)Hg(HTTh)c.
By Watson’s formulas the determinant of this system is
. Os(x|4T) Oy (z|4T) _
By = Os(z + 27/47) Oy(x + 27[47) | 01 + 7|27)0 (7[27).

Hence, the solution of this system of equations is

{ v o= Oé(H_TT‘T) §02($ +27/4T)b + e(x/2 — yl)ﬁg(x\47')c)
6 = O4(HT|7)(03(z + 27[47)b + e(z/2 — y1)b3(z|4T)c.)

As a result, we obtain:
. 0 b
721, T2; Y1, Y2) c 0 =

05 (5" |7) « [ ( )< 0 03(2y + x|47) )
O3(y + 1) Ay [TV —elyn — 2/2)05(2y + z + 2747) 0
0 622y + z|47)
—0:(2) ( —e(y1 — x/2)02(2y + x + 27|47) 0 ﬂ ’
where

q1(2) = Os(z + 27]47)b + e(x/2 — y1)02(x|47)c,
g2(2) = O3(z + 27]47)b + e(x/2 — y1)03(x|47)c

Again, Watson’s identities imply:
e The coefficient at e5 ® eqy iS
O (x + 27147)03(2y + x|47) — O3(x + 27|47)02(2y + x|47) =

e G(x n r>) u(c + y|27)6:(y]27).

e The coefficient at e1o ® ey 1S
O3 (x|47)02(2y + = + 27|47) — O2(x|47)03(2y + = + 27|47) =

1
— e (3640 +y) e+ yrionGe).
e The coefficient at e1o ® €19 is
e(x/2 — y1) (02(]47)05(2y + = + 27/47) — O5(z|47)02(2y + = + 27(47)) =
= e(z/2 —y1)bi(z + y[27)61 (y/27).

e The coefficient at e9; ® €97 is

e(yr — /2)(03(x + 27]47)02(2y + = + 27|47) — O5(z + 27|47)05(2y + = + 27]47))
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=e(yo + /24 7)01 (y + x|27)6 (y|27).

Note that the coefficients of the tensors e ® e12 and e9; ® e9; are not functions of

Yy = Yyo—y1. In order to overcome this problem we take ¢(y) = ( 6(_3/2) 6(7'0/4) )

and consider the gauge transformation

(@1, y2) = (d(11) ® d(y2))7 (@5 41, 92) (67 (1) ® 6 (12)).-

It is easy to see that the “diagonal tensors” e, ® ey(k,l = 1,2) remain unchanged
(and, in particular, this gauge transformation does not influence the final answer
for the “diagonal terms” obtained before) and the transformation rule for the “skew
tensors” is the following:

el ®ep = 6(%)6(‘1/1;‘1!2)612 ® e1a,

e ® ey 6(—%)6(—‘1/1_;;2)621 X €921,
e ®eqy 6(—%)612 ® eo1,

e ®es = e(d)ea ® e

Hence, the new tensor of “skew terms” is

C[04(z+y|27)04(y|27) (€21 @12 +e12®€01 )+ 01 (T+Y|27) 01 (y|27) (€10@ €12+ €21 ®E21) |

where
O— HQ(HTWT)e(%(x-i-y-I-T)) _ 61(0|7)
05(y + 1+TT|7')A2 04(0(27)04(z|27)61 (y|7)
61(0]7)

~ Os(2/20m)0s(2/2]7) 01 (yl7)”

Using the equality

01 01 0 —3 0 —1
a(Vo)e (Vo) e( ) (i 7)-
= (A4 B)(e12 @ €21 + €21 ®e19) + (A — B)(eg1 ® €91 + €12 ® €12)

and Watson’s identities

04(y + x(27)04(y|27) + 01 (y + 2[27)0, (y|27) = b4 (y n g‘ T) 0 (g‘ T)

T T
Oa(y + 2/20)0s(y127) — 01y + 227)01(y[27) = 06 (y+ 3| 7) 0 (5] 7)
it follows that the contribution of the “skew terms” is

161(0]7) (93(y +317) O2(y + 517) )
- 0Qo+—"—7TRT),
260:(ylr) \ 05(5I7) 0>(317)




62 IGOR BURBAN AND BERND KREUSSLER

=(13) (20)

Summing everything up we obtain the following theorem.

where

Theorem 7.11. The universal family of stable vector bundles of rank two and degree
one on an elliptic curve E, gives the following solution of the associative Yang-
Baxter equation:

L 16,(0]r) (Ou(y+ ) 02y + 5|7)
T(x’y)‘iexmﬂ( oz Ot ToEn ekt
93(y+%|7)0 " 94(y+%\T)T .
NI I N T I )
Recall that
L BODGR)  GOmAED L Bu(0nes(el)
B = g0macn T Lomaen ™ T 6066

and
01(0|7) = 62(0]7)05(0|7)04(0|7),
see [32, Sections 1.5 and Section I1.1]. Let 7(y) = lin(l)(pr ® pr)r(z;y) then we have:
T
Theorem 7.12. The solution of the classical Yang-Baxter equation obtained from

the universal family of stable vector bundles of rank two and degree one on a complex
torus E, is

"y) = » (Cn(y)h® h+

9 T®T+dn(y)a®a>.

sn(y) sn(y) sn(y)

Remark 7.13. Note that res, (r(z;y)) = 31 ® 1, hence the tensor 7,(y) := r(z; y)

also satisfies the quantum Yang-Baxter equation for x # 0.

Remark 7.14 (see for example Section VIL.3 in [17]). Let

@(Z):Zl_ﬂL 2 <(z—ni—m)2_(n7-1%m)2>

(n,m)€Z2\{0,0}

be the Weierstral p—function. Then p'(3) = ¢'(3) = ¢'(13%) = 0 and 3, % and 5~
are the only branch points of p(z) in the fundamental parallelogram of A,. Denote

e = gg(%), es = (%) and e3 = gJ(HTT) Then it holds:

o= (50) 0o (am) -+ -a=(5)"
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8. VECTOR BUNDLES ON SINGULAR CUBIC CURVES

In this section we shall recall the approach of Drozd and Greuel to study torsion
free sheaves on rational projective curves [20].

8.1. The category of triples. In order to fix the notation we start with some
standard facts about vector bundles on a projective line.

Theorem 8.1 (Birkhoff-Grothendieck). On the projective line P*, taking the degree
gives an isomorphism Pic(P') & Z and any vector bundle of finite rank € on P
splits into a direct sum of line bundles:

£ = @ Opi(n)™.

neZ

Let (2o, 21) be coordinates on V' = C?. They induce homogeneous coordinates
(20 : 21) on the projective line P! (V) = (V' \ {0})/ ~, where v ~ \v for all A € C*.

We set Uy = {(20 : 21)|20 # 0} and Us = {(20 : 21)|21 # 0} and put 0 := (1 : 0),
00:=(0:1), 2= 2/2 and w = %/z;. So, z is a coordinate in a neighbourhood of
0. fU=UyNUy and w = 1/z is used as a coordinate on U, then the transition
function of the line bundle O(n) is

20) (3,57

Uy xCoOU x C 2 A UxCcU, xC.

The vector bundle Opi(—1) is isomorphic to the sheaf of sections of the so-called
tautological line bundle

{(lLv) |[vel} cPY(V)xV = O2,.

The choice of coordinates on P! fixes two distinguished elements, zy and 2, in the
space Homp1(Op1(—1), Op1):

P! x C2 <——0p1(—1) == P! x C

]P)l

where z; maps (I, (vo,v1)) to (I, v;) for i = 0, 1. It is clear that the section 2z, vanishes
at oo and z; vanishes at 0. After making this choice we may write

Homp1 (Op1(n), Opi(m)) = Clzo, z1]m—n = (25" ", 20" " 21, -, 21" ")
Remark 8.2. In these terms we have the Euler sequence

()

0 —s Opi(—1) 225 02, T2 o (1) — 0.
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To compute the associative r-matrices coming from the nodal and cuspidal Weier-
strafl cubic curves, we use a description of vector bundles on singular projective
curves via the formalism of matrix problems [20], see also [13, 11].

Let X be a reduced singular projective curve, 7 : X — X its normalisation,
T := Homo(m.(0%),0) = Anne(m.(0%)/O) the conductor ideal sheaf. Denote
by n: Z = V(I) — X the closed artinian subspace defined by T (its topological

support is precisely the singular locus of X) and by 7: Z — X its preimage in X,
defined by the Cartesian diagram

7]

Z—X
1.0
7 —=X.
In order to relate vector bundles on X and X we need the following definition.
Definition 8.3. The category of triples Tri(X) is defined as follows.
e Its objects are triples (V, N, i), where V € VB(X), N € VB(Z) and
p: TN — Y
is an isomorphism of Oz-modules, also called gluing map.

e The set of morphisms HomT,;(X)((T},N, 1), (17',./\/', 1)) consists of all pairs

(F, f), where F: V — V" and f : N' = N are morphisms of vector bundles
such that the following diagram is commutative

PN~ P
7~r*(f)l J{ﬁ*(F)
- S
7.‘_*./\/'/ RN n*vl
The category Tri(X) is endowed with a natural tensor product
WV,N, 0@V N, i)=YV NN, ue i)
and we have the following theorem.

Theorem 8.4 (Drozd-Greuel, Lemma 2.4 in [20], see also Theorem 1.3 in [13]).
The functor F : VB(X) — Tri(X) which assigns to a vector bundle V the triple
(m*V,n*V, uy), where py @ T*0*V — 7*7*V is a canonical isomorphism, is an
equivalence of categories. Moreover, for any V,V' € VB(X) it holds F(V @ V') =
F(V) @ F(V').
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Remark 8.5. Since the functor F commutes with tensor products, we also obtain
that, if F(V) = (V, N, i) and n is the rank of V, then

F(det(V)) = (det(V), det(N), A" (k).

Assume that our curve X is irreducible with normalisation X = P!. Let (ﬁ, N, 1)

be an object of Tri(X) such that rk(V) = n. Then it holds
V= @ Op:(1)™  and N =2 0%,  where Z m; = n.
IeZ lez

In order to keep compatibility with tensor products in our description of vector
bundles on singular Weierstral curves, for each [ € Z we fix an isomorphism 7; :
7*Op1(l) = O such that for all k,! € Z the following diagram is commutative

7*Op1 (k) ® 7* Op1 (1) i7*Op1 (k + 1)

Tk®Tll l7k+l

Such a choice of {7;},cz induces an isomorphism 7 : iV — O%. Because N = O,
we get an isomorphism 7*N — O%. Since Z is an artinian complex space, the map
i N — 7*V can be described as a matrix in GL,(Oj). We have a natural

action of the group Autp1(V) x Aut;(N) on the vector space Hom; (7*N,7*V). The

orbits of this action correspond precisely to the points in the fibre over V of the
functor 7* : VB(X) — VB(X).

Our aim is now to get a description of semi-stable vector bundles on singular
irreducible Weierstrafl cubic curves with locally free Jordan-Holder factors in terms
of triples. Let us start by collecting some standard results.

Lemma 8.6. Let E be a singular Weierstrafi curve, © : P* — E its normalisation
and V a vector bundle on E. Then degg(V) = degp:i(7*V).

Proof. If n = rk(V) then 7*V is a vector bundle of rank n on P'. The canonical
map g : V — m,.m*V is generically injective and V is torsion free, hence ker(g) = 0
and we have an exact sequence

0—V-Lrnry—T—0,

where 7 is a torsion sheaf supported at the singular point s of the curve E. Since
g commutes with restrictions on an open set, we have

T = (coker(@E - W*(OIP’I)))”'
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Because s is either a node or a cusp, we obtain h%(7) = n. Using the Riemann-Roch
formula, this implies

degp(V) = x(V) = x(mm™V) = x(T) = x(7*V) — n = degp:(7*V).
O

Lemma 8.7. Let E be a singular Weierstrafi curve, m : P! — E its normalisation
and YV a simple vector bundle of rank n on E. Then

o V is stable.
o 7V = Opi(c)" & Opi(c+1)"2 for some integer ¢ € Z and some non-negative
integers mi, ny which satisfy n = ny + ng.

Proof. For the first statement see for example [16, Corollary 4.5]. To prove the
second part assume

V=7V Opi(c) ®Opi(d) ® V",
where d —c> 1 Let (17, O%, 1) be a triple corresponding to V. Because the
length of Z is two and d — ¢ > 2, we can find a non-zero homogeneous form p =
p(20,21) € Homp1(Op1(c), Op1(d)) such that 7*(p) = 0. This gives us a non-scalar
endomorphism of V by taking the endomorphism (F,, f) of the corresponding triple
given by

100
F=1p 10
0 01
and f =id. This contradicts our assumption that )V was simple. O

Remark 8.8. Note that the map
i7" : Homp1 (Op1, Op1(1)) — Homz(O03, O3)

is an isomorphism both for a nodal and a cuspidal cubic curve.

8.2. Simple vector bundles on a nodal Weierstrafl curve. Let E be a nodal
Weierstraf§ curve, e.g. zy?> = 2% + 2%2, s = (0 : 0 : 1) the singular point and
7 : P! — F its normalisation. Choose homogeneous coordinates (2q : 2;) on P! in
such a way that 77!(s) = {0, 00}. Then, in notations of the previous subsection, Z

and Z are reduced complex spaces as follows
Z={s} and Z={0}U{ooc}.
Hence, for a triple (f},./\/' , i) the map g is just an isomorphism of C x C-modules.
Let p =2 — 2 € H° (Opl(l)), this is a section, which does not vanish on Z.

We define the collection of isomorphisms 7 : 7*Op1(l) — O3 (I € Z) by say-
ing that, for each open subset V' C P! not containing (1 : 1), 7; maps a local
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section s € T'(V, Op1(1)) to 27| 7. This implies the following evaluation rule for mor-
phisms of vector bundles on P': if ¢ = aozl" ™ + a12] "z + o F A2 €

Homp1(Op1(n), Opi(m)) then we have a commutative diagram

n* ()

i7" Op1(n) i7" Op1(m)
\L diag((—l)m_"ao,am,n) l
G 0 Cw G & Cwe.

Let us now determine the triple which corresponds to the line bundle Og(y) for y €
F g Because the normalisation restricts to an isomorphism 7 : P!\ {0, 00} — FEieg
and the chosen coordinates provide us with an isomorphism C* 2 U = P' \ {0, oo},
we obtain an identification Eye; & C*, such that y € C* corresponds to § := 7! (y) =
(1:y) € P'. Obviously, 7*(Og(y)) = Op:(§) = Op1(1) and H°(Og(y)) is the one-
dimensional subspace of H%(Opi1(1)) generated by a section vanishing at (1 : y).

Lemma 8.9. For the given choice of homogeneous coordinates on P* and the set of
trivialisations {1 }icz described above, we obtain

F(OE (y)) = (O]P’la (Csa ((y)’ (1)))

Proof. Assume F(Og(y)) = (Op1(1),Cy, ((A), (1))). Since we have an identification
H°(Og(y)) = Homg(Og, Or(y)) and an embedding

Homg (O, O (y)) — Homiz) (F(Og), F(Or(y))) — Homp: (Op1, Opi (1)),

a section azy + bz € Hompl((’)Pl, O]pl(].)) belongs to the image of 7* if and only if
there exists a constant f € C* making the following diagram commutative:

o7

Co & Cy Co & Cx
1 0 A0
01 (_a 0) 0 1

0 b
Co & Cwo Co @ Cwo.

This implies the relation a + \b = 0, so H° ((’)E(y)) is generated by the section
Azg — z vanishing at (1 : A). From this we conclude that A = y and F(Og(y)) =

(Opl(l)’(csa((y)’(l)))' O

Lemma 8.10. Let E be a nodal Weierstraf§ curve. Then there exists a unique
indecomposable semi-stable vector bundle A,, of rank m and degree 0 such that all
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its Jordan-Holder factors are isomorphic to O. This vector bundle is given by the
triple ( ﬂza,cgn,u), where

11 0 ... 0 1 0 O 0
Oo1 1 ... 0 01 0 0
p0) =Jn(1)=| + = -~ ploo) =Ip=| + + .. ..
00 ... 1 1 0 0 ... 1 0
0o 0 ... 0 1 0 0 ... 0 1

Proof. The category of semi-stable vector bundles with the Jordan-Holder factor O is
equivalent to the category of finite-dimensional modules over C[[¢]], see for example
[22, Theorem 1.1 and Lemma 1.7]. Therefore, there exists a unique indecomposable
vector bundle A,, of rank m recursively defined by the non-split exact sequences

0—>0—)Am+1—>¢4m—)0 and .A1:(9

In order to get a description of A,, in terms of triples, first observe that 7*A,, = O},
hence F(A,,) = ( L, G, ,u). The morphism p is given by two invertible matrices
1(0), p(o0) € GL,(C). If ' = (1/(0), '(00)) is another pair such that

#(0) =S uO)T, p'(00) =87 u(00)T

with S,T € GL,,(C), then ( H’Iﬁ,CT,,u’) and ( I{,{’I,CT,M) define isomorphic vector
bundles on E. We may, therefore, assume pu(co) = I,,. Keeping u(oco) = I, 1(0)
can still be transformed to S~ 1(0)S. Hence p(0) splits into a direct sum of Jordan
blocks. Since the vector bundle A,, is indecomposable, 1(0) ~ J,(\) for some
A € C*. From the condition Homg(A,,, O) = C one can easily deduce A = 1. O

Our next aim is to get a description of simple vector bundles on F in terms of
triples.

Theorem 8.11. Let E be a nodal WeierstrafS cubic curve and V a simple vector
bundle on E of rank n and degree d. Then ged(n,d) = 1 and V is uniquely de-
termined by (n,d) € N x Z and det(£) € Pic*(E) = C*. Conversely, for any pair
(n,d) € N xZ such that ged(n,d) =1 the set of simple vector bundles on E of rank
n and degree d is non-empty and is parametrised by C*.

This result can be proved by various methods, see for example [14, Theorem 3.6]
for a description of simple vector bundles on E in terms of étale coverings. For the
reader’s convenience we shall outline another proof, which is parallel to the case of
a cuspidal cubic curve [10].

Proof.? Let V be a simple vector bundle of rank n and degree d on the curve E,
then, by Lemma 8.7, 7*V = Op1i(c)™ & Opi(c+ 1)™ for some ¢ € Z and ny,ne € N.
From the equalities

ni+ng=n, cni+(c+1)ny=d

2This proof is due to Lesya Bodnarchuk.
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we obtain ny = d — en and n; = (1 + ¢)n — d. Without loss of generality we may
assume ¢ = (. In this case we have ny = n — d and ny, = d.
The isomorphism classes of vector bundles V on E with a fixed pull-back

V=1V 20N @ Opi(1)™ € add(Op1 @ Opi(1))
correspond to the equivalence classes of matrices p with respect to the transforma-

tion rule p — 7*(F)~'pi*(f), where F is an automorphism of Opt @ Op1(1)™ and
[ € GLy44,(C). An automorphism F' of Opt @ Op1(1)™ can be written in block

matrix form as
Fi; 0
F =
( Fy Fy ) ’

where Fi, € GL,, (C) for £ = 1,2 and F5; € Maty,,xn, (Cl20,21]1). Note that the
map

ﬁ* : End]pl(V) — EndZ(OZ)
is an isomorphism and with respect to the chosen set of trivialisations {7 }xez

i (F) = [( _Ff(li : 0) F(’lg ) ’ ( F211(%1¢ 1) Fg? )} .

Since the matrix u(00) is invertible, we can reduce it to the identity form by taking
f = pu(oo)™!, F = id. Tt remains to find a canonical form for the matrix 1(0).

Definition 8.12. For a nodal cubic curve F we define the category MP,4 as follows.
e Its objects are invertible matrices

My | My,
M= ,
( Moy, | My, >

where My, and My, are square matrices with entries in C.
e Morphisms are pairs of block matrices

Homwpe. (M, M') = {(S,T) | SM = M'T},

A 0 A 0
SZ(C’B) and T:(C”B)

The category of those vector bundles V on E for which 7*V € add(Op: & Op1(1))
is equivalent to MP,4. Under this equivalence, M € MP,4 corresponds to the vector
bundle V if F(V) = (Opi ® Op1(1)"2,Cy+"2, (M, id)). The matrices S, T correspond
to the two components of 7*(F). In particular, the subcategory of simple vector
bundles with such normalisation is equivalent to the full subcategory MP, of simple®
objects of MP 4.

such that

3Simple objects of MP,q are by definition the objects having only scalar endomorphisms. They
are sometimes called Schurian objects or bricks.
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Lemma 8.13. Let M € MP;, be a simple object such that the matrices My, and
My have sizes nqy X ny and ng X ng respectively. Then, the matrix Mo has full rank.

Proof. If this were not the case, the matrix M could be reduced to the form

My My|0 O
0 0 1|I O
Ms My|0 M |’
Mg M; |0 Mg

M =

where we split M, My, and My, into blocks such that M; and Mg are square
matrices. Since M is invertible, either M; or M> is a non-zero matrix. Then M, as
an object of MP,4, had a non-scalar endomorphism given by

I 0]0 0 1 O‘O 0
0 71|00 0 I/00
5= Ms; 0|1 O I'= 0 01 O
M8 0(0 I M1 M2 0 I

d

If M € MP}, is a simple object such that the matrices My; and Ms, have the
same size, i.e. n; = no, then M, is invertible by Lemma 8.13. Hence, M can be

reduced to the form
01|17

where X splits into a direct sum of Jordan blocks with non-zero eigenvalues. It is
easy to see that M is decomposable in MP,4 unless n; = ny, = 1. Now assume that
ny # ng. In this case, if ny > nq, we can reduce M to the form

0|7 o
M=1 M, |0 M,
M, || 0 M;,
and if n; > ny we can reduce M to
M, M, |0
M = 0 0 || 7
My M, |0

In both cases, the additional split of the blocks is made in such a way that M, and
M), are square matrices. A straightforward calculation shows that in both cases

1 M{l M{Q

M‘(mlwz
is an object of MP;, again. Let us denote by MP;(n1,ns) the full subcategory of
MP; 4 whose objects have diagonal blocks of sizes n; xn; and ny x ny. Then, sending
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M to M’ is an equivalence of categories

MPid(nl, No — nl) if No > Ny,

MPya (1, n2) — { MP:y(n1 —na,ma)  if  ny > na.

This means that the matrix problem describing the simple objects of the category
MP,q4 is self-reproducing. The chain of these reductions terminates when we achieve

ny = ne = 1. In this case
v 01
B <T’7) ‘

This implies that for a simple vector bundle V of rank n and degree d it must hold
ged(ng, ng) = ged((1 — ¢)n — d,d — cn) = ged(n, d) = 1.

Moreover, we obtain an explicit algorithm to construct a canonical form of the matrix
describing the family of triples corresponding to the set of simple vector bundles with
prescribed rank and degree. This finishes the proof of Theorem 8.11. O

Example 8.14. If we let V = Op1 & Op1(1), N = C? and for any \ € C*

w0 = (Kh5) and wtee) = (515)

the triple (17,./\/' , i) defines a simple vector bundle of rank 2 and degree 1 on E. The
corresponding matrix in MP;, for this triple is M; 1 (A) = (8 ¢) € MP},. O

Algorithm 8.15. For any pair of coprime positive integers (n, ns), the set of simple
objects Mp, n,(A) € MP;4(n1,n2) is described in the following way.

(1) First, we produce a sequence of pairs of coprime integers by replacing at each
step a pair (ny, ng) by (n; —ne, ny) if ny > ny and by (nq, ne —ny) if ng > ny.
We continue until we arrive at (1,1).

(2) Starting with the matrix M;;(A\) € MP]; from Example 8.14 we recur-
sively construct the matrix M,, ,,()) as follows. We follow the sequence
constructed in part (1) in reverse order and

e if we go from (mq,ms) to (my + meo, my) we proceed as follows

X Y| 0
X|Y
Mml,m2 (A) - <7’W> = Mm1+m2,m2 (A) = 0 0 Im2
Z W o
e and similarly, if we go from (mq, ms) to (my, m; + ms) we set
X\|Y 0 H I, 0

Mosins ) = (5] = Moo = A
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Remark 8.16. Note that M, »,(A) = My, »,(X) in MP,q if and only if A = X
Note also that M,,_44(\) is an n x n—matrix having exactly one non-zero entry in
each column and row and that A = £det(M,, »,(A)). In particular, two stable
vector bundles V; and V, on a nodal Weierstrafl curve having the same rank are
isomorphic if and only if det(V;) = det(Vs).

Example 8.17. Let us describe the triple corresponding to the set of simple vector
bundles on F of rank 5 and degree 12. First of all, the normalisation sheaf is

V = Op1(2)® ® Op1(3)2, in particular (ny,ns) = (3,2). The sequence of reductions
for sizes of matrices from the category MP,q is:

(3,2) — (1,2) — (1,1).
This induces a reverse sequence of functors
MP7q(1,1) — MP34(1,2) — MP34(3,2),

giving the following sequence of canonical forms:

0 1 0{0 O

011 01 0 0 0 0|1 O
A0 O 0 01100

A0 0]0O0

Therefore, the set of stable vector bundles of rank 5 and degree 12 is described by
the family of triples (Op1(2)% @ Op1(3)2,C2, u), where

0 1/0 00
0 0/0 1 0
pw =10 0/0 0 1 |, p(oo)=1Is
0 0|1 0 O
A 0‘0 0 0

Example 8.18. The indecomposable semi-stable vector bundles V of rank two and
degree zero, whose Jordan-Holder factors are locally free, are of the form £ ® A,,
where £ € Pic’(E). They are described by the triples ((9]%,1, Cg,,u), where

u(o):(é i),)\e(c* and ,u(oo)z(é 2)

Lemma 8.19. Let A € C* and X = diag(as, g, ..., qn) with a; € C*, i =1,...,n,
then XMy_q.4(A) = Mp_ga(X- a1 ... o) as objects of MPpgq.

Proof. It is not hard to see that X M, _44(\) € MP,q is again simple, hence it is
isomorphic to a canonical form M, _,44()\"). This means that there exist invertible
matrices S = (& %) and T = (4 %) such that M,_44(X) = ST XM,_g4(N)T.
Because det(S) = det(A) det(B) = det(T"), we obtain X' = Adet(X). O
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Remark 8.20. The last lemma implies that there exists an object Ny, n,()A) €
MP,q4(n1,ng) isomorphic to M, ,,(A) and such that the corresponding triple de-
scribing a family of stable vector bundles on E of rank n and degree d is compatible
with the action of the Jacobian. To construct Ny, »,(A), we simply replace all non-
zero entries of M,, ,,()\) by ¥/), some fixed n-th root of . Another choice of ¥/A
gives an isomorphic vector bundle. _

In particular, in the family of triples (V, N/, 1) from Example 8.14, which describes
the simple vector bundles of rank 2 and degree 1, we need to replace the matrices

by
u(@:(\% \{)X),)\EC* and u(oo)z(%’%)

in order to obtain compatibility with the action of Pic’(E).

The description of stable vector bundles on a nodal Weierstrafl curve in terms of
matrices constructed in Algorithm 8.15 can be translated into the language of moduli
problems. Namely, for a pair (n,d) € Nx Z of coprime integers such that 0 < d < n
we give now a description of a universal family P := P(n,d) € VB(E x M), where
M = Mg(n, d) is the moduli space of stable vector bundles of rank n and degree d.
Recall that we have a pull-back diagram:

~ nx1
Tx M—>Px M

irxll lvrxl

nx1
ZXM—FEx M.

Let us denote Opixy(n) = 77 Op1(n), where m; P! XM — P! is the projection map
and define P := Op7 %, ® Opixar(1)%. Recall that Z = {0,00}. The isomorphism

p:O% — (px1)"P

ZxM

is defined with the aid of Theorem 8.11, which tells us that M = C* and which
gives for each v € C* a triple (Op % @ Op1(1)?, 0%, ) such that p,(c0) = id and
ty(0) = Mp_g4(v). Note that M,_44(v) depends holomorphically on v € C*.

Now we proceed as follows. Let P := (7 x 1), (77 x 1)*P. Then the canonical map
Ozxm = (F X 1),03, ), and the chosen map p : O  — (7 x 1)*P induce the
map /i defined as the composition

(1 x 1),0%,p — (n X 1), (7 x 1),0%

N (v 1)- (1) =
o (mix 1),0% D, 1), P
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Consider the pull-back diagram in the category Coh(FE x M) of coherent sheaves

0 — ker(g) Q (nx1),0%,y —=0
lﬁ

|

0 — ker(g) — (1 x 1), —— (x x 1),P —— 0,
where g = (7 x 1),(can) and can : P — (7 x 1), (7} x 1)*P is the canonical morphism.

Proposition 8.21. The sheaf Q € Coh(E x M) is locally free and is a universal
family of stable vector bundles on E of rank n and degree d.

Proof. Note that the sheaf (7 x 1),P is flat over M, hence for any point v € M
the restriction of the above diagram to E X {v} preserve exactness of the horizontal
rows and boils down to a new pull-back diagram in the category Coh(E):

00— I(W*(ngd & O]Pl(].)d)) Q‘E‘X{v} n.O%

| | |

0—=Z(m(0p % @ Op1 (1)) — . (Op7 % @ Op1 (1)) — nu(7:(0%)) — 0,

0

where Z = Anno(m,.0p,/Og) is the conductor sheaf. By [13, Theorem 1.3] the sheaf
Q|kx v} is a (stable) vector bundle on E of rank n and degree d, corresponding to
the triple ((’)gfd ® Op1(1)%, 0%, ,uu), in particular, Q itself is locally-free. Moreover,
for v # v it holds Q|gx v} # QlEx{v}-

Let P € VB(E x M) be a universal family of stable vector bundles of rank n
and degree d on E. Then, by the universal property, there exists a unique map
f: M — M such that @ = (1 x f)*P. Assume f is not injective and v,v' € M are
two different points such that f(v) = f(v'). Then

Qlexin} = Plexiswy = Plexirw)y = Qlexw)

yielding a contradiction. So, f : M — M is holomorphic and bijective, hence it is
biholomorphic and @Q is a universal family. O

8.3. Vector bundles on a cuspidal Weierstrafl curve. Let E be the cuspidal
cubic curve, given by the equation zy? = x3. Its normalisation 7 : P! — E is given
by m(20 : 21) = (2821 : 23 : 2}). With these coordinates on P! the preimage of the
singular point s = (0:0:1) € Eis 7 !(s) = (0: 1) = co. Then Z is the reduced
point s € FE with the structure sheaf C. Moreover, 7 is non-reduced with support
at oo = (0 : 1) € P! and structure sheaf R = C[¢]/¢?. The morphism 7 : Z — Z

corresponds to the ring homomorphism C — R. By sending y € C to 7(1 : y) € Eieq

we obtain an isomorphism C — Eq,.
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Recall that w = 2zy/7 is a coordinate in the neighbourhood Uy, of the point (0 : 1).
The morphism 7 : Z — P! is given by the map evy_ : Op1(Uy) = R, w — e.
It is convenient to take the collection of trivialisations of line bundles

7:0pi(l) @ Oz = O3
such that for each open set V C Uy

freevy (‘L|V)

2l

7 (Op(l) ® O5) (V) ————5 R
A morphism
p(20,21) = 2] " + a12]" "2+ F Q2" € Hompi (Op1(n), Op1(m))

is therefore evaluated according to the rule

Opl(n) X OZ Lg)1> O]pl(m) X OZ
R R.

Lemma 8.22. With respect to the given choice of the set of trivialisations {1 }iez
we have:

Um-—n—1€+0m—n

IF(OE (y)) = (OIP’I(l), (Csa 1- Ey)
fory € Ereg.

Proof. As in the case of a nodal cubic curve, because Og(y) is a line bundle of
degree one, we know

]F(OE (y)) = (O]P’I(l)v (C.s: (1 + )‘8))
for some A € C. Since H°(Og(y)) = Homg(Og, Og(y)) and we have an embedding
Homg (O, O (y)) — Homrige (F(Ox), F(Og (y))) — Homp:(Op1, Opi(1)),

the section azy + bz; € Hom(Op1, Op1(1)) belongs to the image of 7* if and only if
there exists a constant f € C such that the following diagram is commutative:

R—~R

1J/ \Ll—l—)\s

RZEZR.
This implies @ = Ab and the section p(zo,21) = b(Azg + 21) vanishes at (1 : —)).
Hence, y = —X and F(O(y)) = (Op1(1), Cs, (1 — ye)). O

Theorem 8.23. Let E be a cuspidal cubic curve, V a simple vector bundle on E of
rank n and degree d. Then ged(n,d) =1 and V is determined by (n,d) € NXZ and
det(V) € Pic"(F) = C.
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Our proof (given after Corollary 8.27) is basically the same as in [10]. However, we
shall need a slightly different canonical form of triples describing the set of simple
vector bundles with prescribed rank and degree.

If V is simple, then by Lemma 8.7 there exists an integer ¢ € Z and natural
numbers ny,ny € N such that

ﬁ = ’ﬂ'*V & O]pl(C)nl D OPI(C —+ 1)”2

As in the case of a nodal curve, without loss of generality we may assume ¢ = 0.
Let F(V) = (V, Cy, ,u), then

Endg(V) 2 Endrigm (V, C, ).

One can write

_ £ — £11(0) | p12(0) . pa(e) | po(e)
= ul0) +enle) = ( 1 (0) | 12(0) ) * ( in(e) | pae) ) ’

where £(0), u(e) € Mat,, n,(C) with square diagonal blocks of sizes n; x n; and
ng X ng respectively. A matrix p € Gl,,4n,(R) is invertible if and only if x(0) €

GLy, 40, (C) is invertible. Let
Fi:]1 0
F =
( For | Fao )

be an automorphism of lN), then Fy € Maty,,xn, (Cl20, 21]1) and Fy, € GL,, (C) for
k=1,2. Then

ﬁ*(F):(le(gl:l)}ﬁ(‘;>+E(F21((1):0)}8>.

Let T : Ct" — CM*" be a linear map, then 7*(7) = 7. This means that the
gluing matrix p can be transformed by the rule p — S~'uT, where T € GLy, 45,(C)

and S has the form
- (242)
o 521 522

with Sk, € GL,,, (C) and Sy € Mat,,,«y, (R). It is easy to see that one can transform
the matrix p to the form

(1|0 n My | My
F=\0]1 0 | My )
Definition 8.24. For a cuspidal cubic curve E we define the category MP, as

follows:
e Its objects are “matrices” of the form

| My | My
M = ( X M22 ) ’

where X is an “empty” or “non-existing” block.
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o Let M, M' € MP,, then

Homup,, (M, M') = {S = ( Su | X )‘SM = M’S}.

This condition means that
SuuMy = M{; 811+ MiySx
S11Miy = M35
SorMig + SeaMoy = MjySs,
in other words: we ignore the lower left block in SM and M’S.
As in the nodal case, we denote by MP,(n1, n2) the full subcategory whose objects
have blocks M;; of size n; X n;. The following lemma is straightforward.
Lemma 8.25. In the notation introduced above it holds:

e The category of vector bundles on E whose normalisation is in the category

add(Op1 ® Op1(1)) is equivalent to MP,. The corresponding fully faithful
functor

MP., — Tri(E)
1§ given by
M +— (Op @ Op1(1)™,C2, )
where p = I, + M and M € MP,(ny, no).
o Let M = M' in MP, then
tr(M) := tr(My1) + tr(Mag) = tr(M').

Our aim now is to describe the category MP¢, of simple objects of MP,.

Lemma 8.26. Let
_ | Mu | My
M = < X M22 )
be a simple object of MP,. Then My has a full rank.
Proof. Assume it is not the case. Then the matrix M can be reduced to the form
My | My| O | O
00 I |0
X X M3 M4
X | X 0 | Ms

and we obtain a non-scalar endomorphism

M =

Ilofolo
olrffolo
S = oflofrlo |’
xXloflo|r

where X is an arbitrary matrix of appropriate size. U
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Corollary 8.27. Let M € MP,(n1,n2) be a simple object. If ny = ny then ny =
ne =1 and M can be written in the form

Proof. Indeed, since the block My is square and invertible, we can transform the

matrix M to the form
X |7
M= <%W> :

We can further reduce the block M;; = X to its Jordan normal form keeping the
block M;, = I unchanged. This implies that M splits into a direct sum of objects

of the form
Jn(A) | L,
X 0

which are simple in MP,,;, if and only if m = 1. O

for some X € C*.

Proof of Theorem 8.23. As seen above, isomorphism classes of simple bundles are
in bijection with isomorphism classes of simple objects in the category MP.,. Let
M € MP,(n1,n2) be a simple object. If (ny,ny) # (1,1), then ny # ne. If ny > no,
we can reduce the matrix M to the form

M, | M, |0
M = 0 | My, 1
x | x |0
and if ny > n; to the form
0 7] 0
M = X || My, | My,
x| 0 | M),

In both cases, the matrix
MI — M{I M{Z
x| MJ,
is an object of MP.,. Moreover, in this way we get a functor

MP(";p(nl, No — nl) if Ng > Ny,

MPcp(nlanQ) — { Mpzp('n/l _ n2’n2) if ni > nNg,

which is an equivalence of categories. This means that the matrix problem describing
simple objects of the category MP,, for a cuspidal cubic curve E is self-reproducing.
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As in the case of a nodal curve, these functors allow to construct in a unique way
the matrix M, ,,(A) for a given pair of coprime positive integers n; and ny and
A € C, starting with a given matrix

Moreover, My, n,(A) = My, n,(X') in MP, if and only if A = . O

Remark 8.28. Note that the only non-zero diagonal element of M,, ,,(A) is the
moduli parameter A € C.

Lemma 8.29. For any pair of positive coprime integers (ny,ng) with n = ny + na,
there exists an isomorphism in the category MP,

My, 0, (A) +diag(aq, g, ... o) = My, p,(A+ 0 + a0+ -+ -+ ).

Proof. We proceed by induction on the size n of the matrix M. Thecase ny =ny =1
is obvious. Assume the statement is true for all pairs (n;,n5) such that n; +ns < n.

Let us look at the case where M was obtained by a reductions step from an object
of MP_,(n; + ng, ny), the other case is completely analogous. Let

A| B0

M:(+AB> and M =|0[C|T
x | C

X | x |0

be the corresponding object of MP¢,(n; + ng,ny). Let A', C" and D' be diagonal
matrices of appropriate sizes, then

A+ A B 0 A+ A B 0
0 cC+C' | I | ~ 0 C+C'+D"| I
x | x D x X |0

A+al | B0
o 0o o7 |,
x | x]0

where the second isomorphism follows by induction and o = tr(A’) +tr(C') +tr(D").
This implies the claim. U

Remark 8.30. Similarly to the case of a nodal cubic curve, this lemma implies
that for any pair of coprime positive integers ny, ny there exists an object Ny, p,(A)
isomorphic to Mp, n,(A) in MP¢,(n1,n2) and such that the canonical form of the
corresponding triple is compatible with the action of the Jacobian PicO(E).

Remark 8.31. The above consideration shows that the action of the Jacobian
Pic’(E) on the set Mg(n,d) of stable vector bundles of rank n and degree d is
transitive. Note that the group Pic’(E) is torsion free. If V is a vector bundle



80 IGOR BURBAN AND BERND KREUSSLER

of rank n and £ is a line bundle, we have det(V ® £) = det(V) ® L®". Hence,
det : Mg(n,d) — Pic*(E) is a bijection.

Remark 8.32. One can describe a universal family P(n, d) of stable vector bundles
of rank n and degree d on a cuspidal cubic curve E in a similar way as it was done
for a nodal cubic curve in Proposition 8.21.

Example 8.33. The following family of triples (ﬁ,/\/ , ,u) defines a universal family
of stable vector bundles of rank 2 and degree 1 on a cuspidal cubic curve E: V =

OPI@OPl(l),N:(Cg and
(A0, 21
“\ot) T o2 )

9. COMPUTATIONS OF r—MATRICES FOR SINGULAR WEIERSTRASS CURVES

Let E be a singular Weierstraf cubic curve, (V;, Vs, y1, y2) be as in Section 4. Our
aim is to derive an explicit procedure to calculate the map
V1 Vs
ryll,ygz : Hom(C(V1|y1’ V2|y1) — Hom@(V1|y2, V2|y2)

defined through the commutative diagram

Homg V1, V2 y1

reSyl eVy2
~V1 Vo

Homc(Vily:, Valy,) T Homc (Viy,, Valys)-

9.1. Computation of the residue and evaluation maps on singular Weier-
strafl cubic curves. Let X be an arbitrary Gorenstein projective curve, z € X a
smooth point, 7, : pt — X the embedding map, Vi, V, two vector bundles on X.
For the sheaf Q0 x = QﬁgR of regular differential 1-forms we have an exact sequence

0 —Qx — Qx(z) =C, —0

inducing a commutative diagram

%OmX(Vl,VQ(fI/‘)) HomX(Vl,Vg(X)Q}/( ®(Cw)

S|

Homx (V1 @ Qx @ Cp, Vo ® Cy)
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of coherent sheaves on X. Taking global sections we obtain a commutative diagram
of vector spaces

Homx (V1, Vs (2)) Homx (V1,12 ® Q% ® C;)

HomX(V1 (9 QX ® C;UaVQ ® Cﬁt)

where res, = res;(X). Moreover, we have a canonical isomorphism of sheaves
Homx (V1, Va(z)) = Homx (V1, Vo) ® Ox ()
and the proof of the next lemma is straightforward.
Lemma 9.1. The following diagram is commutative:
Homx (V1, Va(z)) Homx (V1, Vs) ® Ox ()

’
res
k l T

Homx(V1 @ Qx ® Cp, Vo @ Cy)

where the map res.. is defined on the level of presheaves by the formula

res. (Z 8 ® fi> vuw®l)= Zsi(v) ® res; (fiw).

i

Let E be a singular Weierstral cubic curve, 7 : P! — FE its normalisation, s € E
the singular point of E. Choose coordinates (z : 2;) on P! in such a way that

71 (s) = {0, 0} for F nodal;

771(s) = for E cuspidal.

For U = 77 }(E,eg) we denote by 7y the composition map U - E,eq < E and choose
coordinates on Ey, such that for y € Eyo we have §:= 7 (y) = (1 : y). Next, we
identify the one-dimensional space H°(E, Q) with its image in HO(P!, Qp1 @ Mp1),
where Mp1 denotes the sheaf of meromorphic functions on P!. In these terms
HY(E,Qg) is generated by

w:%=—d£ if F is nodal
z w
d
w=dz= _u; if F is cuspidal.
w

Since we want to make calculations for vector bundles on E using their pull-backs

on P!, we have to describe the map 7> in terms of morphisms of sheaves on P'.
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Note that the following diagram is commutative

HomE(V1 ® Cy,VQ ® Cy)

/ ¢

Homg (Vi, Va(y)) il Hom g (Vi ® Q5 ® C,, Vs ® C,)

o

Ereg) T HOW'Ereg (V1

Homg,,, (V1 |re> V2 (%) Frog ® U, ® Cy, Vs

~ ~

Ereg © (Cy)

reS@

Homy (7 Vi, (75 V2) (7)) Homg (Vi v ® Q4 ® Cy, Valy @ Cy)

oY

resy

Homp: (7*Vy, (1*V2) (7))

Homp: (7*V; @ Qf, @ Cy, V2 @ Cp)

This means, we can compute the residue map res, with the aid of the following
commutative diagram

Homz (Vi, Va(y)) Homp: (7*V1, 7*Vs())

TresSg

Homp: (W*Vl ® OQp1 ® (Cg, Ve ® (Cg)

resy ~

Homy (75 V1 @ Qo @ Cy, 75 Ve ® Cy)

W

o

HomE(V1®(Cy,V2®(Cy) HomU(7T[*jV1®Cg,7T[*]V2®Cg).

In these two diagrams and the following one, the non-labelled arrows are either
defined in the previous sections or are canonical.
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Let V & 7V, & 7)), € VB(P!), then we describe Homg (Vl, Vg(y)) as a subspace
of Homp1(V,V(1)), see Section 8. The following diagram is commutative

Home(Vily, Valy) ——————= Home (V3, V1)
ey Homy (7*V; @ Cy, 7*Ve ® Cy)
HomE (Vla VQ (y)) HomIF’l (W*Vl, W*VQ(:&)) HOI'T'IU()A} ® Cg, 9 ® Cg)

Homz: (V, V(§))

res,

Hom]pl (V, V(].))

Take a set of isomorphisms {7, : Op1(l) ® Oy — Oy }iez given locally by 7(p) = L.
0
Then the map res,, which is defined as the composition

Homﬂn(lj, 17(1)) — Hompl(fi, 9(@])) — HomU(lj ® Cy, V® C;) — Mat, (C),

is given by the formula

F—

21 — Ry 2’

Floz) | oo (F(l : z)w)’

where w is a global section of Qf viewed as a meromorphic 1-form on P!. Therefore,

the residue map res, : Homg(V;,Vs(y)) — Mat,(C) sends F' to res, ((fﬁzy))w»

where F' € Im {Hom]E(Vl,VQ(yl)) — Hom}pl(]’},ﬁ(l))} and w € H%(Qp) is the
chosen global regular differential 1-form on E. Thus, we end up with the formula

F(1:y)
res,(F) = Yy
F(1:y) if E is cuspidal.

if £ is nodal

The rule to compute the evaluation map ev, is similar. Indeed, we have a commu-
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tative diagram

Hompg (V1; Vz(yl)) - HomC(V1|y2,V2(y1)|y2) <~ Hom«:(Vl\yz,VﬂyQ)

*

Homﬂm (7T*V1, TV (gl)) Hom(C (W*Vl |:¢72a Vs (gl) |2172)
Homg: (V, V(7)) Home (V5 V(i)z.)
ion Vv

Homg: (V, V(1)) Home (Vlg,, V(1) 3,) < Home (Vilys, Valys)

Taking the same set of isomorphisms {7; : Op1(l) ® Oy — Op hiez as for the map
res,,, we get the following rule to calculate the map ev,,:

Hom s (W1, Va(y1)) — Homp: (W, V(1)) 243 Mat, (C),

where
1

Y2 — 1

for a global section F' € Im <7r* : HomE(Vl,Vz(yl)) — Hompl(ﬁ,ﬂ(l)» in both
cases, the nodal and the cuspidal.

é{IyQ (F) =

F(1:ys)

Combining the above, we see that we can compute the map 7> using the
commutative diagram
Homg (VA1 V22 (y,))
reSyl
7.(.*
=0 f-é_éyl
Homp: (V, V(1)) Mat, (C)

€Vys

Vys
Ty1,y2

Mat, (C)

where V* := P(n,d)|gxpy for A € M = Mg(n,d) and P(n,d) € VB(E x M) is a
universal sheaf.
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9.2. Trigonometric solutions obtained from a nodal cubic curve. Let E be
a nodal Weierstral cubic curve. In this subsection we calculate the associative r-
matrices corresponding to the moduli spaces of rank two (semi-)stable vector bundles
on a nodal Weierstrafl curve. We use the notation from Subsection 8.2.

We start with the case of the moduli space of stable vector bundles of rank 2 and
degree 1, M = Mg(2,1) = C*. It is convenient to use the local homeomorphism
o : C* — C* given by o(z) = 2%, because, according to Example 8.14 and Remark
8.20, the family of stable vector bundles (1 x ¢)*P(2,1) is then given by the triple
(Op1 ® Opi(1),CZ, ), where

u(@:(i 8‘),)\6@* and ,u(oo):((l) (1’)

Our goal is to compute the map

Q

e i, (2)-(3 1)

Step 1. In order to calculate the entries ¢, 1, n, £ we first need to describe the image
of the map

o HomE (V/\l, V)‘2(y1)) — Homﬂn (OPI D Olpl(l), O]pl(l) D 0]p>1(2))

By Subsection 8.2 a morphism

_ a'zo+ a2 t
F= < b’zg +b”zozl +blllz% dIZ(] +d"21 € HomIF’l(OIF’IEBOIP’I(l)aOIF’I(l)GBOIF’I(Q))

has the following evaluation rule:

ro=(5 ) Fe= (1 a)-

.From the definition of the category of triples we see that F' belongs to the image
of Homg (V1 V*2(y;)) under the linear map 7* if and only if there exists a matrix
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¢ € Maty(C) making the following diagram commutative:

F(0) 0
0 F(c0)
Cy @ C Cy o C

(EXON
)

(5

Cs @ C G ®C

This is equivalent to the equations:
0 X 0 oy
F = d F(0 =
()= an ()(Al 0) (w )

Taking a”, 0", 0", d" as free variables and solving the above system we get

ad = —dpd'
d = —Aya”
t = /\y1b'"
A
b o= ()",  where A\ = 22
A1
Step 2. Next, the equation res,, (F) = ( Z Z ) reads as

a +a"y, t B a b
b’+b”y1—|—b’”y% d’~|—d”y1 =M% c d -

. From this we obtain

)
A
a = —11_73/1)\2 (d+ Aa)
a" = 1_7/\2((1 + /\d)
¥o= 2
2
) o= c— A )—\i— 1y1b
blll — %b
' AU, (a+ M
d = —11_ 32 (a+ Ad)
" —
d" = Y (d+ Aa)

t = ylb
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Step 3. By the formula for the evaluation map it holds:

_ 1 a' +a"ys t _(e ¥
evy2(F) - m ( Y + b//y2 +b”’y§ d' +d”y2 - n é- .

This implies

¢ 2
_ Y=y )\(92—?/1)
L p v AR B VAR
< Y = yl(b ) )
_ AMye—w Yo — Ay
& = Y a+/\21_)\2 d
7 = (92—%)()?{2— yl)b+y20_

In order to calculate the corresponding solution of the associative Yang-Baxter equa-
tion we use the inverse of the canonical isomorphism

Mat,(C) ® Maty(C) — Lin(Mat,(C), Mat,(C))
given by X @ Y — tr(XY)Y. It is easy to see that under this inverse
Lin(Matz((C), MatQ((C)) — Matg((C) X Matg((C)

: : ki ki « ki :
a linear function e;; — Qjex, 0 € C* corresponds to the tensor ;7 €5i ® exy. Having

this rule in mind we obtain the desired associative r—matrix:

Yo — Ny A
r(; = e e e e — (e e e e
(A 91,92) (yz_yl)(l_)\Q)( 11 ®en +end® 22)‘*‘1_)\2( 11 ® €22 + €22 @ €11)
— )2
+ Y1 621®€12+L€12®€21+u621®621-
Y2 — U1 Y2 — U1 A

The gauge transformation ¢(z) = ¢(u; ) : (C?,0) — Aut(Mat,(C)) (see Definition

2.5) given by
(ta)= () (v )

yields the transformation
eii ® ej; — e ® ej5, 1, € {1,2}

Y2
€91 ® ejg \/ y €21 ® €12

o4

y1
e12 Q eg — 42 €12 X ea1

1
e €91 — ——e €91.
21 & €91 \/Mﬂ@ 21

Thus, we end end up with the solution

- \? A
r(Ay) = (v —yl)(l ) (e11 ® e11 + e ® exn) + T2 (e11 ® eg2 + €22 ® e11)+
y y A
+ VY (12 ®@ €91 + €91 @ e12) + <£ — —) €21 & e,
y—1 A VY



88 IGOR BURBAN AND BERND KREUSSLER

where y = %. Using the notation 1 = ej; + eg9, this can be rewritten as

Y1
1®1 1
r(\y) = 1_®)\2 +y_1(€11®611+622®€22)— )\+1(€11®€22+€22®611)
Y y A
+ vy (e12 ® g1 + €91 ®erz) + <£ - —> €21 & €21.
y—1 Ay

This is a solution of the associative Yang-Baxter equation of type (8), and by The-
orem 2.8 this tensor also satisfies the quantum Yang-Baxter equation.

In order to rewrite 7(\;y) in the additive form, we make the change of variables
y = exp(2iz), A = exp(iw). Making a gauge transformation we can multiply the
tensor es; ® e1o with an arbitrary scalar without changing the coefficients of the
other tensors. Therefore, we obtain

2riug (v, 2) Sin(z+v)(® T on ® em) — ——(en1 @ e + e @ er1)+
TV, 2) = ————F———~ (€ e e e _ e e e e
trg sin(z) sin(v) 11 @ e11 + e ® ez cos() 11 ® €2 + €2 @ ey
1 .
+ = (€12 ® €21 + €21 ® €12) +5in(z + v)ea @ eqa.
sin(z)
Up to a scalar, the corresponding solution 7(z) := lim,_,o(pr ® pr)r(v; z) of the

classical Yang-Baxter equation is the trigonometric solution of Cherednik:

1 1
Tirg(2) = 3 cot(2)h @ h + ——(e12 ® €91 + €91 ® €12) + sin(z)ea; @ ea;.

sin(z)

Our next goal is to construct a solution 7(v;y) of the associative Yang-Baxter
equation (5) having a higher-order pole with respect to v.
The triple (02, C?, 1) with

u(o):<8 i),/\ec* and u(00)=<(1) })

describes a universal family of semi-stable indecomposable vector bundles of rank
two and degree one, having locally free Jordan-Hélder factors.

Step 1. First we compute the image of the normalisation map
e HomE(V)‘l, V)Q (yl)) — HomPI(OPI D OPI, OPI(]_) ©® OPI(].)).
Recall that for a morphism

P ( a'zog+a'z Vz+b'z

dzag+ 'z dz+d'zn ) € Home: (01 & Opr, Op1(1) ® Oz1(1))

we have chosen the following evaluation rules

o a b o al b
Fo=-r (% 8) Fem=r (48

Cc
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Thus, F' belongs to the image of the map 7* if and only if it holds
At AL [ A Aewn
F(0) ( 0 A ) = ( 0 oy F(o0).
This implies that

. n Il_dll
F':—)\ylF"—i—)\yl( OC a +2,, )

Step 2. The equation resy, (F) =y, < Z Z ) reads F' + y, F" = y, ( z 2 >

Solving this equation we obtain

(. 1 N A
S P (B
A 1 AA+1) A
b = b—
) 1;)\a+1—)\ A=t o
/! —
“© = 1—)\§ 1
d" = - d.
\ T— " 1o
Step 3. From the formula evy2(F)=y2_y1 (F' + yo F") we obtain:
Pk [ b _ (¥ (G
e\ ¢ d n ¢)’
where
(o= y— A a+ A
RSP RN (EPVE
__y=Ar
TSV
E=— A c+ y—A d
(1—/\/\)2 (y—l)(l/\—)\) AL+ ) \
Yy — +
S (Yl R (R L (R ERR (R
A
and y = %, A= 22, Hence, we obtain the associative r—matrix
1 1
y—A
r(Ay) = -1 N (611 @ e11 + €2 Qe+ e Qe+ e12& 621)+
A1+ A
+(1_)\)2(€12®h—h®612)—ﬁelg(gem.
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Denoting y = exp(2iz), A = exp(—2iv) and making a gauge transformation
€11 > €11, €22 > €22, €12 > 2e19 and ez —> 5621
we finally end up with an associative r—matrix
sin(z + v) (
2sin(z) sin(v)
1
+ J
2 sin?(v) (

r(v;2) = enn ®er + e Qe t+e®er+e12® 621)

cos(v
612®h—h®612)—ﬁ

Remark 9.2. Since liné(pr ® pr)(r(v; z)) does not exist, the family of indecompos-
v

e12 & eqg.

able semi-stable vector bundles of rank two and degree zero on a nodal Weierstrafl
curve E, whose Jordan-Hoélder factors are locally free, does not give a solution of
the classical Yang-Baxter equation.

9.3. A rational solution obtained from a cuspidal cubic curve. In this sub-
section we shall calculate the rational solution of the classical Yang-Baxter equation,
obtained from a universal family of stable vector bundles of rank 2 and degree 1 on
a cuspidal cubic curve. In terms of Subsection 8.3 it is described by the family of
triples (Oﬂn @ Op1(1),C2, ,u), where

,u:,u(O)—}-s,u(s):((l] (1])-1-6(8\ }\),/\E(C.

As in the previous subsection, let

a b © Y e [ @D
(c d)EMatQ((C) and (77 §>:T?//\17;\2<c d)'

Step 1. Again, we start by calculating the image of the linear map
7™ : Homg (WM, V*(y1)) — Homp:1 (Op1 @& Opi(1), Op1(1) @ Op:1(2)).
Recall that we have the following rules to evaluate a morphism

a'zo+ad"z t

F= <b/Z§ + V' 2z + bI”Z% d'z + d"21> € Homp: (OPl S OPl(l)a O]P’l(l) S 0P1(2))

on the analytic subspace 7
a’ +d'e t
F = ( bIII+bII€ dll_+_dl€ ) .

. From the definition of the category of triples we see that F' belongs to the image
of Homg (VM V*2(y)) if and only if there exists a matrix f € Mat,(C) making the
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following diagram commutative

a’ ot a 0
(blll dll) +€ (b” dl)

R® R®

10+E)\1 1
0 1 0 M

1 0 )\2 — 1
(0 1) te ( 0 )\2 — U1

R? R?,

where R = Cle]/2. This leads to the equality

)

a 0 n a’" ot MY (- 1 a’ ot
bl/ dl bIII dl/ 0 Al - O A2 _ yl bIII dll .

Taking a”, ', 0" and ¢ as free variables we obtain

a = (/\ _ yl)a” + B

't = ()\ _ yl)b”'

dl — ()\ _ y1)a" _ blll _ ()\ _ y1)2t
d'"=a"— (A=wy)t.

Step 2. By the formula for the residue map res,, it holds:

a +a" t a b
IeSy, (F) = (b/ + b//y1 +yg/,/y% d + d”Zh) = (C d)

from which we get:

(¢t = b
" . ]_ )\—yl 1
) a' = 2)\)\a+ %\2 b;l\—Q)\d X
y o= M Nuow), A
1 ’ AN )2 1 ’
mo_ 1 AA=y), 1
\b = 2a 5 b 2d

Step 3. Since the formula for the map ev,, is given by:

1 a + a"yo t (e W
evyz(F) - H ( b/ +blly2 +b"'y§ d'+d’ly2 - n g
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we obtain:
)
. Yo — Y1 A=y)y2—w),  —un
e =0+ ) Ja + 5 b+ o d
Y =t
— — A AN — A —
| (y2 y1)(y22 Y1+ )a_ (A= y1)( ;?h)(yz yl)b-i-
+C_(y2_y1;()\+y2)d
_ Y% U _(y2—y1)(y1—)\) Y2—U
\{f =55 ¢ 5 b+ 1+ N d.

JFrom this we get the following associative r-matrix:

1
T()\aylayQ) = 51® I]'+ Yo — Y1

)\—y1 )\+y2
2

(611 Qe+ e ®exp +e2Q e +6e21Q 612)+

A\ — A+
h® ey + ( yl;( ) €21 ® es.

Projecting this matrix to sly(C) @2 (C) we obtain a rational solution of the classical
Yang-Baxter equation

_+_

ea1 ® h+

(Y1, y2) = ! <lh®h+€12®€21 + e ®€12> + %h®€21 — ﬂ621®h.
Yo — Y1 \2 2 2
which was found for the first time by Stolin in [46]. It is easy to check that 7(y1, y2)
does not have infinitesimal symmetries, hence by Theorem 2.8 the tensor 7 (A, y1, y2)
satisfy the Quantum Yang-Baxter equation. This solution was recently found by
Khoroshkin, Stolin and Tolstoy [29].

10. SUMMARY

Let us sum up the main analytical results obtained is this article. Consider the
Weierstrafl family of plane cubic curves zy? = 42° — o222 — g323, where g9, g3 € C.
Our main results shows that for any pair (n,d) € N x Z of coprime integers and
any t = (g2,93) in some small neighbourhood of (0,0) there exists a germ of a
meromorphic function

re =" (C? x C?,0) — Mat,(C) ® Mat,(C)
which satisfies the associative Yang-Bazxter equation
r+(v3, va; Y1, y2)127“t(v1,v3; Y1, y3)13 — 7r4(v1, V35 Y1, y3)237“t(v1, V25 Y1, y2)12+
+r4(v1, v2; 91, Y3) P re(v2, v3; Yo, y3) > = 0.

Moreover, the function 7y(vy, vs;y1,92), which is called the geometric associative
r—matriz in this paper, depends analytically on the parameter ¢.
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For any family of germs holomorphic functions ¢; : (C?,0) — GL,(C), depending
holomorphically on ¢ = (g, g3), the function

(d(v1,y1) ® de(v2,y2))re(v1, vo; Y1, y2) (Be(va2, y1) ' @ dulv1,y2) ')

is again a solution of the associative Yang-Baxter equation. This defines an equiva-
lence relation on the set of associative r-matrices.

Recall the following classical result.

Proposition 10.1 (see Section I1.4 in [27]). Let 1 € C\R and A, = Z + 7Z C C?
be the corresponding lattice. Then the complex torus C/A, is isomorphic to the
projective cubic curve zy* = 4x% — gox2® — 323, where

(15)

1 1
=60 E —_— = 140 _.
g2 = (m! + m"7)* 93 . 22 (m! +m''1)8
(m! ;m")eZ2\{(0,0)} (m’,;m")eZ\{(0,0)}

Conwversely, for any pair (ga, g3) € C* such that A(ga, g3) = g5 — 2793 # 0 there
exists a unique T from the domain D given below, such that (gs, g3) = (g2(7), g3(7))-

DZ{TEC‘ IRe() 7| >1 if Re(r) <0, |r|>1 if Re(T)>0}

S5

In the case (n,d) = (2,1), we obtained the following explicit results for the geo-
metric associative r—matrix r§2’”(v1, Vo3 Y1, Y2) € Maty(C) ® Maty(C) attached to the
Weierstrafl family.

o If ¢t = (g0, g3) satisfies A(t) # 0 and 7 € D is defined by the Equations (15), then

E; =2 C/A, is a smooth elliptic curve and the corresponding solution of the associa-

tive Yang-Baxter equation r§2’1)(vl, Vo; Y1, Y2) is equivalent to the elliptic solution

0y3) = 200) [+ o) Oy +vl7)
TUN=5 00 e ST T aem e
03(y-|- ) 0,(y + v|7)

| — T T
o) (T T o 0T
(

where 1 = e11 + €929, h = €11 — €92, 0 = 1l€91 — 612) and 7 = €91 + e19.

o If A(t) =0 but ¢t # 0 then E; is nodal and r® )(vl, V9; Y1, Y2) i equivalent to the
trigonometric solution

sin(y + v)
sin(y) sin(v)

L1
sin(y)

it y) =

(e11 ®@ €11 + €22 ® eg2) — (€11 @ e + €90 @ €11)+

1
os(v)

(e12 ® ea1 + €91 @ e12) + sin(y + v)ex ® ego.
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e Finally, if ¢ = 0, the curve E; is cuspidal and 7“,52’1)(1)1,1)2; Y1, Y2) is equivalent to
the rational solution

1
T;at(va Yi,Y2) = ;1 ®1+ (e11 ® €11 + €92 ® €99 + €12 @ €91 + €21 @ e12)+

Y2 — U
+(v—1y1)ean @h+ (v+y2)h @ ea1 +v(v — y1)(v + Y2)ea1 @ €.

Moreover, for all fixed values of v # 0 in a neighbourhood of 0 and all ¢t =

(92, 93) the tensors (v, y), 71"®(v,y) and 1 (v,yy, o) also satisfy the quantum

Yang-Baxter equation.
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11. APPENDIX: RELATIVELY STABLE SHEAVES ON GENUS ONE FIBRATIONS

The goal of this Appendix is to show that the functor Mg/’dT) of relatively stable

vector bundles on a genus one fibration with a section is representable in the category
of complex analytic spaces. This statement is crucial for our construction of the
geometric associative r—matrices.

The exact assumptions are the following:

e Let E -2 T be a flat projective morphism of complex spaces of relative
dimension one and denote by E the smooth locus of -

e Assume there exists a section i : T —» E of p.

e Suppose that for all points ¢ € 1" the fibre F; is a reduced and irreducible
projective curve of arithmetic genus one.

For a pair of coprime integers (n,d) € NxZ and ¢t € T let St(md) (E;) be the set of
stable vector bundles of rank n and degree d on the curve F;. Denote by Ansy the
category of complex spaces over 7. Recall that the functor Mg”/’;) : Ansp —> Sets is
defined as follows:

n Fis S — flat
MR (s ) = {]—' € Con(Es)| 7" snd(m) v e s }/ ~

where t = f(s), ¢ and Eg are defined via the Cartesian diagram

Es——E

ql lp

s—L.1
q '(s) is identified with p~!(¢) and F; ~ F, if and only if there exists £ € Pic(95)
such that F; = F, ® ¢*(L).
The following lemma is useful.*

Lemma 11.1. Let Y - S be a proper and flat morphism of complezx spaces, F
and G two holomorphic vector bundles on 'Y such that for all points s € S it holds:
Fly, 2 Gly, and Endy,(F|y,) = C. Then there exists a line bundle L € Pic(S) such
that F =G ®q"L.

Proof. Let s € S be any closed point and ¢ : Fly, — G|y, some isomorphism.
Then the following diagram is commutative:

Fly, Fly, ® (Homy, (Fly,,Glv.,) ®c Oy,)

Wl lid@ev

Gly, = Fly, ® Homy, (Fly,, Gly,)

4We would like to thank Manfred Lehn for a helpful discussion about this question.
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where the upper horizontal arrow is the isomorphism induced by ¢. This implies
that the canonical morphism

Fly, ® (Homy, (Fly,,Gly,) ®c Oy,) — Glv,

is an isomorphism for all s € S. Since the sheaf Homy (F,G) is flat over S, by the
base-change isomorphism we obtain that £ := g, Homy (F,G) is a line bundle on S.
Thus, the following composition of canonical morphisms of vector bundles on Y

F Q¢ ¢ Homy (F,G) — F @ Homy (F,G) — G

is an isomorphism on all fibres Y;. This implies that F®q*L — G is an isomorphism
as wanted. U

Proposition 11.2. The moduli functor Mgl/’;) 1s representable under the above as-

sumptions.

Proof. By a result of Grothendieck [23, Théoréme 3.1] the functor Picg 7 is repre-
sentable, hence for any d € 7 the functor Pic%, s 1s representable, too. Our aim is
to construct an isomorphism of functors & : Mgl/’dT) — EOE /T

Consider the commutative diagram

E X E
y Y\
E E
A
T
Using [15, Theorem 2.12] one can construct a coherent sheaf P € Coh(E xr E), flat

over both components and such that for any point t € T and G € St("’d)(Et) the
Fourier-Mukai transform

G = FMP(G) = Ry, (16 © P,)

is isomorphic to a line bundle of degree zero on E;, where P; := P|g, «g,. Recall that
such a kernel P is constructed using a suitable composition of the functor O(D)® —
and the Fourier-Mukai transform FM”2, where Z, is the ideal sheaf of the diagonal
ACEFE X FE.
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Consider the diagram

gxg

E5XSES EXTE

S A

denote Ps := (g x g)*P and define the map

&s 1 M3 (S) — Pich, 1 (S)

to be given by the Fourier-Mukai transform F — F = Rr), (}*F % Ps).

A priori, Fis just an object of the derived category D2, (FEs). It turns out,
however, that it is isomorphic to a coherent sheaf on Eg belonging to Pic%, /T(S). To
show this, take any point s € S; let 75, : E; — Es be the canonical inclusion, where
E, = ¢7!(s) & E,. Since the morphisms 7} and ¢ are flat, the base-change formula
implies:

~ L «
Li; F = Li;Rrh, (7} F @ Ps) = Ry, (7" (F|g,) & PlexE.))

where 7], 7 : Es x E; — F are the canonical projections. So, for any s€ S the

complex Li} F is isomorphic to a line bundle, hence by [12, Lemma 4.3] F is a line
bundle on ES

Because the integral transforms FM” and FM”™* are equivalences of categories and
Li,, o FM? = FM?* olLi,,, Lemma 11.1 implies that the map &g is injective.
Moreover, it is easy to see that & indeed defines a natural transformation of functors.

Let Q € Coh(E x g E) be the kernel giving an inverse functor to FM” (up to a shift).

Then the corresponding natural transformation of functors 7 : Pic, T MSE /T)

gives the inverse of &. O

Corollary 11.3. The map of complex spaces det : Mgb/"p — Pich/T induced by the

natural transformation det : Mg/i — Pict, /7 1S an isomorphism.

Proof. Indeed, since both functors Mg/dT) and ﬂdE /T are representable, we get a map

of complex spaces det : Mgf/i}) — Picd /7 Moreover, we know that for any ¢ € T the

map det : St("’d)(Et) — Pic%(E,) is bijective, see Theorem 7.1, Remark 8.16 and

Remark 8.31. Hence, det is an isomorphism and by Yoneda’s Lemma the natural

transformation of functors det : Mgl/’dT) — Pic%, /7 1s an isomorphism, too. g
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