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1. Introduction

In one fell swoop, with the inauguration of the theory of buildings, Tits [42]
introduced a geometric perspective to the study of groups of Lie type. Previously,
at the hands Chevalley [14], Steinberg [39] and Ree [30, 31], this class of groups had
been given a unified treatment as certain groups of automorphisms of Lie algebras
and fixed points of automorphisms of algebraic groups. The utility of buildings was
amply demonstrated in [42] where groups with a spherical BN -pair of rank at least 3
are classified. Buildings are important in the study of other classes of groups such as
the simple algebraic groups and, with the emergence of twin buildings, Kac-Moody
type groups [44]. The various successes of the theory of buildings (see for example
[35], [43], [27]) have led to attempts to widen the underlying ideas of buildings to
obtain geometric information about other simple groups, with a particular eye upon
the sporadic finite simple groups. Early contributions to this endeavor were made
by Buekenhout [12], Ronan and Smith [32, 33] and Ronan and Stroth [34].

Here we shall be interested in finite groups. So suppose that G is a finite group,
p is a prime number and S a Sylow p-subgroup of G. Set B = NG(S). A subgroup
P of G which properly contains B is called a p-minimal subgroup of G (with respect
to B) if B is contained in a unique maximal subgroup of P . Put

M(G, B) = {P | B < P ≤ G and P is p-minimal}

and
LL(G, B) = {H | B < H ≤ G}.

So LL(G, B) is the set of proper overgroups of B in G, and clearly M(G, B) ⊆
LL(G, B). Now suppose that G is a group of Lie type whose characteristic is p.
Then the associated building of G is the simplicial complex obtained from the
poset on {Hg | g ∈ G, H ∈ LL(G, B)} given by reverse containment. The notion
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of a building may be rephrased in terms of chambers (see [43]). With this reinter-
pretation M(G, B) is precisely the set of stabilizers of the panels of the chamber
corresponding to B. The subgroups in M(G, B) in this context are called minimal
parabolic subgroups and for each P ∈M(G, B), B is actually a maximal subgroup
of P . Indeed, for any H ∈ LL(G, B) \ {G} we also have that Op(H) 6= 1 (see [10]);
that is H is a p-local subgroup of G which explains the choice of LL for local lattice.

Now assume that G is an arbitrary finite group. Attempts to generalize buildings,
mentioned above, have used various subsets of LL(G, B) as a means of passing to a
geometric object in the spirit of buildings. Much attention has been focussed upon
subsets of M(G, B). An important notion is that of a minimal parabolic system
– a subset {P1, . . . , Pm} of M(G, B) is a minimal parabolic system for G (of rank
m) if G = 〈P1, . . . , Pm〉 and no proper subset of {P1, . . . , Pm} generates G. The
minimal parabolic systems for the sporadic simple groups are collated in Ronan and
Stroth[34] for all cases when S is non-cyclic (though they also require Op(Pi) 6= 1
for i = 1, . . . ,m). While Lempken, Parker and Rowley in [23] determined all the
minimal parabolic systems when G is a symmetric group and p = 2. For further
work in this direction see Covello [15] and Rowley and Sanita[36]. Unlike the case
of Lie type groups of characteristic p, in other groups, such as the sporadic simple
groups and the symmetric groups, there is not usually a unique minimal parabolic
system.

Lattices of subgroups have long been of interest. For some indication of earlier
work see Suzuki [40] and Schmidt [38]. A recent topic of interest was suggested
by a theorem of Pálfy and Pudlakand[28] raising the question as to whether each
nonempty finite lattice is isomorphic to an overgroup lattice for some subgroup of
some finite group.The answer is almost certainly negative – for investigations into
this and related questions see Aschbacher [4, 5, 6], Aschbacher and Shareshian [7]
and Feit [17]. The set M(G, B) has some relevance to this type of question as it
is the case that for any H ∈ LL(G.B) we have that H = 〈P | P ∈ M(G, B)〉 (see
Lemma 3.2) and therefore the subgroups in M(G, B) in a certain sense control the
lattice of subgroups of G above B.

One of the main purposes of this paper, and its successors, is to describe all
of the 2-minimal subgroups for the finite groups of Lie type. A secondary aim
is to then probe the minimal parabolic systems. If the characteristic of the Lie
type group is also 2, then we just have the panel stabilizers and these subgroups
are well understood. Thus we focus our attention upon Lie type groups of odd
characteristic. More specifically, here we examine the 2-minimal subgroups of the
linear, special linear, unitary and special unitary groups. We begin with the general
linear and unitary groups, using the usual notation GLε

n, ε = ±, to denote these
two classes simultaneously. However, before stating our first theorem, we briefly
discuss some classes of subgroups, detailed definition being given in later sections.
For G = GLε

n(q) where q = pa is odd, a certain Sylow 2-subgroup S of G was
described by Carter and Fong [13] (see also Theorem 5.1). Using this description
when q ≡ ε (mod 4) we may view S within H, a subgroup of G which is identified
as a wreath product GLε

1(q) o Sym(n) As a consequence the 2-minimal subgroups,
called fusers and linkers, appearing in [23] metamorphoses into 2-minimal subgroups
of G. Such subgroups we also refer to as fusers and linker, denoting the set of them
respectively by F and L. The base group of H also contributes to our haul of
2-minimal subgroups yielding the set T of so-called toral 2-minimal subgroups.
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Similar 2-minimal subgroups are present when q ≡ −ε (mod 4). A further source
of 2-minimal subgroups arises from the parabolic subgroups of G (parabolic being
used in the traditional sense) when ε = +. These subgroups have non-trivial p-
radicals and so are referred to as radical 2-minimal subgroups. We let R denote
the set of all such 2-minimal subgroups of G. When n is odd and ε = − the radical
subgroups are replaced by a family of 2-minimal unitary subgroups and these we
denote by U . Two additional classes of 2-minimal subgroups of G, denoted by Q
and S, and called quaternion and special linear force their attention upon us. They
owe their ancestry to small dimensional linear and unitary groups which in small
dimensions can themselves be 2-minimal. So now to our first main result.

Theorem 1.1. Suppose that G = GLε
n(q) where n ≥ 2 and q = pa is odd. Let

S ∈ Syl2(G) and set B = NG(S). Then

M(G, B) = T ∪ F ∪ L ∪Q ∪ S ∪R ∪ U .

As to whether any of the above sets of 2-minimal subgroups are empty depends
upon certain specified conditions on ε, n and q. For a comprehensive overview of
the set M(G, B) in Theorem 1.1 see Tables 1 and 2. Although there is a deal of
complexity in their definition, particularly of the toral 2-minimal subgroups, the
overall list of 2-minimal subgroups is pleasingly short. Moreover, aside from the
congruences of q mod 8, the 2-minimal subgroups not in T are defined without
reference to the underlying field. A further noteworthy feature is that the groups in
M(G, B) for G = GLε

n(q) are for the most part soluble groups, and these soluble
groups have a very restricted structure.

Next we describe the layout of this paper and the main features of the proof of
Theorem 1.1. As already mentioned, the wreath product subgroups appearing in
[13] demand our attention. Thus in Section 2 we set up notation enabling us to
describe explicitly the 2-minimal subgroups of the symmetric groups. In Section 4,
for E cyclic of odd order and X a symmetric group we analyze the wreath product
H = E oX– we sometimes call such groups monomial groups. But also observe that,
in another guise they are complex reflection groups (denoted G(m, 1, n) in Shephard
and Todd’s list [37].) The S-module structure of the base group of H is the main
focus here resulting in subgroups of the form U(ni; sc; j). These subgroups in turn
give birth to the toral 2-minimal subgroups. Also, but with less technicalities, the
linker and fuser 2-minimal subgroups are introduced in this section.

Section 3 is a repository for general results on p-minimal subgroups (for p an
arbitrary prime) which are needed in this paper. A number of these play a critical
role in our proofs. For example Lemma 3.9 means that 2-minimal subgroups behave
very well with respect to direct products, and hence facilitates certain induction
arguments.

The proof of Theorem 1.1 begins in Section 5, where further notation relating
to S, B, and the standard vector space of GLε

n(q), and gathers pace in the ensuing
sections.

2. Preliminaries

As intimated in Section 1, Section 4 sees us probing the 2-minimal subgroups of
monomial groups, that is wreath products E oSym(n) where E is cyclic of odd order
and Sym(n) is the symmetric group of degree n. Accordingly, we need to assemble
appropriate notation relating to Sym(n) and its 2-minimal subgroups. So let Ω be a
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set of cardinality n > 2 and fix the following notation for the 2-adic decomposition
of n:

n = 2n1 + 2n2 + · · ·+ 2nr where n1 > n2 > · · · > nr ≥ 0.

Set X = Sym(Ω), the symmetric group on Ω, and let T be a fixed Sylow 2-subgroup
of X. Now T has r orbits on Ω, and we denote these orbits by Ω1, Ω2, . . . ,Ωr where
|Ωi| = 2ni . Putting I = {1, . . . , r}, we have that

T = Tn1 × Tn2 × · · · × Tnr

where, for i ∈ I, Tni ∈ Syl2(Sym(Ωi)). Observe that T0 is the trivial group. From
[19, Satz 15.3, p. 378] we have that each Tni

is an iterated wreath product of i cyclic
groups of order 2 and that NX(T ) = T . Thus, we note, for j, k ≥ 0, Tnj

oTnk
= Tnj+k

.
We next introduce two types of subgroups of X. Let i ∈ I. Then, for j ∈

{1, . . . , ni − 1}, let Σni;nj
be the collection of T -invariant block systems of Ωi con-

sisting of sets of order 2k where k ∈ {0, . . . , ni} \ {j}, and define

X(ni;nj) = StabSym(Ωi)Σni;nj × (
∏

k∈I\{i}

Tnk
).

Put
L(X, T ) = {X(ni;nj) | i ∈ I, j ∈ {1, . . . , ni − 1}}.

For i, j ∈ I, with i < j (so nj < ni) set Λni+nj
= Ωi∪Ωj . Let Γi be the collection of

all block systems for T on Ωi and Γj the collection of all block systems of T on Ωj .
We define Σni+nj

to be the collection of T -invariant systems of subsets of Λni+nj

which are the union of one block system from Γi and one from Γj with the proviso
that the blocks of the two chosen block systems have equal numbers of elements.
Then

X(ni + nj) = StabSym(Λni+nj
)(Σni+nj )× (

∏
k∈I\{i,j}

Tnk
)

and we set
F(X, T ) = {X(ni + nj) | i, j ∈ I, i < j}.

The subgroups in L(X, T ) are called linkers and those in F(X, T ) fusers and,
as we see, comprise all the 2-minimal subgroups of X.

Theorem 2.1. Assume that Ω is a set with |Ω| > 2, X = Sym(Ω) and T ∈ Syl2(X).
Then M(X, T ) = L(X, T ) ∪ F(X, T ).

Proof. This is proved in [23, Theorem 1.1]. �

In our investigations of monomial groups, or subgroups of GLε
n(q) where sub-

groups isomorphic to Sym(n) can be identified the above notational conventions
will be employed. So the use of X as a subgroup alerts us to the fact that X ∼=
Sym(n) and that (unless indicated otherwise) all the accompanying notation ni, r,
I, X(ni;nj), X(ni + nj), T and Tni

will be used.
At this point we also note that [3] will be our bible for standard group theoretic

notation. We follow the Atlas [16] conventions in describing the shapes of groups,
though, as we have seen, we use Sym(n) for the symmetric group of degree n, Alt(n)
for the alternating group of degree n and Mat(10) for the “Mathieu group of degree
10”.

For l a positive integer l2 denotes the largest 2-power which divides l and Π(l)
the set of all odd prime powers greater than 1 which divide l. So, for example, if
l = 180, then l2 = 22 and Π(l) = {3, 32, 5}.
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Our next theorem plays an invaluable role in determining the structure of 2-
minimal linker subgroups of monomial groups.

Theorem 2.2. Suppose G is a finite soluble group, Q is a nilpotent normal subgroup
of G with K and L subgroups of G. Assume that

(i) no G-chief factor of G/Q is G-isomorphic to a G-chief factor of Q; and
(ii) K and L are supplements to Q in G with K ∩Q = L ∩Q.

Then K and L are G-conjugate.

Proof. See [29]. �

Lemma 2.3. Suppose that X ∼= Sym(n) and E is a cyclic group of odd order. Let
H = E oX and F be the base group of H. Considering F as a ZX-module, we have
H1(X, F ) = 0.

Proof. Let X1 ≤ X be a one-point stabilizer of X. So X1
∼= Sym(n − 1). Then

we can consider E as a trivial ZX1-module. With this interpretation we have F =
IndX

X1
(E). Since |E| is odd, we have H1(X1, E) = 0. Now the result follows from

Shapiro’s Lemma [9, Proposition III.6.2]. �

Lemma 2.4. Let E be a cyclic group of odd order, n a natural number and X =
Sym(n). Let H = E o X, F be the base group of H and [F,X]CF (X) ≤ Y ≤ F .
Then Y X contains exactly |F/Y | conjugacy classes of complements to Y .

Proof. We view Y and F as ZX-modules. By Lemma 2.3 H1(X, F ) = 0. We have a
short exact sequence of X-modules 0 → Y → F → F/Y → 0. Hence by [9, III.6.1
(ii)] we have a long exact sequence which starts

0 → H0(X, Y ) → H0(X, F ) → H0(X, F/Y ) → H1(X, Y )
→ H1(X, F ) → . . . .

By [9, III.1.8] H0(X, F ) ∼= H0(X, Y ) ∼= CF (X) = 0 and H0(X, F/Y ) ∼= F/Y . Hence
the map H0(X, F ) → H0(X, F/Y ) is the zero map and as H1(X, F ) = 0, the map
H0(X, F/Y ) → H1(X, Y ) is an isomorphism. Hence |H1(X, Y )| = |Y/F | and the
result now follows from [3, 17.7] or [9, Proposition III.2.3]. �

Finally in this section we have the following elementary lemma.

Lemma 2.5. Suppose that H is a normal subgroup of a group G. Let S ∈ Sylp(G)
and R = S ∩ H. If NG(S) = NG(R), then S is the unique Sylow p-subgroup of G
which contains R.

Proof. Using the Frattini Argument we have |G : NG(S)| = |NG(R)H : NG(R)| =
|H : NH(R)|. Hence the map T 7→ T ∩ H is a bijection between Sylp(G) and
Sylp(H). �

3. p-minimal subgroups

In this section p is a prime, G is a group, S a Sylow p-subgroup of G and
B = NG(S). We recall that a subgroup P of G containing B is called p-minimal so
long as P 6= B and B is contained in a unique maximal subgroup of P . We denote
the set of p-minimal subgroups of G containing B by M(G, B).

Lemma 3.1. If H and K are G-conjugate subgroups of G which contain B, then
H = K.
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Proof. Let g ∈ G be such that Hg = K. Then both S and Sg−1
are Sylow p-

subgroups of H. By Sylow’s Theorem there exist h ∈ H such that g−1h = b ∈ B.
So g = hb−1 ∈ H which means that K = Hg = H. �

Lemma 3.2. Either G is p-closed or G = 〈M(G, B)〉 = 〈Op′(Y ) | Y ∈M(G, B)〉B.

Proof. Assume that G is a minimal counterexample to the statement that G =
〈M(G, B)〉 and that G is not p-closed. Then M(G, B) is not empty and G >
〈M(G, B)〉. Suppose that U is a maximal subgroup of G containing B. If U = B,
then G ∈ M(G, B), and we have a contradiction. So, by the minimality of G,
U = 〈M(U,B)〉. Since M(U,B) ⊆ M(G, B), we have U ≤ 〈M(G, B)〉 < G.
Hence U = 〈M(G, B)〉 is the unique maximal subgroup of G containing B. Thus
G ∈ M(G, B) and again we have a contradiction. For the second equality, we just
note that B normalizes 〈Op′(Y ) | Y ∈ M(G, B)〉 and therefore 〈Op′(Y ) | Y ∈
M(G, B)〉B = 〈Op′(Y )B | Y ∈M(G, B)〉 = 〈M(G, B)〉 = G. �

Definition 3.3. For H a group and X a group which admits an action of H, we
say that X is H-minimal provided X has a unique maximal H-invariant subgroup.

Lemma 3.4. Suppose that P = BK ∈ M(G, B) for some normal subgroup K of
order coprime to p. Then P = B[K, S] and [K, S] is B-minimal. If additionally,
[K, S] is nilpotent, then it is an r-group for some prime r.

Proof. Set L = [K, S]. Then K = CK(S)L and so P = BL. Assume that L1 and L2

are maximal B-invariant subgroups of L. Then BL1 and BL2 are both subgroups
of P . If, say, P = BL1, then we have

L ≤ P ∩K = BL1 ∩K = L1(B ∩K)

which implies that

L = [L, S] = [L1(B ∩K), S] = [L1CK(S), S] ≤ L1.

Therefore BL1 and similarly BL2 are both proper subgroups of P containing B.
Hence BL1 and BL2 are both contained in the unique maximal subgroup of P
containing B. Thus B〈L1, L2〉 is a proper subgroup of P . Hence by maximality
L1 = L2 and so L is B-minimal.

Finally, assuming that L is nilpotent, as L is B-minimal, we conclude that it
must be an r-group for some prime r. �

Lemma 3.5. Suppose that K is a normal subgroup of G and P ∈ M(G, B). If
PK 6= BK, then PK/K ∈M(G/K, BK/K).

Proof. First observe that P > B(P∩K) and that PK/K does not normalize SK/K
by the Fratinni Argument. Hence B(P ∩ K) is contained in the unique maximal
subgroup U of P which contains B. Then U/(P∩K) is the unique maximal subgroup
of P/(P ∩K) which contains B(P ∩K)/(P ∩K). Hence BK/K is contained in a
unique maximal subgroup of PK/K and so PK/K ∈M(G/K, BK/K). �

Lemma 3.6. Suppose that K is a normal subgroup of G and G/K is p-minimal.
Then there exists P ∈M(G, B) such that G = PK.

Proof. By the Frattini Argument BK/K = NG(SK/K). Therefore Lemmas 3.2
and 3.6 give the result. �

In the next lemmas, we note that M(B,B) is the empty set.
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Lemma 3.7. Suppose that K is a normal subgroup of G and P ∈M(G, B). Then
either

(i) P ∈M(BK,B); or
(ii) PK/K ∈M(G/K, BK/K) and P ∈M(NG(S ∩K), B).

Proof. Assume that P 6∈ M(BK,B). Then PK/K ∈M(G/K, BK/K) by Lemma 3.5.
Since S ∩ K ∈ Sylp(P ∩ K) and P ∩ K is a normal subgroup of P , we have
P = NP (S ∩K)(P ∩K) by the Frattini Argument. Thus, because NP (S ∩K) ≥ B
and P is p-minimal, we now have P = NP (S∩K). Hence P ∈M(NG(S∩K), B). �

Lemma 3.8. Suppose that K is a normal subgroup of G and G = BKCG(K).
Assume that NK(S ∩ K) = B ∩ K and P ∈ M(G, B). Then P ∈ M(BK,B) ∪
M(BCG(K), B).

Proof. Since B∩K = NK(S ∩K) and G = BKCG(K), we infer that NG(S ∩K) ≤
BCG(K). From Lemma 3.7 we have P ∈ M(BK,B) or P ∈ M(NG(S ∩ K), B).
Hence P ∈M(BK,M) ∪M(BCG(K), B). �

Lemma 3.9. Suppose G = LK where L and K are normal subgroups of G with
L∩K = 1 and let P ∈M(G, B). Assume that neither K nor L are p-closed. Then
either P ∩K ∈M(K, B ∩K) or P ∩ L ∈M(L,B ∩ L).

Proof. We have G = KL = BKCG(K) and, as S = (S∩K)(S∩L), NK(S∩K) ≤ B
and so B ∩K = NK(S ∩ L). Furthermore,since CG(K) = Z(K)L and Z(K) ≤ B,
we have BCG(K) = BL. Hence, using Lemma 3.8, P ∈M(BK,B) ∪M(BL, B).

If, say, P ∈ M(BL, B) and U is the unique maximal subgroup of P containing
B, then U ∩ L is the unique maximal subgroup of P ∩ L containing B ∩ L. Thus
P ∩L ∈M(L,B ∩L). Similarly, if P ∈M(BK,B), we get P ∩K ∈M(K, B ∩K),
so proving the lemma. �

Lemma 3.10. Assume that H ≤ G and G = HZ(G). The map P 7→ P ∩H is a
bijection between M(G, B) and M(H,NH(S ∩H)).

Proof. We have that H/Z(H) ∼= G/Z(G) and therefore, as Z(G) ≤ NG(S) = B,
there is a one to one correspondence between the p-minimal subgroups of G and
those of H. �

Lemma 3.11. Suppose that K is a normal subgroup of G and R = S∩K. Assume
that P ∈ M(K, NK(R)) and PB is a group. If B ∩ K = NK(R), then PB ∈
M(G, B).

Proof. First we observe that

B ∩ P = B ∩ P ∩K = P ∩NK(R) = NK(R).

Also PB∩K = P (B∩K) = PNK(R) = P and so P is normal in PB. Now suppose
that M is a subgroup of PB containing B. Then M = B(M ∩P ) and M ∩P < P .
Since M ∩ P ≥ B ∩ P = NK(R), we have that M ∩ P ≤ U where U is the unique
maximal subgroup of P containing NK(R). Since B normalizes both NK(R) and
P and U is the unique maximal subgroup of P containing NK(R), we get that B
normalizes U and M ≤ UB < PB. Thus UB is the unique maximal subgroup of
PB containing B. Hence PB ∈M(G, B) �

Lemma 3.12. Suppose that P ∈ M(G, B), K is a normal subgroup of P which
contains Op(P ) and Op(P/K) 6= 1. Then P = BK.
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Proof. Suppose that BK 6= P . Then K is contained in the unique maximal sub-
group U of P containing B. Let W be a Sylow p-subgroup of the preimage of
Op(P/K) > 1 which is contained in S. Then P = NP (W )WK = NP (W )K by the
Frattini Argument. Since K ≤ U and B normalizes W , we have P = NP (W ). But
then W ≤ Op(P ) ≤ K and this is a contradiction as W 6≤ K. �

Lemma 3.13. Suppose that P ∈ M(G, B), K is a normal subgroup of G. Then
either

(i) PK = BK; or
(ii) PK/K ∈M(G/K, BK/K) and one of the following holds:

(a) P ∩K ≤ B; or
(b) Op(P )K/K = Op(PK/K).

Proof. Assume that (i) does not hold. Then PK/K ∈M(G/K, BK/K) by Lemma 3.5.
Set M = (P∩K)Op(P ). Since Op(P ) ≤ B, we may suppose that M 6≤ B, else (ii)(a)
holds. Since BM 6= P and Op(P ) ≤ M with M normal in P , Lemma 3.12 implies
that Op(P/M) = 1. Since P/M ∼= PK/MK by the correspondence theorem, we
have Op(PK/MK) = 1. Thus

Op(PK/K) ≤ MK/K = Op(P )K/K = Op(PK/K)

and we have option (ii)(b). �

Definition 3.14. Let G be a group and P ∈M(G, B). Then P is a tame p-minimal
subgroup of G provided that for all automorphisms α of G, Pα ∈M(G, B) implies
Pα = P . We say that G is tame provided all the members of M(G, B) are tame.

The next lemma highlights our interest and is the key property of tame p-minimal
subgroups of G.

Lemma 3.15. Suppose that K is a normal subgroup of G, G = BK, R = S ∩K
and NK(R) = B∩K. If K is tame, then the map P 7→ P ∩K is a bijection between
M(G, B) and M(K, NK(R)).

Proof. Let P ∈ M(G, B). Then P ∩K ≥ B ∩K = NK(R). We claim that P ∩K
is not p-closed. For if it were, we get P ∩K = B ∩K, whence

P = P ∩G = P ∩BK = B(P ∩K) = B,

which is a contradiction. Hence, by Lemma 3.2, P ∩ K = 〈Q | Q ∈ M(P ∩
K, NK(R))〉. Since K is tame, B normalizes each Q ∈M(P ∩K, NK(R)) and hence
BQ ≤ P . Since P ∈M(G, B) and P = B(P ∩K), we get P ∩K ∈M(K, NK(R)).
Thus the map P 7→ P ∩ K is a well defined injective map from M(G, B) to
M(K, NK(R)). Similarly, for Q ∈ M(K, NK(R)), we have QB ≤ G is a group
and so Lemma 3.11 implies that QB ∈M(G, B) and Q = Q(B ∩K). �

We now make some remarks concerning central products and projection maps.
Suppose that K1, . . . ,Kn are groups. Then a central product of K1, . . . ,Kn is the
image of K1×· · ·×Kn by a homomorphism with a central kernel. If X = K1 . . .Kn

is a central product by a homomorphism θ, then the projection of X to K1 is the
composition of the standard projection of X̄ = K1 × · · · ×Kn to K1 considered as
a homomorphism from X̄ to X̄ with θ.
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Lemma 3.16. Suppose that G is a group and K is a normal subgroup of G such
that G = KS. Assume that K = K1K2 . . .Kn is a central product and S acts
transitively on the set {K1, . . . ,Kn} by conjugation. Let π1 be the projection map
from K to K1. If Y ∈M(K1, NK1(S ∩K1)) is tame, then π1(〈Y B〉) = Y .

Proof. Let g ∈ B = S(B ∩ K). Then Y g ≤ Kg
1 = Kj for some j and Y g ≥

NKj (S ∩ Kj). If j 6= 1, then π1(Y g) ≤ NK1(S ∩ K1) ≤ Y . If Y g ≤ K1, then g
normalizes K1 and, as Y is tame, Y g = Y . Hence, as π1 is a homomorphism from
K to K1, π1(〈Y B〉) = Y . �

The next lemma is fundamentally important when we consider p-minimal sub-
groups of wreath products.

Lemma 3.17. Suppose that G is a group and K is a normal subgroup of G such
that G = KS. Assume, additionally, that K = K1K2 . . .Kn is a central product and
S acts transitively on the set {K1, . . . ,Kn} by conjugation. Let π1 be the projection
map from K to K1 and assume that

(a) π1(NK(S)) = NK1(S ∩K1); and
(b) K1 is tame.

Then we have the following.
(i) Let P ∈ M(G, B), and set L = π1(P ∩K). Then either P ∈ M(NG(S ∩

K), B) or P = 〈Op′(L)B〉B and L ∈M(K1, NK1(S ∩K1)).
(ii) If L ∈ M(K1, NK1(S ∩ K1)) and P = 〈Op′(L)B〉B, then P ∈ M(G, B)

and π1(P ∩K) = L.
In particular, there is a bijection between the sets

M(G, B) \M(NG(S ∩K), B) and M(K1, NK1(S ∩K1)).

Proof. Suppose first that P ∈ M(G, B) and set P0 = P ∩K. Then P0 ≥ B ∩K =
NK(S). Hence, by assumption (a), π1(P0) ≥ NK1(S∩K1). Set R1 = 〈(S∩K1)π1(P0)〉
and R = 〈RB

1 〉(S ∩ K). Then, as K is a central product of K1, . . . ,Kn, R1 =
〈(S ∩K1)P0〉 is normal in P0 and so R ≤ P0. Since R is normal in P0, the Frattini
Argument delivers P0 = RNP0(S ∩K) and so P = P0S = RNP0(S ∩K)S.

Since RB and NP0(S ∩ K)B are both subgroups of P containing B and P ∈
M(G, B), either P = RB or P = NP0(S ∩ K)B ≤ NG(S ∩ K). In the latter
case we have P ∈ M(NG(S ∩K), B), so we now show that in the former case we
have L = π1(P0) ∈ M(K1, NK1(S ∩ K1)). Note that L ≥ R1NK1(S ∩ K1) and
so, as R1 is normal in L, the Frattini Argument implies L = R1NK1(S ∩ K1).
Let Y ∈ M(L,NL(S ∩ K1)) with Y 6= L and set Q = 〈(S ∩ K1)Y 〉 = Op′(Y ).
Note that, as Y ≤ L = π1(P0) and S ∩ K1 ≤ P0, we have Q ≤ P0. Because
Y ∈ M(K1, NK1(S ∩ K1)) is tame, Lemma 3.16 implies that π1(〈Y B〉) = Y ≤
L. It follows that 〈QB〉NK(S) < P0. In particular, 〈QB〉B is contained in the
unique maximal subgroup of P . Hence, if L 6∈ M(L,NL(S ∩ K1)), 〈Op′(Y ) | Y ∈
M(L,NL(S ∩K1))〉B < P , but this contradicts L = 〈Op′(Y ) | Y ∈ M(L,NL(S ∩
K1))〉π1(NK(S)) and 〈Op′(L), B〉 = P . Hence (i) holds.

Now assume that P = RB where R = 〈Op′(L)B〉 and L ∈M(K1, NK1(S∩K1)).
We have that P0 = P ∩ K = RNK(S) and as K1 is tame Lemma 3.16 gives
π1(P0) = L. Let U be the unique maximal subgroup of L which contains NL(S∩K1).
Assume that Y ∈M(P,B). Then by (i) either Y = NY (S∩K) or Y = 〈Op′(π1(Y ∩
K))B〉B. In the former case π1(Y ∩ K) = NK1(S ∩ K) ≤ U . So suppose the



10 Chris Parker and Peter Rowley

second possibility arises. Then π1(Y ∩K) ≤ π1(P0) = L. If we have equality, then
Op′(π1(Y ∩ K)) = Op′(L) and so Y = P which means that P ∈ M(G, B). So we
should assume, using (a), that π1(Y ∩K) ≤ U . Then, for all Y ∈M(P,B), we have
π1(Y ∩K) ≤ U . However, P = 〈Y | Y ∈ M(P,B)〉 = 〈S(Y ∩K) | Y ∈ M(P,B)〉
and P0 = (S ∩K)〈Y ∩K | Y ∈M(P,B)〉 = 〈Y ∩K | Y ∈M(P,B)〉. Since π1 is a
homomorphism we now have that π1(P0) ≤ U < L = π1(P0) which is absurd. �

We finish this section with a technical lemma. Note that in its statement we are
assuming p = 2.

Lemma 3.18. Suppose that H is a normal subgroup of G, R = S ∩H ∈ Syl2(H),
P ≤ H and P ≥ NH(R). Assume in addition that

(i) J = J1×J2 is a normal subgroup of G and G permute {J1, J2} transitively
by conjugation;

(ii) R ∩ J = NJ(R ∩ J);
(iii) S = CS(J1)R; and
(iv) P = NH(R)(P ∩ J).

Then S normalizes P .

Proof. Set Y = CS(J1) and Q1 = 〈(R∩ J1)P∩J〉. Then Q1 ≤ P ∩ J1 and is normal-
ized by 〈P ∩ J,NNH(R)(J1), Y 〉.

Since NH(R) normalizes P∩J and P∩J ≤ NG(Q1), the subgroup Q = 〈QNH(R)
1 〉

is normalized by NH(R)(P ∩ J) which by (v) is equal to P . Note that (v) together
with (ii) also implies that

NP (R ∩ J) = NP (R ∩ J) ∩NH(R)(P ∩ J) = NH(R)NP∩J(R ∩ J)
= NH(R)(R ∩ J) = NH(R).

Since R ∩ J1 ≤ Q1 and, by (i), R ∩ J = (R ∩ J1)(R ∩ J2) ≤ Q ≤ J ∩ P , we have
that R ∩ J ∈ Syl2(Q). Thus the Frattini Argument gives

P = NP (R ∩ J)Q = NH(R)Q.

Furthermore, we have Y normalizes Q1 and NH(R) (as S normalizes NH(R))
and so Y normalizes Q. As S = Y R by (iii), we now have S normalizes Q. Hence
S normalizes P = NH(R)Q. �

4. 2-minimal subgroups in monomial groups

Recall that Tm is a Sylow 2-subgroup of Sym(2m) as described in Section 2. Also
the definition of H-minimal groups is given in Definition 3.3.

Lemma 4.1. Let s be an odd prime and b and m be positive integers. Suppose
that U = 〈u1, . . . , u2m〉 is a homocyclic group of rank 2m and exponent sb. Let T =
Tm ∈ Syl2(Sym(2m)) permute the set {u1, . . . , u2m} of generators of U naturally
and thereby realize T as a subgroup of Aut(U). For 0 ≤ j ≤ m, define

Uj = Uj(sb) = 〈(
2m−j∑
i=1

ui − u2m−j+i)T 〉

where, by convention, all elements uk with k > 2m are ignored. Then
(i) U0 = CU (T ) is cyclic of order sb and, for 1 ≤ j ≤ m, Uj is homocyclic of

rank 2j−1 and exponent sb;
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(ii) U = ⊕m
j=0Uj;

(iii) the centralizer in T of Uj is the base group of T when T is viewed as the
wreath product Tj o Tm−j; and

(iv) the set {Uj(sc) = sb−cUj | 0 ≤ j ≤ m, 1 ≤ c ≤ b} comprises all the
T -minimal subgroups of U .

Proof. We prove the result by induction on m noting that it is easy to check for
m = 1. So we now assume that m > 1. Let

R = 〈(1, 2), (3, 4), . . . , (2m − 1, 2m)〉

be the base group of T . Then [U,R] = 〈u1 − u2, . . . , u2m−1 − u2m〉 and CU (R) =
〈u1 + u2, . . . , u2m−1 + u2m〉. Thus Um = [U,R] and U = CU (R) ⊕ Um. Further-
more CU (R) is an abelian group of exponent sb and rank 2m−1 which admits T/R
as a group of automorphisms permuting its generating set exactly as a Sylow 2-
subgroup of Sym(2m−1) does. By induction we obtain CU (R) = ⊕m−1

j=0 Uj . Thus
U = ⊕m

j=0Uj . Since any minimal T -invariant subgroup of U is contained in either
CU (R) or [U,R] = Um, it remains, again by induction, to show that Um is a minimal
T -invariant subgroup of U of exponent sb. Suppose that 0 6= W < Um and that W is
T -invariant and of exponent sb. Then W is homocyclic and [W, (1, 2)] ≤ 〈u1 − u2〉.
If [W, (1, 2)] ≤ s〈u1 − u2〉, then, as T acts transitively on the given generators
of R, we have [W,R] ≤ sUm. But then W/sW is centralized by R and con-
sequently W ≤ CU (R) ∩ [U,R] = 0, which against our assumption. Therefore
[W, (1, 2)] = 〈u1 − u2〉 and the action T delivers W = Um. If W has exponent
sc with c < b, then W ≤ sU and the final statement now follows by an induction
on b. �

To clear the air, notationally speaking, we consider the following example.

Example 4.2. Suppose that 2m = 16 and sb = 9. Then the non-zero T4-minimal
subgroups of U are as follows:

(i) U0 = U0(32) = 〈u1 + · · ·+ u16〉 of rank 1 and order 9 and 3U0 = U0(31) of
order 3;

(ii) U1 = U1(32) = 〈u1 + · · ·+ u8− (u9 + · · ·+ u16)〉 of rank 1 and order 9 and
3U1 = U1(31) of order 3;

(iii) U2 = U2(32) = 〈u1+· · ·+u4−(u5+· · ·+u8), u9+· · ·+u12−(u13+· · ·+u16)〉
of rank 2 and of order 92 and 3U2 = U2(31) of order 32;

(iv) U3 = U3(32) = 〈u1 + u2 − (u3 + u4), . . . , u13 + u14 − (u15 + u16)〉 of rank 4
and order 94 and 3U3 = U3(31) order 34; and

(v) U4 = U4(32) = 〈u1 − u2, . . . , u15 − u16〉 of rank 8 and order 98 and 3U4 =
U4(31) of order 38.

Our next lemma is similar to the preceding one.
Let j ∈ {1, . . . ,m − 1}. The subgroup of Sym(2m) denoted by X2m(1; j) (note

that r = 1 and n1 = m here) in Section 2 has shape Tj−1 o Sym(4) o Tm−j−1. Set
Ym,j = X2m(1; j). Let Fm,j be the base group of Ym,j where we think of Ym,j as
the wreath product

X2j+1(1; j) o Tm−j−1 = Yj+1,j o Tm−j−1.

So Fm,j is a direct product of 2m−j−1 copies of Yj+1,j(= Tj−1 oSym(4)). The set-up
just described will be assumed in Lemmas 4.3, 4.4 and 4.5.
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Lemma 4.3. Let s be an odd prime and b and m ≥ 2 be positive integers. Suppose
that U = 〈u1, . . . , u2m〉 is a homocyclic group of rank 2m and exponent sb. Let group
Ym,j permute the set {u1, . . . , u2m} of generators of U naturally and thereby realizes
Ym,j as a subgroup of Aut(U).

For 0 ≤ j ≤ m, set

Uj = Uj(sb) = 〈(
2m−j∑
i=1

ui − u2m−j+i)Tm〉.

Then the following hold.

(i) For 1 ≤ j ≤ m− 1, U = CU (Fm,j)⊕ [U,Fm,j ] is a Ym,j-invariant decom-
position of U .

(ii) CU (Fm,j) =
⊕m−j−1

k=0 Uk and [U,Fm,j ] = W ⊕
⊕m

k=m−j+2 Uk where W =
Um−j ⊕ Um−j+1 are decompositions of CU (Fm,j) and [U,Fm,j ] into Ym,j-
minimal subgroups of exponent sb.

Proof. We prove the result by induction on j. Assume that j = 1. So Fm,1 is a direct
product of groups isomorphic to Sym(4). Then CU (Fm,1) = 〈(u1+u2+u3+u4)Ym,1〉
which has rank 2m−2 and [U,Fm,1] = 〈{u1−u2, u2−u3, u1−u4}Ym,1〉 which has rank
2m−2 + 2m−1. Thus, as 2m−2 + 2m−2 + 2m−1 = 2m and CU (Fm,1) ∩ [U,Fm,1] = 0,
U = CU (Fm,1) ⊕ [U,Fm,1] and this is a Ym,1-invariant decomposition. We may
identify CU (Fm,1) with the natural permutation module for Yj,1/Fj,1

∼= Tm−2 and
thus by applying Lemma 4.1 and making the appropriate identifications we have
CU (Fm,1) =

⊕m−2
k=0 Uk. Applying Lemma 4.1 again this time for Tm, we see that

[U,Fm,1] = Um−1⊕Um and as Um is not Yj,1-invariant we deduce that W = [U,Fm,1]
is a minimal Ym,1-invariant subgroup of exponent sb. This proves the lemma for
j = 1.

Now assume that j > 1 and let S0 = 〈(1, 2)Ym,j 〉. Then S0 is elementary abelian
of order 22m−1

and Ym,j/S0
∼= Ym−1,j−1. Since U has odd order, we have U =

CU (S0)⊕[U, S0] is a Ym,j-invariant decomposition of U and we observe that [U, S0] =
Um is irreducible as a Ym,j-module as its restriction to Tm is already irreducible
by Lemma 4.1. So U = CU (S0) ⊕ Um. Since CU (S0) = 〈(u1 − u2)Ym,j 〉 we may
identify CU (S0) with the natural Ym,j/S0

∼= Ym−1,j−1-module. By induction we
then have CU (S0) = CCU (S0)(Fm−1,j−1) ⊕ [CU (S0), Fm−1,j−1] and we can write
CCU (S0)(Fm−1,j−1) =

⊕m−j−1
k=0 Uk and [CU (S0), Fm−1,j−1] = W ⊕

⊕m
k=m−j+2 Uk.

Thus we have decomposed U as a direct sum of irreducible modules as described in
the lemma. We complete the lemma by noting that CCU (S0)(Fm−1,j−1) = CU (Fm,j)
and that [U,Fm,j ] = [CU (S0), Fm−1,j−1] + Um. �

We further embellish Example 4.2 to illustrate the phenomena in Lemma 4.3.

Example 4.4. We again take 2m = 24 and sb = 9. See Example 4.2 for an explicit
description of U0, U1, U2, U3 and U4. Then

X24(1; 1) = Y4,1 = Sym(4) o T2

with CU (F4,1) = U0 ⊕ U1 ⊕ U2 and [U,F4,1] = U3 ⊕ U4. Further the Y4,1-minimal
subgroups of U are U0, 3U0, U1, 3U1, U2 and 3U2, which are (all centralized by
the base group of F4,1) together with U3 ⊕ U4 and 3(U3 ⊕ U4) which both admit
F4,1 faithfully. For X24(1; 2) = Y4,2 = T1 o Sym(4) o T1, CU (F4,2) = U0 ⊕ U1 and
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[U,F4,2] = W ⊕U4 with W = U2 ⊕U3 (so the Y4,2-minimal subgroups of U are U0,
3U0, U1, 3U1, U2 ⊕ U3 and 3(U2 ⊕ U3), U4 and 3U4).

Similarly for X24(1; 3) = Y4,3 = T2 o Sym(4), we get the Y4,3 minimal subgroups
are U0 and 3U0, (U1 ⊕ U2), 3(U1 ⊕ U2), U3, 3U3, U4 and 3U4.

Lemma 4.5. Suppose that P = Ym,j, and set C = O2,2′(P )/O2(P ). Then P/O2,2′(P ) ∼=
Tm−j, C is a composition factor of P and as a Tm−j-module over GF(3), C is iso-
morphic to Um−j(31).

Proof. We have P/O2,2′(P ) ∼= T1 o Tm−j−1 and so P/O2,2′(P ) ∼= Tm−j . Since
P/O2(P ) ∼= Sym(3) o Tm−j−1, we see that the composition factor C is a faith-
ful Tm−j-module. Furthermore we may view Tm−j acting on the set of 3-cycles
in Sym(3) o Tm−j−1 which is a set of size 2m−j and we see that the stabilizer of
a point in this action has index 2m−j and corresponds to the centralizer of a 3-
cycle. From the universal property of permutation modules it follows that the chief
factor C is isomorphic to a quotient of the GF(3) permutation module of Tm−j .
Since C is faithful it follows from Lemma 4.1 that C is isomorphic to Um−j(31), as
claimed. �

Lemma 4.6. Let s be an odd prime and b, m and n be positive integers. Suppose
that W = 〈wi,j | 1 ≤ i ≤ 2m, 1 ≤ j ≤ n〉 is a homocyclic group of rank 2mn and
exponent sb. Assume that T = Tm ∈ Syl2(Sym(2m)), set H = T o Sym(n) and let
H permute the set {wi,j | 1 ≤ i ≤ 2m, 1 ≤ j ≤ n} of generators of W naturally and
thereby realize H as a subgroup of Aut(W ). For 0 ≤ j ≤ m, define

Wj = 〈(
2m−j∑
i=1

wi,1 − w2m−j+i,1)H〉

where, by convention, all elements wk with k > 2m are ignored. Then
(i) W0 = CW (TH) has order sbn is the natural permutation module for H/〈TH〉 ∼=

Sym(n), and for 1 ≤ j ≤ m, Wj is a homocyclic group of rank 2j−1n and
exponent sb;

(ii) W = ⊕m
j=0Wj;

(iii) the centralizer in H of Wj is the base group of H when H is viewed as the
wreath product Tj o (Tm−j o Sym(n)); and

(iv) for 1 ≤ j ≤ m, the homocyclic subgroups Wj comprise the minimal H-
invariant subgroups of W1 ⊕ · · · ⊕Wm of exponent sb.

Proof. Let F denote the base group of H. We have F ∼= T × · · · × T with exactly
n factors. For 0 ≤ j ≤ m and 1 ≤ k ≤ n, set Wj,k = 〈(

∑2m−j

i=1 wi,k − w2m−j+i,k)F 〉
and note that as a module for the kth direct factor of F , Wj,k is isomorphic to
Uj = Uj(sb) as defined in Lemma 4.1. Furthermore, Wj =

⊕n
k=1 Wj,k. This together

with Lemma 4.1 (i) provides the exponent and rank of the homocyclic groups Wj .
Since F centralizes W0, W0 is naturally isomorphic to the permutation module

for H/F ∼= Sym(n). This completes the proof of (i).
Part (ii) is transparent from the definition of the subgroups Wj , 0 ≤ j ≤ m.
Suppose now that j > 0 and let W ∗ be a non-zero H-invariant subgroup of

W1⊕ · · ·⊕Wm of exponent sb. Since j 6= 0 we have CF (Wj,k) 6= CF (Wl,k) for j 6= l
and as a consequence the homocylic subgroups Wj,k are pairwise non-isomorphic as
F -modules. Therefore the set {Wj,k | 1 ≤ k ≤ n} is the set of minimal F -invariant
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submodules of Wj . In particular, as W ∗ is F -invariant there exists an l such that
Wj,l ≤ W ∗. But then W ∗ contains Wj and we have that {Wj | 1 ≤ j ≤ m} is the set
of all minimal H-invariant subgroups of exponent sb contained in W1⊕· · ·⊕Wm. �

As promised in the introduction we now give explicit descriptions of the toral,
linking and fuser 2-minimal subgroups. We begin with the toral ones. We take
H = E o Sym(n) where E is a finite cyclic group of odd order, F is the base group
of H and X is a complement to F in H containing a fixed Sylow 2-subgroup T of
H. We have F = 〈e1, . . . , en〉 where X permutes the generators of F naturally. As
usual, we write n = 2n1 + · · ·+2nr and accordingly decompose T as Tn1 ×· · ·×Tnr

(see Section 2). Corresponding to this decomposition of n, there is an associated
decomposition of F namely F = F1 × · · · × Fr where the generators of Fi, say,
are e2i−1+1, . . . , e2i . For i ∈ I, we set Zni

= CFi
(Tni

) and then we have NH(T ) =∏
i∈I ZniTni . Set Π = Π(|E|). So Π is the set of all prime powers greater than one

dividing |E| and hence of |Fi| for each i ∈ I. Each Fi is a direct product of Sylow
s-subgroups Si for primes s ∈ Π. These Sylow s-subgroups are homocylic and admit
Tni naturally as in Lemma 4.1. Every NH(T )-minimal subgroup of F is contained in
some Si for appropriate choices of i ∈ I and prime s ∈ Π. Using Lemma 4.1 we see
that each such NH(T )-minimal subgroup is of the form Uj(sc) for some 1 ≤ j ≤ ni

and sc ∈ Π. We now denote these NH(T )-minimal subgroups by U(i; sc; j). Define
T (ni; sc; j) = U(ni; sc; j)NH(T ). Notice that U(ni; sc; 0) ≤ Zni

for each sc ∈ Π.
Furthermore, T (ni; sc; j) is a 2-minimal subgroup of H by Lemma 3.4.

For i ∈ I and for j ∈ {1, . . . , ni − 1} we set

P (ni;nj) = Xn(ni;nj)CF (T ).

And for i, j ∈ I with i < j, set

P (ni + nj) = Xn(ni + nj)〈CF (T )Xn(ni+nj)〉.

So P (ni;nj) and P (ni + nj) are subgroups of H which contain NH(T ).

Definition 4.7. Suppose that E is a cyclic group of odd order and H = E o X
where X ∼= Sym(n). We employ the notation already developed for H.

(i) T (H,NH(T )) = {T (ni; sc; j) | i ∈ I, sc ∈ Π and 1 ≤ j ≤ ni};
(ii) L(H,NH(T )) = {P (ni;nj) | i ∈ I, j ∈ {1, . . . , ni − 1}};
(iii) F(H,NH(T )) = {P (ni + nj) | i, j ∈ I, i < j}.

For future use we observe the following lemma.

Lemma 4.8. (i) |T (H,NH(T ))| = |Π|
∑

i∈I ni.
(ii) |L(H,NH(T ))| = (

∑
i∈I ni)− r

(iii) |F(H,NH(T ))| =
(

r
2

)
.

�
The subgroups in Definition 4.7 (i), (ii) and (iii) are, respectively, the 2-minimal

toral, linkers and fusers of H. We have already observed that the T (ni; sc; j)
are 2-minimal subgroups and it is transparent that the linkers are also 2-minimal
subgroups of H. The structure of the subgroups in F(H,NH(T )) is the subject of
our next lemma.

Lemma 4.9. Suppose that P = P (ni+nj) ∈ F(H,NH(T )). Then P ∈M(H,NH(T )).
Additionally, we have the following.
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(i) Xn(ni +nj)/O2(Xn(ni +nj)) ∼= Sym(2ni−nj +1) and in its action on {ek |
k ∈ Ωi ∪ Ωj} has 2nj orbits each of which is natural for Sym(2ni−nj + 1)
and {ek | k ∈ Ωj} a maximal block of imprimitivity.

(ii) P ∩ F = 〈(
∏

k∈Ωj
ek)Xn(ni+nj)〉 is homocyclic of order |E|2

ni−nj +1.
(iii) P/O2(P ) ∼= E o Sym(2n1−n2 + 1).

Proof. Recall that P (ni + nj) = Xn(ni + nj)〈CF (T )Xn(ni+nj)〉. Set X∗ = Xn(ni +
nj). Then P = X∗〈CF (T )X∗〉. By Lemma 3.6 there exists a 2-minimal subgroup R
of P containing NH(T ) such that RF = PF . Then

R ≥ 〈CF (T )R〉 = 〈CF (T )P 〉 = P ∩ F,

whence P = R.
From the description of Xn(ni + nj) given in Section 2 we have X∗/O2(X∗) ∼=

Sym(2ni−nj +1) and in its action on {ek | k ∈ Ωi∪Ωj} has 2nj orbits each of which
is natural for Sym(2ni−nj + 1) and {ek | k ∈ Ωj} a maximal block of imprimitivity.
This is the statement in (i).Parts (ii) and (iii) are easy consequences of (i). �

Lemma 4.10. If P ∈M(H,NH(T )), then one of the following holds:
(i) P ∈M(TF,NH(T ));
(ii) P ∈ L(H,NH(T )) ∪ F(H,NH(T )).

Proof. If P ≤ TF , then P does indeed belong to M(TF, NH(T )), so we may as
well assume that P 6≤ TF . Then PF/F ∈M(H/F,NH(T )F/F ) by Lemma 3.5. Let
X∗ ∈M(X, T ) be such that X∗F = PF . Then, as F is abelian, P ∩F is normalized
by X∗. Assume that X∗ ∈ L(X, T ). Then, by Theorem 2.2 and Lemma 4.5, P and
X∗(P ∩ F ) are conjugate in PF . Because both B = TCF (T ) and CF (T ) ≤ P ∩ F ,
we have P = X∗(P ∩ F ). Since P is 2-minimal, we get that P = X∗CF (T ) ∈
L(H,NH(T )). So (ii) holds in this case.

Suppose now that X∗ ∈ F(X, T ) and let R = O2(X∗) (we may have R = 1). Set
J = 〈CF (T )X∗〉. Then, by Lemma 4.6 (i), J = CF (R). Since P ∩ F is normal in
X∗F , P ∩F ≥ J . Because R ≤ P , we have that (P ∩F )R = P ∩FR is normalized
by P . Therefore P = NP (R)(P ∩ F ). Because P ∈ M(H,NH(T )) and P 6≤ BF ,
we get NP (R) = P . Since P ≤ X∗F and NX∗F (R) = X∗J , we now have P ≤ X∗J
and by comparing the orders of these group we get P = X∗J ∈ F(H,NH(T )). This
completes the proof of the lemma. �

Lemma 4.11. If P ∈M(TF,NH(T )), then P ∈ T (H,NH(T )).

Proof. Since F is abelian and of odd order, we may apply Lemma 3.4 to see that
P = NH(T )L where L = [P ∩ F, T ] is a NH(T )-minimal s-group for some prime s.
It follows that P ≤ RNH(T ) where R is a Sylow s-subgroup of F . Since NH(T )∩F
centralizes R, we have R = 〈x1, . . . , xn〉 admits T ∈ Syl2(Sym(n)) permuting the
generators naturally. Therefore R can be decomposed as a product Rn1 . . . Rnr of
T -invariant subgroups with Rni of rank 2ni which may then each be regarded as
Tni

-invariant homocylic subgroups. Since L is T -minimal, we infer that L ≤ Rni

for some i ∈ I. By Lemma 4.1 we now have P = U(ni; sc; j)NH(T ) = T (ni; sc; j) ∈
T (H,NH(T )) for some c, as claimed. �

Theorem 4.12. Suppose that H = E oSym(n) where n ≥ 2 and E is a cyclic group
of od order. Then

M(H,NH(T )) = T (H,NH(T )) ∪ F(H,NH(T )) ∪ L(H,NH(T )).
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Proof. Combining Lemmas 4.10 and 4.11 we have

M(H,NH(T )) ⊆ T (H,NH(T )) ∪ F(H,NH(T )) ∪ L(H,NH(T )).

Since the members of the righthand side of this containment are 2-minimal sub-
groups of H, we have the result. �

We close this section by presenting a modest example of the 2-minimal subgroups
of H = E oX where E has order 325 and X ∼= Sym(12).

Example 4.13. We have n = 23 + 22 so n1 = 3, n2 = 2 and I = {1, 2}. Also
Π = Π(|E|) = {3, 32, 5}. Structurally, we have T = T3 × T2 with

NH(T ) = Z3Z2T = Z3T3 × Z2T2

and CF (T ) = Z2Z3 homocylic of rank 2 and order 3452.
The 2-minimal linkers of H are the groups P (ni;nj) = X12(ni;nj)Z2Z3 where

i ∈ I, j ∈ {1, . . . , ni − 1}. Thus we have
P (1, 1) = Z2Z3 × (Sym(4) o 2× T2);
P (1, 2) = Z2Z3 × (2 o Sym(4)× T2);
P (2, 1) = Z2Z3 × (T3 × Sym(4));

There is a single 2-minimal fuser and this, by Lemma 4.9, has shape

P (1 + 2) ∼ (45)× (45× T2) o Sym(3),

where 45 stands for the cyclic group of order 45.

The toral 2-minimal subgroups of H are T (ni; sc; j) where i ∈ I, sc ∈ Π and
1 ≤ j ≤ ni. Thus we have

T (3; 31; 1) ∼ 3.T3Z3 × T2Z2 T (3; 32; 1) ∼ 9.T3Z3 × T2Z2

T (3; 51; 1) ∼ 5.T3Z3 × T2Z2 T (3; 31; 2) ∼ 32.T3Z3 × T2Z2

T (3; 32; 2) ∼ 92.T3Z3 × T2Z2 T (3; 51; 2) ∼ 52.T3Z3 × T2Z2

T (3; 31; 3) ∼ 34.T3Z3 × T2Z2 T (3; 32; 3) ∼ 94.T3Z3 × T2Z2

T (3; 51; 3) ∼ 54.T3Z3 × T2Z2 T (2; 31; 1) ∼ T3Z3 × 3.T2Z2

T (2; 32; 1) ∼ T3Z3 × 9.T2Z2 T (2; 51; 1) ∼ T3Z3 × 5.T2Z2

T (2; 31; 2) ∼ T3Z3 × 32.T2Z2 T (2; 32; 2) ∼ T3Z3 × 92.T2Z2

T (2; 51; 2) ∼ T3Z3 × 52.T2Z2.
We note that for each 2-minimal subgroup of H we can give explicit generators.

Note that 325 is the odd part of l − 1 where l is the 3rd strobogrammatic prime.

5. Subgroups of the linear and unitary groups

The purpose of this section is to present some lemmas illustrating structural
properties of GLε

n(q) = GLε(V ), where ε = ±1 and q is odd.
We let V be an n-dimensional vector space over GF(q) or GF(q2) and in the

latter case we assume that V supports a non-degenerate unitary form. For ease
of expression we will refer to orthogonal decompositions of V in both cases – so
in effect we are supposing that V supports a trivial form when it is defined over
GF(q).

We let S1 ∈ Syl2(GL2(q)) and for 2m > 2 a 2-power we set Sm = S1 o Tm−1.
Let Zm be the centre of GLε

2m(q) then Bm = SmZm is the normalizer of a Sylow
2-subgroup of GLε

2m(q) by [13, Lemma 1]. Finally we let B0 = GLε
1(q) and S0 be a

Sylow 2-subgroup of B0. Notice that S0 is cyclic of order (q − ε)2 and that

S1
∼= (q − ε)2 o T1
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when q ≡ ε (mod 4) and otherwise

S1
∼= 〈x, y | y2 = x(q2−1)2 = 1, xy = xεq〉,

which is a semidihedral group of order 2(q2 − 1)2.

Theorem 5.1. Suppose that G = GLε
n(q) and n = 2n1 + · · ·+ 2nr with n1 > · · · >

nr ≥ 0. Let S = Sn1 × · · · × Snr
and B = Bn1 × · · · ×Bnr

. Then S ∈ Syl2(G) and
B = NG(S).

Proof. See Theorems 1 and 4 of [13]. �

The decomposition of B leads to a corresponding decomposition of V . Namely,
V = Vn1 ⊕ · · · ⊕ Vnr

where Vni
= [V,Bni

], i ∈ I.
If q ≡ ε (mod 4), we let A0 be a Sylow 2-subgroup of GLε

1(q). Suppose that
q ≡ −ε (mod 4). Then A1 is defined to be the maximal cyclic subgroup of S1. Thus
we have |A0| = (q − ε)2 and |A1| = (q2 − 1)2 = 2(q + ε)2 and both groups have
order at least 4.

If q ≡ ε (mod 4), then A denotes the base group of A0 o Sym(n) while if q ≡ −ε
(mod 4), we use A to denote the base group of A1 o Sym(bn/2c).

In the next lemma we encounter the group Jε
2 which is defined only when q ≡ −ε

(mod 4) and is then the normalizer of A1 in GLε
2(q). We have that

Jε
2
∼= 〈x, s | xq2−1 = s2 = 1, xs = xεq〉.

Thus Jε
2 contains a cyclic subgroup C of order q2 − 1 and index 2, |[Jε

2, J
ε
2]| = q + ε

and |Z(Jε
2)| = q − ε.

Lemma 5.2. For G = GLε
n(q), the following hold.

(i) If q ≡ −ε (mod 4), then NG(A) ∼= Jε
2 o Sym(bn

2 c) if n is even and Jε
2 o

Sym(bn
2 c)×GLε

1(q) if n is odd.
(ii) If q ≡ ε (mod 4), then NG(A) = GLε

1(q) o Sym(n).

Proof. We consider case (i) first and write A = A1 × · · · × Abn/2c and set Wk =
[V,Ak]. Then dim Wk = 2 and we have an orthogonal decomposition

[V,A] = W1 ⊕ · · · ⊕Wbn/2c.

These 2-dimensional spaces are permuted naturally by Sym(bn/2c). Since the Ai

are the maximal subgroups of A with 2-dimensional commutators, we infer that
NG(A) is as described.

If q ≡ ε (mod 4), then a similar argument shows that NG(A) = GLε
1(q) oSym(n).

�

Lemma 5.3. Suppose that G = GLε
n(q) and g ∈ G. If Ag ≤ S, then Ag = A. In

particular, if R is a 2-group containing A, then NG(R) ≤ NG(A).

Proof. We prove this explicitly for the case q = −ε (mod 4), the case q ≡ ε (mod 4)
being easier. Again we let A = A1 × · · · × Abn/2c. For 1 ≤ k ≤ bn/2c, set Wk =
[V,Ak]. Then dim Wk = 2 and again we have an orthogonal decomposition

[V,A] = W1 ⊕ · · · ⊕Wbn/2c.

These 2-dimensional spaces are permuted naturally by T ∈ Syl2(Sym(bn
2 c)). Sup-

pose that Ag ≤ S and Ag 6= A. Then Y = Ag
1 6≤ A. If Y centralizes A, then either

n is even and Y ≤ A or n is odd and Y ≤ AA0 where A0 ∈ Syl2(GLε
1(q)) from

decomposition of NG(A) as Jε
2 oSym(bn

2 c)×GLε
1(q). In particular, if y is a generator
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of Y , then y2 ∈ A is non-trivial. But then [V, Y ] has dimension at least 3, which is
impossible. Since Y is cyclic of order at least 8, and every element of order 8 in the
base group C of NG(A) is contained in CG(A) (as the Sylow 2-subgroups of C are
a direct product of semidihedral groups with a possible direct factor of order 2), we
now have that Y permutes the spaces Wk non-trivially. As dim[V, Y ] = 2, we deduce
that Y C/C has order 2 and is generated by a transposition of {W1, . . . ,Wbn/2c}.
Let y be an element of order at least 4 in Y which is not contained in C. Then
y2 ∈ C and [V, y2] ≤ [V, y]. Since y2 ∈ C in non-trivial, [V, y2] ∩ Wj 6= 0 for some
1 ≤ j ≤ bn/2c whereas, for all 1 ≤ i ≤ bn/2c, [V, y]∩Wi = 0. Thus no such y exists
and the lemma is proved in this case.

�

Lemma 5.4. Let W = 〈c, d, t | cq2−1 = dq2−1 = t2 = 1, ct = d〉. Then W ∼= C o
Sym(2) where C is cyclic of order q2−1 and the assignment c 7→ x, d 7→ xεq and t 7→
s determines a homomorphism from W onto Jε

2 with kernel 〈(cd)q−ε, (cd−1)q+ε〉.

Proof. This is easy to verify. �

Lemma 5.5. Let C be cyclic of order q2−1 and m ≥ 1. Let F = C o (T1 oSym(m))
with W = C o T1 having the presentation given in Lemma 5.4. Then there is a
surjective homomorphism from C o (T1 o Sym(m)) to Jε

2 o Sym(m) with kernel the
normal closure in F of 〈(cd)q−ε, (cd−1)q+ε〉.

Proof. This follows from Lemma 5.4 as generally, if H/K ∼= L, then (H oM)/(K o
M) ∼= L oM . �

We continue the notation developed in the statement of Lemma 5.5. We intend
to make explicit the generators of the images of the NF (T )-minimal subgroups
contained in the base group of F . Recall that these subgroups are parameterized by
triples se ∈ Π(C), i ∈ I and 1 ≤ j ≤ ni giving us subgroups which we denoted by
U(ni; se; j). Let c1, d1 . . . cm, dm be the generating elements (see Lemma 5.4) from
the canonical factors of the base group of F permuted transitively by F and having
order se and satisfying {{di, ci} | 1 ≤ i ≤ m} is a system of imprimitivity. Let i ∈ I
and set w = (2n1 + · · ·+ 2ni−1)/2. Then, when j < ni, U(ni; se; j) is generated by

〈(
w+2ni−j−1∏

k=w+1

ckdkc−1
2ni−j+k

d−1
2ni−j+k

)Tni 〉.

Now we take x1, . . . , xm to be the generators of the cyclic subgroups of order
22(q+ε) in the factors of the base group of Jε

2 oSym(m). Then the image of U(ni; se; j),
which we denote by U(ni; se; j), is equal to

〈(
w+2ni−j−1∏

k=w+1

xεq+1
k x−εq−1

2ni−j+k
)Tni 〉.

When j = ni, U(ni; se; j) is generated by

〈(ckd−1
k )Tni 〉.

which maps to

〈(
w+2ni−j−1∏

k=w+1

x
−(q+ε)
k )Tni−1 〉.
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Lemma 5.6. Assume that m ≥ 2, n = a1 + · · ·+am with ai ≥ 2 for all 1 ≤ i ≤ m,
C = GLε

a1
(q) × · · · × GLε

am
(q) is a subgroup of GLε

n(q) and C0 = C ∩ SLε
n(q). Let

S ∈ Syl2(C0). Then S is contained in a unique Sylow 2-subgroup of C.

Proof. Let R be a Sylow 2-subgroup of C containing S. For 1 ≤ i ≤ m, we
let Ki be the ith component of C. Thus Ki

∼= GLε
ai

(q). Set Ri = R ∩ Ki and
Di = Z(NKi(S)). So NC(R) = RD1 . . . Dm by Theorem 5.1. Plainly D1 . . . Dm

centralizes R and hence D1 . . . Dm ≤ NC(S). Thus Di ≤ πi(NC(S)) and, since
m ≥ 2, πi(S) = Ri. It follows that DiRi ≤ πi(NC(S)) ≤ NKi

(Ri) = RiDi. Hence
NC(S) ≤ R1D1 . . . RmDm = NC(R) ≤ NC(S). Hence NC(R) = NC(S) and the
lemma follows from Lemma 2.5. �

The next two theorems, which rely upon the simple group classification, are
important in telling us where to look for 2-minimal subgroups.

Theorem 5.7. Suppose that G is a subgroup of GLn(q) containing SLn(q) where
q is an odd prime power and n ≥ 2 is an integer. If H is a maximal subgroup of G
of odd index then at least one of the following holds.

(i) qc
0 = q, where c is an odd prime and H ∼= GLn(q0) ◦ (q − 1). (There are

( q−1
q0−1 , n)-conjugacy classes of these subgroups in GLn(q).)

(ii) H is a maximal parabolic subgroup of G.
(iii) H stabilizes a decomposition of V into spaces of equal dimension.
(iv) n = 4, (q − 1)2 = 2, G has index 2m where m is odd, and G ◦ (q − 1) has

two conjugacy classes of subgroup H ∼= GSp4(q) ◦ (q − 1).
(v) n = 4, (q− 1)2 = 4, G has index 4m or 2m where m is odd and G ◦ (q− 1)

has two conjugacy classes of subgroup H ∼=
(
4 ◦ 21+4

+ .Alt(6)
)
◦ (q − 1) or(

4 ◦ 21+4
+ .Sp4(2)

)
◦ (q − 1) respectively.

Theorem 5.8. Suppose that G is a subgroup of GUn(q) containing SUn(q) where
q is an odd prime power and n ≥ 2 is an integer. If H is a maximal subgroup of G
of odd index then at least one of the following holds.

(i) qc
0 = q, where c is an odd prime and H ∼= GUn(q0) ◦ (q + 1). (There are

( q+1
q0+1 , n)-conjugacy classes of these subgroups in GUn(q).)

(ii) H stabilizes a decomposition of V into an orthogonal sum of non-degenerate
spaces.

(iii) n = 4, (q + 1)2 = 2, G has index 2m where m is odd, and G ◦ (q + 1) has
two conjugacy classes of subgroup H ∼= GSp4(q) ◦ (q + 1).

(iv) n = 4, (q +1)2 = 4, G has index 4m or 2m where m is odd and G ◦ (q +1)
has two conjugacy classes of subgroup H ∼=

(
4 ◦ 21+4

+ .Alt(6)
)
◦ (q + 1) or(

4 ◦ 21+4
+ .Sp4(2)

)
◦ (q + 1), respectively.

(v) G = SU3(5) and there are three conjugacy classes of subgroup H ∼= Mat(10).

Proof of Theorems 5.7 and 5.8. That the given groups contain a Sylow 2-subgroup
is readily verified using the orders of the group. We cite either Liebeck and Saxl [24]
and Kantor [20] to provide the proof that no other maximal over-groups of a Sylow
2-subgroup exist. Referring to [21, Theorems 4.1.4, 4.1.14, 4.2.9, 4.3.6, 4.6.6] we see
that the number of GLε

n(q) conjugacy classes, c in their notation, is as indicated in
all but the last case of Theorem 5.8 when we refer to the Atlas [16] to see that the
number is three. �
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We turn our attention for a moment to the 2-minimal subgroups of GLε
n(q) in

general.

Proposition 5.9. Suppose that n ≥ 3, G = GLn(q) and P ∈ M(G, B). Then
either

(i) P is contained in a parabolic subgroup of G;
(ii) P acts irreducibly on V and there exists b ≥ 1 such that n = 2bm and

P ≤ GL2a(q) o Sym(m); or
(iii) q ≡ 3 (mod 4), n = 4, and P = GL4(p) ◦ (q − 1).

In particular, if G ∈M(G, B), then n = 4 and q = p ≡ 3 (mod 4).

Proof. Suppose that (i) and (ii) do not hold. Then by Lemma 5.7 there exists an
odd prime c such that P ≤ GLn(q0) ◦ (q− 1) where qc

0 = q. Applying Lemma 5.7 to
GLn(q0), we find that P ≤ GL4(pa2)◦ (q−1) and then deduce that P = GL4(pa2)◦
(q−1). If n is not a power of 2, then B preserves a non-trivial direct decomposition
of V into a sum of two subspaces. Therefore B is contained in at least two maximal
subgroups of P . Thus n is a 2-power. Suppose that pa2 ≡ 1 mod 4 and n > 2.
Then GLn(pa2) contains GL2(pa2) o Sym(n/2) and GL1(pa2) o Sym(n) which is also
impossible. Thus pa2 ≡ 3 (mod 4). In particular, a2 = 1. If n > 4, then GLn(p)
contains GL2(p) oSym(n/2) and GL4(p) oSym(n/4) and so GLn(p) is not 2-minimal
in this case. Therefore we have P = GL4(p) ◦ (q − 1) as claimed. �

Proposition 5.10. Suppose that n ≥ 3, G = GUn(q) and P ∈ M(G, B). Then
either

(i) P preserves an orthogonal decomposition of V ;
(ii) q ≡ 1 (mod 4), n = 2m + 1 and P = G; or
(iii) pa2 ≡ 1 (mod 4), n = 4 and P = GU4(pa2) ◦ (q + 1).

In particular, if G ∈ M(G, B), then either q ≡ 1 (mod 4) and n = 2m + 1 or
q = pa2 ≡ 1 (mod 4) and n = 4.

Proof. It suffices to show that G is not 2-minimal unless q ≡ 1 (mod 4) and n =
2m + 1 or q = pa2 ≡ 1 (mod 4) and n = 4. We use Theorem 5.8 liberally. Recall
that n = 2n1 + · · ·+ 2nr . If r ≥ 3, then we have that both GU2n1 (q)×GUn−2n1 (q)
and GUn−2nr (q)×GU2nr (q) are maximal subgroups containing B. Hence we must
have r ≤ 2. If nr > 0, then GU2n1 (q) × GU2n2 (q) and GU2(q) o Sym(n/2) both
contain B and together generate G. Hence if r = 2, we have n = 2n1 + 1. If q ≡ 3
(mod 4), then G is generated by GU1(q) o Sym(n) and GU2n

1
(q) × GU1(q) both of

which contain B. Thus we must have q ≡ 1 (mod 4). Notice that as the subfield
subgroups GUn(q0) where qc

0 = q for some odd prime c do not contain B, we have
that G is 2-minimal in this case.

So suppose that r = 1. Then n = 2n1 ≥ 4. Assume that 2n1 ≥ 8. Then both
GU2(q)oSym(n/2) and GU4(q)oSym(n/4) contain B and so n ≤ 4. If q ≡ 3 (mod 4),
then we use the subgroups GU1(q) oSym(n) and GU2(q) oSym(n/2). Hence we have
n = 4 and q ≡ 1 (mod 4). Finally we note that this time B is contained in the
normalizer of the subfield subgroups and so if q 6= pa2 we would again have two
proper over-groups of B which generate G. Hence q = pa2 and these groups are
indeed 2-minimal. �
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6. 2-minimal subgroups in linear and unitary groups

The one and only theorem of this section highlights the five subdivisions of our
later investigations.

Theorem 6.1. Suppose that G = GLε
n(q), S = Sn1×· · ·×Snr

, B = NG(S) and let
A be as in Section 5. Assume that P ∈M(G, B). Then at least one of the following
holds.

(i) r = 1;
(ii) P = G = GU2n1+1(q);
(iii) P ∈M(NG(A), B);
(iv) ε = + and P is contained in a parabolic subgroup of G; or
(v) P ∈M(GLε(U)×GLε(W ), B) for some non-zero subspaces U and W such

that V = U ⊕W .

Proof. Assume that r > 1. Thus, if G = P , Propositions 5.9 and 5.10 yield alter-
native (ii). So we may now suppose that G 6= P . Employing Theorems 5.9 and 5.10
again shows that either (iv) or (v) holds, or P ≤ H ≤ GLε

2d(q) oSym(n/2d) for some
d such that 2d divides n. So assume that P ≤ H = GLε

2d(q) o Sym(n/2d) where 2d

divides n. Let K be the base group of H. If P is not transitive on the wreathed
direct factors of K, then (v) holds. Therefore we may suppose that PK 6= PB.
Finally, Lemma 3.7 implies that P = NP (S ∩K). Since S ∩K contains A, we now
have that (iii) holds by Lemma 5.3. �

7. 2-minimal radical subgroups

In this section we assume that G = GLn(q) and that SLn(q) ≤ H ≤ G. We
investigate 2-minimal subgroups of H which lie in a parabolic subgroup of G (so
we are pursuing case (iv) of Theorem 6.1). Notice that in this case we must have
r > 1.

Lemma 7.1. Suppose that P ∈ M(H,B ∩H) and that P does not act irreducibly
on V . Then either

(i) there exist non-zero subspaces U and W of V such that V = U ⊕W and
P ≤ GL(U)×GL(W ); or

(ii) Op(P ) = Op(R) ∩ P and P = Op(P )(B ∩ H) for all maximal parabolic
subgroups R of G which contain P .

Proof. Since P is contained in a parabolic subgroup of G, there exist maximal
parabolic subgroups of G containing P . Let R be any such maximal parabolic
subgroup. Then R = NG(W ) where W is a non-zero proper subspace of V which is
of course P -invariant. Let L be a Levi complement in R chosen so as B ≤ L. Then
there is a complement U to W in V such that L = GL(U)×GL(W ). Let w ∈ Z(L)
act fixed-point-freely on Op(R). Obviously w ∈ Z(B). Now P = CP (w)(Op(R)∩P )
by a Frattini Argument. Since P is 2-minimal, B ∩ H ≤ CP (w), and B ∩ H ≤
(Op(R) ∩ P )B, we get that either P = CP (w) ≤ L or P = (Op(R) ∩ P )(B ∩H) =
Op(P )(B ∩H). Hence either (i) or (ii) holds. �

Theorem 7.2. Suppose that P ∈M(H,B ∩H) and P is contained in a parabolic
subgroup of G. Then either

(i) there exist non-zero subspaces U and W of V such that V = U ⊕W and
P ≤ GL(U)×GL(W ); or
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(ii) n = 2n1 + 2n2 and there exists i ∈ I = {1, 2} such that Vni = [V,Op(P )] =
CV (Op(P )) and P = Op(NG(Vni

))(B ∩H). In particular, P is normalized
by B.

Proof. We suppose that (i) does not hold. Deploying Lemma 7.1 we now have
Op(P ) ≤ Op(R) for all maximal parabolic subgroups R of G containing P . Let
V = W1 > · · · > Wk > 0 be a P -invariant flag such that W̄i = Wi/Wi+1 is an
irreducible P -module. Then Op(P ) centralizes W̄i and thus W̄i is an irreducible
(B ∩ H)-module. Thus {W̄i | 1 ≤ i ≤ k} is in natural correspondence with {Vni

|
1 ≤ i ≤ r}. In particular, k = r. Let Vnj correspond to W̄r and Vni correspond to
W1/W2. Set R2 = NG(W2) and Rr = NG(Wr). Then P ≤ R2 ∩ Rr from which we
infer that Op(P ) ≤ Op(R2)∩Op(Rr). Set U0 = Vni

+Vnj
and U1 = ⊕m6∈{i,j}Vnm

and
note that U0 and U1 are both (B∩H)-invariant. As U1 ≤ W2 and [W2, Op(R2)] = 0,
we have that U1 is P -invariant and that P acts on U1 just as (B∩H) does. Similarly
we have that [Vnj

, Op(P )] = 0. Now [Vni
, Op(P )] ≤ [Vni

, Op(Rr)] ≤ [V,Op(Rr)] =
Wr = Vnj

≤ U0. So U0 is also Op(P )-invariant. Hence U0 is P -invariant. Now we
have that P ≤ GL(U0)×GL(U1) where V = U0 ⊕ U1 which, as (i) is assumed not
to hold, implies that U1 = 0. Hence r = 2 and V = Vn1 ⊕ Vn2 and Vn1 and Vn2 are
the only B ∩H invariant subspaces of V . It follows that either CV (Op(P )) = Vn1

or CV (Op(P )) = Vn2 . So suppose that CV (Op(P )) = Vn1 , for example. Then P ≤
NG(Vn1) and Op(NG(Vn1)) is elementary abelian and admits B ∩ H irreducibly.
Since Op(P ) ≤ Op(NG(Vn1)) by Lemma 7.1, we now have Op(P ) = Op(NG(Vn1)).
Thus (ii) holds and the theorem is proved. �

Recalling our standard setup of n = 2n1 + · · ·+ 2nr with I = {1, . . . , r}, we now
define another type of 2-minimal subgroup an example of which has just emerged
in Theorem 7.2 (ii).

Definition 7.3. Let {i, j} be a 2-element subset of I, W = Vni
⊕ Vnj

and M =
(GL(W ) ∩H)(B ∩H). Then the 2-minimal subgroups of M which do not act irre-
ducibly on W are determined in Theorem 7.2. The example arising in Theorem 7.2
(ii) with CW (Op(NGL(W )(Vni

)) = Vnj
will be denoted by R(ni ≫ nj). These 2-

minimal subgroups will collectively be called 2-minimal radical subgroups and the
set of such subgroups of H is denoted by R.

Note that |Op(R(ni ≫ nj))| = qninj = |Op(R(nj ≫ ni))|.
From Definition 7.3 we see that each two element subset of I gives us two 2-

minimal radical subgroups. Thus we have

Lemma 7.4. |R| = r(r − 1).

�

Example 7.5. Suppose that G = GL26(q). Then 26 = 24 + 23 + 21 so that n1 = 4,
n2 = 3, n3 = 1 and r = 3. By Lemma 7.4 there are 6 conjugacy classes of 2-
minimal radical subgroups of G. Matrices representing these p-minimal subgroups
are depicted in the following schematic where a * indicates an appropriate Mx,y(q)
and Bni

denotes the Sylow 2-normalizer in GL2ni (q). Also we shall assume that G
acts on V by right matrix multiplication.

R(4 ≫ 3) =

 B4 ∗ 0
0 B3 0
0 0 B1

 R(3 ≫ 4) =

 B4 0 0
∗ B3 0
0 0 B1


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R(4 ≫ 1) =

 B4 0 ∗
0 B3 0
0 0 B1

 R(1 ≫ 4) =

 B4 0 0
0 B3 0
∗ 0 B1



R(3 ≫ 1) =

 B4 0 0
0 B3 ∗
0 0 B1

 R(1 ≫ 3) =

 B4 0 0
0 B3 0
0 ∗ B1


8. Toral, fuser and linker 2-minimal subgroups of linear and unitary

groups

In this section, we first describe the 2-minimal subgroups of G = GLε
n(q) which

normalize A where A is defined as in Section 5 immediately after Theorem 5.1.
Throughout this section we set H = NG(A).

We first consider the case when q ≡ ε (mod 4). In this case H ∼= (q− ε) oSym(n)
where (q− ε) denotes a cyclic group of order q− ε. Recall that A is a direct product
of n cyclic groups of order (q − ε)2 and so has order at least 4n. The 2-minimal
subgroups of H are in one to one correspondence with the 2-minimal subgroups
of H/A ∼= (q − ε)2′ o Sym(n) (which if q − ε is a power of 2, we understand to be
isomorphic to Sym(n)). We extend the notation from Section 4 by taking preimages.
Thus we set

T (H,B) = {T (ni; sc; j) | i ∈ I, sc ∈ Π(q − ε) and 1 ≤ j ≤ ni}.
The linkers and fusers for H are defined in a similar fashion by pulling back from

H/O2(H) and we continue to denote these sets by L(H,B) and F(H,B). So our
first result is

Theorem 8.1. Suppose that q ≡ ε (mod 4). Then M(H,B) = T (H,B)∪F(H,B)∪
L(H,B).

Proof. Taking into account our modified notation, this is just a restatement of
Theorem 4.12. �

The corresponding subsets of 2-minimal subgroups when q ≡ −ε (mod 4) are
more technical to define. Recall that in this case H = NG(A) ∼= Jε

2 oSym(n/2) when
n is even and H = NG(A) ∼= Jε

2 o Sym(bn/2c)×GLε
1(q) when n is odd. When n is

odd, the final factor is contained in B and is normal in H and so we can, and will, be
suppressed in our considerations. By Lemma 5.5, we have that NG(A) is a quotient
of W where W = C o (T1 o Sym(bn/2c) and C has order q2 − 1. By Lemma 3.6
every 2-minimal subgroup of H is an image of a 2-minimal subgroup of W . Hence
we read off the 2-minimal subgroups of H from those that we have described in
Theorem 4.12 for W considered as a subgroup of C o Sym(n). Let L = Sym(bn/2c)
be a complement to the base group of H containing T .

Using bars to denote images, we have

F(H,B) = {P | P ∈ F(W )} = {〈B,P ∗〉 | P ∗ ∈ F(L, T )}
are the fusers and these all have images great than B.

The linkers become

L(H,B) = {P | P ∈ F(W ), P 6= P (i; 1)} = {BP ∗ | P ∗ ∈ F(L, T )}
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and finally the toral 2-minimal subgroups of H are

T (H,B) = {T (ni; sc; j) | i ∈ I, 1 ≤ j < ni, s
c ∈ Π(q − ε)}

∪{T (ni; sc;ni) | i ∈ I, sc ∈ Π(q + ε)}.
We refer to the discussion in Section 5 for a vibrant description of these toral
subgroups.

Theorem 8.2. Suppose that q ≡ −ε (mod 4). Then

M(H,B) = T (H,B) ∪ F(H,B) ∪ L(H,B).

Proof. This follows from the foregoing discussion. �

Corollary 8.3. NG(A) is tame.

Proof. This follows from the description of the 2-minimal subgroups of NG(A) given
in Theorems 8.1 and 8.2. �

9. 2-minimal subgroups in dimensions 2 and 4

In this section we determine the 2-minimal subgroups of GLε
2(q) and GLε

4(q).
These are the base cases for our inductive proof of Theorem 1.1. We first look
at the dimension 2 case. Let V be the natural GLε

2(q)-module. Two subgroups of
GLε

2(q) play a leading role. The first is the monomial group GLε
1(q) o T1 which has

order 2(q− ε)2 and the second is the group Jε
2 which we have already introduced in

Section 5. We now give an alternative description of Jε
2. If ε = +, J+

2 = GL1(q2) :
〈α〉 where α is the field automorphism of GF(q2) which maps every element to
its qth power. If ε = −, then J−2 preserves a decomposition of V as a sum of two
isotropic subspaces and is isomorphic to GL1(q2) : 〈β〉 where β is the automorphism
of the multiplicative group of GF(q2) which maps every element to the inverse of
its qth power. In particular, note that Z(Jε

2) is cyclic of order q − ε.

Lemma 9.1. Suppose that p is an odd prime, q = pa > 5 and G = GLε
2(q). Then

the maximal subgroups of G of odd index are as follows.
(i) GLε

1(q) o T1 when q ≡ ε (mod 4).
(ii) Jε

2 when q ≡ −ε (mod 4).
(iii) GLε

2(p
a/c) ◦ (q − ε) for each odd prime divisor c of a.

(iv) Q8.Sym(3) ◦ (q − ε) when q ≡ 3, 5 (mod 8) is a prime.
Furthermore, in each case there is exactly one conjugacy class of such subgroups.

Proof. This result is deduced from the list of maximal subgroups of GL2(q) given
in [8, Theorem 3.4]. �

Corollary 9.2. With G = GLε
2(q), we have G ∈M(G, B) if and only if one of the

following holds:
(i) a = a2 > 1;
(ii) a = 1, q 6≡ 3, 5 (mod 8); or
(iii) G = GLε

2(3) or GLε
2(5).

Proof. If G = GLε
2(3) or GLε

2(5), then it is easily verified that G is 2-minimal. So
we may assume that q > 5.

We first check that if (i) or (ii) hold, then G is 2-minimal. Note first that exactly
one of the groups in (i) and (ii) of Lemma 9.1 can contain B. If (i) holds, then, as
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a = a2, (iii) of Lemma 9.1 cannot occur, and, as a2 > 1, q 6≡ 3, 5 (mod 8) and (iv)
of Lemma 9.1 cannot occur. Hence G is 2-minimal in this case. If (ii) holds, then
once again there is only one conjugacy class of maximal subgroups of odd index in
G.

Suppose now that G ∈M(G, B). Then as exactly one of the subgroups listed in
(i) and (ii) of Lemma 9.1 contain B, the groups listed in (iii) and (iv) of the same
lemma cannot arise in G. Hence either (i) or (ii) holds and the lemma is proved. �

We can now harvest the 2-minimal subgroups for the groups GLε
2(q).

Proposition 9.3. Assume that G = GLε
2(q) (where q = pa). Then under the given

conditions M(G, B) is as follows.

(i) q ≡ ε (mod 8) and

M(GLε
1(q) o T1, B) ∪ {GLε

2(p
a2) ◦ (q − ε)}.

(ii) q ≡ −ε (mod 8) and

M(Jε
2, B) ∪ {GLε

2(p
a2) ◦ (q − ε)}.

(iii) q ≡ 4− ε (mod 8), p 6= 5, and

M(Jε
2, B) ∪ {Q8.Sym(3) ◦ (q − ε)}.

(iv) q ≡ 4 + ε (mod 8), p 6= 5 and

M(GLε
1(q) o T1, B) ∪ {Q8.Sym(3) ◦ (q − ε)}.

(v) q = 5a with a odd and

M(GLε
1(q) o T1, B) ∪ {GLε

2(5) ◦ (q − ε)} ∪ {Q8.Sym(3) ◦ (q − ε)}.

Proof. Assume that P 6∈ M(GLε
1(q)oT1, B) when q ≡ ε (mod 4) and P 6∈ M(Jε

2, B)
when q ≡ −ε (mod 4). We prove the result by induction on a. Assume that a = 1.
If q = 3 or q = 5, then we observe that the proposition holds. Hence we may take
q > 5. If P = G, then (i) or (ii) holds by Lemma 9.2. If P < G, then Lemma 9.1
indicates that q ≡ 3, 5 (mod 8) and that one of (iii) and (iv) holds. Assume now
that a > 1. Again if P = G, we get a = a2 > 1 from Lemma 9.2 and (i) or (ii)
holds. For P < G we again apply Lemma 9.1 to get P ≤ GLε

2(q0) where qc
0 = q for

some odd prime c. Noting that q ≡ q0 (mod 8), induction yields the result. �

For completeness we rerecord, from Theorems 8.1 and 8.2, the 2-minimal sub-
groups of M(GLε

1(q), B) for q ≡ ε (mod 4) and M(Jε
2, B) for q ≡ −ε (mod 4).

Lemma 9.4. (i) For q ≡ ε (mod 4), M(GLε
1(q), B) = {T (1, sc, 1) | sc ∈

Π(q − ε)}.
(ii) For q ≡ −ε (mod 4), M(Jε

2, B) = {T (1, sc, 1) | sc ∈ Π(q + ε)}.

�

Corollary 9.5. G = GLε
2(q) is tame.

Proof. From Proposition 9.3 and Lemma 9.4 it follows that pairs of distinct mem-
bers of M(G, B) are not isomorphic. Hence G is tame. �
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In the next theorem we determine the 2-minimal subgroups of H = GLε
2(q) o

Tn−1 ≤ GLε
2n(q) where B ≤ H. These subgroups break into two types as indicated

by Lemma 9.3. Thus we introduce the quaternion 2-minimal subgroups when q ≡
3, 5 (mod 8)

Q(n) = Zn ((q − ε)2 ◦Q8.Sym(3)) o Tn−1

and the special linear 2-minimal subgroups

S(2, n) = Zn (SLε
2(p

a2).(q − ε)2) o Tn−1

for q ≡ 1, 7 (mod 8) or q = 5a with a odd. With reference to our notation at
this point, we note that SLε

2(p
a2).(q − ε)2 = O2′(GLε

2(p
a2)) is the subgroup of

GLε
2(p

a2)◦(q−ε) consisting of elements with determinant in the subgroup of GF(q)∗

when ε = + or GF(q2)∗ when ε = − of order (q − ε)2.

Theorem 9.6. Suppose that H = GLε
2(q) o Tn−1 for some natural number n. Then

M(H,B) = M(NH(A), B) ∪ {Q(n), S(2, n)}.

In particular, H is tame.

Proof. Let K be the base group of H and suppose that P ∈M(H,B). Then by the
construction of H, P ≤ KS and S operates transitively on the factors K1, . . . ,K2n−1

of K. Now S ∩ K ∈ Syl2(K) and NK(S ∩ K) = (S ∩ K)Zn by Theorem 5.1. It
follows that π1(NK(S ∩K)) = NK1(S ∩K). Finally, K1 is tame by Corollary 9.5.
Thus the conditions of Lemma 3.17 are satisfied and so we have P ∈ M(NH(S ∩
K), B) = M(NH(A), B) by Lemma 5.3 or P = Zn〈O2′(L)Tn−1〉Tn−1 where L ∈
M(K1, NK1(S ∩ K1)). If L ≤ NK1(A1), then we also have P ∈ M(NH(A), B).
Proposition 9.3 now delivers the result. �

By Propositions 5.9 and 5.10 we now see why GLε
4(q) is most interesting for us

when q ≡ −ε (mod 4).

Lemma 9.7. Suppose that G = GLε
4(q) and q ≡ −ε (mod 4). Then M(G, B) =

M(GLε
2(q) o T1, B) ∪ {GLε

4(p
a2) ◦ (q − ε)}. In particular, G is tame.

Proof. The first part follows from Propositions 5.9 and 5.10 and then we see that
G is tame by applying Theorem 9.6. �

Finally, for q ≡ −ε (mod 4), we consider groups of the form H = GLε
4(q) o Tn−2

contained in GLε
2n(q) and containing B. Our aim is to determine all the 2-minimal

subgroups. Thus we additionally define

S(4, n) = Zn (SLε
4(p

a2).(q − ε)2) o Tn−2

for q ≡ −ε (mod 4). Note that if ε = +, then a2 = 1. The group S(4, n) is also
called a special linear 2-minimal subgroup.

Theorem 9.8. Suppose that H = GLε
4(q) o Tn−2 with q ≡ −ε (mod 4). Then

M(H,B) = M(GLε
2(q) o Tn−1, B) ∪ {S(4, n)}. In particular, H is tame.

Proof. Just as in Theorem 9.6 we get that Lemma 3.17 is applicable. It then follows
from Lemma 9.7 that M(H,B) is precisely as described. �
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10. 2-minimal subgroups of GLε
2m(q)

In this section we assume that n = 2m and intend to describe in detail the
members of M(G, B). We first examine the basic action of the 2-minimal subgroups
of G.

Proposition 10.1. Suppose that G = GLε
2m(q) with m > 1.

(i) If q ≡ ε (mod 4), then

M(G, B) = M(GLε
1(q) o Sym(2m), B) ∪M(GLε

2(q) o Tm−1, B).

(ii) If q ≡ −ε (mod 4), then

M(G, B) = M(Jε
2 oSym(2m−1), B)∪M(GLε

2(q) oTm−1), B)∪M(GLε
4(q) oTm−2, B).

In particular, G is tame.

Proof. Define

M∗ = M(GLε
1(q) o Sym(2m), B) ∪M(GLε

2(q) o Tm−1, B)

if q ≡ ε (mod 4) and

M∗ = M(GLε
2(q) o Sym(2m−1), B) ∪M(GLε

4(q) o Tm−2, B)

if q ≡ −ε (mod 4). Note that by Lemmas 3.7, 5.2 and 5.3 we have

M(GLε
2(q) o Sym(2m−1), B) = M(Jε

2 o Sym(2m−1), B) ∪M(GLε
2(q) o Tm−1, B).

Observe that the members of M∗ are tame in their signified over-groups by Corol-
lary 8.3 and Theorems 9.6 and 9.8.

We may assume that m > 1 when q ≡ ε (mod 4) and that m > 2 when q ≡ −ε
(mod 4). Denote by Mj the set of 2-minimal subgroups of GLε

2j (q)oSym(2m−j) and
note thatM1 is non-empty if and only if q ≡ ε (mod 4). Then using Propositions 5.9
and 5.10, GLε

2m(q) is not 2-minimal so long as m > 1 when q ≡ ε (mod 4) and
m > 2 when q ≡ −ε (mod 4), employing Propositions 5.9 and 5.10 again gives

M(G) =
m−1⋃
j=1

Mj .

Suppose that the theorem is false. Then there exist a minimal j ≤ m − 1 such
P ∈Mj but P is not inM∗. Let M = GLε

2j (q)oSym(2m−j) and C be the base group
of M . Lemma 3.7 implies that P = NP (S∩C) or P ∈M(CB,B). As S∩C contains
A as described before Lemma 5.3 we can apply Lemma 5.3 when P = NP (S∩C) to
get P ≤ NG(A) and consequently P ∈M1 if q ≡ ε (mod 4) and P ∈M2 if q ≡ −ε
(mod 4), which is against the choice of P . Hence PC = BC = SC as Z(G) ≤ C. In
particular we have P ≤ GLε

2j (q)oTm−j . Thus j > 1 if q ≡ ε (mod 4) and j > 2 if j ≡
−ε (mod 4). We now intend to apply Lemma 3.17, so write C = K1 × · · · ×K2m−j

where Kl
∼= GLε

2j (q), 1 ≤ l ≤ 2m−j . Proceeding by induction we may assume
G = GLε

2j (q) is tame and π1(NC(S)) = π1((S ∩ C)Z(G)) = NK1(S ∩ K1), hence
Lemma 3.17 and induction shows that there exists P0 with P = 〈P0, B〉 where
P0 ∈M(GLε

1(q) oSym(2j), B)∪M(GLε
2(q) oTj−1, B) when q ≡ ε (mod 4) and P0 ∈

M(G) = M(GLε
2(q) o Sym(2j−1), B)∪M(GLε

4(q) o Tj−2, B) when q ≡ −ε (mod 4).
But then P ∈ M∗ and we have a contradiction. Consequently M(G, B) = M∗ so
proving the proposition.

�
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11. Proof of main theorem

We first recollect the 2-minimal toral subgroups

T = T (G, B) = {T (nj ; sc; k) | j ∈ I, sc ∈ Π(q − ε) and 1 ≤ k ≤ nj}

when q ≡ ε (mod 4) and

T = T (G, B) = {T (ni; sc; j), T (ni; td;ni) | i ∈ I, 1 ≤ j < ni, s
c ∈ Π(q−ε), td ∈ Π(q+ε)}

when q ≡ −ε (mod 4).
The 2-minimal linkers and fusers also vary according to the congruence of q so

we have

F = F(G, B) = F(H,B) = {〈B,P 〉 | P = P (ni + nj) ∈ F(Sym(n), T )}

when q ≡ ε (mod 4) and

F = F(G, B) = F(H,B) = {〈B,P 〉 | P = P (ni + nj) ∈ F(Sym(bn/2c), T )}

when q ≡ −ε (mod 4). Similarly

L = L(G, B) = L(H,B) = {BP | P = P (ni;nj) ∈ L(Sym(n), T )}

when q ≡ ε (mod 4) and

L = L(G, B) = L(H,B) = {BP | P = P (ni;nj) ∈ L(Sym(bn/2c), T )}

when q ≡ −ε (mod 4).
The quaternion 2-minimal subgroups Q(m) defined so far only in GLε

2m(q) (see
just after Corollary 9.5) extend to 2-minimal subgroups

Q(ni)×
∏

k∈I\{i}

Bnk

of GLε
n(q). We abuse notation and also denote this 2-minimal subgroup of GLε

n(q)
by Q(ni). The set of quaternion 2-minimal subgroups is

Q = Q(G, B) = {Q(ni) | i ∈ I}.

We recollect that this set is non-empty precisely when q ≡ 3, 5 (mod 8). Similarly
we have special linear 2-minimal subgroups

S(2, ni)×
∏
k 6=i

Bnk

for q ≡ 1, 7 (mod 8) or q = 5a with a odd and

S(4, ni)×
∏
k 6=i

Bnk

for q ≡ −ε (mod 4) of GLε
n(q). We again abuse notation and denote these subgroups

by S(2, ni) and S(4, ni) respectively. Put

S = S(G, B) = {S(2, ni), S(4, ni) | i ∈ I}.

When ε = + we have radical 2-minimal subgroups

R(ni ≫ nj)

and the set of radical 2-minimal subgroups is

R = R(G, B) = {R(ni ≫ nj) | {i, j} ⊆ I, i 6= j}.
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subgroups conditions number
T (ni; sc; j) i ∈ I, sc ∈ Π(q − ε), 1 ≤ j ≤ ni |Π(q − ε)|

∑
i∈I ni

P (ni + nj) {i, j} ⊆ I, i 6= j r(r − 1)/2
P (ni;nj) i ∈ I, ni ≥ 2

∑
i∈I,ni≥2(ni − 1)

R(ni ≫ nj) {i, j} ⊆ I, i 6= j, ε = + r(r − 1)

Q(ni) i ∈ I, ni ≥ 2, q ≡ 1, 7 (mod 8)

{
r − 1 n odd
r n even

S(2, ni) i ∈ I, ni ≥ 2, q ≡ 3, 5 (mod 8)

{
r − 1 n odd
r n even

or 5a a odd
Table 1. The 2-minimal subgroup of GLε

n(q), q ≡ ε (mod 4)

When ε = −, n is odd and q ≡ 1 (mod 4), the counterparts of the 2-minimal radical
subgroups are the 2-minimal unitary subgroups

U(nj) = GU2nj +1(q)×
∏

k 6∈{j,r}

Bnk

where j ∈ I \ {r} and the set of these subgroups is

U = U(G, B) = {U(nj) | 1 ≤ j ≤ r − 1}.

Theorem 11.1. For G = GLε
n(q),

M(G, B) = T ∪ F ∪ L ∪Q ∪ S ∪R ∪ U .

Proof. We proceed by induction on n noting that the result is true for n = 1 and n =
2. Suppose that P ∈ M(G, B). Then by Theorem 6.1, either P = G ∈ U(G, B) or
r = 1, PM(NG(A), B), ε = + and P = Op(P )B or P ∈M(GLε(U)×GLε(W ), B)
for some non-zero subspaces U and W of V . If r = 1, Proposition 10.1 together with
Theorems 9.6 and 9.8 show that either P ∈ S(G, B), Q(G, B) or M(NG(A), B).
If indeed P ∈ M(NG(A), B), Theorems 8.1 and 8.2 indicate that P ∈ T (G, B) ∪
F(G, B) ∪ L(G, B). So we may suppose that P ∈ M(GLε(U) × GLε(W ), B) for
some non-zero subspaces U and W of V . Let K = GLε(U) and L = GLε(W ). Then
by Lemma 3.9 either P ∩K ∈ M(K, B ∩K) or P ∩ L ∈ M(L,B ∩ L). The proof
is now completed by using induction. �
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subgroups conditions number
T (ni; sc; j) i ∈ I, ni ≥ 1 sc ∈ Π(q − ε) |Π(q − ε)|

∑
i∈I(ni − 1)

1 ≤ j ≤ ni − 1
T (ni; sc;ni) i ∈ I, sc ∈ Π(q + ε), r|Π(q + ε)|
P (ni + nj) {i, j} ⊆ I, i 6= j r(r − 1)/2
P (ni;nj) i ∈ I, ni ≥ 2

∑
i∈I,ni≥2(ni − 1)

R(ni ≫ nj) {i, j} ⊆ I, i 6= j, ε = + r(r − 1)
U(ni) i ∈ I \ {r}, nr = 0, ε = − r − 1

Q(ni) i ∈ I, ni ≥ 1, q ≡ 1, 7 (mod 8)

{
r − 1 n odd
r n even

S(2, ni) i ∈ I, ni ≥ 1, q ≡ 3, 5 (mod 8)

{
r − 1 n odd
r n even

or 5a a odd

S(4, ni) i ∈ I, ni ≥ 2


r n ≡ 0 (mod 4)
r − 1 n ≡ 2, 3 (mod 4)
r − 2 n ≡ 1 (mod 4)

Table 2. The 2-minimal subgroup of GLε
n(q), q ≡ −ε (mod 4)
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