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Secondary heat flow between confocal ellipses
− an application of extended thermodynamics

Elvira Barbera∗, Ingo Müller†

Abstract
Much as non-Newtonian fluids exhibit secondary flows in elliptic pipes, rarefied

gases exhibit secondary heat flows between elliptical cylinders. The phenomenon
may be called non-Fourierian, because it is not covered by Fourier’s law of heat
conduction. The effect is demonstrated in the paper by exploiting the 13-moment
theory of gases. Apart from secondary heat flows the theory predicts shear stresses
balanced by gradients of the heat flux, and the need for a distinction of the kinetic
and the thermodynamic temperature.

1 Introduction

1.1 The problem

The kinetic theory of gases and extended thermodynamics predict symmetric hyperbolic
equations for the mathematical description of the behaviour of a gas. And the 13-moment
theory of Grad [1] provides the simplest such set of equations; it is appropriate for mod-
erately rarefied gases. Mathematicians and engineers like to "regularize" these equations,
i.e. make them parabolic. In this manner the 13-moment theory becomes the classical
theory of Navier-Stokes-Fourier, whose best-known deficiency is the infinite speed of heat
propagation and of shear waves. This problem has been satisfactorily resolved, cf. [2]
and the solution has provided increased confidence in the equations of extended thermo-
dynamics and, in particular, in those of the 13-moment theory.

Even for stationary processes − i.e. excluding waves − there are differences between
Navier-Stokes-Fourier and 13 moments. They occur when steep gradients of tempera-
ture appear. This means that 13 moments must be employed in rarefied gases when a
significant change of temperature occurs over a mean free path of the atoms.

Qualitative phenomena that distinguish 13 moments from Navier-Stokes-Fourier in-
clude:
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• shear stresses and normal components of the deviatoric stress in a gas at rest,

• heat fluxes not described by the Fourier law, so that secondary flows of heat occur,

• the need to distinguish between the kinetic temperature − a measure for the mean
speed of the atoms − and thermodynamic temperature, which is continuous at a
thermodynamic wall.

These phenomena will be discussed in the paper.

The easiest manner to create steep gradients of temperature in a gas is by letting the
boundary or parts of the boundary be strongly curved. The simplest case occurs for heat
conduction between co-axial circular cylinders of which the inner one is fairly small. That
case will be reviewed in the next subsection; it has been treated in an earlier paper [3].

In the present paper we consider heat conduction between confocal elliptical cylinders.
Here the curvature near the short axes is small while it is large near the long axes. This
may be seen upon inspection of Fig.1 which otherwise serves to introduce notation and
remind the reader of the coordinate net formed by ellipses and hyperbolae.

Figure 1: Elliptic hyperbolic coordinates. The fat ellipses z1 = 0.1 and z1 = 0.5 enclose
the elliptical ring considered in this paper.

1.2 Stationary heat conduction and thermodynamic tempera-
ture between co-axial circular cylinders

The most simple case, where small and large gradients of temperature occur in the same
problem, is the case of radial heat conduction in a gas at rest between co-axial circular
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cylinders. In that case − which was studied in [3] − the well-known Fourier solution of
the energy balance predicts the universal solution1

θ = θi + (θe − θi)
ln r

ri

ln re
ri

. (1.1)

The 13-moment theory predicts a temperature field of the form

θ = θi − c
5τp
ln

28
25

τ
p
c+r2

28
25

τ
p
c+r2i

with c from θe = θi − c
5τp
ln

28
25

τ
p
c+r2e

28
25

τ
p
c+r2i

, (1.2)

where τ is the mean time of free flight of the atoms. p is the pressure.

Figure 2 shows the solutions (1.1) and (1.2) graphically for τ = 10−5s and p = 1hPa,
and it illustrates that both cases differ considerably in the range where the gradient is
steep.

Figure 2: Temperature T between two circular cylinders ri = 10−3m, re = 10−2m, p =
1hPa, τ = 10−5s and Ti = 340K, Te = 300K.

Apart from the different temperature fields of the theories of Fourier and 13 moments,
it is noteworthy that the 13-moment theory predicts a difference between the kinetic
temperature T − a measure for the mean kinetic energy of the atoms − and the thermo-
dynamic temperature t. The latter is defined by the relation

φk =
1

t
qk (1.3)

between the entropy flux φk and the heat flux qk. Therefore t is continuous at a ther-
modynamic wall in which no entropy production is expected to occur. Thus t is the
temperature measured by a contact thermometer.

1i and e refer to the inner and the outer cylinder, respectively. And θ stands for k/µT , where k is the
Boltzmann constant, µ the atomic mass and T the kinetic temperature.
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For the entropy flux, the 13-moment theory predicts, cf. [2]

φk =
1

T

µ
qk − 2

5

ρ<kl>

p
ql

¶
, (1.4)

where −ρ<kl> is the stress tensor; ρ<kl> vanishes in a gas at rest according to the Navier-
Stokes theory but it does not vanish in the 13-moment theory; the components ρ<11> and
ρ<22> are unequal to zero. Therefore in non-equilibrium there is a difference between T
and t and the difference is not small. Figure 3 shows the ratio t

T
for the heat conduction

problem represented in Fig.2.

Figure 3: Ratio of thermodynamic and kinetic temperatures.

Furthermore it has been proved in [4] that − in contrast to the Navier-Stokes-Fourier
theory − no rigid rotation of the gas between the cylinders is possible according to the
13-moment theory when a radial heat conduction takes place.

These results for circular symmetry have provoked an interest in extended thermo-
dynamics of 13 moments for less symmetric cases. The simplest among those seems to
be heat conduction in a gas at rest between confocal ellipses. That case is investigated
in the present paper. It turns out that it is characterized by a truely two-dimensional
temperature field with shear stresses, and by an even more complex entropy flux than in
the circular case; even for the linearized theory.
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2 Stationary heat conduction between confocal el-
lipses

2.1 Field equations

The 13-moment field equations for stationary heat conduction in a gas at rest read in the
BGK approximation [5], i.e. with τ=const2

mass balance: identically satisfied

momentum balance: gik ∂p
∂zk
+ ρ<ik>;k = 0

energy balance: qk ;k = 0

stress-balance: ρ<ij>k ;k = − 1
τ
ρ<ij> with ρijk = 2

5

¡
qigjk + qjgki + qkgij

¢
heat flux-balance: ρiknn;k = − 2

τ
qk with ρiknn = 5pθg

ik + 7θρ<ik>.

(2.1)
For the present planar case of confocal ellipses it is appropriate to employ elliptic-

hyperbolic coordinates (z1, z2) defined in terms of cartesian coordinates (x1, x2) by

x1 = e cosh z1 cos z2

x1 = e sinh z1 sin z2
such that

x21
cosh2 z1

+
x22

sinh 2z1
= e2

x21
cos 2z2

− x22
sin 2z2

= e2,
(2.2)

where e is the eccentricity, taken as 10−2m throughout this paper. The corresponding
metric tensor is diagonal and the Christoffel symbols are of two types. We have

g11 = g22 = 2
e2

1
cosh 2z1−cos 2z2

Γ111 = −Γ122 = Γ212 = Γ221 =
sinh 2z1

cosh 2z1−cos 2z2 ,

Γ222 = −Γ211 = Γ112 = Γ121 =
sin 2z2

cosh 2z1−cos 2z2 .
(2.3)

We shall abbreviate g11 by g.

2As usual in curvilinear coordinates we distinguish contra- and co-variant components by upper and
lower indices. The semi-colon represents covariant derivatives, and the angular brackets, e.g. in ρ<ij>,
denote tracefree symmetric tensors.
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In explicit form the field equations thus read

g ∂p
∂z1
+ ∂ρ<11>

∂z1
+ ∂ρ<12>

∂z2
+ 4Γ111ρ

<11> + 4Γ222ρ
<12> = 0,

g ∂p
∂z2
+ ∂ρ<12>

∂z1
− ∂ρ<11>

∂z2
+ 4Γ111ρ

<12> − 4Γ222ρ<11> = 0,
∂
∂z1

³
q1

g

´
+ ∂

∂z2

³
q2

g

´
= 0,

2
5
g
³
∂q1

∂z1
− ∂q2

∂z2

´
= − 1

τ
ρ<11>,

2
5
g
³
∂q2

∂z1
+ ∂q1

∂z2

´
= − 1

τ
ρ<12>,

5gp ∂θ
∂z1
− 2gθ ∂p

∂z1
+7ρ<11> ∂θ

∂z1
+ 7ρ<12> ∂θ

∂z2
= − 2

τ
q1,

5gp ∂θ
∂z2
− 2gθ ∂p

∂z2
+7ρ<12> ∂θ

∂z1
− 7ρ<11> ∂θ

∂z2
= − 2

τ
q2.

(2.4)

It turns out that ρ<22> = −ρ<11> holds, and that relation has already been used in
(2.4) so that ρ<22> does not occur. This means that a planar solution is possible.

2.2 Linearized field equations

For linearization about equilibrium we drop the underlined terms in (2.4)6,7 because they
are products of quantities that vanish in equilibrium. Also the coefficients p and θ in those
equations must be taken as constant equilibrium values pE and θE in a linear theory. If
the thus simplified expressions for q1 and q2 are introduced into (2.4)4,5 we obtain

ρ<11> = 2
5
τ 2g2

h
−Γ111 ∂K∂z1 +

∂2K
(∂z1)2

+ Γ222
∂K
∂z2

i
,

ρ<12> = 2
5
τ 2g2

h
−Γ111 ∂K∂z2 +

∂2K
∂z1∂z2

− Γ222
∂K
∂z1

i
,

where K = 5pEθ − 2θEp. (2.5)

With these expressions for ρ<11> and ρ<12> a lengthy calculation shows that (2.4)1,2
imply that p is constant. Knowing this, we eliminate q1 and q2 from the energy balance
(2.4)3 and obtain the simple Laplace equation for θ

∂2θ

(∂z1)2
+

∂2θ

(∂z2)2
= 0. (2.6)

We envisage a boundary value problem between an outer ellipse z1e = 0.5 at Te = 300K
and an inner ellipse z1i = 0.1 at Ti = 340K, and with

∂θ
∂z2

¯̄
z1,z2=±π

2

= 0 on the short half
axes. Obviously

θ = θi +
θe − θi
z1e − z1i

¡
z1 − z1i

¢
(2.7)

is a solution of that problem − and therefore the only solution. Thus the linearized
equations are solved.

We proceed to discuss some salient features of the solution.
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• The linear dependence of θ on z1 is also the result of the simple Fourier theory. And
we obtain q2 = 0 which is again the same as in the Fourier theory.

• However, in the Navier-Stokes theory, ρ<ij> would obviously be zero, since the gas
is at rest. On the other hand, here, in the 13-moment theory we obtain from (2.5)

ρ<11> = ApEg
2Γ111,

ρ<12> = ApEg
2Γ222,

where A = −2τ 2 θe−θi
z1e−z1i

. (2.8)

So, here we have non-vanishing normal and shear components of the deviatoric
pressure tensor; they are balanced, so to speak, by gradients of the heat flux, cf.
(2.4)4,5.

• As always in the 13-moment theory the entropy flux is given by (1.4)3. In the present
case this implies

φ1 =
1

T

µ
1− 2

5

ρ<11>

pE

1

g

¶
| {z } q1.

1

t

(2.9)

Therefore t, defined as indicated in (2.9), is the thermodynamic temperature and
we obtain for the ratio of the thermodynamic and the kinetic temperatures

t

T
=

1

1 + 4
5
τ 2 θe−θi

z1e−z1i
gΓ111

. (2.10)

In Fig.4 we show plots of the shear component ρ<12> (z1, z2) of the pressure tensor and
of the ratio t

T
. Inspection shows that the "non-Fourierian features" of the solution occur

mostly on the long half axis of the ellipses near the inner ellipse whose curvature is large
there. The pressure pE is taken as 1hPa and τ is chosen as 2·10−6s. Figure 4(a) represents
the contravariant component ρ<12>; therefore the shear stress has the dimensions N/m4.

In the plot of t
T
in Fig.4(b) the cut z2 = 0 − along the long axis − exhibits sharply

increasing values of that ratio near the inner ellipse. This is to be expected; the phe-
nomenon is akin − qualitatively − to the circular case shown in Fig.3. It is noteworthy,
however, that there is no noticeable increase of t

T
on the short axis. All fields are "well-

behaved" there, because the small curvature of the inner ellipse at z2 = ±π
2
does not

induce significant values of ρ<11> and ρ<12>.

The plots of Fig.4 project half of the elliptic ring with 0.1 ≤ z1 ≤ 0.5 and −π
2
≤ z2 ≤ π

2

into a rectangle. This offers a good view on the effects of 13-moment theory which are
crowded around the sharp tip of the inner ellipse.

3Note that even in a linearized theory the entropy inequality, hence the entropy flux, must contain
non-linear − second order − terms lest it lose all meaning.
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Figure 4: (a) The contravariant shear component ρ<12> of the pressure tensor in N/m4.
(b) The ratio t/T of thermodynamic and kinetic temperature.

The figures show that even the linearized version of the 13-moment theory contains
some surprising features that go beyond the prediction of the Navier-Stokes-Fourier theory.

The temperature field, however, in its linear dependence on z1 is of the classical Fourier
type. This will change when we now proceed to investigate the effect of the non-linear
terms of the 13-moment equations.

2.3 The effect of non-linear terms

We have not been able to solve the fully non-linear 13-moment theory which is charac-
terized by the set of equations (2.4). So, in order to obtain some indication on non-linear
effects we introduce the linear solution (2.8) for ρ<11> and ρ<12> into (2.4)6,7 and retain
p=const which is consistent − for those values of ρ<11> and ρ<12> − with (2.4)1,2. In this
manner we uncouple the equations (2.4)3,6,7 from the rest of (2.4) and obtain the simple
system

∂
∂z1

³
q1

g

´
+ ∂

∂z2

³
q2

g

´
= 0,

q1

g
= −τ

2
pE
£
(5 + 7AgΓ111)

∂θ
∂z1
+ 7AgΓ222

∂θ
∂z2

¤
,

q2

g
= −τ

2
pE
£
(5− 7AgΓ111) ∂θ

∂z2
+ 7AgΓ222

∂θ
∂z1

¤
.

(2.11)

Accordingly the Laplace equation (2.6) is now replaced by¡
1 + 7

5
AgΓ111

¢
∂2θ
(∂z1)2

+ 14
5
AgΓ222

∂2θ
∂z1∂z2

+
¡
1− 7

5
AgΓ111

¢
∂2θ
(∂z2)2

+

−14
5
Ag
h
(Γ111)

2
+ (Γ222)

2
i

∂θ
∂z1
= 0.

(2.12)
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We solve this equation for the boundary value problem

θ (0.5, z2) = k
µ
300K, ∂θ

∂z1

¯̄
0.5,z2

= F (z2) , ∂θ
∂z2

¯̄
z1,±π

2

= 0, (2.13)

and adjust F (z2) in a laborious process of repeated shooting and reaiming so as to reach
θ (0.1, z2) = k

µ
340K on the inner ellipse − at least approximately: to within 0.03K. The

solution is numerically obtained with Mathematica R° and it is presented in Fig.5. Figure
5(a) shows the "temperature bump" superposed on the linear solution. In Fig.5(b) we see
the bump itself from the front and in a different scale so that its size of a few K can be
appreciated.

Figure 5: Temperature field in K between elliptical cylinders at z1 = 0.1 and z2 = 0.5.
The "bump" occurs along the long axis at z2 = 0.

We conclude that the temperature field is no longer a function of z1 alone, it also
depends on z2. That dependence on z2 is highlighted by drawing θ (z1, 0) on the long axis
and θ

¡
z1, π

2

¢
on the short axis, cf. Fig.6. The straight lines in the figure represent the

Fourier solution. On the short axis that solution cannot be distinguished from the 13-
moment solution, while on the long axis there is an appreciable difference. The behaviour
on the long axis corresponds to that for circular cylinders, shown in Fig.2, except for a
distortion that is due to the different geometry.
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Figure 6: (a) Temperature θ (z1, 0) on the long axis, and (b) θ
¡
z1,±π

2

¢
on the short axis.

2.4 Primary and secondary heat flux

Since the temperature field θ (z1, z2) is now known, albeit only numerically, we may
calculate the components of its gradient and hence, by (2.11)2,3, the components of the
heat flux; both are non-zero. The primary contribution to the heat flux has only a 1-
component which is the solution of the linearized theory − and of the Fourier theory. It
reads

q1
¯̄
primary

= −5
2
τpEg

θe − θi
z1e − z1i

. (2.14)

Figure 7 shows a vector field plot of
³
q1 − q1|primary , q2

´
; it represents the secondary

heat flow which is predicted by the 13-moment theory.

Figure 7: Vector field plot of secondary heat flow.
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The most obvious feature of Fig.7 is the non-vanishing 2-component of the heat flux.
It has maximal values near the tip of the inner ellipse but it is nowhere zero in the plotted
range, except on the axis z2 = 0, of course. Thus there is a genuinely two-dimensional
secondary flow of heat.

2.5 Kinetic and thermodynamic temperatures

The above non-linear results, by which q2 6= 0 holds, add another term to the entropy
flux and therefore to the thermodynamic temperature. We now have

φ1 =
1

T

µ
1− 2

5

ρ<11>

pE

1

g
− 2
5

ρ<12>

pE

1

g

q2

q1

¶
| {z } q1.

1

t

(2.15)

Thus the thermodynamic temperature depends not only on the components of the
pressure deviator but also on those of the heat flux. Certainly, if the kinetic temperature
is constant on the inner ellipse, the thermodynamic one is not, and vice versa.

2.6 Remark on approximation

Although g and Γ111 are not singular in the mathematical sense at (z
1, z2) = (0.1, 0) − the

tip of the inner ellipse−, they have sharp peaks there. Therefore our approximation of the
non-linear behaviour becomes precarious in the immediate neighbourhood of that point.
More rarefied gases than those considered here, − with p = 102N/m2 and τ = 2 · 10−6s
− will probably call for a more refined theory, i.e. extended thermodynamics with more
than 13 moments. Certainly the Fourier theory is inappropriate in this problem and we
believe that the present 13-moment theory, whatever its deficiencies are near the critical
tip, offers an improvement.
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