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QUOTIENTS OF INDEX TWO AND GENERAL QUOTIENTS IN

A SPACE OF ORDERINGS

PAWE L G LADKI AND MURRAY MARSHALL

Abstract. In this paper we investigate quotient structures and quotient spaces
of a space of orderings arising from subgroups of index two. We provide nec-
essary and sufficient conditions for a quotient structure to be a quotient space
that, among other things, depend on the stability index of the given space. The
case of the space of orderings of the field Q(x) is particularly important, since
then the theory developed simplifies significantly. A part of the theory firstly
developed for quotients of index 2 generalizes in an elegant way to quotients
of index 2n for arbitrary finite n. Numerous examples are provided.

1. Introduction and notation

By a space of orderings we understand a pair (X, G) such that X is a nonempty
set, G is a subgroup of {1,−1}X, which contains the constant function −1, separates
points of X , and satisfies some additional axioms – see [13, pp. 21-22]. The
monograph [13] will be of constant use here as far as notation and background are
concerned. We note that X can be also considered as a subset of the character group
χ(G) (here by characters we mean group homomorphisms x : G → {−1, 1}) via a
natural embedding X →֒ χ(G) obtained by identifying x ∈ X with the character
G ∋ a 7→ a(x) ∈ {−1, 1}.

A space of orderings (X, G) has a natural topology introduced by the family of
subbasic clopen Harrison sets:

HX(a) = {x ∈ X : a(x) = 1},

for a given a ∈ G, which makes X into a Boolean space ([13, Theorem 2.1.5]).
Whenever it is clear from the context which space of orderings we consider, we
shall simply write H(a) instead of HX(a).

For any multiplicative group G of exponent 2 with distinguished element −1,
we set X = {x ∈ χ(G) : x(−1) = −1} and call the pair (X, G) a fan. A fan is
also a space of orderings ([13, Theorem 3.1.1]). We can also consider fans within a
bigger space of orderings, and for this we need the notion of a subspace of a space
(X, G) – a subset Y ⊂ X is called a subspace of (X, G), if Y is expressible in the
form

⋂

a∈S HX(a), for some subset S ⊂ G. For any subspace Y we will denote
by G|Y the group of all restrictions a|Y , a ∈ G. The pair (Y, G|Y ) is a space of
orderings itself ([13, Theorem 2.4.3], [7, Theorem 2.2]). Finally, if (X, G) is a space
of orderings, by a fan in (X, G) we understand a subspace F such that the space
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2 PAWE L G LADKI AND MURRAY MARSHALL

(F , G|F ) is a fan. One easily checks that any one- or two-element subset of a space
of orderings forms a fan – thus one- or two-element fans are called trivial fans.

The stability index stab(X, G) of a space of orderings (X, G) is the maximum
n such that there exists a fan F ⊂ X with |F| = 2n (or ∞ if there is no such n).
It can be shown that the stability index of a space (X, G) is at most equal to k
if every basic set in X can be expressed as an intersection of k Harrison sets ([13,
Theorem 3.4.2], [9, Theorem 6.2]). Spaces of stability index 1 are also called spaces
with the strong approximation property or SAP spaces.

We say that (X, G) is the direct sum of the spaces of orderings (Xi, Gi), i ∈
{1, . . . , n}, denoted (X, G) =

∐n
i=1(Xi, Gi) = (X1, G1)⊔ . . .⊔ (Xn, Gn), if X is the

disjoint union of the sets X1, . . . , Xn, and G consists of all functions a : X → {−1, 1}
such that a|Xi

∈ Gi, i ∈ {1, . . . , n}. In this case G = G1 ⊕ G2 ⊕ . . .⊕ Gn, with the
role of the distinguished element −1 played by (−1,−1, . . . ,−1). Further, we say
that (X, G) is a group extension of the space of orderings (X, G), if G is a group
of exponent 2, G is a subgroup of G, and X = {x ∈ χ(G) : x|G ∈ X}. Since G

decomposes as G = G × H , we shall also write (X, G) = (X, G) × H to denote
group extensions. Both direct sums and group extensions are spaces of orderings
([13, Theorem 4.1.1], [8, Remark 2.8, Remark 3.7]). We shall use the notation
〈a1, . . . , an〉 to denote the group generated by the elements a1, . . . , an.

For a space of orderings (X, G) we define the connectivity relation ∼ as follows:
if x1, x2 ∈ X , then x1 ∼ x2 if and only if either x1 = x2 or there exists a four
element fan F in (X, G) such that x1, x2 ∈ F . The equivalence classes with respect
to ∼ are called the connected components of (X, G). It is known that if (X, G) is a
finite space of orders, and X1, X2, . . . are its connected components, then (X, G) =
(X1, G|X1

) ⊔ (X2, G|X2
) ⊔ . . ., where (Xi, G|Xi

), are either one element spaces or
proper group extensions ([13, Theorem 4.2.2], [7, Theorem 4.10]).

If (X, G) is a space of orderings, and G0 is a subgroup of G containing the
element −1, we denote by X0 the set X |G0

of all characters from X restricted to
G0, and call the pair (X0, G0) a quotient structure. In the case when (X0, G0) is a
space of orderings, we call it a quotient space of (X, G) – see [8] for details.

Let k be a formally real field. Denote by Xk the set of all orderings of k, and by
Gk the multiplicative group k∗/(Σk2)∗ of all classes of sums of squares of k. Gk is
naturally identified with a subgroup of {−1, 1}Xk via the homomorphism

k∗ ∋ a 7→ a ∈ {−1, 1}Xk , where a(σ) =

{

1, if a ∈ σ,
−1, if a /∈ σ,

for σ ∈ Xk,

whose kernel is the set (Σk2)∗ of all nonzero sums of squares of k, and (Xk, Gk) is
a space of orderings ([13, Theorem 2.1.4], [7, Example 1]). For simplicity we shall
denote by the same symbol a both an element a ∈ k∗, a class of sums of squares
a ∈ k∗/(Σk2)∗, and a function a ∈ {−1, 1}Xk .

2. Quotients of index two

Let (X, G) be a space of orderings and (X0, G0) a quotient structure with G0 ⊂
G. We search for necessary and sufficient conditions on G0 for (X0, G0) to be a
quotient space of (X, G).

Example 2.1. Suppose G0 is a subgroup of G and −1 ∈ G0. Suppose σ0 : G0 →
{±1} is a character satisfying σ0(−1) = −1. Let σ : G → {±1} be an extension of
σ0 to a character on G. If (X, G) is a fan then σ ∈ X so σ0 ∈ X0. Thus if (X, G) is
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a fan and −1 ∈ G0 then (X0, G0) is also a fan. In particular, (X0, G0) is a quotient
space of (X, G), and any quotient structure of a fan is a quotient space that is a
fan itself.

Assume now that G0 is a subgroup of index 2 in G, −1 ∈ G0. Since G0 has index
2 and −1 ∈ G0, G0 is determined by a character on G/{±1}, i.e., there exists a
unique γ ∈ χ(G), γ(−1) = 1 such that G0 = ker(γ). One needs to realize that the
situation where (X0, G0) is a space of orderings is rather special.

Example 2.2. Consider the finite space (X, G) of six orderings {σ1, . . . , σ6} and
of stability index 1, so that |G| = 26. Let γ = σ1 · . . . · σ6. The quotient structure
(X0, G0) consists of six orderings σ1, . . . , σ6 with σ6 = σ1 · . . . ·σ5, where |G0| = 25.
By the structure theorem for finite spaces of orderings [13, Theorem 4.2.2], [7,
Theorem 4.10] (X0, G0) is not a space of orderings (e.g., because it is not SAP but
contains no four element fans).

Theorem 2.3. A necessary condition for (X0, G0) to be a quotient of (X, G) is
that γ ∈ X4.

Here

Xk := {
k

∏

i=1

σi | σi ∈ X, i = 1, . . . , k}.

Since the σi are not required to be distinct, {1} ⊆ X2 ⊆ X4. If (X, G) is a fan
then X4 = X2 = {γ ∈ χ(G) | γ(−1) = 1}.

Proof. Suppose first that the restriction map r : X → X0 is not injective, so there
exist σ, τ ∈ X , σ 6= τ , r(σ) = r(τ). In this case, G0 = ker(στ), so γ = στ ∈ X2.
Suppose next that r is injective. Since r is continuous and injective and X is
compact, r is a homeomorphism. Fix g ∈ G, g /∈ G0, and define φ : X0 → {±1} by
φ(r(σ)) = σ(g). φ is well-defined and continuous.

Claim: φ is not in the image of G0 under the natural injection ˆ : G0 →
Cont(X0, {±1}). For suppose φ = ĥ, h ∈ G0. Then, for any σ ∈ X , σ(h) =

r(σ)(h) = ĥ(r(σ)) = φ(r(σ)) = σ(g), so g = h ∈ G0, contradicting g /∈ G0.

Suppose now that (X0, G0) is a space of orderings. By the claim and [13, The-
orem 3.2.2] there exists a 4-element fan V in X0 such that

∏

α∈V φ(α) 6= 1. The

character γ′ :=
∏

α∈V r−1(α) ∈ X4 is 6= 1 (because γ′(g) =
∏

α∈V φ(α) 6= 1) but

the restriction of γ′ to G0 is equal to 1 (because V is a fan). Thus γ = γ′ ∈ X4, as
required. �

Theorem 2.4. If the space of orderings (X, G) is SAP, then the necessary condition
in Theorem 2.3 is also sufficient.

Proof. Suppose first that γ ∈ X2, say γ = σ1σ2, σ1, σ2 ∈ X . Let φ : X0 → {±1} be
continuous. Then φ◦ r : X → {±1} is continuous. Since (X, G) is SAP, the natural
injectionˆ: G →֒ Cont(X, {±1}) is surjective, i.e., φ ◦ r = ĝ for some g ∈ G. Then
σ1(g) = φ(r(σ1)) = φ(r(σ2)) = σ2(g), so g ∈ G0. This implies that the natural
injection G0 →֒ Cont(X0, {±1}) is an isomorphism. Suppose next that γ ∈ X4,

γ /∈ X2, say γ =
∏4

i=1 σi, σi ∈ X , i = 1, . . . , 4. In this case one sees, by a similar
argument, that the natural injection G0 →֒ Cont(X0, {±1}) identifies G0 with

{φ ∈ Cont(X0, {±1}) |
4

∏

i=1

φ(r(σi)) = 1}.
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In either case, (X0, G0) can be viewed as the space of global sections of a sheaf of
spaces of orderings as defined in [11, Chapter 8], so (X0, G0) is a space of orderings
by Theorem 6.1, more specifically, by Corollary 6.2. Note: If γ ∈ X2 all of the
stalks are singleton spaces; if γ ∈ X4\X2 one of the stalks is a 4-element fan and
the rest are singleton spaces. �

Example 2.5. Theorems 2.3 and 2.4 provide a convenient description of quotients
of index two of the space of orderings of the field R(x), or, more generally, of the
space of orderings of any formally real function field of trancendence degree 1 over
a real closed field. This is because spaces of orderings of this sort are SAP. Note
that, since the orderings of the field R(x) can be easily described geometrically,
Theorems 2.3 and 2.4 can be spelled out as a certain “positivity condition” that
has to be satisfied by elements of the group G0.

Example 2.6. The condition of Theorem 2.4 fails to be sufficient if the stability
index of the space (X, G) is greater than 1.

(1) Consider the space (X, G), where

X = {σ1, σ2, σ3, σ1σ2σ3, σ4, σ5, σ6, σ4σ5σ6}.

With |G| = 26 this is the direct sum of two four element fans. Let γ = σ1σ4.
The quotient structure (X0, G0) with G0 = kerγ is not a quotient space.

(2) Consider the space (X, G), where

X = {σ1, σ2, σ3, σ1σ2σ3, σ4, σ5, σ6}.

With |G| = 26 this is the direct sum of a four element fan and three singleton
spaces. Let γ = σ1σ4σ5σ6. The quotient structure (X0, G0) with G0 = ker γ
is not a quotient space.

(3) Consider the space (X, G), where

X = {σ1, σ2, σ3, σ4, σ1σ3σ4, σ2σ3σ4, σ5, σ6}.

With |G| = 27 this is the direct sum of a connected space of six elements and
two singleton spaces. Let γ = σ1σ2σ5σ6. The quotient structure (X0, G0)
with G0 = kerγ is not a quotient space.

(4) Consider the space (X, G), where

X = {σ1, σ2, σ3, σ4, σ1σ3σ4, σ2σ3σ4, σ5, σ6, σ7, σ8, σ5σ7σ8, σ6σ7σ8}.

With |G| = 28 this is the direct sum of two connected spaces, each consisting
of six elements. Let γ = σ1σ2σ5σ6. The quotient structure (X0, G0) with
G0 = kerγ is not a quotient space.

Details of proofs are left to the reader. In each case one uses the structure theorem
[13, Theorem 4.2.2], [7, Theorem 4.10] for the finite spaces of orderings (X0, G0) and
shows that the resulting quotient structure is constructed in a way contradicting
the theorem.

To simplify things we assume from now on that the space of orderings (X, G)
contains no infinite fans. This is the case, for example, if the stability index of
(X, G) is finite. Recall that, for δ ∈ χ(G), Xδ := {σ ∈ X | σδ ∈ X} = X ∩ δX .
Since (X, G) has no infinite fans, every connected component of (X, G) is either
singleton or has the form Xδ for some δ ∈ χ(G), δ 6= 1, |Xδ| ≥ 4 [13, Theorem
4.6.1], [10, Theorem 2.6].

The requirement that γ ∈ X4 can be substantially refined as follows:
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Theorem 2.7. A necessary condition for (X0, G0) to be a quotient of (X, G) is that

γ =
∏k

i=1 σi, σi ∈ X, k = 2 or 4 and, in the case where not all σi are in the same
connected component of (X, G) and the connected components of the σi in (X, G)
are not all singleton, either k = 2 and exactly one of the connected components
of the σi is not singleton, or k = 4, γ /∈ X2 and, after reindexing suitably, the
connected component of σ3 and σ4 is Xσ3σ4

and either the connected component of
σ1 and σ2 is Xσ1σ2

or the connected component of σi is singleton for i = 1, 2.

Proof. Denote by Y the union of the connected components of (X, G) which meet
the set {σ1, . . . , σk}. According to [12, Theorem 3.6] Y , more precisely (Y, G/∆)
where ∆ := Y ⊥, is a subspace of (X, G). Denote by Y0 the set of restrictions of
elements of Y to G0. If we assume that (X0, G0) is a quotient space of (X, G) then
(Y0, G0/∆) is a subspace of the space of orderings (X0, G0) so it is itself a space
of orderings, i.e., (Y0, G0/∆) is a quotient space of (Y, G/∆). In this way, we are
reduced to the case where X = Y , i.e., each connected component of (X, G) meets
the set {σ1, . . . , σk}.

Denote by (Zj , G/Z⊥
j ), j ∈ J the connected components of (X, G). Each Zj is

singleton or has the form Xδ, δ 6= 1, |Xδ| ≥ 4, and Zj ∩{σ1, . . . , σk} 6= ∅ for each j,
so |J | ≤ k. By hypothesis, 2 ≤ |J | and not all Zj are singleton. According to [11,
Corollary 7.5], (X, G) is the direct sum of the (Zj , G/Z⊥

j ), j ∈ J . In particular,
χ(G) =

∏

j∈J〈Zj〉 (direct product of groups), where 〈Zj〉 is the closed subgroup of

χ(G) generated by Zj . Since |J | ≥ 2 this implies in particular that γ /∈ 〈Zj〉 for
each j.

The restriction map r : X → X0 is injective on each Zj . This is clear if Zj

is singleton. If Zj = Xδ, δ 6= 1, |Xδ| ≥ 4, then injectivity follows from the fact
that γ /∈ 〈Zj〉. We also see in this latter case that r(Zj) ⊆ (X0)δ0

, where δ0

denotes the restriction of δ to G0, and δ0 6= 1 (because γ /∈ 〈Zj〉). It follows,
using [7, Lemma 4.6] repeatedly (see [10, Remark 2.1]), that the space of orderings
(X0, G0) is connected and, moreover, that there exists µ0 ∈ χ(G0), µ0 6= 1 such
that X0 = (X0)µ0

. This implies in turn that X = Xµ ∪ Xγµ where µ is some fixed
extension of µ0 to a character on G. Since |X | ≥ 5 it follows that at least one of
|Xµ|, |Xγµ| is ≥ 4. Reindexing we can assume |Xγµ| ≥ 4.

If |Xµ| is also ≥ 4, then, since X has at least 2 connected components, Xµ∩Xγµ =
∅ and Xµ and Xγµ are the connected components of X , so χ(G) = [Xµ]× [Xγµ]. If
k = 2 then, after reindexing, σ1 ∈ Xµ, σ2 ∈ Xγµ and since the two decompositions
γ = (µ)(γµ) and γ = (σ1)(σ2) must be the same (because the product is direct),
µ = σ1 and γµ = σ2. Since σ1(−1) = −1, µ(−1) = 1, this is not possible. If
k = 4, then, arguing as before with the two decompositions of γ, we see that, after
reindexing suitably, σ1, σ2 ∈ Xµ, σ3, σ4 ∈ Xγµ, µ = σ1σ2, and γµ = σ3σ4.

This leaves the case |Xµ| = 2, |Xγµ| ≥ 4. If k = 2 then X has two components,
one singleton and one equal to Xγµ. Suppose now that k = 4, γ /∈ X2. Reindexing,
we can suppose σ3, σ4 ∈ Xγµ. There are two subcases: either Xµ ∩ Xγµ = ∅ or
Xµ ∩ Xγµ 6= ∅. Suppose first that Xµ ∩ Xγµ = ∅. Then Xµ = {σ1, σ2}, µ = σ1σ2,
γµ = σ3σ4. In this case the connected components are {σ1}, {σ2} and Xσ3σ4

.
Suppose now that Xµ ∩ Xγµ 6= ∅. Reindexing we may assume Xµ = {σ1, σ1µ},
σ1µ ∈ Xγµ. Then (σ1µ)(γµ) = σ1γ = σ2σ3σ4 ∈ X , contradicting γ /∈ X2. Thus
this case cannot occur. �
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We remark that the quotient structures appearing in Example 2.6 are precisely
those for which the conditions of Theorem 2.7 fail to be satisfied.

It is natural to wonder if the necessary conditions on Theorem 2.7 are sufficient
when (X, G) has stability index two. We are unable to prove this in general. We
are however able to prove the following:

Theorem 2.8. If (X, G) has stability index two and just finitely many non-singleton
connected components, then the necessary conditions of Theorem 2.7 are sufficient.

Proof. An application of Corollary 6.2 allows us to reduce to the case where (X, G)

has just finitely many connected components. By assumption, γ =
∏k

i=1 σi, σi ∈ X ,
k = 2 or k = 4 and γ /∈ X2. One can reduce further to the case where each
connected component has non-empty intersection with the set {σ1, . . . , σk}. If each
connected components is singleton, then either k = 2 and (X0, G0) is a singleton
space or k = 4, γ /∈ X2, and (X0, G0) is a 4-element fan. Suppose (X, G) has at least
two connected components and at least one of these is not singleton. If k = 2 then
(X, G) has exactly two connected components, one singleton, one non-singleton,
and (X0, G0) is isomorphic to the non-singleton component of (X, G). If k = 4,
γ /∈ X2, then either (X, G) has two connected components which, after reindexing,
are Xσ1σ3

and Xσ3σ4
, or three connected components which, after reindexing, are

{σ1}, {σ2} and Xσ3σ4
. In either case, (X0, G0) is a group extension by a group of

order 2 of the direct sum of the residue space of Xσ1σ2
associated to σ1σ2 and the

residue space of Xσ3σ4
associated to σ3σ4. Note: In the case where {σ1} and {σ2}

are connected components, Xσ1σ2
= {σ1, σ2} and the associated residue space is a

singleton space. This leaves us with the case where (X, G) has just one connected
component. If γX = X then (X0, G0) is the residue space of (X, G) associated to γ.
Suppose γX 6= X . (X, G) is a group extension of a SAP space of orderings (X ′, G′)
by a cyclic group of order two. Let γ′ denote the restriction of γ to G′. The pair
(X ′

0, G
′
0) associated to γ′ is a quotient of (X ′, G′), by Theorem 2.4. (X0, G0) is a

group extension of (X ′
0, G

′
0) by a cyclic group of order two. �

The necessary conditions of Theorem 2.7 are not sufficient if (X, G) has stability
index three or more. There are additional necessary conditions which are defined
recursively in an obvious way. For example, if (X, G) has stability index three and
σ1, . . . , σk all belong to the same connected component (Z, H) of (X, G), where
(Z, H) is a group extension of a space of orderings (Z ′, H ′) of stability index two
by a cyclic group of order 2 and γZ 6= Z, then the conditions of Theorem 2.7 should

hold with respect to the space of orderings (Z ′, H ′) and the character γ′ =
∏k

i=1 σ′
i,

where γ′ resp., σ′
i, denotes the restriction of γ, resp., σi, to H ′. It is not known

if these recursively defined necessary conditions are sufficient. They are sufficient
in certain special cases, by Theorem 2.4 and Theorem 2.8. It is easy to see that
these recursively defined necessary conditions are sufficient if the space of orderings
(X, G) is finite.

3. The space of orderings of Q(x)

We consider the space of orderings of Q(x), the function field in a single variable
x over the field Q of rational numbers. This space of orderings is studied in [2],
[4] and [5]. We will denote this space of orderings by (X, G) for short, i.e., in this
section,

(X, G) := (XQ(x), GQ(x)).
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For a real monic irreducible p in the polynomial ring Q[x], set np := the number of
real roots of p and set Xp := the set of elements of X compatible with the discrete
valuation vp of Q(x) associated to p, so |Xp| = 2np. Set X∞ := the set of orderings
compatible with the discrete valuation v1/x, so |X∞| = 2. For a transcendental
real number r, set σr := the archimedian ordering of Q(x) corresponding to the
embedding Q(x) →֒ R given by x 7→ r. X is the (disjoint) union of the sets Xp,
p running through the real monic irreducibles in Q[x], X∞, and {σr}, r running
through the transcendental real numbers. The non-singleton connected components
of (X, G) are the Xp, p a real monic irreducible of Q[x], np ≥ 2.

Every monic irreducible p of Q[x] which is not real is positive at every element
of X , i.e., it is equal to 1 in G. The set of elements

{−1} ∪ {p | p is a real monic irreducible in Q[x]},

more precisely, the image of this set in G, forms a Z/2Z-basis for G, i.e., every
element of G is expressible uniquely as

(−1)δ0

k
∏

i=1

pδi

i ,

k ≥ 0, p1, . . . , pk distinct real monic irreducibles in Q[x], δ0, . . . , δk ∈ {0, 1}.
Fix A, B where A is a finite set of real monic irreducible polynomials of Q[x]

and B is a finite set of transcendental real numbers. Set

Y := (
⋃

p∈A

Xp) ∪ X∞ ∪ {σr | r ∈ B}.

Consider the set r1 < · · · < rm of real numbers consisting of the real roots of
the various polynomials p ∈ A together with the elements of B. Clearly m :=
∑

p∈A np + |B|. Choose rational numbers s1, . . . , sm+1 such that

−∞ < s1 < r1 < s2 < r2 < · · · < sm < rm < sm+1 < +∞.

Set H := the subgroup of G generated by −1, the elements p ∈ A, and the elements
x − si, i = 1, . . . , m + 1.

Lemma 3.1. (i) (Y, G/Y ⊥) is a subspace of (X, G). (ii) (Y, G/Y ⊥) is the direct
sum of the subspaces (Xp, G/X⊥

p ), p ∈ A, (X∞, G/X⊥
∞), and ({σr}, G/{σr}⊥),

r ∈ B. (iii) (X |H , H) is a quotient space of (X, G). (iv) The spaces of orderings
(Y, G/Y ⊥) and (X |H , H) are isomorphic via the natural maps H →֒ G → G/Y ⊥,
Y →֒ X → X |H.

Proof. (i) and (ii) are consequences of [12, Theorem 3.6] and [11, Corollary 7.5],
respectively. One can also prove (ii) using the approximation theorem for V -
topologies, e.g., see [17]. (iii) is a consequence of (iv), so it suffices to prove (iv).

Claim 1: The map Y → X |H is bijective. Let S0 := the set of orderings satisfying
x < s1, Sm+1 := the set of orderings satisfying x > sm+1, and Si := the set of
orderings satisfying si < x < si+1, i = 1, . . . , m. Clearly X = S0 ∪ · · · ∪ Sm+1

(disjoint union) and X |H = S0|H ∪ · · · ∪ Sm+1|H (disjoint union). Each p ∈ A has
constant sign on S0. E.g., if np is even (resp., odd) then p is constantly positive
(resp., constantly negative) on S0. It follows that S0|H is a singleton set. Also,
Y ∩ S0 is a singleton set. A similar argument shows that Sm+1|H is a singleton set
and Sm+1∩Y is a singleton set. For 1 ≤ i ≤ m, there are two cases. If ri ∈ B, then
each p ∈ A has constant sign on Si, so Si|H is a singleton set. In this case Si ∩ Y
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is also a singleton set. If ri /∈ B, then ri is a root of some unique p ∈ A. In this
case p changes sign at ri and the other elements of A have constant sign on Si, so
Si|H has two elements. In this case, Si ∩ Y also has two elements. Also, different
elements of Si ∩ Y map to different elements of Si|H .

From the surjectivity of the map Y → X |H it follows that the group homomor-
phism H → G/Y ⊥ is injective. Consequently, to complete the proof it suffices to
establish the following:

Claim 2. |H | = |G/Y ⊥|. The elements of {−1} ∪A ∪ {x− si | i = 1, . . . , m + 1}
form a Z/2Z-basis of H so |H | = 2|A|+m+2. Using (ii) we see that

|G/Y ⊥| =
∏

p∈A

|G/X⊥
p | · |G/X⊥

∞| ·
∏

r∈B

|G/‖σr}
⊥|

=
∏

p∈A

2np+1 · 22 ·
∏

r∈B

2 = 2
P

p∈A np+|A|+2+|B|.

At the same time, m =
∑

p∈A np + |B|, so |A|+m+2 =
∑

p∈A np + |A|+2+ |B|. �

As an immediate consequence of Lemma 3.1 we obtain a result of G ladki and
Jacob; see [4, Theorem 1].

Theorem 3.2. The space of orderings (X, G) is profinite.

Proof. It suffices to show that for any finite subset S of G there exists a finite
quotient (X |H , H) of (X, G) such that S ⊆ H . Define H as in the proof of Lemma
3.1, taking A to be the set of real monic irreducible polynomials appearing in the
factorization of the elements of S and B = ∅. Then H contains S and (X |H , H)
has the required properties. �

We mention another consequence of Lemma 3.1. Following the notation of Sec-
tion 2, we fix a character γ of G, γ 6= 1, γ(−1) = 1, define G0 = ker(γ), and
X0 = X |G0

.

Theorem 3.3. The following are equivalent:

(1) (X0, G0) is a quotient space of (X, G).
(2) γ satisfies the necessary conditions of Theorem 2.7.
(3) (X0, G0) is a profinite space of orderings.

We remark that [5, Theorem 8] asserts already that the implication (1) ⇒ (3) of
Theorem 3.3 is true, but there are some gaps in the proof of [5, Theorem 8].

Proof. (1) ⇒ (2) is a consequence of Theorem 2.7. (3) ⇒ (1) is trivial (since
every profinite space of orderings is, in particular, a space of orderings). It remains

to show (2) ⇒ (3). Assume (2) holds. Let γ =
∏k

i=1 σi, σi ∈ X , k = 2 or
k = 4 and γ /∈ X4. To prove (3) it suffices to show that for any finite subset S
of G0 there exists a finite quotient space (X |H , H) of (X, G) such that S ⊆ H
and (X |H∩G0

, H ∩ G0) is a quotient space of (X |H , H). Define H , Y as in the
preamble to Lemma 3.1, taking A to be any finite set of real monic irreducibles
in Q[x] containing all real monic irreducible factors of elements of S together with
all real monic irreducibles p such that Xp ∩ {σ1, . . . , σk} 6= ∅, and taking B to be
any finite set of transcendental real numbers such that, for each i = 1, . . . , k, if
σi is an archimedian ordering then the corresponding transcendental real number
belongs to B. Obviously S ⊆ H . By Lemma 3.1, (X |H , H) is a quotient space of
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(X, G) which is naturally identified with the quotient space (Y, G/Y ⊥) of (X, G).
By construction, Y is a union of connected components of (X, G) and contains all
components of (X, G) meeting the set {σ1, . . . , σk}. Also, (Y, G/Y ⊥) is finite and
has stability index 1 or 2. It follows, applying Theorem 2.4, if the stability index is
1, or Theorem 2.8, if the stability index is 2, that (Y |G0

, G0/Y ⊥) is a quotient space
of (Y, G/Y ⊥). Since (X |H∩G0

, H ∩G0) is identified with (Y |G0
, G0/Y ⊥) under the

isomorphism (X |H , H) ∼= (Y, G/Y ⊥), this completes the proof. �

4. Examples of quotients of the space of orderings of the field Q(x)

Theorem 3.3 provides us with a convenient and elegant criterion for checking
whether a given quotient structure (X0, G0) of (XQ(x), GQ(x)) is a quotient space.
In practice, however, there is no good way of representing G0 as a kernel of γ ∈
χ(GQ(x)), given all the generators of G0, and we can, in fact, do that only in a few
cases. We shall discuss that in some detail now.

Let (X, G) be the space of orderings (XQ(x), GQ(x)), and let I denote the set of
all (classes of) monic irreducible polynomials in Q[x] with at least one real root.
Let (X0, G0) be a fixed quotient structure of (X, G) with (G : G0) = 2. Moreover,
let J ⊂ I be the set such that

G0 = 〈{−1} ∪ J ∪ (I \ J)(I \ J)〉.

Observe also that J = {p ∈ I | p ∈ G0}, so J determines uniquely and is uniquely
determined by G0.

Example 4.1. If J = I \ {p}, for some p ∈ I, then (X0, G0) is a quotient space.
Indeed, suppose that r ∈ R is a root of p, and that σ−

r and σ+
r are the two orderings

corresponding to r, one making p positive, and one making p negative. Let γ =
σ−

r ·σ+
r . Then, readily, G0 = ker γ, and (X0, G0) is a space of orderings by Theorem

3.3.

Example 4.2. If J = I \ {p1, p2}, for some p1, p2 ∈ I, p1 6= p2, then (X0, G0)
is a quotient space. As before, let r1, r2 ∈ R be real roots of p1, p2, respectively,
and let σ−

ri
and σ+

ri
be the two orderings corresponding to ri, i ∈ {1, 2}. Let

γ = σ−
r1

σ+
r1

σ−
r2

σ+
r2

. Then, as before, (X0, G0) is a quotient space by Theorem 3.3
with G0 = ker γ.

Example 4.3. If J = I \ {p1, . . . , pn}, for some n ≥ 3, and p1, . . . , pn ∈ I pairwise
distinct, then (X0, G0) is never a quotient space. Let r1, . . . , rn ∈ R be real roots
of p1, . . . , pn, respectively, and let σ−

ri
and σ+

ri
be the two orderings corresponding

to ri, i ∈ {1, . . . , n}. Then G0 = ker σ−
r1

σ+
r1
· . . . ·σ−

rn
σ+

rn
. Suppose that (X0, G0) is a

quotient space, and that G0 = ker γ, with γ = τ1 · . . . · τ4, for some τ1, . . . , τ4 ∈ X .
Following an argument that will be later discussed in detail in the proof of Remark
5.3 (2) we see, that the presentation σ−

r1
σ+

r1
· . . . · σ−

rn
σ+

rn
cannot be shortened, and

thus yield a contradiction.

Example 4.4. If J is finite, then (X0, G0) is never a quotient space. For suppose
(X0, G0) is a quotient space with G0 = ker γ, for some γ = σ1·. . .·σ4, σ1, . . . , σ4 ∈ X .
Let S be the finite set of all points on the real line corresponding to the orderings
σ1, . . . , σ4. Take an irreducible polynomial q ∈ I, strictly positive on the set S, but
not belonging to J : we note that such a q always exist, in fact, there are infinitely
many such q. Then q ∈ G0, which contradicts q /∈ J .
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The case of both I and J being infinite is widely open. In principle, one would like
to get a description of quotients similar to the “positivity conditions” of Example
2.5, but it is considerably more complicated compared to the case of the space of
orderings of R(x).

Example 4.5. Let r1, . . . , r4 be four real algebraic numbers. Suppose they are all
roots of one irreducible polynomial q. Let

J = {p ∈ I : p is positive at an even number of roots ri, i ∈ {1, . . . , 4}} ∪ {q}.

Then (X0, G0) is a quotient space. Indeed, one checks that if σ−
ri

and σ+
ri

are
the two orderings corresponding to ri, i ∈ {1, . . . , 4}, then G0 = ker γ for γ =
σ−

r1
σ−

r2
σ−

r3
σ−

r4
, with σ−

r1
, σ−

r2
, σ−

r3
, σ−

r4
all coming from one connected component. We

note that instead of σ−
r1

σ−
r2

σ−
r3

σ−
r4

we can use any other combination of σǫ
ri

, i ∈
{1, . . . , 4}, ǫ ∈ {−, +}, making q positive: at the end, they all define the same γ,
since σ−

ri
σ+

ri
σ−

rj
σ+

rj
= 1, for i 6= j, i, j ∈ {1, . . . , 4}.

Example 4.6. Let r1, . . . , r4 be four real algebraic numbers again, but now suppose
that r1 and r2 are roots of an irreducible polynomial q1, and r3, r4 are roots of
an irreducible q2. Furthermore, assume that q1 and q2 have no roots other than
r1, . . . , r4. Let

J = {p ∈ I : p is positive at an even number of roots ri, i ∈ {1, . . . , 4}} ∪ {q1, q2}.

Then (X0, G0) is a quotient space. Indeed, denote by σ−
ri

and σ+
ri

the two orderings
corresponding to ri, the first one making the minimal polynomial of ri negative,
and the second one positive, i ∈ {1, . . . , 4}. Depending on how the polynomials q1

and q2 overlap, there are different ways of defining γ. Say, for example, that q1 and
q2 are related as in Figure 1. Set γ = σ−

r1
σ−

r3
σ+

r2
σ+

r4
. One checks that the conditions

Figure 1. Irreducible polynomials q1 and q2.

of Theorem 3.3 are satisfied. The reader might wish to experiment with different
ways of structuring roots of q1 and q2.

We note that if polynomials q1 and q2 in Example 4.6 have more than just two
roots each, the quotient structure (X0, G0) is, in general, not a quotient space.
As details at this level are becoming too technical, we are not going to discuss
that any further. In a relatively similar way one can obtain “positivity conditions”
for quotient structures associated to two real algebraic numbers, or four real tran-
scendental numbers, or a number of a mix between algebraic and transcendental
reals.

We remark also that similar (but simpler) examples can be constructed starting
with the space of orderings of R(x) instead of the space of orderings of Q(x).
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5. General quotients

We continue to assume that (X, G) is a space of orderings. Fix a subgroup G0

of G containing −1, possibly having infinite index in G, and let X0 denote the set
of all restrictions of elements of X to G0. Denote the restriction of σ ∈ X to G0 by
σ. Let S := X4 ∩ χ(G/G0). Theorem 2.3 generalizes as follows:

Theorem 5.1. A necessary condition for the quotient structure (X0, G0) of (X, G)
to be a space of orderings is that S generates χ(G/G0) as a topological group, i.e.,
χ(G/G0) is the closure of the subgroup of χ(G/G0) generated by S, i.e., S⊥ = G0.

Proof. It suffices to show that, for each g ∈ G\G0 ∃ γ ∈ S such that γ(g) 6= 1. Fix
g ∈ G\G0. Case 1: ∃ σ, τ ∈ X such that σ(g) 6= τ(g) and σ = τ . In this case we
take γ = στ . Case 2: ∀ σ, τ ∈ X , σ = τ ⇒ σ(g) = τ(g). In this case, the function
φ : X0 → {±1} defined by φ(σ) = σ(g) is well-defined and continuous, and is not in
the image of the natural map G0 →֒ Cont(X0, {±1}). Thus, by [9, Theorem 7.2], ∃

a 4-element fan σ1, σ2, σ3, σ4 in X0 such that
∏4

i=1 φ(σi) 6= 1. In this case we take

γ =
∏4

i=1 σi. �

For each γ ∈ S, γ 6= 1, γ has some (not necessarily unique) minimal expression

γ =
∏k

i=1 σi, σi ∈ X , k = 2 or 4. Denote by (Y, G/∆) the subspace of (X, G)
generated by the connected components of the various σi, i = 1, . . . , k, γ running
through S\{1}, and let Y0 denote the set of restrictions of elements of Y to G0.

Theorem 5.2. A necessary condition for the quotient structure (X0, G0) of (X, G)
to be a space of orderings is that S generates χ(G/G0) as a topological group and
the quotient structure (Y0, G0/∆) of (Y, G/∆) is a space of orderings.

Proof. If the quotient structure (X0, G0) of (X, G) is a space of orderings then the
quotient structure (Y0, G0/∆) of (Y, G/∆) is a subspace of (X0, G0), so it is itself
a space of orderings. �

The subspace (Y, G/Y ⊥) of (X, G) defined above will be referred to as the core
of the space of orderings (X, G) with respect to the quotient structure (X0, G0).

Remark 5.3. (1) The connected components occurring in the definition of the core
(Y, G/∆) do not depend on the particular minimal presentations of the elements
γ ∈ S\{1}. If we have two minimal presentations

γ = σ1 . . . σk, γ = τ1 . . . τℓ, σi, τj ∈ X, k, ℓ ∈ {2, 4}

then, using [7, Lemma 3.2], we see that ∀ i ∃ j such that σi ∼ τj and, similarly, ∀
j ∃ i such that τj ∼ σi.

Proof. Since σ1 . . . σk = τ1 . . . τℓ it follows that σ1 . . . σkτ1 . . . τℓ = 1. By hypoth-
esis σ1, . . . , σk are linearly independent and k ≥ 1. After reindexing suitably, we
can assume that σ1, . . . , σk, τ1, . . . , τt−1, 1 ≤ t ≤ ℓ is a maximal linearly inde-
pendent subset of σ1, . . . , σk, τ1, . . . , τℓ. Then τt is some linear combination of
σ1, . . . , σk, τ1, . . . , τt−1, say τt =

∏

i∈I σi

∏

j∈J τj , I ⊆ {1, . . . , k}, J ⊆ {1, . . . , t−1}.

Since τ1, . . . , τℓ are linearly independent we see that I 6= ∅. According to [7, Lemma
3.2], σi ∼ τt for each i ∈ I. If I = {1, . . . .k} we are done. Otherwise, after canceling,
we obtain

∏

i∈I′ σi

∏

j∈J′ τj = 1 where I ′ = {1, . . . , k}\I, J ′ = {1, . . . , ℓ}\(J ∪ {t}).
The result follows now, by induction on k. �
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(2) If T is a maximal linearly independent subset of S then the connected compo-
nents coming from the elements of S\{1} are the same as the connected components
coming from the elements of T .

Proof. Suppose γ ∈ S\{1}, γ = γ1 . . . γm, γj ∈ T . Choose minimal presentations

γ =
∏k

i=1 σi, γj =
∏kj

p=1 τjp, σi, τjp ∈ X . We want to show that for each i, σi ∼ τjp

for some j, p. This reduces to showing σ1 . . . σk = τ1 . . . τℓ, σi, τj ∈ X , σ1, . . . , σk

linearly independent ⇒ ∀ i ∃ j such that σi ∼ τj . Since it is possible to reduce
further to the case where τ1, . . . , τℓ are linearly independent (by canceling whatever
relations exist between the τj , one by one) we see that this follows by the same
argument used in (1). �

(3) Suppose (X, G) has no infinite fans, (G : G0) = 2m < ∞, S generates
χ(G/G0) as a (topological) group, and γ1, . . . , γm is some basis for χ(G/G0) chosen

so that each γi belongs to S, and each γi has a minimal presentation γi =
∏ki

j=1 σij ,

σij ∈ X , then the core of the space of orderings (X, G) with respect to the quotient
structure (X0, G0) is the union of the connected components of the various σij .
This follows from (2) in conjunction with the fact that any finite union of connected
components is a subspace, by [12, Theorem 3.6].

Again it is natural to wonder if the necessary conditions for a quotient structure
to be a quotient space given by Theorem 5.2 are sufficient. Although we are unable
to prove this, we are able to show it is true in certain cases.

Theorem 5.4. For a space of orderings (X, G) with finitely many non-singleton
connected components and no infinite fans and a quotient structure (X0, G0) of
(X, G) of finite index, the following are equivalent:

(1) (X0, G0) is a space of orderings.
(2) X4∩χ(G/G0) generates χ(G/G0) and the quotient structure (Y0, G0/∆) of

the core (Y, G/∆) is a space of orderings.

Observe that Theorem 5.4 applies, in particular, to finite spaces of orderings and
to SAP spaces of orderings.

Theorem 5.5. For the space of orderings (X, G) = (XQ(x), GQ(x)) and a quotient
structure (X0, G0) of (X, G) of finite index, the following are equivalent:

(1) (X0, G0) is a space of orderings.
(2) X4 ∩ χ(G/G0) generates χ(G/G0) and the quotient structure (Y0, G/∆) of

the core (Y, G/∆) is a space of orderings.
(3) (X0, G0) is a profinite space of orderings.

Proof. (1) ⇒ (2) is a consequence of Theorem 5.2. (3) ⇒ (1) is trivial (since every
profinite space of orderings is, in particular, a space of orderings). It remains to

show (2) ⇒ (3). Assume (2) holds. Let (G : G0) = 2m, and choose γi =
∏ki

j=1 σij ,

σij ∈ X , i = 1, . . . , m as in Remark 5.3(3). To prove (3) it suffices to show that for
any finite subset W of G0 there exists a finite quotient space (X |H , H) of (X, G) such
that W ⊆ H and (X |H∩G0

, H∩G0) is a quotient space of (X |H , H). Define H , Y as
in the preamble to Lemma 3.1, taking A to be any finite set of real monic irreducibles
in Q[x] containing all real monic irreducible factors of elements of W together with
all real monic irreducibles p such that Xp ∩∪{σij | i = 1, . . . , m, j = 1, . . . , ki} 6= ∅,
and taking B to be any finite set of transcendental real numbers such that, for
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each i = 1, . . . , m and each j = 1, . . . , ki, if σij is an archimedian ordering then
the corresponding transcendental real number belongs to B. Obviously W ⊆ H .
By Lemma 3.1, (X |H , H) is a quotient space of (X, G) which is naturally identified
with the quotient space (Y, G/Y ⊥) of (X, G). By construction, Y is a union of
connected components of (X, G) and contains all components of (X, G) meeting
the set {σij | i = 1, . . . , m, j = 1, . . . , ki}. Also, (Y, G/Y ⊥) is finite and has
stability index 1 or 2. It follows from Theorem 5.4 applied to the finite space of
orderings (Y, G/Y ⊥) and assumption (2) that (Y |G0

, G0/Y ⊥) is a quotient space
of (Y, G/Y ⊥). Since (X |H∩G0

, H ∩G0) is identified with (Y |G0
, G0/Y ⊥) under the

isomorphism (X |H , H) ∼= (Y, G/Y ⊥), this completes the proof. �

Remark 5.6. The underlying motivation to study quotients of spaces of orderings,
as formulated in [5], was to search for examples of spaces of orderings that are not
realized as spaces of orderings of fields. A possible way of proving that a space of
orderings is not realized in such a way is to give an example of a form φ ∈ W (X, G)
such that

∀σ ∈ X(sgnσφ ≡ 0 mod 2n) and φ /∈ In(X, G).

Here W (X, G) denotes the Witt ring of the space of orderings (X, G), and In(X, G)
denotes the n-th power of its fundamental ideal. The equivalence:

∀σ ∈ X(sgnσφ ≡ 0 mod 2n) if and only if φ ∈ In(X, G).

is valid for any n ∈ N, if (X, G) is a space of orderings of a field. It was conjectured
by Marshall and is also known as Lam’s Open Problem B [6]. For n ≤ 2 the
equivalence is easy to show, but for n ≥ 3 the proof uses a deep result from [15] and
[16]. A short explanation of how to derive the equivalence from that result can be
found in [14], and a longer exposition on the theme in [3]. In [1, Proposition 6] and
[4, Theorem 2] it has been shown that the equivalence holds true for any profinite
spaces of orderings. Thus Theorem 5.5 shows, in particular, that a conceivable
method of finding non-realizable spaces of orderings among quotients of the space
of orderings of Q(x) of finite index will prove to be fruitless.

6. Appendix: The sheaf construction

We recall the sheaf construction in [11, Chapter 8]. The results in [11, Chapter
8] are phrased in terms of reduced Witt rings, not spaces of orderings, but the two
categories are equivalent, so these results are valid for spaces of orderings.

Theorem 6.1. Suppose (Xi, Gi) is a space of orderings for each i ∈ I, where I is
a Boolean space. Suppose X = ∪̇i∈IXi is equipped with a topology such that

(1) X is a Boolean space,
(2) the inclusion map Xi →֒ X is continuous, for each i ∈ I,
(3) the projection map π : X → I is continuous, and
(4) if (iλ)λ∈D is any net in I converging to i ∈ I and if σλ

1 , σλ
2 , σλ

3 , σλ
4 is a 4-

element fan in Xiλ
such that σλ

j converges to σj ∈ Xi for each j = 1, 2, 3, 4,
then σ1σ2σ3σ4 = 1.

Then (X, G) is a space of orderings, where

G := {φ ∈ Cont(X, {±1}) | φ|Xi
∈ Ĝi ∀ i ∈ I}.

Proof. See [11, Theorem 8.5]. �

We need only the following special case of Theorem 6.1:
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Corollary 6.2. Suppose (Xi, Gi) is a space of orderings for each i ∈ I, where
I is a Boolean space, and (Xi, Gi) is SAP for all but finitely many i. Suppose
X = ∪̇i∈IXi is equipped with a topology such that X is a Boolean space, the inclusion
map Xi →֒ X is continuous, for each i ∈ I, and the projection map π : X → I is
continuous. Then (X, G) is a space of orderings, where

G := {φ ∈ Cont(X, {±1}) | φ|Xi
∈ Ĝi ∀ i ∈ I}.

Proof. It suffices to show that condition (4) of Theorem 6.1 holds. Suppose (iλ)λ∈D

is a net in I satisfying the hypothesis of (4). For each λ ∈ D, Xiλ
contains a 4-

element fan (so, in particular, the space of orderings (Xiλ
, Giλ

) is not SAP) so the
set {iλ | λ ∈ D} is finite. Replacing the net (iλ)λ∈D by a suitable subnet, we can
assume the net (iλ)λ∈D is constant. In this case, the conclusion of (iv) is obvious,
using the continuity of the multiplication in the character group χ(Gi). �
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