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ZETA FUNCTIONS OF 3-DIMENSIONAL

p-ADIC LIE ALGEBRAS

BENJAMIN KLOPSCH AND CHRISTOPHER VOLL

Abstract. We give an explicit formula for the subalgebra zeta
function of a general 3-dimensional Lie algebra over the p-adic
integers Zp. To this end, we associate to such a Lie algebra a
ternary quadratic form over Zp. The formula for the zeta function
is given in terms of Igusa’s local zeta function associated to this
form.

1. Introduction

For a prime p, let Zp denote the ring of p-adic integers. The (subal-
gebra) zeta function of a Zp-algebra L, additively isomorphic to Zn

p , is
the Dirichlet series

ζL(s) =
∑

H≤L

|L : H|−s,

where the sum ranges over the subalgebras of finite index in L, and s
is a complex variable.

Zeta functions of Zp-Lie algebras play an important role in the sub-
ject of subgroup growth. Indeed, to every saturable p-adic analytic
pro-p group G there is an associated Zp-Lie algebra L = L(G) and if
dim(G) ≤ p then

ζL(G)(s) = ζG(s) :=
∑

H≤G

|G : H|−s,

the (subgroup) zeta function of the group G (cf. [13, 14] and references
therein). Similarly, for a finitely generated nilpotent group G, there is
a nilpotent Z-Lie algebra L(G) such that, for almost all primes p,

ζZp⊗ZL(G)(s) = ζG,p(s) :=
∑

H≤pG

|G : H|−s,
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the local (subgroup) zeta function of G at the prime p, enumerating
subgroups of finite p-power index in G (cf. [8]). Thus, to some degree,
the study of subgroup zeta functions reduces to the study of subalgebra
zeta functions of Zp-Lie algebras. Zeta functions of groups and rings in
general have attracted considerable interest over the last few decades;
we refer to [5] for a recent survey.

By now, numerous examples of zeta functions of nilpotent and soluble
Zp-Lie algebras have been calculated. One of the first examples is the
zeta function of the Heisenberg Lie algebra h(Zp) which was computed
in [8]. For further explicit calculations see, for example, [18, 19, 7]. On
the other hand, explicit examples of zeta functions of insoluble Zp-Lie
algebras are thin on the ground. Only for zeta functions associated to
the two Qp-forms of the simple Lie algebra of type A1 have explicit
formulae been found: using results of Ilani ([11]), du Sautoy gave a for-
mula for the zeta function of sl2(Zp) ([3]; see also [6]). In [12], Klopsch
computed the zeta function of sl1(∆p), where ∆p denotes the maximal
Zp-order in a central Qp-division algebra of index 2. No explicit formula
for the zeta function of any ‘semi-simple’ Zp-Lie algebra of dimension
greater than 3 is known (cf. [15, Problem 9(c) on p. 431]).

In [20], Voll introduced a method for computing zeta functions of Zp-
algebras in terms of certain p-adic integrals generalising Igusa’s local
zeta function. Given a polynomial f(x) ∈ Zp[x1, . . . , xn], Igusa’s local
zeta function associated to f is defined as the p-adic integral

Zf(s) =

∫

Zn
p

|f(x)|spdµ.

Here | |p denotes the p-adic absolute value, s is a complex variable and
dµ stands for the normalised additive Haar measure on Zn

p . Igusa’s local
zeta function is closely connected to the Poincaré series enumerating
the numbers of solutions of the congruences f(x) ≡ 0 mod (pm) for
m ∈ N (see Section 2 for further details and references).

The purpose of the current paper is to demonstrate that this point
of view may be used to unify and generalise the existing computa-
tions of zeta functions of 3-dimensional Zp-Lie algebras. These specific
calculations draw on a variety of methods: they range from elemen-
tary counting arguments for the Heisenberg Lie algebra in [8] over a
carefully chosen resolution of singularities for a high-dimensional hy-
persurface in [6] to a structural analysis of a division algebra in [12].
Our main result generalises these results and subsumes them under a
unified description in terms of a rather tame p-adic integral: Igusa’s
local zeta function of a ternary quadratic form, naturally associated to
a 3-dimensional Zp-Lie algebra. To formulate our result we recall that
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the zeta function of the abelian 3-dimensional Zp-Lie algebra is

ζZ3
p
(s) = ζp(s)ζp(s − 1)ζp(s − 2).

Here ζp(s) = (1− p−s)−1 denotes the p-th local Riemann zeta function.

Theorem 1.1. Let L be a 3-dimensional Zp-Lie algebra. Then there
is a ternary quadratic form f(x) ∈ Zp[x1, x2, x3], unique up to equiva-
lence, such that, for i ≥ 0,

ζpiL(s) = ζZ3
p
(s) − Zf (s − 2)ζp(2s − 2)ζp(s − 2)p(2−s)(i+1)(1 − p−1)−1,

where Zf(s) is Igusa’s local zeta function associated to f .

In the course of the proof of Theorem 1.1 we define f(x) in terms of
the structure constants of L with respect to a given Zp-basis; different
bases give rise to equivalent quadratic forms (see Section 3 for details).

The following table lists the ternary quadratic forms controlling the
subalgebra growth in several special cases mentioned above.

Lie algebra ternary quadratic form f(x)

Z3
p 0

h(Zp) x2
3

sl2(Zp) x2
3 + 4x1x2

sl1(∆p)

{

−2(x2
1 − 2(x2

2 − x2x3 + x2
3)) for p = 2

x2
3 − ρx2

2 − px2
1 (ρ a non-square mod p) for p odd

It is comparatively easy to compute Igusa’s local zeta functions as-
sociated to these forms. By Theorem 1.1 we immediately recover the
known formulae for the zeta functions of the Lie algebras in this table;
see Sections 4.1, 4.2 and 4.3. In Section 4.4 we use Theorem 1.1 to treat
the soluble case, which has not been previously studied. We give a com-
plete list of the binary quadratic forms for the soluble 3-dimensional
Zp-Lie algebras (for odd p) and derive formulae for Igusa’s local zeta
functions associated to these quadratic forms. This leads to formu-
lae for the zeta functions of all these Lie algebras. Our computations
show, in particular, that many among the soluble Zp-Lie algebras are
isospectral (i.e. non-isomorphic but sharing the same zeta function).

As an immediate corollary to Theorem 1.1 we gain control over the
real parts of the poles of zeta functions of 3-dimensional Zp-Lie alge-
bras. Indeed, it is easy to see that the only candidate poles of Igusa’s
local zeta function of a ternary quadratic form have real part −3/2,
−1 and −1/2 (see Lemma 2.2). Thus we obtain
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Corollary 1.2. If s is a pole of ζpiL(s), then Re(s) ∈ {0, 1/2, 1, 3/2, 2}.

To determine the poles of zeta functions of Zp-(Lie) algebras in general
is a difficult and almost entirely unsolved problem. Of particular im-
portance is the largest actually occurring real pole, as its position and
order determine the asymptotics of the subalgebra growth of L. Our
analysis allows us to solve this problem for the soluble Zp-Lie algebras
of dimension 3 (see Proposition 4.1 and Corollary 4.2).

We conclude the introduction with a number of remarks.

1. Though our results are formulated for Lie algebras, our arguments
only draw on the fact that a Lie algebra is antisymmetric; the Jacobi
identity is not being used anywhere.

2. In general, no simple identity is known which relates the zeta func-
tion of a d-dimensional Zp-algebra L with that of piL, i ∈ N0. In [3,
Theorem 2.1], du Sautoy gives such a formula for the special case d = 3;
our Theorem 1.1 provides inter alia an alternative proof of this formula,
without reference to Mann’s work on probabilistic zeta functions ([16]).

3. We point out that Theorem 1.1 is a ‘local result’, whereas the main
conclusions of the results in [20] are valid for almost all completions of
a ‘global object’ (such as a torsion-free nilpotent group or a torsion-
free ring). The main application of the approach developed in [20] is
to prove that, given a torsion-free ring L (not necessarily associative or
Lie), the associated local zeta function ζZp⊗ZL(s) satisfies a functional
equation for almost all primes p. The occurrence of functional equa-
tions for the zeta functions of some 3-dimensional Zp-Lie algebras is
therefore only explained by the results of [20] in case these algebras are
the ‘generic’ completions of an algebra over Z (such as, for example,
sl2(Zp) for odd p). This corresponds to the fact that the proof of a
functional equation for Igusa’s local zeta function given in [2] critically
depends on good reduction modulo p.

4. The case of 3-dimensional Lie algebras is the first non-trivial one as
far as subalgebra zeta functions are concerned. In dimensions 1 and 2 it
is not hard to see that the concepts of subalgebra and additive sublat-
tice coincide, so that the zeta functions coincide with the well-known
zeta functions for the abelian case. The work in [20] makes essen-
tial use of generalisations of Igusa’s local zeta functions to polynomial
mappings and several variables. It is remarkable that Theorem 1.1,
however, reduces the case of a 3-dimensional Lie algebra to the com-
putation of the classical Igusa integral associated of a single ternary
quadratic form. Things get radically more complicated in dimensions
greater than 3.
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5. Rather than counting all subalgebras of finite index in a ring L, one
may restrict attention to subalgebras with additional algebraic prop-
erties; among the variants of ζL(s) that have been considered are the
ideal zeta function ζ/

L(s), enumerating ideals of finite index, and the
zeta function ζb

L(s), counting subalgebras isomorphic to L. It would be
interesting to study these zeta functions of 3-dimensional Lie algebras
with the methods introduced in the present paper.

Organisation and notation. We prove our main result in Section 3.
In Section 2 we collect a few elementary observations about Igusa’s
local zeta function. The examples given in the above table are studied
in detail in Section 4, where we derive the known formulae for their
zeta functions using Theorem 1.1. In this section we also list the binary
quadratic forms associated to 3-dimensional soluble Zp-algebras (p ≥ 3)
and compute their zeta functions.

Throughout this paper we denote by N the set of positive integers
and by N0 the set of non-negative integers. Given a prime p, we denote
by Zp the ring of p-adic integers and by Qp the field of p-adic numbers.
We write vp for the p-adic valuation, and | |p for the p-adic absolute
value.

2. Preliminaries on Igusa’s local zeta function

For general background on the theory of Igusa’s local zeta function
we refer the reader to [1, 10]. Let f(x) ∈ Zp[x1, . . . , xn]. The well-
known connection between Igusa’s local zeta function Zf(s) and the
Poincaré series enumerating the numbers of solutions of f(x) ≡ 0 mod-
ulo (pm) mentioned in the introduction is the following. For m ∈ N0,
set

Nm := |{x ∈ (Z/pmZ)n | f(x) = 0}|.

We write t = p−s and treat it as an independent variable. A simple
computation (cf. [1, Section 2.1]) shows that the Poincaré series

Pf(t) :=

∞
∑

m=0

Nm(p−nt)m

is related to Igusa’s local zeta function by the formula

(1) Pf (t) =
1 − tZf (s)

1 − t
.

Whilst the Poincaré series Pf(t) counts solutions of polynomial equa-
tions in affine space we shall see in Section 3 below that counting subal-
gebras is related to counting solutions of polynomial equations in finite
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projective spaces. To this end we define now, for m ∈ N0, the affine
cones

W := Zn
p \ pZn

p ,

W (m) := (W + (pmZp)
n)/(pmZp)

n

and set
N?

m := |{x ∈ W (m) | f(x) = 0}|.

We will utilise a formula for

(2) P ?
f (t) :=

∞
∑

m=0

N?
m(p−nt)m,

analogous to (1) in the special case that f is homogeneous. If f is
homogeneous of degree d, say, we have (cf. [2, (1) on p. 1141])

(3) Zf(s) =
1

1 − p−n−ds
Z?

f (s),

where

Z?
f (s) =

∫

W

|f(x)|spdµ.

Lemma 2.1. If f is homogeneous, then

(4) P ?
f (t) =

1 − p−nt − tZ?
f (s)

1 − t
.

Proof. For m ∈ N0, set µ?
m := µ({x ∈ W | vp(f(x)) = m}). We claim

that

(5) µ?
m =

N?
m

pnm
−

N?
m+1

pn(m+1)
− δm,0 p−n,

where δm,0 denotes the Kronecker-delta. Indeed, for m ∈ N0 we may
write

µ?
m = µ({x ∈ W | vp(f(x)) ≥ m}) − µ({x ∈ W | vp(f(x)) ≥ m + 1}).

We have

µ({x ∈ W | vp(f(x)) ≥ m}) =

{

N?
m/pnm if m ≥ 1,

µ(W ) = 1 − p−n if m = 0.

Using (5) we obtain

Z?
f (s) =

∞
∑

m=0

µ?
mp−ms =

∞
∑

m=0

(

N?
m

pnm
−

N?
m+1

pn(m+1)

)

p−ms − p−n(6)

= P ?
f (t) −

1

t

(

P ?
f (t) − 1

)

− p−n.

The lemma follows. �
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To describe the position of the poles of Igusa’s local zeta function is
in general a difficult and interesting problem. In the current paper we
shall only work with Igusa’s local zeta function associated to ternary
quadratic forms. This case is well-understood:

Lemma 2.2. Let f(x) ∈ Zp[x1, x2, x3] be a ternary quadratic form. If
s is a pole of Zf(s), then Re(s) ∈ {−3/2,−1,−1/2}.

Proof. A ternary quadratic form defines a cone in affine 3-space over
a (possibly anisotropic) conic. A resolution of singularities is achieved
by blowing up the origin, yielding an exceptional divisor with numer-
ical data (ν, N) = (3, 2). The divisors of the proper transform have
numerical data (1, 1) unless the conic is a double line, in which case
the numerical data is (1, 2). The real parts of the poles are to be found
among the fractions −ν/N (cf. [1, 9] for details). �

We thank Wim Veys for pointing this out to us.

3. Proof of the main result

In this section we prove Theorem 1.1. Let L be a 3-dimensional Zp-
Lie algebra. To compute the zeta function of L it is helpful to make
the following observations: the homothety class [Λ] of any Zp-lattice
Λ in the Qp-vector space Qp ⊗Zp

L contains a unique (⊆-) maximal
subalgebra Λ0 of L, and the subalgebras contained in the class [Λ] are
exactly the multiples piΛ0, i ∈ N0. Thus

ζL(s) =
1

1 − p−3s
A(s), where A(s) :=

∑

[Λ]

|L : Λ0|
−s.

For the computation of A(s) it is useful to sort the lattice classes [Λ]
by their elementary divisor type with respect to the class [L], and to
take advantage of the transitive action of the group Γ := GL3(Zp) on
the classes of any fixed elementary divisor type.

Write L = Zpe1 ⊕ Zpe2 ⊕ Zpe3. A sublattice Λ ⊆ L corresponds to
a right-coset ΓM , where M ∈ GL3(Qp) ∩ Mat3(Zp), the set of 3 × 3-
matrices over Zp with non-zero determinant: the lattice is generated by
vectors whose coordinates with respect to the chosen basis (e1, e2, e3)
are encoded in the rows of M . By the elementary divisor theorem
the right-coset ΓM contains a representative of the form Dα−1, where
α ∈ Γ and D = diag(D1, D2, D3) = pr0diag(pr1+r2, pr2, 1) is a diagonal
matrix with ri ∈ N0 for i ∈ {0, 1, 2}. We say that the homothety class



8 BENJAMIN KLOPSCH AND CHRISTOPHER VOLL

[Λ] is of type1 r = (r1, r2) ∈ N2
0 if the diagonal matrix D determined by

Λ is a scalar multiple of diag(pr1+r2 , pr2, 1). Below we shall make a case
distinction with respect to the invariant I([Λ]) = {i ∈ {1, 2}| ri 6= 0}.

The matrix α is determined only up to right-multiplication by an
element of Γ

r
:= StabΓ(ΓD), the stabiliser in Γ of the right-coset ΓD

under right-multiplication. The various stabilisers will be described in
detail below. A lattice class [Λ] is thus given by the pair r ∈ N2

0 and a
left-coset αΓ

r
∈ Γ/Γ

r
.

This parametrisation allows us to give a convenient description of the
index |L : Λ0| of the maximal subalgebra Λ0 in the homothety class [Λ].
In order to decide whether a lattice Λ is a subalgebra it suffices to check
whether the products of pairs of a given set of generators are contained
in Λ. This is particularly easy to verify if the right-coset ΓM contains
a diagonal matrix; in this case the condition of being a subalgebra
translates into a set of divisibility conditions on quadratic polynomials
in the entries of M . In general, however, the coset ΓM may not contain
any diagonal element. In this case a base change – effectuated by right-
multiplication with an element in the left-coset αΓ

r
– brings us into this

desirable situation. (Note that this approach differs distinctly from the
point of view taken e.g. in [4], where all calculations are performed with
respect to a fixed basis.) More precisely, as indicated in [20, Section
3], a lattice Λ corresponding to a right-coset ΓDα−1 is a subalgebra of
L if and only if the following congruences hold:

(SUB) ∀i ∈ {1, 2, 3} : Dα−1R(α[i])(α−1)tD ≡ 0 mod Di.

By α[i] we denote the i-th column of α ∈ Γ, and (α−1)t is the transpose
of α−1. The antisymmetric 3 × 3-matrix of Zp-linear forms

R(y) := (Lij(y)) ∈ Mat3(Zp[y]),

where Lij(y) := λ1
ijy1 + λ2

ijy2 + λ3
ijy3, encodes the structure constants

λk
ij of the algebra L with respect to the given Zp-basis (e1, e2, e3).
Our opening remarks now amount to observing that condition (SUB)

is satisfied for all values of r0 greater than or equal to the minimal value
of r0 with this property. The task of determining the summand |L :
Λ0|

−s of A(s) thus reduces to the problem of calculating this minimal
value. For each subset I ⊆ {1, 2}, we set

AI(s) :=
∑

I([Λ])=I

|L : Λ0|
−s,

1Note that this terminology differs slightly from the one used in [20], where the
shape of diagonal matrix D is encoded in a subset I ⊆ [n− 1] and a positive vector
(ri) ∈ N|I|.



ZETA FUNCTIONS OF 3-DIMENSIONAL p-ADIC LIE ALGEBRAS 9

so that

A(s) =
∑

I⊆{1,2}

AI(s).

Our aim is to compute the Dirichlet series AI(s) by investigating the
condition (SUB) in each of the four cases.

Case I = ∅. Clearly in this case the condition (SUB) is trivially
satisfied for all r0 ∈ N0. As there is a unique homothety class of type
r = (0, 0), we obtain A∅(s) = 1.

Case I = {1}. In this case D = pr0diag(pr1, 1, 1), r1 ∈ N. We have

Γ(r1,0) =





Z∗
p Zp Zp

pr1Zp

pr1Zp

GL2(Zp)



 .

Lattice classes of type r = (r1, 0) may thus be identified with the (p−2+
p−1 +1)p2r1 points of the finite projective space P2(Z/pr1Z) ∼= Γ/Γ(r1,0)

by taking the first column of a matrix modulo units in Zp/(pr1Zp).
Only the first of the three conditions in (SUB) is non-trivial:

Dα−1R(α[1])(α−1)tD ≡ 0 mod pr0+r1.

Since the matrix R is antisymmetric, we only need to check a single
entry of the matrix on the left hand side. Cancelling a factor pr0 we
obtain that (SUB) holds if and only if

pr0

(

α−1R(α[1])(α−1)t
)

23
≡ 0 mod pr1 .

Lemma 3.1. For R(y) = (Lij(y)) and α = (αij) we have

det(α)(α−1R(α[1])(α−1)t)23 = L23(α[1])α11−L13(α[1])α21+L12(α[1])α31.

Proof. Set α−1 = β = (βij). Note that α = det(α)β\, where β\ denotes
the adjoint matrix of β. It is now easy to verify that

(α−1R(α[1])(α−1)t)23 = L23(α[1])(β22β33 − β23β32)−

L13(α[1])(−β21β33 + β23β31) + L12(α[1])(β21β32 − β22β31)

= (L23(α[1])α11 − L13(α[1])α21 + L12(α[1])α31) / det(α)

as required. �

We remark that this is a very special situation: for a quadratic poly-
nomial in the βij to be a linear polynomial in the entries of the matrix
α ∈ GLd(Zp) it is necessary that d = 3.
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As det(α) is a p-adic unit, the lemma shows that in the present case
it suffices to control the values taken by the p-adic valuation of the
single ternary quadratic form

(7) f(x) := L23(x)x1 − L13(x)x2 + L12(x)x3.

More precisely,

(SUB) ⇔ r0 ≥ r1 − vp(f(α[1])).

Therefore

(8) A{1}(s) =

∞
∑

r1=1

∞
∑

m=0

Nr1,m

(

p−s
)r1+3(r1−m)

,

with

Nr1,m := |{x = (x1 : x2 : x3) ∈ P2(Z/pr1Z) | min{r1, vp(f(x))} = m}|.

Note that Nr1,m = 0 unless 0 ≤ m ≤ r1. We shall compute A{1}(s) in
terms of Zf(s) in (11) below.

Remark. It is clear that f depends on the structure constants λk
ij of L

with respect to the chosen Zp-basis (e1, e2, e3). In fact, if

A :=





λ1
23 λ1

31 λ1
12

λ2
23 λ2

31 λ2
12

λ3
23 λ3

31 λ3
12





then f(x) = xAxt. If we change the basis (e1, e2, e3) to a basis (e′1, e
′
2, e

′
3),

where e′i =
∑3

i=1 pijej for a matrix P = (pij) ∈ Γ, the quadratic form
f is transformed into f ′(x) = xA′xt, where A′ = (det P )P−1A(P−1)t

(cf. [17]). We call ternary quadratic forms f and f ′ equivalent if they
are related in this way.

Case I = {2}. This case is much simpler than the previous one. Note
that D = pr0diag(pr2 , pr2, 1), r2 ∈ N. We have

Γ(0,r2) =





GL2(Zp)
Zp

Zp

pr2Zp pr2Zp Z∗
p



 .

Lattice classes of type r = (0, r2) may thus be identified with the
(p−2+p−1 +1)p2r2 points of the finite Grassmannian G(2, 3)(Z/pr2Z) ∼=
Γ/Γ(0,r2), determined by the first two columns of a matrix modulo pr2.
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One checks immediately that the subalgebra condition (SUB) is satis-
fied for all r0 ∈ N0. Thus

A{2}(s) =

∞
∑

r2=1

(p−2 + p−1 + 1)
(

p2−2s
)r2 = (p−2 + p−1 + 1)

p2−2s

1 − p2−2s
.

Case I = {1, 2}. We shall see that this case reduces to the case I = {1}.

We have D = pr0diag(pr1+r2 , pr2, 1), where r1, r2 ∈ N. Therefore

Γ(r1,r2) =





Z∗
p Zp Zp

pr1Zp Z∗
p Zp

pr1+r2Zp pr2Zp Z∗
p



 .

One verifies without difficulty that, as in the case I = {1},

(SUB) ⇔ r0 ≥ r1 − vp(f(α[1])).

In other words, if the lattice class [Λ] is of type r = (r1, r2) ∈ N2

and given by the left-coset αΓ
r
, the subalgebra condition (SUB) only

depends on the left-coset αΓ(r1,0). Evidently each fibre of the natural
projection

Γ/Γ
r
� Γ/Γ(r1,0)

has cardinality (p−1 + 1)p2r2. The computation of A{1,2}(s) reduces
therefore to the computation of A{1}(s). Indeed,

A{1,2}(s) =

∞
∑

r2=1

(p−1 + 1)
(

p2−2s
)r2

∞
∑

r1=1

∞
∑

m=0

Nr1,m

(

p−s
)r1+3(r1−m)

= (p−1 + 1)
p2−2s

1 − p2−2s
A{1}(s).

We now develop a formula for the Dirichlet series A{1}(s) in terms
of Igusa’s local zeta function Zf (s) associated to the ternary quadratic
form f given in (7). Writing r for r1 we express the numbers Nr,m in
our description (8) of A{1}(s) in terms of the integers N ?

m, defined in
Section 2. First we rephrase the Nr,m – counting solutions of equations
in finite projective spaces – in terms of the numbers of solutions in
corresponding affine cones. We set

(9) N?
r,m := |{x ∈ W (r) | min{r, vp(f(x))} = m}|,

observe that Nr,m(1 − p−1)pr = N?
r,m and that

N?
r,m =

{

µ?
mpnr if m < r,

N?
r if m = r.

(10)

As n = 3 in our specific situation, this allows us to write
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A{1}(s) =

∞
∑

r=1

r
∑

m=0

N?
r,m

(1 − p−1)pr
(p−s)4r−3m

=
1

1 − p−1

(

∞
∑

r=1

r−1
∑

m=0

µ?
mp2r(p−s)4r−3m +

∞
∑

r=1

p−rN?
r (p−s)r

)

=
1

1 − p−1

(

∞
∑

m=0

(

N?
m

p3m
−

N?
m+1

p3(m+1)

)

t−3m

∞
∑

r=m+1

(p2t4)r

−p−3
∞
∑

r=1

(p2t4)r + P ?(p2t) − 1

)

=
1

1 − p−1

(

(

Z?(s − 2) + p−3
) p2t4

1 − p2t4
−

p−1t4

1 − p2t4

+P ?(p2t) − 1
)

.

Here we used the identities (9), (10), (5), (2) and (6) and wrote t = p−s.
Using equation (4) (in which we replace t by p2t, i.e. s by s − 2), we
obtain

(11) A{1}(s) =
1 − p−3

1 − p−1

(

p2t

1 − p2t
−

Z?
f (s − 2)p2t(1 − t3)

(1 − p−3)(1 − p2t4)(1 − p2t)

)

.

Notice that Z?
f (s − 2) = 0 if L is abelian. Using the identity (3) and

the observation that

A{1}(s) + A{1,2}(s) = A{1}(s)

(

1 + (p−1 + 1)
p2t2

1 − p2t2

)

= A{1}(s)
1 + pt2

1 − p2t2

it is now immediate that

ζL(s) =
1

1 − t3

∑

I⊆{1,2}

AI(s) = ζZ3
p
(s) −

Zf(s − 2)p2t

(1 − p2t2)(1 − p2t)(1 − p−1)
.

This proves Theorem 1.1 for i = 0. But passing from L to piL amounts
to replacing f by pif . It is clear, however, that Zpif (s) = tiZf(s), so
that Zpif(s − 2) = (p2t)iZf(s − 2). The result follows.

4. Explicit computations

In this section we show how Theorem 1.1 gives rise to simple com-
putations of the zeta functions of 3-dimensional Zp-Lie algebras. We
shall tacitly assume the notation from Section 2.
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4.1. The Heisenberg Lie algebra h(Zp). The (local) Heisenberg Lie
algebra has a presentation

h(Zp) = Zpe1 ⊕ Zpe2 ⊕ Zpe3,

where [e1, e2] = e3 is the only non-zero relation. We thus have

R(y) =





y3

−y3



 .

The ternary quadratic form equals f(x) = x2
3. It is well-known that

Igusa’s local zeta function associated to f equals

Zf(s) =

∫

Zp

|x2|spdx =
1 − p−1

1 − p−1−2s
.

Using Theorem 1.1 it is now easy to confirm the formula for the local
Heisenberg Lie algebra (cf. [8]):

ζh(Zp)(s) = ζZ3
p
(s) −

p2t

(1 − p2t2)(1 − p2t)(1 − p3t)

= ζp(s)ζp(s − 1)ζp(2s − 3)ζp(2s − 2)ζp(3s − 3)−1.

4.2. The ‘simple’ Lie algebra sl2(Zp). The Lie algebra sl2(Zp) has
a presentation

sl2(Zp) = Zpe1 ⊕ Zpe2 ⊕ Zpe3,

where

[e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2.

We obtain

R(y) =





y3 −2y1

−y3 2y2

2y1 −2y2



 .

The relevant ternary quadratic form is thus f(x) = x2
3 + 4x1x2. Note

that, for p > 2, f defines a smooth conic in projective 2-space which
has p + 1 points over Fp and good reduction modulo p. It follows
from Denef’s formula for Igusa’s local zeta function in this case (cf.,
for instance, [2, (6) on p. 1146]) that

(12) Zf(s − 2) =
(1 − p−1)(1 − p−1t)

(1 − pt2)(1 − pt)
.
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We obtain from Theorem 1.1 the known formula

ζsl2(Zp)(s) = ζZ3
p
(s) −

(1 − p−1t)p2t

(1 − pt)(1 − p2t)(1 − pt2)(1 − p2t2)

= ζp(s)ζp(s − 1)ζp(2s − 1)ζp(2s − 2)ζp(3s − 1)−1

and, more generally, the formulae for ζpisl2(Zp)(s) computed in [3, The-
orem 3.1].

The case p = 2 is nearly as simple. We shall in fact derive a formula
for Zf (s−2), f(x) = x2

3 +p2x1x2, valid for all primes p, in terms of the

function Zf̃(s − 2), where f̃(x) = x2
3 + x1x2. As 4 is a p-adic unit for

odd p, the right hand side of (12) yields a formula for Zf̃(s − 2), valid

for all primes. To compute Zf (s) we define W3 := {x ∈ Z3
p | x3 ∈ Z∗

p}
and write

Zf(s) =

∫

W3

|f(x)|spdµ +

∫

Z3
p\W3

|f(x)|spdµ.

The first summand equals µ(W3) = 1 − p−1. To compute the second
summand, we perform a change of variable x3 = px′

3, say, effectuating
a change of measure dµ = |p|pdµ′. Thus

∫

Z3
p\W3

|f(x)|spdµ =

∫

Z3
p

|p2f̃(x1, x2, x
′
3)|

s
p |p|pdµ′ = p−1−2sZf̃(s).

Combining these pieces of information we obtain, for p = 2,

Zf(s − 2) = 1 − 2−1 + 8 · 2−2sZf̃(s − 2).

Our Theorem 1.1 now confirms that, for p = 2,

ζsl2(Z2)(s) = ζZ
3

2
(s) −

(1 − 2 · 2−s + 6 · 2−2s)22−s

(1 − 21−s)(1 − 22−s)(1 − 21−2s)(1 − 22−2s)

= ζ2(s)ζ2(s − 1)ζ2(2s − 2)ζ2(2s − 1)(1 + 6 · 2−2s − 8 · 2−3s).

This formula was first given in [6, 21].

4.3. The ‘simple’ Lie algebra sl1(∆p). In [12], Klopsch computed
the zeta function of L = sl1(∆p), where ∆p is the maximal Zp-order in
a central Qp-division algebra of index 2. The Lie algebra L contains
elements i, j,k satisfying the relations

(13) [i, j] = k, [i,k] = ρj, [j,k] = −pi,

where ρ ∈ {1, 2, . . . , p − 1} is a non-square modulo p if p is odd and
ρ = −3 if p = 2.
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For p > 2, the triple (e1, e2, e3) = (i, j,k) forms a Zp-basis for L. We
obtain in this case

R(y) =





y3 ρy2

−y3 −py1

−ρy2 py1





and are thus led to study Igusa’s local zeta function associated to

f(x) = x2
3 − ρx2

2 − px2
1.

The easiest way to do this may be to compute the Poincaré series
P ?

f (t) (cf. (2)) and then to use the identities (4) and (3). In fact, the
series P ?

f (t) has only two non-zero summands: one easily computes
N?

0 = 1 and N?
1 = p − 1. There are, however, no solutions x in W of

f(x) ≡ 0 modulo (p2). Indeed such a solution would necessarily require
x2 ≡ x3 ≡ 0 modulo (p), forcing x1 ≡ 0 modulo (p). Thus N ?

m = 0 for
m ≥ 2. Lemma 2.1 yields

1 + (p − 1)p−3t = P ?
f (t) =

1 − p−3t − tZ?
f (s)

1 − t

and, using (3), we obtain

Zf(s − 2) =
(1 − p−1)(1 + p−1 + t)

1 − pt2
.

Thus

ζsl1(∆p)(s) = ζZ3
p
(s) −

(1 + p−1 + t)p2t

(1 − pt)(1 − pt2)(1 − p2t2)

= ζp(s)ζp(2s − 1)ζp(2s − 2).

For p = 2 the triple (e1, e2, e3), with

e1 = 2i, e2 = 2j, e3 = j + k,

forms a Zp-basis for L. Using (13) we derive the following commutator
relations:

[e1, e2] = −2e2 + 4e3, [e1, e3] = −4e2 + 2e3, [e2, e3] = −2e1.

This yields

R(y) =





−2y2 + 4y3 −4y2 + 2y3

2y2 − 4y3 −2y1

4y2 − 2y3 2y1





and thus
f(x) = −2(x2

1 − 2(x2
2 − x2x3 + x2

3)).
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We shall in fact derive a recursion formula for Zf(s), where

f(x) = p(x2
1 − pq(x2, x3))

and q is an arbitrary binary quadratic form which is anisotropic mod-
ulo p. This condition on q and p is certainly satisfied for the form
q(x2, x3) = x2

2 − x2x3 + x2
3 and the prime p = 2. The calculation

involves the zeta function Zf̃(s) associated to the form

f̃(x) = px2
1 − q(x2, x3)

and uses changes of variables similar to the one performed in Section 4.2
for p = 2. Setting W1 := {x ∈ Z3

p | x1 6≡ 0 mod (p)} and W2,3 := {x ∈
Z3

p | (x2, x3) 6≡ (0, 0) mod (p)} we obtain

t−1Zf(s) =

∫

W1

|p−1f(x)|spdµ +

∫

Z3
p\W1

|p−1f(x)|spdµ

= 1 − p−1 + p−1tZf̃ (s)

= 1 − p−1 + p−1t

(

1 − p−2 +

∫

Z3
p\W2,3

|f̃(x)|spdµ

)

= 1 − p−1 + p−1t
(

1 − p−2 + p−2−sZp−1f (s)
)

= 1 − p−1 + p−1t
(

1 − p−2 + p−2Zf(s)
)

.

From this we compute

Zf(s − 2) =
(1 − p−1)(1 + (p + 1)t)p2t

1 − pt2
,

and thus, setting p = 2,

ζsl1(∆2) = ζZ3

2
(s) −

(1 + 3 · 2−s)24−2s

(1 − 22−s)(1 − 21−2s)(1 − 22−2s)

= ζ2(s)ζ2(2s − 1)ζ2(2s − 2)(1 + 6 · 2−s + 6 · 2−2s − 12 · 2−3s),

confirming the results of [12, Theorem 1.1].

4.4. Soluble Lie algebras. In this section let p ≥ 3. The soluble
3-dimensional Zp-Lie algebras have been listed by González-Sánchez
and Klopsch in [14], using an analysis of conjugacy classes in SL2(Zp).
It suffices to consider the following maximal representatives of the re-
spective homothety classes listed below. All others are obtained by
multiplying one of the matrices of relations R(y) by a power of p; the
effect of this operation on the zeta function Zf(s) is easily controlled.
In the following we choose a notation similar to [14, §6]. The soluble
Lie algebras to be considered are the following.
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A. The abelian Lie algebra L0(∞).
B. The Heisenberg Lie algebra L0(0) = h(Zp).
C. The non-nilpotent Lie algebra L1(0). We obtain

R(y) =





−y2 −y3

y2

y3





and

f(x) = 0.

D. The non-nilpotent Lie algebras L2(0, r, d) with r ∈ N and d ∈ Zp.
We obtain

R(y) =





−y2 − prdy3 −pry2 − y3

y2 + prdy3

pry2 + y3





and

f(x) = pr(x2
2 − dx2

3).

E. The non-nilpotent Lie algebras L3(0, r, d) with r ∈ N0 and d ∈
Zp. We obtain

R(y) =





−dy3 −y2 − pry3

dy3

y2 + pry3





and

f(x) = x2
2 + prx2x3 − dx2

3.

F. The non-nilpotent Lie algebras L4(0, r) with r ∈ N0. We obtain

R(y) =





−pry3 −y2

pry3

y2





and

f(x) = x2
2 − prx2

3.

G. The non-nilpotent Lie algebras L5(0, r) with r ∈ N0. We obtain

R(y) =





−prρy3 −y2

prρy3

y2



 ,

where ρ ∈ Z∗
p is a non-square modulo p, and

f(x) = x2
2 − prρx2

3.
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The cases A to C have already been treated. Rather than calculate
the zeta function Zf (s) in each of the remaining cases, we note that,
after (possibly) dividing by a power of p, completing the square and a
coordinate change, this reduces to the computation of the zeta function
for the polynomial f(x2, x3) = x2

2 − dx2
3, d ∈ Zp. We distinguish two

cases. If d = pkρ, where ρ ∈ Z∗
p is a non-square modulo p, we define

Z�,k(s) := Zf(s). If d = pku2, where u ∈ Z∗
p, we set Z�,k(s) := Zf(s).

Both cases are easily computed using

Z�,0(s) =
1 − p−2

1 − p−2t2
, Z�,0(s) =

(

1 − p−1

1 − p−1t

)2

,

Z�,1(s) = Z�,1(s) =
1 − p−1

1 − p−1t

and the fact that both sequences satisfy the same simple recursion
equation of length two. Indeed, for ∗ = � or ∗ = �, we have, for
k ∈ N0,

Z∗,k+2(s) = p−1t2Z∗,k(s) + 1 − p−1.

An elementary calculation using these observations yields

Proposition 4.1. Let L be a soluble 3-dimensional Zp-Lie algebra as-
sociated to one of the families D to G. Then, for suitable k, ι ∈ N0 and
∗ = � or ∗ = �,

ζL(s) = ζZ3
p
(s) − Z∗,k(s − 2)ζp(2s − 2)ζp(s − 2)p(2−s)(ι+1)(1 − p−1)−1.

The abscissa of convergence α of ζL(s) equals 1 in all cases. If ∗ = �

and k is even then ζL(s) has a triple pole at s = 1. In all other cases
ζL(s) has a double pole at s = 1.

Corollary 4.2. Assume the setting of Proposition 4.1. For n ∈ N0

denote by σn the number of subalgebras of L of index at most pn. Then
there are constants c1, c2 ∈ R, depending on L, such that, for all n ∈ N0

c1p
nn2 ≤ σn ≤ c2p

nn2 if ∗ = � and k is even,

c1p
nn ≤ σn ≤ c2p

nn otherwise.
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