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COMBINATORICS OF VASSILIEV INVARIANTS

SERGEI CHMUTOV

Abstract. This paper is an introductory survey of the combinatorial aspects
of the Vassiliev theory of knot invariants following the lectures delivered at the
Advanced School on Knot Theory and its Applications to Physics and Biology
in the ICTP, Trieste (Italy), May 2009. The exposition is based on the forth-
coming book [CDM], where the reader may find further details, examples, and
developments.

1. Definition

Vassiliev knot invariants, also known as finite type invariants, were introduced
independently by Victor Vassiliev (Moscow) [Vas] and by Mikhail Goussarov (St.
Petersburg) [Gus] at the end of the 1980’s. The principal idea of the combinatorial
approach to the theory is to extend a knot invariant v to singular knots with
double points according to the following rule, which we will refer to as Vassiliev

skein relation:

(1) v( ) := v( )− v( ) .

The main definition is:

Definition 1.1. A knot invariant is said to be a Vassiliev invariant of order (or
degree) 6 n if its extension vanishes on all singular knots with more than n double
points.

Denote by Vn the set of Vassiliev invariants of order 6 n with values in the field
of complex numbers C. The definition implies that, for each n, the set Vn forms a
complex vector space. Moreover, Vn ⊆ Vn+1, so we have an increasing filtration

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn ⊆ · · · ⊆ V :=
∞⋃

n=0

Vn .

It will be shown that the spaces Vn have finite dimension, and that the quotients
Vn/Vn−1 admit a nice combinatorial description. The study of these spaces is the
main purpose of the combinatorial Vassiliev invariant theory. The exact dimension
of Vn is known only for n 6 12:

Key words and phrases. Vassiliev invariants, chord diagrams, weight systems, the Kontsevich
integral.
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2 SERGEI CHMUTOV

n 0 1 2 3 4 5 6 7 8 9 10 11 12

dimVn 1 1 2 3 6 10 19 33 60 104 184 316 548
dimVn/Vn−1 1 0 1 1 3 4 9 14 27 44 80 132 232

For higher values of n there are only asymptotic lower (O. Dasbach [Das]) and
upper (D. Zagier [Zag]) bounds

en/ loga n . dimVn/Vn−1 . n!/an

for any constant a < π2/6.
Along with well known invariants of finite order, there are classical invariants

which are not of finite order. Some of them belong to the closure of the Vassilev
invariants V̄ which can be defied as follows (S. Duzhin). The space V̄ consists of all
knot invariants which distinguish only the knots distinguishable by a finite order
invariant. In other words, v ∈ V̄ if and only if for any two knots K1 and K2 with
v(K1) 6= v(K2) there is a Vassiliev invariant vn (depending on K1 and K2) of finite
order 6 n which also distinguishes these knots, vn(K1) 6= vn(K2). Below are some
very important open problems of the theory:

• prove or disprove that any knot invariant belongs to the closure V̄ ,
• decide whether Vassiliev invariants detect the unknot,
• decide whether Vassiliev invariants detect orientation of knots.

2. Examples of Vassiliev invariants

2.1. The Conway polynomial. The Conway polynomial may be defined by the
skein relation and its normalization on the unknot:

∇( )−∇( ) = z∇( ) ; ∇( ) = 1 .

For a knot K the Conway polynomial is always even

∇(K) = 1 + c2(K)z2 + c4(K)z4 + . . . .

Its coefficients are Vassiliev invariants. Indeed, comparing its skein relation with
the Vassiliev one (1) we conclude that the Conway polynomial of a knot with a
singular point is divisible by z:

∇( ) = z∇( ) .

Consequently, the Conway polynomial of a knot with k > n double points is divis-
ible by zk. Thus its coefficient cn(K) at zn vanishes on singular knots with > n
double points. Therefore, it is a Vassiliev invariant of order 6 n.
Despite the fact that the coefficients are Vassiliev invariants, the degree of the

Conway polynomial is not of finite type. Nevertheless, it belongs to the closure V̄ .
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2.2. The Jones polynomial. The skein relation for the Jones polynomial with
the same initial condition for the unknot are

t−1J( )− tJ( ) = (t1/2 − t−1/2)J( ) ; J( ) = 1 .

Making a substitution t := eh and then taking the Taylor expansion into a formal
power series in h, we can represent the Jones polynomial of a knot K as a power
series

J(K) =
∞∑

n=0

jn(K)hn .

We claim that the coefficient jn(K) is a Vassiliev invariant of order 6 n. Indeed,
substituting t = eh into the skein relation gives

(1− h+ . . . ) · J( )− (1 + h+ . . . ) · J( ) = (h+ . . . ) · J( ) .

From which we get

J( )= J( )−J( )=h
(
j0( ) + j0( ) + j0( )

)
+ . . . .

This means that the value of the Jones polynomial on a knot with a single double
point is congruent to 0 modulo h. Therefore, the Jones polynomial of a singular
knot with k > n double points is divisible by hk, and thus its nth coefficient vanishes
on such a knot.

2.3. The HOMFLYPT polynomial. The skein relation for the HOMFLYPT
polynomial is

aP ( ) − a−1P ( ) = zP ( ) ; P ( ) = 1 .

Making a substitution a = eh and taking the Taylor expansion in h, we represent
P (K) as a Laurent polynomial in z and a power series in h, P (K) =

∑
pk,l(K) hkzl.

Similarly to the case of the Jones polynomial, one can show that pk,l(K) is a
Vassiliev invariant of order 6 k + l.

2.4. Quantum knot invariants. J. Birman and X.-S. Lin proved [BL] that all
quantum invariants produce Vassiliev invariants in the way similar to the previous
examples. Namely, making a substitution q = eh, one can show that the coefficient
of hn in the Taylor expansion of a quantum invariant is a Vassiliev invariant of
order 6 n. Thus all quantum invariants belong to the closure V̄ .
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3. Chord diagrams, symbols, and weight systems

Let v be a Vassiliev invariant of order 6 n. It turns out that a value of v on a
singular knot K with n double points does not depend on the specific knotedness
of K. It depends only on the combinatorial arrangement of double points along
the knot, which can be encoded by a chord diagram of K.

Definition 3.1. A chord diagram of order n (or degree n) is an oriented circle with
a distinguished set of n disjoint pairs of distinct points, considered up to orientation
preserving homeomorphisms of the circle.

This means that only the mutual combinatorial positions of the ends of chords
are important. Their precise geometrical locations on the circle are irrelevant. By
a chord diagram of a singular knot K we mean a circle parameterizing K with the
two preimages of each double point connected by a chord. Here are two examples:

, .

The value of v(K) on a knot K with n double points depends only on the chord
diagram of K. Indeed, let K1 and K2 be two singular knots with the same chord
diagrams. If we place K1, K2 in R

3 so that the corresponding double points (and
both branches of the knot in their vicinity) coincide,

K1 = K2 = ,

then we can deform the arcs of K1 into the corresponding arcs of K2 so that the
only singularities introduced or removed (one at a time) in the process are double
points. By the Vassiliev skein relation, in each of these events the value of v does
not change. So v(K1) = v(K2).

Definition 3.2. The symbol of v is a restriction of v to the set of knots with
precisely n double points, considered as a function on the set of chord diagrams.

It is obvious that if v1 and v2 are two Vassiliev invariants of order 6 n with the
same symbols, then their difference v1− v2 is an invariant of order 6 (n− 1). Thus
the space Vn/Vn−1 coincides with the space of all symbols of Vassiliev invariants of
order 6 n. The set of chord diagrams with n chords is finite. So the space of all
(C-valued) functions on this set, and hence Vn, is finite dimensional.

The symbol of an invariant is not an arbitrary function on chord diagrams; it
satisfies certain relations. The so called one-term relation (1T) is very easy to
see; the symbol of an invariant v always vanishes on a chord diagram with a short
isolated chord (not intersecting other chords)

symb(v)( ) = 0 .
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This follows from the fact that we can choose a singular knot representing such
a chord diagram as having a small kink parameterized by the arc between the
end-points of the isolated chord. Then the Vassiliev skein relation (1) gives

symb(v)( ) = v( ) = v( ) − v( ) = 0 ,

because the two knots on the right-hand side are isotopic. Another kind of relation
is called the four-term relation (4T):

symb(v)( ) − symb(v)( ) + symb(v)( ) − symb(v)( ) = 0 .

Here it is assumed that the diagrams in the pictures may have other chords with
end-points on the dotted arcs, while all the end-points of the chords on the solid
portions of the circle are explicitly shown. For example, this means that in the first
and second diagrams the two bottom end-points are adjacent. The chords omitted
from the pictures should be the same in all four cases. To prove this relation we
represent each chord diagram by a singular knot with a special fragment containing
two double points. Then, resolving one of them for every knot, we will get eight
terms which cancel out.

v( ) − v( ) + v( ) − v( )

= v( ) − v( ) + v( ) − v( )

− v( ) + v( ) − v( ) + v( )

= 0

Definition 3.3. A weight system of order n is a function on the set of chord
diagrams with n chords which satisfies one- and four-term relations.

It turns out that all other relations for symbols of Vassiliev invariants are conse-
quences of (1T) and (4T) relations. This is the content of a fundamental theorem
of M. Kontsevich.

Theorem 3.4 (M. Kontsevich [Kon]). Any weight system is a symbol of an appro-

priate Vassiliev invariant of order 6 n.

Together with the discussion above this theorem implies that the quotient space
Vn/Vn−1 is isomorphic to the space of all (C-valued) functions on the set of chord
diagram with n chords satisfying the relations (1T) and (4T).
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Let us introduce a C-vector space An as the space spanned by chord diagrams
modulo (1T) and (4T) relations:

(1T) = 0

(4T) − + − = 0 .

Then, Vn/Vn−1
∼= (An)

∗.

Examples 3.5. For n = 2, among the two possible chord diagrams, and ,

the first one is equal to zero by (1T). Thus A2 =
〈 〉

and has dimension 1.

For n = 3 there are five chord diagrams: , , , , . The first

three diagrams are equal to zero by (1T). There is also a (4T) relation involving
the last two

− + − = 0 ,

which gives = 2 . Thus A3 =
〈 〉

and also has dimension 1.

4. Symbols of knot polynomials

The Kontsevich theorem reduces the study of Vassiliev knots invariants to the
study of their symbols. Here we describe the symbols of coefficients of classical
knot polynomials as functions on chord diagrams.

4.1. The Conway polynomial. For a chord diagram D with n chords, double
every chord as shown

.

Let |D| be equal to the number of components of the obtained (possibly self-
intersecting) curve. Then

symb(cn)(D) =

{
1, if |D| = 1
0, otherwise .

Note that doubling of a chord changes the number of component by 1 (either adding
1, or subtracting 1). Therefore symb(cn) is automatically zero for odd n.
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4.2. The Jones polynomial. For a chord diagram D with n chords, a state s is
an arbitrary function on the set chords of D with values in the set {1, 2}. With
each state s we associate an immersed plane curve obtained from D by resolving
(either doubling or deleting) all its chords according to s:

c , if s(c) = 1; c , if s(c) = 2.

Let |s| denote the number of components of the curve obtained in this way. Then

symb(jn)(D) =
∑

s

(∏

c

s(c)
)
(−2)|s|−1 ,

where the product is taken over all n chords of D, and the sum is taken over all 2n

states for D.
For example, to compute the value of the symbol of j3 on the chord diagram

, we must consider 8 states:

∏
s(c)=1

|s|=2

∏
s(c)=2

|s|=1

∏
s(c)=2

|s|=1

∏
s(c)=2

|s|=3

∏
s(c)=4

|s|=2

∏
s(c)=4

|s|=2

∏
s(c)=4

|s|=2

∏
s(c)=8

|s|=1

Therefore,

symb(j3)
( )

= −2 + 2 + 2 + 2(−2)2 + 4(−2) + 4(−2) + 4(−2) + 8 = −6 .

Similarly one can compute the values of symb(j3) on all chord diagrams with
three chords. Here is the result:

D

symb(j3)(D) 0 0 0 −6 −12

4.3. The HOMFLYPT polynomial. In this case, for a chord diagram D with
k+ l chords, a state s will be a subset of chords of D. As above, we use the notation
|s| for the number of curves obtained by doubling all chords in s. Denote by ||s||
the number of chords of s. A state s is called admissible for pk,l if ||s|| − |s|+1 = l.
Then

symb(pk,l)(D) = (−1)k+l2k
∑

s
admissible

(−1)||s|| .
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For example, if we would like to evaluate symb(p1,2) on the chord diagram ,
then out of the 8 states above only the first 3 are admissible:

||s||=3, |s|=2 ||s||=2, |s|=1 ||s||=2, |s|=1

Therefore,

symb(p1,2)
( )

= −2 .

In fact, j3 = 3p1,2.

5. Bialgebra of chord diagrams

Before explaining the idea of a proof of the Kontsevich theorem we need some
algebraic structure on the vector spaces An.
The vector space A :=

⊕
n>0

An has a natural algebra structure.

Definition 5.1. The product of two chord diagrams D1 and D2 is defined to be
their connected sum:

× := = .

Though the connected sum itself depends on the places where the two diagrams
are joined, modulo (4T), the result does not depend on them. Extended by linearity,
this product endows A with the structure of graded commutative algebra with a

unit ι : C → A, ι(1) := ∈ A0 represented by a chord diagram without chords.

For a proof of this fact we refer to [BN, CDM].

Definition 5.2. The coproduct δ : An →
⊕

k+l=nAk ⊗ Al is defined on chord
diagrams by the sum of all ways to split the set of chords into two disjoint parts.
Namely, for D ∈ An we set

δ(D) :=
∑

J⊆[D]

DJ ⊗DJ ,

the summation taken over all subsets J of the set of chords of D. Here DJ is
the diagram consisting of the chords that belong to J , and J = [D] \ J is the
complementary subset of chords. The operator δ is extended by linearity to the
entire space A.
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Here is an example:

δ
( )

= ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ .

This operation endowsA with a structure of a cocommutative coalgebra with counit

ε : A → C, ε
(
x + . . . “higher order terms”’ . . .

)
:= x . The cocommutativity

here means that the image of δ belongs to the symmetric tensor subalgebra of the
tensor square A⊗2.
The operations of multiplication and comultiplication together turn A to be

a bialgebra. For bialgebras, the primitive space P plays an important role. By
definition, P(A) is the space of elements D ∈ A with the property δ(D) = 1⊗D+
D ⊗ 1. It is also a graded vector space P(A) =

⊕
n>1

Pn. For example, both basic

diagrams in degree 2 and 3, and are primitive, however in degree 4 there

is a non primitive element , which is the square of the primitive element of

degree 2. A basis for P4 consists of two elements − and − 2 .

A graded commutative, cocommutative bialgebra A with a unit, counit, and one-
dimensional zero-degree space A0 may be turned into a Hopf algebra by defining the
antipode S : A → A to be an antiautomorphism acting by multiplication by (−1)
on the primitive space. For such Hopf algebras A, the classical Milnor—Moore
[MiMo] theorem states that A is isomorphic to the symmetric tensor algebra of the
primitive space:

A ∼= S(P(A)) .

This means that if we choose a basis p1, p2, . . . for the primitive space P(A) then any
element of A can be uniquely represented as a polynomial in commuting variables
p1, p2, . . . . Theoretically this implies that for the purposes of combinatorics of
Vassiliev invariants it is enough to study the primitive spaces Pn only. In particular,
here is the table of dimensions of these spaces up to n 6 12 calculated by J. Kneissler
[Kn]:

n 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 0 1 1 2 3 5 8 12 18 27 39 55

The table of dimensions dim(Vn/Vn−1) = dimAn on page 2 can be derived from
this table.



10 SERGEI CHMUTOV

6. The Kontsevich integral

Roughly speaking, an idea of the proof of the Kontsevich theorem is to construct
an element Z(K) ∈ A of the algebra of chord diagram for every knot K. Having a
weight system w we can apply it to Z(K) and prove that w(Z(K)) is a Vassiliev
invariant whose symbol is w. However, when we try to realize this idea, several
complications occur.

The first one is that Z(K) is going to be an element of the graded completion Â
of the algebra A, or in other words, it is going to be an infinite sum of elements
of An for all values of n, like a formal power series. The second one is that Z(K)
is not quite an invariant of knots. We will have to correct it before applying the
weight system to it.

6.1. The construction. Let z ∈ C and t ∈ R be coordinates (z, t) in R
3. The

planes t = const are thought of being horizontal. We define the Kontsevich integral
for strict Morse knots, i.e. knots with the property that the coordinate t restricted
to the knot has only non-degenerate critical points with distinct critical values.

Definition 6.1. The Kontsevich integral Z(K) of a strict Morse knot K is given
by the following formula

Z(K) :=
∞∑

m=0

1

(2πi)m

∫

tmin<t1<···<tm<tmax
tj are noncritical

∑

P={(zj ,z′j)}

(−1)↓PDP

m∧

j=1

dzj − dz′j
zj − z′j

,

where

• the numbers tmin and tmax are the minimum and the maximum of the func-
tion t on K;

• the integration domain is the set of all points of the m-dimensional simplex
tmin < t1 < · · · < tm < tmax none of whose coordinates ti is a critical value
of t; the m-simplex is divided by the critical values into several connected
components;

• the number of summands in the integrand is constant in each connected
component of the integration domain, but can be different for different
components; in each plane {t = tj} ⊂ R

3 choose an unordered pair of dis-
tinct points (zj, tj) and (z′j, tj) on K, so that zj(tj) and z′j(tj) are continuous
functions; we denote by P = {(zj, z

′
j)} the set of such pairs for j = 1, . . . ,m

and call it a pairing; the integrand is the sum over all choices of the pairing
P ;

• for a pairing P , the symbol ‘↓P ’ denotes the number of points (zj, tj) or
(z′j, tj) in P where the coordinate t decreases as one goes along K;

• for a pairing P , consider the knot K as an oriented circle and connect the
points (zj, tj) and (z′j, tj) by a chord; we obtain a chord diagram with m
chords (thus, intuitively, one can think of a pairing as a way of inscribing a
chord diagram into a knot in such a way that all chords are horizontal and
are placed on different levels);
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• over each connected component, zj and z′j are smooth functions in tj; by
m∧

j=1

dzj − dz′j
zj − z′j

we mean the pullback of this form to the integration domain

of the variables t1, . . . , tm; the integration domain is considered with the
orientation of the space Rm defined by the natural order of the coordinates
t1, . . . , tm;

• by convention, the term in the Kontsevich integral corresponding to m = 0
is the (only) chord diagram of order 0 taken with coefficient one; it is the

unit of the algebra Â.

Example 6.2. We exemplify the integration domain for a strict Morse knot with
two local maxima and two local minima for the case of m = 2 chords.

t

tmax

tc2

tc1

tmin

z

t2

tmax

tc2

tc1

tmin

t1
tmaxtc2tc1tmin

For each connected component of the integration domain, the number of summands
corresponding to different choices of the pairing, a typical pairing P , and the cor-
responding chord diagram (−1)↓PDP are shown in the picture.

36 summands

(−1)
2

1 summand

(−1)

6 summands

1

(−1)
2

1 summand

(−1)
2

6 summands

(−1)
2

1 summand

(−1)
1
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Now let us calculate the coefficient of the chord diagram in Z
( )

.

Out of the 51 pairings, the following 16 contribute to the coefficient:

All of them appear on the middle triangular component, tc1 < t1 < t2 < tc1 of
the integration domain. To handle the integral which appears as the coefficient at

, we denote the z-coordinates of the four points in the pairings on the level

{t = t1} by a1, a2, a3, a4. Correspondingly, we denote the z-coordinates of the four
points in the pairings on the level {t = t2} by b1, b2, b3, b4:

t

2

3 4

c2

c
3

2

4

t

11

1 2

t
1

b

a aaa

b

z

bb

Then each of the four possible pairings z1 − z′1 on the level {t = t1} will look like
ajk := ak − aj for (jk) ∈ A := {(12), (13), (24), (34)}. Similarly, each of the four
possible pairings z2 − z′2 on the level {t = t2} will look like blm := bm − bl for
(lm) ∈ B := {(13), (23), (14), (24)}. The integral we are interested in now can be
written as

1

(2πi)2

∫

∆

∑

(jk)∈A

∑

(lm)∈B

(−1)j+k+l+md ln ajk ∧ d ln blm

= −
1

4π2

∫

∆

(
∑

(jk)∈A

(−1)j+k+1d ln ajk

)
∧

(
∑

(lm)∈B

(−1)l+m−1d ln blm

)

= −
1

4π2

∫

∆

d ln
a12a34
a13a24

∧ d ln
b14b23
b13b24

.

The change of variables

u :=
a12a34
a13a24

, v :=
b14b23
b13b24
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transforms the component ∆ of the integration domain into the standard triangle
∆′

11 c2

c1

c2

t

t2

1

1

v

u
0c

Since it changes the orientation of the triangle (has a negative Jacobian), our
integral becomes

1

4π2

∫

∆′

d ln u ∧ d ln v =
1

4π2

1∫

0

( 1∫

1−u

d ln v

)
du

u

= −
1

4π2

1∫

0

ln(1− u)
du

u
=

1

4π2

∞∑

k=1

1∫

0

uk

k

du

u

=
1

4π2

∞∑

k=1

1

k2
=

ζ(2)

4π2
=

1

24
.

Therefore,

Z
( )

= 1 +
1

24
+ . . . ,

where the free term 1 stands for the unit in the algebra A of chord diagrams,

1 = ∈ A.

The following terms of this integral are of degree 4:

Z
( )

= 1 +
1

24
+

1

5760
−

1

1152
+

1

720
+ . . . .

The problem of the exact calculation of all the terms of this integral remained
opened for a long time. Finally it was solved in [BLT]; see also the explanation
of this work in [CDM]. However even the formulation of the results requires a
different language for representing elements of A. The coefficients in this integral
are related to the Bernoulli numbers.

6.2. The universal Vassiliev invariant. Here we deal with the second compli-
cation in the proof of the Kontsevich theorem. The Kontsevich integral possesses
several basic properties:

• Z(K) converges for any strict Morse knot K.
• It is invariant under the deformations of the knot in the class of Morse knots
with the same number of critical points.
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• It behaves in a predictable way under the deformations that add a pair of
new critical points to a Morse knot.

We will not prove these properties here referring the reader to [BN, CDM]. The last
property may be specified as follows. Let H stand for the unknot from Example
6.2:

H := .

If a knot isotopy creates one extra local minimum and one local maximum, the
Kontsevich integral is multiplied by Z(H):

Z

( )
= Z(H) · Z

( )
,

where the multiplication is understood in sense of the formal infinite series from

the graded completion of the algebra of chord diagrams Â.

Definition 6.3. With the help of this formula, we can define the universal Vassiliev
invariant by either

I(K) :=
Z(K)

Z(H)c/2
or I ′(K) :=

Z(K)

Z(H)c/2−1
,

where c denotes the number of critical points of K in an arbitrary strict Morse

representation, and the quotient means division in the algebra Â: (1 + a)−1 =
1− a+ a2 − a3 + . . . .

Both I(K) and I ′(K) are invariants of topological knots with values in Â. The
version I ′(K) has the advantage of being multiplicative with respect to the con-
nected sum of knots; in particular, it vanishes (more precisely, takes the value 1) on
the unknot. However, the version I(K) is also used as it has a direct relationship
with the quantum invariants. In particular,

I( ) :=
1

Z(H)
= 1−

1

24
−

1

5760
+

1

1152
+

1

2880
+ . . . .

The central importance of I(K) (as well as I ′(K)) in the theory of finite-type
invariants is that it is a universal Vassiliev invariant in the following sense. Consider
a weight system w of order n (that is, a function on the set of chord diagrams with n
chords satisfying one- and four-term relations). Applying w to the n-homogeneous
part of the series I(K), we get a numerical knot invariant v := w(I(K)). This
invariant is a Vassiliev invariant of order 6 n and symb(v) = w. Moreover, any
Vassiliev invariant is a sum of Vassiliev invariants obtained in this way. Indeed, any
Vassiliev invariant v has a symbol symb(v) which is a weight system. So v(K) and
symb(v)(I(K)) are two Vassiliev invariants with the same symbol. Their difference
is of order 6 (n − 1) and we can repeat the same process by induction. This
argument proves the Kontsevich theorem.
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To prove that v : K 7−→ w(I(K)) is a Vassiliev invariant with symbol w, it is
enough to show that I(KD) = D + (terms of order > n) for a singular knot KD

representing a chord diagram D of order n. Let p1, . . . pn be the double points of
KD.
Since the denominator of I(K) starts with the unit of the algebra Â, it is sufficient

to prove that

Z(KD) = D + (terms of order > n) .

By definition, Z(KD) is the alternating sum of 2n values of Z on the complete
resolutions of the singular knot KD at all its double points p1, . . . pn. To see what
happens at a single double point pj, let us look at the difference of Z on two knots
Kj,+ and Kj,− where an overpassing in Kj,+ is changed to an underpassing in Kj,−.
By an isotopy we have:

Z(Kj,+) − Z(Kj,−) = Z
( )

− Z
( )

= Z
( )

− Z
( )

.

These two knots differ only in that the first knot has one string that makes a small
curl around another string. We assume that this curl is very thin and enclose it in
a box of height δ to consider it as a tangle Tj,+. Let Tj,− be the similar tangle for
Kj,− consisting of two parallel vertical strings:

Tj,+ := , Tj,− := .

The difference Z(Kj,+)−Z(Kj,−) comes only from the difference of the Kontsevich
integrals of tangles Z(Tj,+) − Z(Tj,−). For the tangle Tj,−, both functions z(t)
and z′(t) are constant, hence Z(Tj,−) consists of only one summand: the trivial

chord diagram D
(0)
− on Tj,− (here ‘trivial’ means with an empty set of chords)

with coefficient one. The zero degree term D
(0)
+ of Z(Tj,+) is also the trivial chord

diagram on Tj,+ with coefficient one. So D
(0)
− = D

(0)
+ as chord diagrams. Thus the

difference Z(Tj,+) − Z(Tj,−) starts with a first degree term which comes from the
chord connecting the two strings of Tj,+.
Hence, Z(KD) starts from degree n. Moreover, the term of degree n is propor-

tional to a chord diagram whose j-th chord connects the two strings of the tangle
Tj,+ corresponding to the jth double point pj inKD. This chord diagram is precisely
D. Now to calculate the order n part of Z(KD) we must compute the coefficient
of D. It is equal to the product of coefficients of one chord terms in Z(Tj,+) over
all j. We will show that all of them are equal to 1. Indeed, it is possible to choose
the coordinates z and t is such a way that z′(t) ≡ 0 for one string, and for another
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one, the point z(t) makes one complete turn around zero when t varies from 0 to δ:

t

δ

0

z(t)

So we have

1

2πi

δ∫

0

dz − dz′

z − z′
=

1

2πi

∮

|z|=1

dz

z
= 1

by the Cauchy theorem.

7. Polyak—Viro formulas

Another universal way of representing Vassiliev invariants was suggested by
M. Polyak and O. Viro [PV]. Its universality was proved by M. Goussarov in
[GPV]. In general, Polyak—Viro formulas are far reaching generalization of the
classical expression of the linking number of two curves as the sum of local writhes
of the crossings of these curves.

7.1. Simplest example. The simplest example of the Polyak—Viro formula is a
formula for the second coefficient of the Conway polynomial, also known as the
Casson invariant. The invariant can be defined by the skein relation using the
linking number lk:

c2( )− c2( ) = lk( ) ; c2( ) = 0 .

The Polyak—Viro formula for it is c2(K) =
∑

i
o
j
u

i
u
j
o

εiεj , where the summation runs

over all pairs of crossings (i, j) which appear in the order i, j, i, j when traveling
along the knot and the first appearance of i is overpassing while the first appearance
of j is underpassing; εi is the writhe of the ith crossing. For example, for the trefoil
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31,

31 =

1−

2−3−

1o

2u

3o1u

2o

3u

−

−
−

1o 2u 3o 1u 2o 3u

− − −

there is only one such pair 1
o
2
u

3
o

1
u
2
o

3
u
. So c2(31) = 1.

An appropriate language for expressing Polyak—Viro formulas is the language
of Gauss diagrams.

Definition 7.1. A Gauss diagram is an oriented circle with a distinguished set of
distinct points divided into ordered pairs, each pair carrying a sign ±1.

Graphically, an ordered pair of points on a circle can be represented by a chord
with an arrow connecting them and pointing, say, to the second point. Gauss
diagrams are considered up to orientation-preserving homeomorphisms of the circle.
Sometimes, an additional basepoint is marked on the circle and the diagrams are
considered up to homeomorphisms that keep the basepoint fixed. In this case, we
speak of based Gauss diagrams.
To a plane knot diagram one can associate a Gauss diagram as follows. Pairs of

points on the circle correspond to the values of the parameter where the diagram
has a self-intersection, each arrow points from the overcrossing to the undercrossing
and its sign is equal to the local writhe at the crossing.
The Gauss diagram of the trefoil above is shown next to it. Here is an example

of the figure eight knot:

−

1

1

2

43

+
+

1

2

2

3

3

4

4

−

Sometimes we will draw based Gauss diagrams as line diagrams assuming that the
base point is at infinity; such a diagram for the trefoil is above.

Definition 7.2. For two Gauss diagrams A and G we denote by 〈A,G〉 the number
of occurrences of A as a subdiagram of G.

For example, 〈
− − ,

− −

− 〉
= 1 .

Define a pairing of a “non-signed” Gauss diagram A with a Gauss diagram G as the
sum over all 2n sign assignments ε1, . . . , εn to the arrows of A, Aε1,...,εn , of pairings
〈Aε1,...,εn , G〉 with products of the signs ε1 . . . εn as coefficients:

〈A,G〉 :=
∑

ε1,...,εn

(ε1 . . . εn)〈Aε1,...,εn , G〉 .
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In this notation, for example, the Polyak—Viro formula for c2 above will be

c2(K) =
〈

, GK

〉
:=
〈

+ + − − + − + − + − − , GK

〉
.

7.2. The Goussarov theorem. For a more formal definition, let us introduce a
free Z-module ZGD spanned by the set of all Gauss diagrans GD. We define the
map I : ZGD → ZGD by simply sending a diagram to the sum of its subdiagrams:

I(D) :=
∑

D′⊆D

D′

and continuing this definition to the whole of ZGD by linearity. For example, we
have

I
( )

= +

+ + +

+ + +

If we combine like terms in the expression I(D) we get the sum over different Gauss
diagrams,

I(D) =
∑

A∈GD

〈A,D〉A.

Having a linear function c : ZGD → Z we can construct a different function
I∗(c) : ZGD → Z as follows:

(2) I∗(c)(D) := (c ◦ I)(D) =
∑

A∈GD

〈A,D〉c(A).

Gauss diagrams that encode long classical knots, or realizable diagrams, form a
subset GDre ⊂ GD. Any integer-valued knot invariant v gives rise to a function
GDre → Z. By linearity, it extends to a function, also denoted by v : ZGDre → Z,
on the free Z-module ZGDre spanned by the set GDre.

Theorem 7.3 (Goussarov). For each integer-valued Vassiliev invariant v of clas-

sical knots of order 6 n there exists a linear function cv : ZGD → Z such that

v = I∗(cv) |ZGD
re and such that cv is zero on each Gauss diagram with more than

n arrows.

We may think about the expression I∗(cv) in the equation (2) as the most general
form of the Polyak—Viro formula for a Vassiliev invariant v. For our example of
v = c2, we get the following function cv:

cv(
+ + ) = 1, cv(

− + ) = −1, cv(
+ − ) = −1 cv(

− − ) = 1,

and zero on the other Gauss diagrams.
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There are two big parts in the proof of the Goussarov theorem: the construction
of the function cv and the proof of its vanishing on Gauss diagrams with more than
n arrows. We explain the original idea for the first part, and refer to the paper
[GPV] (and its explanation in [CDM]) for the second part.

7.3. Construction of the map cv. One can easily check that the map I is an
isomorphism with the inverse being

I−1(D) =
∑

D′⊆D

(−1)||D−D′||D′ ,

where ||D −D′|| is the number of arrows of D not contained in D′.
Thus, in order to get v = cv ◦ I, we can obviously define

cv := v ◦ I−1 .

However, for this equation to make sense, we need to extend v from ZGDre to
the whole of ZGD since the image of I−1 contains all the subdiagrams of D and a
subdiagram of a realizable diagram does not have to be realizable.
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