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Abstract This paper addresses the question of retrieving the triple (X ,P, E)
from the algebraic geometry code CL(X ,P, E), where X is an algebraic curve
over the finite field Fq, P is an n-tuple of Fq-rational points on X and E is
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are not secure if used in the McEliece public-key cryptosystem.

The first two authors are partially supported by Spanish MCINN under project MTM2007-
64704. First author research is also supported by a FPU grant AP2008-01598 by Spanish
MEC. Second author is also supported by Spanish MCINN under project MTM2010-21580-
C02-02.

I. Márquez-Corbella
Department of Algebra, Geometry and Topology, University of Valladolid, Facultad de Cien-
cias, 47005 Valladolid, Spain
Tel.: +34 983 423046
Fax: +34 983 423788
E-mail: imarquez@agt.uva.es

E. Mart́ınez-Moro
Department of Applied Mathematics, University of Valladolid, Campus Duques de Soria,
E-42004 Soria, Spain.
Tel.: +34 975 129420
Fax: +34 975 129401
E-mail: edgar@maf.uva.es

R. Pellikaan
Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Tel.: +31 40 2474222
Fax: +31 40 2435810
E-mail: g.r.pellikaan@tue.nl



2 I. Márquez-Corbella, E. Mart́ınez-Moro and R. Pellikaan

Keywords Algebraic geometry codes · public-key cryptosystems

Mathematics Subject Classification (2000) 14G50 · 94A60

1 Introduction

Algebraic geometry codes (AG codes) also known as Goppa codes were in-
troduced in 1977 by V.D. Goppa. The interested reader is referred to [15,
19,41,42]. These codes have efficient decoding algorithms that correct up to
half the designed minimum distance [20,19]. And they are used not only for
error-correction but also for public-key cryptography. Particularly, Janwa and
Moreno [23] propose to use AG codes for the McEliece cryptosystem. This
system was broken for codes on curves of genus g ≤ 2 by Faure and Minder
[14] but for higher genus the security status of this scheme was not known.
Throughout this section we will briefly introduce some concepts of AG codes
necessary to describe the motivations and objective of this article which will
be discussed at the end of the section.

Let Fq be a finite field with q elements and Fq[X] be the polynomial ring
in one variable over Fq. By an algebraic curve we mean a curve that is ab-
solutely irreducible, projective and nonsingular. The algebraic geometry code
CL(X ,P, E) is constructed using an algebraic curve X defined over the finite
field Fq, an n-tuple P = (P1, . . . , Pn) of Fq-rational points on X and a divisor
E of X with disjoint support from P of degree m.

The function field of the curve X with field of constants Fq is denoted by
Fq(X ). Let f be a nonzero rational function on a curve X over Fq, then the
principal divisor of zeros and poles of f is denoted by (f). Two divisors D
and E on a curve X are called rational equivalent if there exists a rational
function f on X such that E = D + (f), this is denoted by D ≡ E. Moreover
the divisors D and E on a curve X with disjoint support with P are called
rational equivalent with respect to P and denoted by D ≡P E if there exists
a rational function f on X such that it has no poles at the points of P,
E = D + (f) and f(Pj) = 1 for all j = 1, . . . , n.

Let E be a divisor of X of degree m. Then we define the vector space of
rational functions associated to E as the set

L(E) = {f ∈ Fq(X ) | f = 0 or (f) ≥ −E} ,

and the linear series of E as the collection |E| = { F | F ≡ E,F ≥ 0 }.
If f is a nonzero element of L(E) then (f) ≥ −E. Let F = (f) + E then

F ≥ 0 and F ≡ E so F ∈ |E|. Conversely, every F ∈ |E| comes from a nonzero
rational function f ∈ L(E) which is unique up to nonzero scalar multiplication
since (λf) = (f) for all nonzero scalar multiple λ. Therefore we can define an
isomorphism between the following spaces

P(L(E)) = L(E)∗/F∗q −→ |E|.

The dimension of the space L(E) is denoted by l(E), thus the projective
dimension of the linear series |E| is equal to l(E)−1. The index of speciality of



Cryptanalysis of PKC based on AG codes 3

E is defined by i(E) = l(K−E), where K is a canonical divisor. Furthermore,
let g be thegenus of the curve X , then l(E) = m+ 1− g+ i(E) ≥ m+ 1− g. If
m > 2g− 2 then, by Riemann-Roch Theorem, equality holds that is i(E) = 0.

Let P = (P1, . . . , Pn) be an n-tuple of mutual distinct Fq-rational points
on X . Then the divisor P1 + · · ·+ Pn will be denoted by P . If the support of
E is disjoint from P , then the following evaluation map:

evP : L(E) −→ Fn
q

is well defined by evP(f) = (f(P1), . . . , f(Pn)). The algebraic geometry code
CL(X ,P, E) is the image of L(E) under the evaluation map evP . The param-
eters of these codes satisfy the following bounds:

Proposition 1 If m < n then the dimension of the code CL(X ,P, E) is equal
to m+ 1− g + i(E) ≥ m+ 1− g and its minimum distance is at least n−m.
Moreover, if m > 2g − 2, then CL(X ,P, E) has dimension m+ 1− g.

Proof The statement about the minimum distance is a consequence of the fact
that a principal divisor has degree zero. The dimension of the code follows from
the Theorem of Riemann-Roch [41,42]. ut

The following proposition is related with the dual code of an AG code.

Proposition 2 Let X be an algebraic curve over Fq of genus g, P an n-tuple
of mutually distinct Fq-rational points of X and E a divisor of X with disjoint
support from P of degree m. Let ω be a differential form with a simple pole at
Pj with residue 1 for all j = 1, . . . , n and let K be the canonical divisor of ω.
Define E⊥ = P −E+K and m⊥ = deg(E⊥). Then m⊥ = 2g− 2−m+n and
CL(X ,P, E)⊥ = CL(X ,P, E⊥).

Proof See [41, Proposition 2.2.10]. ut

Definition 1 A code C over Fq is called weakly algebraic-geometric (WAG) if C
is equal to CL(X ,P, E) for some curve X over Fq, an n-tuple P = (P1, . . . , Pn)
of mutually distinct Fq-rational points of X and a divisor E with disjoint
support from P. In this case the triple (X ,P, E) is called a WAG representation
of C.

Proposition 3 Every code has a WAG representation.

Proof See [33, Theorem 2]. ut

The codes C and D are called (generalized) equivalent if there exists a
monomial matrix M such that M(C) = D. Two representations (X ,P, E)
and (Y,Q, F ) are called equivalent or isomorphic if there is an isomorphism
of curves ϕ : X → Y such that ϕ(P) = Q and ϕ(E) ≡ F , and they are
called strict equivalent or strict isomorphic if there is an isomorphism of curves
ϕ : X → Y such that ϕ(P) = Q and ϕ(E) ≡Q F .
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Proposition 4 Let (X ,P, E) and (Y,Q, F ) be WAG representations of the
codes C and D, respectively. Then:

(1) If (X ,P, E) and (Y,Q, F ) are equivalent, then C and D are equivalent.
(2) If (X ,P, E) and (Y,Q, F ) are strict equivalent, then C = D.

Proof The proof of the case X = Y and P = Q is given in [41, Prop. 2.2.14
(a)] for (1) and [40, Lemma 3.1] for (2) and both are generalized in a straight
forward matter. ut

Definition 2 Let X be an algebraic curve of genus g, P an n-tuple of n points
and E a divisor of degree m. A WAG representation (X ,P, E) of the code C
is called algebraic-geometric (AG) if deg(E) < n.

Moreover if 2g− 2 + t < deg(E) < n− t for some t then (X ,P, E) is called
a t-strong algebraic-geometric (t-SAG) representation.

In particular, a 0-SAG representation is a SAG representation as defined
in [33] where also several necessary conditions are given for a code to have an
AG or a SAG representation. Next proposition shows that a converse of the
second part of Proposition 4 holds for 1-SAG codes.

Proposition 5 Let X be a curve over Fq of genus g and P be an n-tuple of
mutually distinct Fq-rational points of X . If E and F are divisors on X of
degree m such that 2g − 1 < m < n − 1 and CL(X ,P, E) = CL(X ,P, F ) then
E ≡P F .

Proof See [31, Corollary 4.15]. ut

Duality preserves the t-SAG representations as we will see in our next
proposition.

Proposition 6 If C has a t-SAG representation, then C⊥ has also a t-SAG
representation.

Proof The proof is similar to the one given in [33, Corollary 1] for t = 0. Let
(X ,P, E) be a t-SAG representation of the code C. Then C = CL(X ,P, E)
where X is an absolutely irreducible non-singular curve over Fq of genus g,
P = (P1, . . . , Pn) is an n-tuple of mutually distinct Fq-rational points of X and
E is a divisor with disjoint support from P such that 2g−2+t < deg(E) < n−t.
Now, by Proposition 2, C⊥ = CL(X ,P, E⊥) and deg(E⊥) = 2g − 2 −m + n.
Hence 2g − 2 + t < deg(E⊥) < n − t and we conclude that (X ,P, E⊥) is a
t-SAG representation of C⊥. ut

From Proposition 6 we deduce that an analogous statement of Proposition
5 holds for the dual codes.

Let r = l(E)−1 and {f0, . . . , fr} be a basis of L(E). Consider the following
map:

ϕE : X −→ Pr(Fq)
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defined by ϕE(P ) = (f0(P ), . . . , fr(P )).

If m > 2g then r = m − g, so ϕE defines an embedding of the curve X
of degree m in Pr. More precisely, let Y = ϕE(X ), Qj = ϕE(Pj) and Q =
(Q1, . . . , Qn). Then Y is a curve in Pm−g of degree m, ϕE is an isomorphism
from X to Y and ϕE(E) = Y · H for some hyperplane H of Pm−g that is
disjoint from Q. See [18, Theorems 7.33 and 7.40]. Let F = ϕE(E) = Y ·H.
Then C = CL(Y,Q, F ), that is (Y,Q, F ) is also a representation of the code
C which is strict isomorphic with (X ,P, E). Therefore we have shown the
following proposition:

Proposition 7 Let (X ,P, E) be a WAG representation of the code C such
that deg(E) > 2g. Let Y = ϕE(X ), Q = ϕE(P) and F = ϕE(E). Then
(Y,Q, F ) is a representation of C that is strict isomorphic with (X ,P, E).

Let us briefly mention the connection between linear codes and affine or
projective varieties which is better explained by means of projective systems
[42, §1.1.2]. An n-tuple of points (P1, . . . , Pn) in Pr(Fq) is a projective system
if not all these points lie in a hyperplane. The points of a projective system in
Pr(Fq) are in general position if no r + 1 points of them lie on a hyperplane.

Let P = (P1, . . . , Pn) be a projective system in Pr(Fq) where Pj is given by
the homogeneous coordinates (p0j : p1j : . . . : prj). We define the (r + 1)× n-
matrix GP as the matrix with PT

j as j-th column. Then GP has rank r + 1,
since not all points lie in a hyperplane. That is GP can be seen as a generator
matrix of a nondegenerate [n, r + 1] code over Fq.

Conversely, let C be a nondegenerate [n, k] code over Fq with generator
matrix G. Take the columns of G as homogeneous coordinates of points in
Pk−1(Fq), this gives the projective system PG over Fq of G. Furthermore the
code has minimum distance d if an only if n − d is the maximal number of
points of PG in a hyperplane of Pk−1(Fq). Hence projective systems of points
in general position correspond to MDS codes.

Now, using the notation introduced before Proposition 7, let G be the
k × n matrix with entries fi(Pj). Then G is a generator matrix of the code
CL(X ,P, E) and Q is the projective system PG in Pr(Fq) .

The main task of this paper is recovering the triple (X ,P, E) from the code
CL(X ,P, E). To achieve this aim we use several facts. First of all a generator
matrix of the code CL(X ,P, E) gives a projective system Q = ϕE(P) of points
in the projective space Pr(Fq). Furthermore under some assumptions not only
the pair (X , E) gives an embedding ϕE(X ) of the curve in the projective r-
space such that the embedded curve is defined by quadratic equations (see
Section 3) but also the quadratic polynomials that vanish on Q generate the
vanishing ideal of the embedded curve (see Section 4).

Finally we provide an understanding of the security of the McEliece PKC
system based on algebraic geometry codes (see Section 6).
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2 GRS codes and the rational normal curve

Our results are generalizations of the well-known case of generalized Reed-
Solomon codes and its representation by rational normal curves.

Let n, k be arbitrary integers such that 1 ≤ k ≤ n ≤ q. We define the
set Lk = {f ∈ Fq[X] : deg(f(X)) ≤ k − 1}. Then for each a, b ∈ Fn

q the
evaluation map at these elements is given by:

eva,b : Lk −→ Fn
q

f 7→ eva,b(f(X)) = (f(a1) · b1, . . . , f(an) · bn)

We will denote the map eva,b by eva if b is the all-ones vector. If a is an
n-tuple of mutually distinct elements of Fq ∪{∞} and b an n-tuple of nonzero
elements of Fq, then this evaluation map is injective, since f ∈ Lk has at most
k − 1 < n zeros.

Definition 3 Let a be an n-tuple of mutually distinct elements of Fq and b
an n-tuple of nonzero elements of Fq. The generalized Reed-Solomon (GRS)
code is defined by GRSk(a,b) := {eva,b(f(X)) : f ∈ Lk}.

That is, for every codeword c ∈ GRSk(a,b) there exists a unique poly-
nomial fc ∈ Lk, known as the polynomial associated to c, such that c =
eva,b(fc(X)).

Theorem 1 The code GRSk(a,b) is an [n, k, n− k + 1] MDS code. Further-
more a generator matrix of GRSk(a,b) is given by

Ga,b =


b1 b2 . . . bn
b1a1 b2a2 . . . bnan
...

...
. . .

...

b1a
k−1
1 b2a

k−1
2 . . . bna

k−1
n


Proof See [22, §5]. ut

Consider the projective curve X = P1 given by z = 0. This curve has genus
zero and its points are (x : y). Now, let P∞ = (1 : 0) and Pj = (aj : 1) for all
j = 1, . . . , n. We define P = (P1, . . . , Pn) and E = (k− 1)P∞. Then l(E) = k,
which is in accordance with l(E) = deg(E)+1−g for deg(E) = k−1 > 2g−2,
and a basis for L(E) is given by

B1 =

{
1,
x

y
,
x2

y2
, . . . ,

xk−1

yk−1

}
.

Then the code CL(X ,P, E) has Gk(a,b) as generator matrix with b the all
ones vector.
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If D is an arbitrary divisor of degree k − 1, then D is rational equivalent
with E = (k− 1)P∞, that is to say there exists a rational function g such that
D + (g) = E. Hence L(D) = gL(E) and a basis of L(D) is given by

B2 =

{
g, g

x

y
, g
x2

y2
, . . . , g

xk−1

yk−1

}
.

If D has disjoint support with P, then g(Pj) is well defined for all j and we
deduce that CL(X ,P, D) has Gk(a,b) as generator matrix with bj = g(Pj) for
all j ∈ {1, . . . , n}. See [41, §2.3].

For every divisor E on the projective line of degree r > 0, the map ϕE

gives an embedding of P1 in Pr of degree r defined by

(x : y) 7−→ (xr : xr−1y : . . . : xr−iyi : . . . : xyr−1 : yr) ,

the image of this map in Pr is called a rational normal curve in Pr of degree
r, denoted by Xr.

The columns of the matrix Gr+1(a,b), considered as homogeneous coor-
dinates, are points of the curve Xr. Therefore a GRS code of dimension r + 1
can be described as a projective system of points on a rational normal curve
of degree r in Pr.

Next Proposition shows that this rational normal curve is the intersection
of
(
r
2

)
quadrics.

Proposition 8 The vanishing ideal I(Xr) of Xr is generated by the elements:

XiXr−i −XjXr−j , for 0 ≤ i < j ≤ r.
In other words, I(Xr) is the determinantal ideal of the 2 × 2 minors of the
following 2× r matrix (

X0 X1 . . . Xi . . . Xr−1
X1 X2 . . . Xi+1 . . . Xr

)
.

Proof See a proof of this classical result in [7,11,43] and [9,16]. For more
details in determinantal ideals we refer the reader to [8,36]. ut

Piggot and Steiner in [35] gave a construction of a parametrization of a
conic in the plane given 5 points in general position. This construction is
generalized in the following result.

Proposition 9 Through any r + 3 points in Pr(Fq) in general position there
passes a unique rational normal curve.

Proof See [16, p. 530].

This classical result and the attack of Sidelnikov-Shestakov could be con-
sidered as an algorithmic implementation of the following well known property
on rational normal curves:

Proposition 10 Let r, n be integers such that r ≥ 2 and n ≥ 2r + 3. If Q is
an n-tuple of points in general position in Pr(Fq) posing only 2r+1 conditions
on quadrics, then Q lies on a unique rational normal curve.

Proof See [16, p. 528–531], [2, Chap. III, §2, p. 120], [17, p. 9–14] and [9].
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3 Curves defined by quadratic equations

It was shown by Enriques [13], Babbage [4] and Petri [34] that the canonical
model of a non-singular non-hyperelliptic projective curve of genus at least
three is the intersection of quadrics and cubics, and of quadrics only except
in case of a trigonal curve and a plane quintic. This result for the canonical
divisor was generalized for arbitrary divisors E under certain constraints on
the degree. See [3,25,29,30,37] and [16, p. 528–535] and [2, Chap. III, §2 and
§3].

The polynomial ring R = Fq[X0, X1, . . . , Xr] is graded by

Rd = { f(X) ∈ R | f(X) is zero or is homogeneous of degree d } .

So it can be expressed in the form R = ⊕∞d=0Rd. We define R≤d = ⊕d
e=0Re.

Let I be an ideal, in a similar way, we define the d graded part of homogenous
elements of degree d in I as Id = I ∩Rd and, the set of homogeneous elements
of degree at most d as I≤d = I ∩R≤d.

Proposition 11 Let X be an algebraic curve of genus g over the perfect field
Fq. Let E be a divisor on X of degree m. If m ≥ 2g + 1, then Y = ϕE(X ) is
a normal curve in Pm−g which is the intersection of quadrics and cubics, in
particular I(Y) is generated by I2(Y) and I3(Y). If m ≥ 2g + 2, then I(Y) is
generated by I2(Y).

Proof See [29,37,38]. ut

Proposition 12 Let X be an algebraic curve of genus g ≥ 5 over the perfect
field Fq, that is not hyperelliptic, not triangular, not a double covering of an
elliptic curve (g ≥ 6) and not a non-singular plane quintic curve. Then ”almost
all” non-special divisors on X of degree m = 2g define an embedding Y of X
in Pm−g which is projectively normal and whose ideal is generated by I≤3(Y).

Proof See [21]. ut

Proposition 13 Let s, g be integers such that s ≥ 4 and
(
s−1
2

)
≤ g ≤

(
s
2

)
.

Then for ”almost all” pairs (X , E) where X is a curve of genus g over the
complex numbers and E is a non-special divisor of degree m ≥ g + 2s− 1 the
embedding Y of X in Pm−g is projectively normal and its ideal is generated by
I2(Y).

Proof See [25]. ut

4 Determination of I2(Q)

Now suppose that an n-tuple Q of mutually distinct Fq-rational points of Y
in Pr is given such that I(Y) is generated by I2(Y). In this section we will
deduce which hypothesis guarantees that I2(Q) = I2(Y) and how to compute
I2(Q) efficiently.
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Proposition 14 Let m, r and n be integers such that r ≥ 2 and n > dm. Let
Y be an absolutely irreducible curve in Pr of degree m. If Q is an n-tuple of
points that lies on the curve Y, then I≤d(Q) = I≤d(Y).

Proof I(Y) ⊆ I(Q), since Q lies on Y. Hence I≤d(Y) ⊆ I≤d(Q).
Conversely, let f be a homogeneous polynomial in I≤d(Q) of degree e ≤ d

and let Z be the hypersurface of degree e defined by f = 0. If Y ∩Z is a finite
set over the algebraic closure of the field Fq, then the intersection divisor
Y · Z is well defined and has degree em by Bézout’s theorem [18, Corollary
7.9], on account of the fact that Y has degree m and Z has degree e. Since
n > dm ≥ em, this contradicts the fact that the n points of Q are in the
intersection of Y and Z. Consequently Y ∩ Z is not finite and Y must be
contained in Z as Y is an absolutely irreducible curve. Therefore f vanishes
on Y, that is f ∈ I≤d(Y). ut

The assumption n > dm in the above proposition is tight. Take for instance
an absolutely irreducible curve Y in Pr of degree m and a generic hypersur-
face Z of degree d defined by the homogeneous equation f = 0 such that the
intersection consists of dm mutually distinct points Q = (Q1, . . . , Qdm). Then
Q lies on Y and f ∈ I≤d(Q) but f is not an element of I≤d(Y).

Let C be a k dimensional subspace of Fn
q with basis {g1, . . . ,gk}. We de-

note by S2(C) the second symmetric power of C, or equivalently the sym-
metrized tensor product of C with itself. If xi = gi, then S2(C) has ba-
sis {xixj | 1 ≤ i ≤ j ≤ n} and dimension

(
k+1
2

)
. Furthermore we denote by

〈C ∗ C〉 or C(2) the square of C, that is the linear subspace in Fn
q generated by

{a ∗ b|a,b ∈ C}. See [10, §4 Definition 6] and [26,45]. Now we consider the
linear map

σ : S2(C) −→ C(2),
where the element xixj is mapped to gi ∗ gj . The kernel of this map will be
denoted by K2(C).

Proposition 15 Let Q be an n-tuple of points in Pr(Fq) not in a hyperplane,
k = r + 1, GQ be the k × n matrix associated to Q and C be the subspace of
Fn
q generated by the rows of GQ. Then

I2(Q) = {
∑

1≤i≤j≤k aijXiXj |
∑

1≤i≤j≤k aijxixj ∈ K2(C) }.

Proof Let gij be the entry of GQ in the i-th row and the j-th column, then
the points Qt are given by the homogeneous coordinates (g1t : · · · : gkt). Let∑

1≤i≤j≤k aijxixj ∈ K2(C) then:

0 = σ

 ∑
1≤i≤j≤k

aijxixj

 =
∑

1≤i≤j≤k

aijgi∗gj =
∑

1≤i≤j≤k

aij (gi1gj1, . . . , gingjn)

So ∑
1≤i≤j≤k

aijgitgjt = 0 for all t = 1, . . . , n
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Hence the evaluation
∑

1≤i≤j≤k aijXiXj at Qt is zero for all t = 1, . . . , n.
Therefore

∑
1≤i≤j≤k aijXiXj ∈ I2(Q).

The converse inclusion is proved by reading the above backwards. ut

Corollary 1 Let Q be an n-tuple of points in Pr(Fq) not in a hyperplane.
Then O(n2

(
r
2

)
) is an upper bound on the complexity of the computation of

I2(Q).

Proof By Proposition 15, a basis of K2(C) gives directly a generating set of
I2(Q). Recall that C(2) is generated by the elements

{gi ∗ gj | 1 ≤ i ≤ j ≤ k = r − 1}

which form an
(
k+1
2

)
× n matrix. Gaussian elimination of this matrix gives a

matrix R in reduced row echelon form in O(n2
(
k+1
2

)
) elementary operations.

A basis of K2(C) can be read of directly from R as the left kernel of R. ut

In the general case we define the spaces Sd(C), C(d) and Kd(C) for any pos-
itive integer d, then we have a similar result to that in Proposition 15 relating
Id(Q) and Kd(C). Furthermore we have that O(n2

(
k+d−1

d

)
) is an upper bound

on the complexity of the computation of Id(Q).

The problem of the efficient computation of the vanishing ideal of a finite
set of points was introduced by Buchberger and Möller in 1982 [28]. Then
several generalization have been proposed, for instance, to the case of points
with multiplicity, Lakshman in 1991 [24] and to the projective case, Cioffi in
1998 [12]. Lately, Abbott et al. [1] came with a variant of the classical BM
Algorithm where they tame the problem of coefficient growth.

The following algorithm produces, in a finite number of steps, the reduced
Gröbner basis of the ideal I2(Q) with respect to a desired ordering where Q
is an n-tuple of points in Pr(Fq). It is a straight-forward adaptation of the
Projective version of the classical Buchberger-Möller Algorithm presented in
[1] for the special case where we know that the elements of the reduced Gröbner
basis have degree two.

Let Tr+1
2 be the set of powers of degree two of the r variables {x0, . . . , xr},

let σ be a term ordering in Tr+1
2 and let Q = {Q1, . . . , Qn} be an n-tuple of

points in Pr(Fq) where Qj is given by the homogeneous coordinates (qj0 : . . . :
qjr).

Initialization: Let:

I1 L be the ordered list of the elements of Tr+1
2 w.r.t. σ,

I2 G = [] and S = [] be empty lists
I3 and M = (mij) be an 0× n matrix over Fq.

Main loop:

L1 IF L is empty then go to the End
ELSE choose the power product t = min≺(L) and remove it from L.
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L2 Compute the evaluation vector (t(Q1), . . . , t(Qn)), and reduce it against
the rows of the matrix M , to obtain

v = (v1, ..., vn) = (t(Q1), . . . , t(Qn))−
∑
i

ai(mi1, ...,min) with ai ∈ Fq.

L3 IF v = 0 then add the polynomial t −
∑

i aisi to the list G, where si
is the i-th element of the list S. Goto L1.
ELSE add v as a new row of M and t −

∑
i aisi as a new element to

the list S. Goto L1.

End: Return G the reduced Gr”obner basis of I2(Q) w.r.t. σ.

Let n be the number of points and let r+1 be the number of variables, that
is r is the dimension of the ambient projective space. Then the complexity of
the previous algorithm is O

((
r+1
2

)
ns2
)

where s is the maximum between the
values r + 1 and n.

In the above algorithm the matrix M is constructed in such a way that it
is in reduced row-echelon form, after a permutation of the columns, if neces-
sary. That is, we should consider that the matrix M has at most s linearly
independent rows and therefore adding new rows to this matrix will not make
any change in our algorithm. Then a vector v ∈ Fn

q is reduced against M by
continuously subtracting suitable multiple of the rows of M to cancel the first
non-zero element of v. The process stop when either the vector v becomes
zero or there is no row in M that reduces its first non-zero entry.

To obtain the complexity of this algorithm there are several factors which
have been taken into account. Firstly, the above remark about how the matrix
M is constructed, then the fact that the cost that dominates the algorithm is
the cost of step L2 which, for each evaluation vector u, consist on applying

Gauss elimination to the augmented matrix

(
M
u

)
. Furthermore there are(

r+1
2

)
elements in Tr+1

2 , therefore this step is executed at most
(
r+1
2

)
times.

To this we can also add the cost of the treatment of the list L but, since we
are working with monomials of degree 2, this cost is often neglected.

5 Very strong algebraic-geometric codes

Definition 4 A code C over Fq is called very strong algebraic-geometric (VSAG)
if C is equal to CL(X ,P, E) where the curve X over Fq has genus g, P consists
of n points and E has degree m such that

2g + 2 ≤ m < 1
2n or 1

2n+ 2g − 2 < m ≤ n− 4.

The dimension of a such a code is k = m+ 1− g. Thus the dimension satisfies
the following bound

g + 3 ≤ k < 1
2n− g + 1 or 1

2n+ g − 1 < k ≤ n− g − 3.
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Note that if a code has a VSAG representation then its dual is also VSAG by
an argument that is similar to the one given in the proof of Proposition 6.

Note that an [n, k] VSAG code on a curve of genus g lies asymptotically
in the range

γ ≤ R ≤ 1
2 − γ or 1

2 + γ ≤ R ≤ 1− γ,

for n→∞, where R = k
n is the information rate and γ = g

n the relative genus.
Note that n ≤ N = |X (Fq)|, where X (Fq) denotes the set of Fq-rational points
on X . Hence γ ≥ g

N .

Theorem 2 Let C be a VSAG code then a VSAG representation can be ob-
tained from its generator matrix. Moreover all VSAG representations of C are
strict isomorphic.

Proof Let (X ,P, E) be a VSAG representation of C, that is X is an algebraic
curve over Fq of genus g, P is an n-tuple of mutually distinct Fq-rational points
of X and E is a divisor of X with disjoint support from P of degree m such
that

2g + 2 ≤ m < 1
2n or 1

2n+ 2g − 2 < m ≤ n− 4.

By duality we may assume that 2g+2 ≤ m < 1
2n. Let G ∈ Fk×n

q be a generator
matrix of C and Q = PG be the associated projective system of G.

Since m > 2g, Proposition 7 confirms that there exists an embedding of
the curve X in Pr of degree m:

ϕE : X −→ Pr

P 7−→ ϕE(P) = (f0(P), . . . , fr(P))

where {f0, . . . , fr} is a basis of L(E) and r = dim(L(E))−1 = m−g satisfying
that Q = ϕE(P) lies on the curve Y = ϕE(X ) and F = ϕE(E) = Y · H for
some hyperplane H of Pm−g that is disjoint from Q, such that (Y,Q, F ) is a
representation of C that is strict isomorphic with (X ,P, E).

Furthermore, since m ≥ 2g+2, Proposition 11 states that I(Y) is generated
by I2(Y) and, since n > 2m, Proposition 15 affirms that I2(Y) = I2(Q). So
the curve Y is determined by the n-tuple of points Q. Hence starting with
a generator matrix of C we get a representation (Y,Q, F ) of C that is strict
isomorphic with (X ,P, E).

Let (X ′,P ′, E′) be another VSAG representation of C then (Y,Q, F ) is
strict isomorphic with (X ′,P ′, E′) from the previous reasoning. Hence (X ,P, E)
and (X ′,P ′, E′) are strict isomorphic. ut

Theorem 2 does not apply in the range 1
2n ≤ m ≤

1
2n+ 2g − 2 but by the

following shortening argument one can extend this result.
Let C be a code of length n and let t be an integer 0 ≤ t ≤ n. The code

Ct is obtained from C by shortening at the last t positions. It has length n− t
and is defined by

Ct = {(c1, . . . cn−t) | (c1, . . . cn−t, 0, . . . , 0) ∈ C}.
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Proposition 16 Let (X ,P, E) be a WAG representation of C where X is
an algebraic curve over Fq of genus g, P is an n-tuple of mutually distinct
Fq-rational points of X and E is a divisor of X with disjoint support from
P of degree m such that C = CL(X ,P, E). Let Pt = (P1, . . . , Pn−t) and let
Et = E − (Pn−t+1 + · · ·+ Pn). If 1

2n ≤ m ≤ n− 2g − 3 and t = 2m− n+ 1,
then Ct = CL(X ,Pt, Et) is a VSAG code.

Proof If a point P of X is not in the support of E, then

L(E − P ) = {f ∈ L(E)|f(P ) = 0}.

So

L(Et) = {f ∈ L(E) | f(Pj) = 0 for all n− t+ 1 ≤ j ≤ n},

since Pn−t+1, . . . , Pn are mutually distinct and they are not in the support of
E. Hence Ct = CL(X ,Pt, Et).

Now assume that 1
2n ≤ m ≤ n− 2g− 3 and let t = 2m−n+ 1. Then t ≥ 1

and Et has degree m− t = n−m− 1 satisfying the following inequality

2g + 2 ≤ deg(Et) ≤
1

2
n.

Therefore Ct is a VSAG code. ut

Remark 1 The WAG code CL(X ,P, E) of Proposition 16 where the curve X
has genus g, P consist of n points and E has degree m such that 1

2n ≤ m ≤
n− 2g − 3 has dimension k = m+ 1− g such that

1
2n+1−g ≤ k ≤ n−3g−2, so asymptotically 1

2−γ ≤ R ≤ 1−3γ for n→∞.

Furthermore, if the dual code C(X ,P, E)⊥ satisfies the condition of Proposi-
tion 16, i.e. 1

2n ≤ m⊥ ≤ n − 2g − 3, then 4g + 1 ≤ m ≤ 1
2n + 2g − 2. Hence

CL(X ,P, E) has dimension k such that

3g + 2 ≤ k ≤ 1
2n+ g − 1, so asymptotically 3γ ≤ R ≤ 1

2 + γ for n→∞.

6 Cryptanalysis of PKC’s using VSAG codes

In 1978, McEliece [27] introduced the first public key cryptosystem (PKC)
based on the theory of error-correcting codes in particular he proposed to use
a [1024, 524, 101] classical binary Goppa code. The security of this scheme is
based on the hardness of the decoding problem for general linear codes and
the hardness of distinguishing a code with the prescribed structure from a
random one. This property makes McEliece scheme an interesting candidate
for post-quantum cryptography. An overview of the state of the art of cryp-
tosystems that are secure against attacks by quantum computers is provided
in [6]. Another advantage of this scheme is its fast encryption and decryption
functions.
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Many attempts to replace Goppa codes with different families of codes have
been proven to be insecure as for example using GRS codes such as the original
Niederreiter system [32] which was broken by Sidelnikov and Shestakov [39]
in 1992. Recall that GRS codes can be seen as the special class of algebraic
geometry codes on the projective line, that is the algebraic curve of genus zero.
This result was generalized to curves of genus 1 and 2 by Faure and Minder
[14] in 2008. These attacks can be viewed as retrieving the curve, n points on
this curve and the divisor E.

Since the initial Niederreiter scheme is completely broken, Berger and
Loidreau [5] proposed in 2005 another version which was designed to resist
precisely the Sidelnikov-Shestakov attack. The main idea of this variant is
to work with subcodes of the original GRS code rather than using the com-
plete GRS code. However Wieschebrink [44] in 2006 presents the first feasible
attack to the Berger-Loidreau cryptosystem that allows us to recover the se-
cret key if the chosen subcode is large enough but which was impractical for
small subcodes. Furthermore in 2010 Wieschebrink [45] noted that it seems
that with high probability the square code of a subcode of a GRS code of
parameters [n, k] is itself a GRS code of dimension 2k − 1. Therefore we can
apply the Sidelnikov-Shestakov attack and thus reconstruct the secret key in
polynomial time. Continuing this line of work, in [26], we characterized those
subcodes which are weak keys for the Berger-Loidreau cryptosystem. That is,
firstly those subcodes which are themselves GRS codes, we have seen that the
probability of occurrence of this fact is very small, and secondly those sub-
codes whose square code is a GRS code of maximal dimension which has high
probability of occurrence.

In 1996 Janwa and Moreno [23] proposed to use the collection of AG codes
on curves for the McEliece cryptosystem. As we have already explained this
system was broken for codes on curves of genus g ≤ 2 by Faure and Minder
[14]. But the security status of this proposal for higher genus was not known.

We could also attack codes with rates in the range 0 ≤ R ≤ γ by elabo-
rating on Propositions 12 and 13 when m ≤ 2g as we did with Proposition 11
for m > 2g. A similar remark holds for the range 1 − γ ≤ R ≤ 1 by duality.
However, code-based PKC usually takes codes with rate very close to 1

2 , since
all decoding algorithms for general codes have exponential complexity and the
largest exponent is achieved for half-rate codes. Therefore from this point of
view the intervals for the rate [0, γ] and [1− γ, 1] are the least interesting.

Theorem 2 implies that one should not use VSAG codes for the McEliece
PKC system in the range

γ ≤ R ≤ 1
2 − γ or 1

2 + γ ≤ R ≤ 1− γ,

for n → ∞, since there is an efficient attack by our result. By a shortening
argument Proposition 16 and Remark 1 also codes in the range

1
2 − γ ≤ R ≤ 1− 3γ or 3γ ≤ R ≤ 1

2 + γ,

for n→∞, should be excluded.
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Singleton bound

Gilbert-Varshamov bound

Tsfasman-Vladut-Zink bound

0
1

2
A 1 - ΓB 1

∆

Γ

1

2
- Γ

1

2

Γ +
1

2

1 - Γ

1
R

Fig. 1 Bounds on R as a function of the relative minimum distance δ for q = 49 and γ = 1
6

.

The above mentioned intervals [γ, 12 − γ], [ 12 + γ, 1− γ], [ 12 − γ, 1− 3γ] and
[3γ, 12 + γ] are nonempty if and only if γ ≤ 1

4 , and the union of these intervals
cover the whole interval [γ, 1− γ] if and only if γ ≤ 1

6 .

Notice that γ = 1√
q−1 for AG codes on an asymptotically good sequence

of algebraic curves over Fq attaining the Drinfeld-Vlǎdut bound and such that
n ≈ |X (Fq)| where n → ∞ for the length n of the codes. See [42]. So γ ≤ 1

4
if and only if q ≥ 25, and γ ≤ 1

6 if and only if q ≥ 49 for such sequences of
codes.

In Figure 1, several bounds on the rate R of WAG codes are given as a
function of their relative minimum distance δ for q = 49 and γ = 1

6 . For
instance, the upper Singleton bound stated as R + δ ≤ 1 and the well known
lower bounds: Gilbert-Varshamov bound given by R ≥ 1 − Hq(δ) where Hq

denotes the q-ary entropy function and Tsfasman-Vlǎdut-Zink bound which
has the following form R+δ ≥ 1− 1√

q−1 . Note that the last two curves intersect

in exactly two points whenever q ≥ 49, in our figure these points corresponds
to the values of δ = A and B.
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