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CHAPTER 1

Foreword

One of the main problems we want to address is the fact that in the construction the-
ory of authentication codes, the expression “new code” is used all the time, while
almost never it is shown that the obtained codes indeed are new, or even what
the notion “new” means to begin with. In this text, we introduce an entirely new
viewpoint on the theory of authentication codes, in which we are able to compare
these code systems (having such notions as “isomorphisms” and “automorphisms”
at hand), shedding as such new lights on the theory. One of the features is that au-
thentication codes can now be studied using the invariant of automorphism groups.
In our approach, we then define operations which enable us to “multiply” and “add”
arbitrary authentication codes, regardless of how they are initially constructed, so
as to obtain other (nonisomorphic) codes with easily calculated parameters. The
number of newly constructed codes is huge.

The present text differs in some ways from the versions [10]-[11] which are sub-
mitted for publication as papers. For one, we added an informal discussion on
codes with arbitration (besides mixing both manuscripts into one coherent file),
and inserted a number of “blackboard drawings” to illustrate some of the features.
Also, we aimed at providing an introduction to the synthetic side of authentication,
and included more introductory definitions and examples than in [10, 11].

Very likely, some mistakes and typos are still creeping through the manuscipt, but
we hope the reader will not be bothered by this.

Acknowledgement. This research was supported through the programme “Re-
search in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach (MFO)
in 2010.
A big part of the manuscript was written in the MFO, while the authors enjoyed
the tremendous atmosphere of the institute, being hosted as true chosen Kings.

Jeroen Schillewaert and Koen Thas
November 2010—December 2011
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CHAPTER 2

Introduction

Ever since Simmons introduced the concept of authentication code (scheme) in
[12], a vast amount of literature has appeared, especially through the construction
theory of examples, and especially with direct application in mind. An impor-
tant feature in this construction theory is that not only an abundance of exam-
ples, and hence of their associated parameters, are known, but also that almost as
many “different” constructions are known, for instance through the use of elliptic
curves, projective planes and other combinatorial designs, elementary arithmetic,
Galois geometries, etc. In fact, the prototypical example avant la lettre by Gilbert-
McWilliams-Sloane uses projective planes defined over the finite field Fq with q
elements. (Other constructions of geometrical nature can be found in the recent
work [4].)
In the published literature, a rather big problem has arisen.
Often, authentication code schemes look totally different, for instance because one
is constructed with the use of combinatorial designs, and the other with the use of
elliptic curves, while they easily could be exactly the same; they could have not
only the same parameters (number of keys, number of messages, attack probability
parameters, etc.), but also be isomorphic in a precise sense of the word. That is,
from the point of view of the coding scheme, no distinction can be made between
the constructions while a priori they could seem different. So in order to claim that
a “new” construction is really new — a claim which unfortunately appears to be
a stubborn inhabitant of the literature — we need a good comparison theory. The
latter seems to be totally missing.
The solution of this problem is one of the main features of the present text: we
propose a universal approach to authentication codes, in which we can compare
authentication codes in a precise sense, that is, which makes us able to decide
when a given construction of authentication schemes is really new. In other words,
we want to study authentication codes as a category.
A pleasant byproduct of our approach is that we can also measure the “strength” of
a construction: often, when an authentication code scheme is constructed through
the use of some mathematical structure, only a modest number of features of the
structure is really used, that is, not the whole mathematical structure is used to
define the scheme. In examples where this is the case, often much more simple
constructions exist in more general mathematical structures (with less structure);
our invariant measures how intimately the authentication code is connected (or, is
dependent) with/on the mathematical structure in which it is constructed. The far-
ther the code is from the structure in this sense, the worse the construction is (and
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4 2. INTRODUCTION

the easier it unfortunately is to claim that the code is “new”, because it is com-
pletely hidden behind the redundant mathematical structure). Simply said: much
too often, constructions are too complicated, while the exact same scheme can be
produced in a much more transparent way. (And then it appears it is not new at all.)

We introduce authentication code schemes as abstract data (of some sets and some
maps between these sets), which allow us to study all authentication codes in a
unified way. Not only are we then easily capable of comparing (and hence distin-
guishing) codes — two natural operations “addition” (⊕) and “multiplication” (⊗)
arise which make it possible to combine any two (and hence any finite number of)
authentication codes to give new ones via these operations. We then obtain pre-
cise formulas which relate the parameters of the new codes to the parameters of
the given codes. It then becomes very easy to construct a true mass of new (in the
real sense, i.e., nonisomorphic) authentication codes, with new parameters, with-
out having to go through a physical construction process.

The great strength of this feature is that we can start with any two codes, for ex-
ample one constructed in a Galois geometry and one constructed by elementary
Number Theory, and then just obtain infinitely many other authentication codes by
combining the two operations, while we have complete control over the parameters
of the newly constructed codes! In fact, we will prove a theorem in this context
which essentially states that if given is a set of parameters which do not violate the
necessary arithmetical existence conditions for authentication codes, it is also suf-
ficient for such a code to exist. So our operations describe an easily implemented
algorithm which can combine any finite number of given codes to produce new
ones with easy-to-calculate parameters.

We will illustrate the theoretical considerations (abstract definition, the operations
“⊕” and “⊗”, isomorphisms, etc.) we make by means of several concrete exam-
ples. As a very general illustration of our theory, we introduce what we call “group
schemes”, and show that many of the known constructions (which are at first sight
completely unrelated!) are special cases of this type of code. Again this underlines
our point: exactly the same coding schemes often appear through very different
guises. We then apply several features of our theory to this kind of code.



CHAPTER 3

Authentication

This chapter is strongly based on the reference work [9], and a lot more can be
found there.
Authentication is very important in information security, when e.g. Alice and Bob
try to exchange messages. It provides protection against malicious persons trying
to change messages or to impersonate the sender of these messages. There are two
main models:

• one where Alice and Bob trust each other, called A-codes;
• one where they do not, called A2-codes.

In the latter case, an arbiter is needed.
We denote the set of all source states by S , the set of keys by K , the set of en-
coding rules by E and the set of all possible encoded messages by M .

1. A-Model

In the A-model, sender Alice and receiver Bob agree upon a secret private key k.
With each key there is associated a unique encoding rule e. Alice selects a source
state s and encodes s into a message m using the encoding rule e corresponding
to the chosen key k. After having received the message Bob checks whether it
lies in the range e(S ). If it does, then the message is accepted as authentic. Bob
can recover the possible source states as the preimage of the message under e.
If this preimage is always unique, then we say the code is Cartesian. So once the
message is observed, one can retrack the corresponding source state. Whence there
is no secrecy involved here.
An opponent can try to construct a message lying in e(S ) after observing r valid
messages. The probability of success of such a spoofing attack will be denoted by
Pr.

2. A2-Model

In the A2-model, we assume that Alice and Bob do not trust each other. In this case,
they do not agree upon an encoding rule. Instead, a trusted person, the arbiter, is
also involved in the scheme. Now Alice has a set of encoding rules ET, and Bob a
set of decoding rules ER. If Alice and Bob want to communicate, Bob chooses a
decoding rule f ∈ ER and sends it to the arbiter. For every given f and given source
state s there is a set of valid messages M (s, f ). On receipt of f the arbiter selects

5
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FIGURE 3.1. A-scheme.

one message m(s, f ) out of M (s, f ), hereby forming an encoding rule e ∈ ET
defined as e : S −→ M (s, f ) : s −→ m(s, f ), which he secretly sends to Alice.
In this case, the encoding rule e is valid for the decoding rule f . When Bob receives
a message he checks whether it is in some subset M (s, f ). If so he accepts it as a
valid one and he can retreive the corresponding source state. If there is a dispute
between Alice and Bob about a message m, the arbiter checks if m is valid for
the encoding rule given to the transmitter. (We also refer to the appendix for more
details.)

3. Attack probability

Below, we define this attack probability more formally. As in [9] we will use the
“worst case definition”. Denote a set of r observed messages as mr. Let P(mr)
be the probability that one has observed mr after r messages. Furthermore, let
P(m|mr) be the probability that the message m is valid given that mr has been
observed. Then we define the attack probability of the opponent POr , or also Pr, as

(1) Pr = POr = ∑
mr∈Mr

P(mr)maxm∈M P(m|mr).

If we assume a uniform probability distribution for the messages, then we get

(2) Pr = POr = maxm∈M P(m|mr).

Introduce the following notation:
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(3) E (mr) = {e ∈ E |mi ∈ e(S ), 1 ≤ i ≤ r}.

Denote by m′r the set of r + 1 messages mr and m′ (where m′ is a message not
contained in mr). Then

(4) Pr = POr =
|E (m′r)|
|E (mr)| .

THEOREM 3.1 (see [9]). Let v be the total number of messages and ` the number
of keys; r is defined as above. We have that

(5) Pr = POr ≥
`− r
v− r

.

Equality holds if and only if

(6) P(m|mr) =
`− r
v− r

.

is satisfied for any mr = (m1, . . . , mr) and m ∈ M with m ∈ mi for i =
1, 2, . . . , r.

The following theorem is important. It assumes that the attack probabilities are
uniformly distributed.

THEOREM 3.2 (see [9]). If an authentication code in the A-setting has attack prob-
abilities Pr = POr = 1/nr for r ∈ {0, 1, . . . , l}, then

(7) |E | ≥
l

∏
i=0

ni.

If equality holds, the code is called perfect.

In the A2-model, three types of attacks have to be considered. The first one is the
spoofing attack by the opponent such as in the A-model. The other two attacks are
the spoofing attack T by Alice, sending a message and then claiming not to have
sent it, and the spoofing attack by Bob, claiming to have received a message from
Alice while this is not the case. One denotes the corresponding probabilities by
POr , PRr and PT respectively. The opponent’s attack probability POr is defined as
in the A-model.

Let P( f ) denote the probability of a decoding rule f , and let P(m| f , mr) denote
the probability of the event that the message m could be valid for the encoding
rule used by the transmitter, given the decoding rule f and the first r messages
mr = (m1, . . . , mr). The spoofing attack probability of the receiver is then defined
as

(8) PRr = ∑
f∈ER

P( f ) ∑
mr∈M r

P(mr| f )maxm∈M P(m| f , mr).
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Let P(e) denote the probability of an encoding rule e, and let P(m′|e) denote the
probability of the event that the message m′ ∈ M ′(e) is acceptable by the receiver,
given the encoding rule e. The spoofing attack probability of the transmitter is then
defined as

(9) PT = ∑
e∈ET

P(e)maxm′∈M ′(e)P(m′|e).

If we assume a uniform probability distribution on the messages, the formulas re-
duce in the same way as for the A-codes.



CHAPTER 4

A bit of background

In this chapter a concise description of the geometrical and group theoretical back-
ground needed to read this paper is provided. Details are omitted, since the main
scope is not the geometries nor the groups themselves, but the use of them to con-
struct (and understand) our viewpoint of authentication codes.

1. Projective space

Starting from a vector space V of dimension n + 1, n ∈ N, over a skew field D

one forms a projective space PG(n, D) by defining the objects “points”, “lines”,
. . ., “hyperplanes” as the vector spaces of dimension 1, 2, . . . , n contained in V. In-
cidence is defined naturally in terms of containment of vector subspaces. In other
words, passing from V = V(n + 1, D) to PG(n, D) can be done by putting the
equivalence relation “proportionality” ∼ on V \ {zero vector}.

Affine space AG(n, D) is defined by considering a vector space V of dimension
n, n ∈ N \ {0}, over a skew field D. The objects “points”, “lines”, . . ., “hyper-
planes” are defined as the cosets in V, + of the subspaces (seen as additive abelian
subgroups of V) of dimension 0, 1, . . . , n − 1. Again, incidence is defined natu-
rally. If the skew field D is a finite field Fq we also use the notations PG(n, q) and
AG(n, q), respectively.

One can also define projective spaces axiomatically. However if the dimension is
at least 3, it can be shown that they are always of the form above. In the case of
dimension 2, this is not true. A projective plane consists of a set of lines, a set of
points, and a symmetric relation between points and lines called incidence, having
the following properties.

(1) Given any two distinct points, there is exactly one line incident with both
of them.

(2) Given any two distinct lines, there is exactly one point incident with both
of them.

(3) There are four points such that no line is incident with more than two of
them.

9



10 4. A BIT OF BACKGROUND

2. Generalized dual arcs

A generalized dual arc F of degree d with dimensions n = n0 > n1 > n2 >
· · · > nd+1 > −1 of PG(n, q) is a set of n1-dimensional subspaces of PG(n, q)
such that:

• any j of these subspaces intersect in a subspace of dimension nj, 1 ≤ j ≤
d + 1,

• any d + 2 of these subspaces have no common intersection.
We call (n = n0, n1, . . . , nd+1) the type of the generalized dual arc.

Example. Consider the tangent lines to a conic in PG(2, q), q odd. Then clearly
every two tangent lines intersect in a point and any three such lines have an empty
intersection.
There exist generalized dual arcs for any degree, see [6].

3. Generalized quadrangles

A generalized quadrangle GQ of order (s, t) is an incidence structure S = (P , B, I)
in which P and B are disjoint non-empty sets of objects called points and lines
respectively, and for which I is a symmetric point-line incidence relation satisfying
the following axioms.

(GQ1) Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are
incident with at most one common line.

(GQ2) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are
incident with at most one common point.

(GQ3) If x is a point and L is a line not incident with x, then there is a unique
point-line pair (y, M) such that xIMIyIL.

A generalized quadrangle of order (s, t) contains (s + 1)(st + 1) points and (t +
1)(st + 1) lines. If s = t, then S is also said to be of order s.
A subquadrangle or subGQ S ′ = (P ′, B′, I′) of a generalized quadrangle S =
(P , B, I) is a GQ such that P ′ ⊆ P , B′ ⊆ B, and I′ is the induced incidence
relation of I.
A pair (S , x), with S a generalized quadrangle and x a distinguished point in S ,
will be called a pointed generalized quadrangle.

REMARK 4.1. (1) If both s and t are finite, we speak of a finite generalized
quadrangle.

(2) A generalized quadrangle is an example of a rank 2 geometry, i.e., a ge-
ometry with only two types of objects, points and lines.

3.1. The classical generalized quadrangles. Consider a non-singular quadric
of Witt index 2, that is of projective index 1, in PG(3, q), PG(4, q) and PG(5, q).
The points and lines of these quadrics form generalized quadrangles which are
denoted by Q(3, q), Q(4, q) and Q(5, q), and of order (q, 1), (q, q) and (q, q2)
respectively.
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Next, let H be a non-singular hermitian variety in PG(3, q2) or PG(4, q2). The
points and lines of H form a generalized quadrangle H(3, q2) or H(4, q2), which
has order (q2, q) or (q2, q3) respectively.
The points of PG(3, q) together with the totally isotropic lines with respect to a
symplectic polarity form a GQ, denoted by W(q), of order q.
The generalized quadrangles so-defined here are the classical generalized quad-
rangles.

3.2. Collinearity/Concurrency/Regularity. Let x and y be (not necessarily
distinct) points of the GQ S = (P , B, I); we write x ∼ y and call these points
collinear, provided that there is some line L such that xILIy. Dually, for L, M ∈
B, we write L ∼ M when L and M are concurrent.
For x ∈ P , put

(10) x⊥ = {y ∈ P |y ∼ x}

Note that x ∈ x⊥. For a set C of distinct points, we denote
⋂

y∈C y⊥ also by C⊥,

and (C⊥)⊥ by C⊥⊥.

Example. For a pair of distinct points {x, y}, we have |{x, y}⊥| = s + 1 or t + 1,
according as x ∼ y or x 6∼ y, respectively. If x ∼ y, x 6= y, or if x 6∼ y, and
|x, y⊥⊥| = t + 1, we say that the pair (x, y) is regular. The point x is regular
provided (x, y) is regular for all y ∈ P , y 6= x.

3.3. Automorphisms. An automorphism of a GQ S = (P , B, I) is a per-
mutation of P ∪B which preserves P , B and I. The set of automorphisms of
a GQ S is a group, called the automorphism group of S , which is denoted by
Aut(S ).

4. Basic group theory

We review some basic notions. For more information we refer to one of the many
online sources.
If G is a group with identity element 1 and X is a set, then a group action of G on
X is a binary function G × X −→ X denoted

(11) (g, x) −→ g · x

such that

• (gh) · x = g · (h · x);
• e · x = x ∀x ∈ X.
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Usually, instead of denoting the action by g · x, we write xg.
If Y is a subset of the set X, then GY denotes the stabilizer of Y in G; we have that

(12) GY = {g ∈ G|Yg = Y},

where Yg = {yg|y ∈ Y}.
In particular, if Y = {y} consists of a single point, we also write Gy instead of
G{y}.
The action is called n-transitive if the size of X is at least n, and if for every two
n-tuples (x1, . . . , xn) and (y1, . . . , yn) with xi 6= xj for i 6= j and the same for the
yks, there exists a g ∈ G such that

(13) xg
k = yk, 1 ≤ k ≤ n.

In this case G is said to act n-transitively on X, and if |G| is finite, it is easy to
show that n! divides |G|.
A subset H of G which forms a group itself by induction is called a subgroup of
G. Associated to such a subgroup H are its left and right cosets; for every g ∈ G
we respectively have the corresponding left and right coset

(14) gH = {gh|h ∈ H} and Hg = {hg|h ∈ H}.

A subgroup N of a group G is a normal subgroup, denoted N � G, if

(15) ∀g ∈ G, ∀n ∈ N : g−1ng ∈ N.

In this case we can define the quotient group with as elements the cosets and the
normal operation of G defined on them. (Note that left and right cosets coincide
now.)
The direct product of two groups A and B, is the Cartesian product set A × B
endowed with the natural binary operation

(16) (a, b) · (a′, b′) = (a · a′, b · b′).

A group C is isomorphic to the direct product of its subgroups A and B if both A
and B are normal subgroups for which AB = C, and if A and B only intersect
in the identity. In that case, we identify C with A × B. If C is a group and A a
normal subgroup of C, B a subgroup of C and A ∩ B = id, then we say that C is
the semi-direct product of A and B, provided that AB = C. We denote this by

(17) C = A o B.

A group is called an elementary abelian p-group if it is a finite abelian group where
every element has prime order p.
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5. Categories

A category C consists of
(1) A collection {X, Y, Z, · · · } whose members are the objects. We write

X ∈ C .
(2) For every pair of objects X, Y ∈ C , a set of HomC (X, Y) of morphisms

from X to Y. We write f : X −→ Y when f ∈ HomC (X, Y).
(3) For every object X ∈ C , an identity morphism idX ∈ HomC (X, X).
(4) For every triple of objects X, Y, Z ∈ C , a composition map

(18) HomC (X, Y)×HomC (Y, Z) −→ HomC (X, Z).

Moreover these data have to satisfy the following conditions.
(5) For every morphism f : X −→ Y we have idY ◦ f = f = f ◦ idX in

HomC (X, Y).
(6) For every triple of composable morphisms f : W −→ X; g : X −→

Y; h : Y −→ Z, we have an equality h ◦ (g ◦ f ) = (h ◦ g) ◦ f in
HomC (W, Z).

Below we list a few examples:

5.1. Sets. The category Set whose objects are sets and whose morphisms are
maps of sets.

5.2. Groups. The category Grp whose objects are groups and whose mor-
phisms are group homomorphisms.

5.3. Topologies. The category Top whose objects are topological spaces and
whose morphisms are continuous maps.

5.4. Projective spaces. Let V and W be vector spaces over the skew fields F

and K respectively. A pair of maps

(19) (g, g′) : (V, F) −→ (W, K)

is called a semi-linear map if g : V, + −→ W, + is a group homomorphism and
g′ : F −→ K a homomorphism of skew fields such that

(20) g(αv) = g′(α)g(v) ∀α ∈ F, ∀v ∈ V.

Given such a semi-linear map, define an induced map

(21) ḡ : PG(V) −→ PG(W) : ḡ(〈v〉) = 〈g(v)〉.
Hence we obtain the category of projective spaces Proj having projective spaces
as objects and the above defined maps as morphisms.
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5.5. Incidence geometries. We now look at a more general category of ge-
ometries than Proj. An incidence geometry (G, I, c, T) of rank k is a graph with
a proper vertex coloring c (with k colors), i.e., two adjacent vertices are colored
differently. Here c : V(G) −→ T is the coloring, where T is the set of types.
We take c to be surjective, and |T| = k ∈ N0. The relation I is the adjacency,
or “incidence”, relation. (In fact, we present the incidence graph of an incidence
geometry — cf. the remark below.)
A morphism between two incidence geometries (G, I, c, T) and (G′, I′, c′, T′) con-
sists of a pair ( f , g) of mappings where f : G −→ G′ and g : T −→ T′ such that

(1) ∀v ∈ V(G), we have c′( f (v)) = g(c(v)),
(2) ∀u, v ∈ V(G) we have that uIv implies f (u)I′ f (v).

One can form a category Inc with as objects incidence geometries and as mor-
phisms the morphisms between them.

REMARK 4.2. Let T = {t1, . . . , tk}, and let (G, I, c, T) be an incidence graph. To
depict the corresponding geometry Γ, let, for each i ∈ {1, . . . , k}, Ti := c−1(ti)
be the elements “of type i”. Then the elements of Γ are those of V(G) provided
with this type function, and incidence is defined by adjacency. (As such, different
elements of the same type cannot be incident.) The size of T is the rank of the
geometry. If |T| = 2, we call Γ a point-line geometry.



CHAPTER 5

Definitions and basic properties

In this chapter, we first define an abstract category A, called the “category of au-
thentication codes”. After having introduced a comparison theory (through the
notion of (iso)morphisms), we re-define the classic authentication codes in the
category CA, and show that A and CA are in 1 − 1 correspondence. Then we
illustrate the new notions via a series of concrete examples.

1. Definition

Let I be an arbitrary index set and let A and E be non-empty sets, ι : A → E a
bijection, and {φi}i∈I : E → X a collection of mappings.
Then A has as its objects o tuples

(22) (A, E, ι, I, {φi}i∈I, X).

For two objects o = (A, E, ι, I, {φi}i∈I, X) and o′ = (A′, E′, ι′, I′, {φ′i}i∈I′ , X′)
we define a morphism from o to o′ as a tuple (ν, a, e, x), where ν is a bijection from
I → I′, and a : A → A′, e : E → E′ and x : X → X′ are mappings making the
following diagrams commute

(23)

A ι−−−→ E

a

y e

y
A′ ι′−−−→ E′

and for all i ∈ I

(24)

E
φi−−−→ X

e

y x

y
E′

φ′
ν(i)−−−→ X′

REMARK 5.1. Note that for a given morphism everything is determined by the
maps e and ν. Indeed, for a ∈ A, we have

(25) a(a) = ι′−1(e(ι(a))),

so a = ι′−1 ◦ e ◦ ι.

15
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Denote the identity mapping on a set S by 1S. The identity morphism 1o of an
object o = (A, E, ι, I, {φi}i∈I, X) is (1I, 1A, 1E, 1X). If for two objects o1 and
o2 there exist morphisms α : o1 → o2 and β : o2 → o1 such that β ◦ α = 1o1

and α ◦ β = 1o2 , then we call α and β isomorphisms and we say that o1 and o2 are
isomorphic. If o1 = o2, we speak of automorphisms and automorphic objects.
This leads to the notion of isomorphism classes of codes.

THEOREM 5.2. Isomorphic objects have the same attack probability parameters
Pi.

Proof. As we will see later, the parameters Pi are completely determined by the
sizes of the fibres of φi and φi′ respectively. Since there is a bijection between E
and E′ compatible with these functions, the result follows immediately. �

To a given object o, one can attach its automorphism group Aut(o). This is another
tool to distinguish codes as clearly

THEOREM 5.3. Two isomorphic objects have isomorphic automorphism groups.

Proof. Indeed if α is an isomorphism from o1 to o2 and β is an automorphism of
o2 then α−1 ◦ β ◦ α is an automorphism of o1. This implies Aut(o1) ∼= Aut(o2). �

2. Subcodes

If α : o1 → o2 is a morphism (ν, a, e, x) where ν, a, e and x are injections then we
say that o1 is a subcode of o2. Note that if o1 is a subcode of o2 and o2 is a subcode
of o1 then o1 and o2 are isomorphic.

3. “Concrete” authentication codes

The category of “concrete authentication codes” CA has as objects 5-tuples

(26) (K , E , f , S , M )

where K is a set of keys, E a set of encoding rules, f : K → E is a bijection, S
a set of source states, and M a set of (encoded) messages. They are equipped with
the following scheme.
One picks a key k ∈ K , and associates with it an encoding rule e = f (k) ∈ E ,
which is a mapping from S to M . For a given source state s ∈ S , we obtain the
encoded message m = e(s) ∈ M .
A morphism α : c1 → c2 between two objects c1 = (K , E , f , S , M ) and c2 =
(K ′, E ′, f ′, S ′, M ′) of CA is a 4-tuple (σ, κ, η, µ) of maps making the following
diagrams commute.

(27)

K
f−−−→ E

κ

y η

y
K ′ f ′−−−→ E ′
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and also

(28)

S
e−−−→ M

σ

y µ

y
S ′ η(e′)−−−→ M ′

4. Functoriality

We now define the functor F between the abstract and the concrete category map-
ping the object (A, E, ι, I, {φi}i∈I, X) to the authentication code (A, Ẽ, ι, I, X),
where Ẽ is a set of mappings {ẽ | e ∈ E} from I to X with

(29) ẽ(i) = φi(e).

Moreover F maps a morphism (ν, a, e, x) between objects (A, E, ι, I, {φi}i∈I, X)
and (A′, E′, ι′, I′, {φi}i∈I′ , X′) of the abstract code to the morphism (ν, a, η, x)
between the concrete objects (A, Ẽ, ι, I, X) and (A′, Ẽ′, ι′, I′, X′). Here η is the
unique map making the following diagram commute:

(30)

I
ẽ−−−→ M

ν

y x

y
I′

η(ẽ′)−−−→ M ′

Next we define a functor G from the concrete category to the abstract category. It
will map an object (K , E , f , S , M ) to (K , E , f , S , {ψs}s∈S , M ), where

(31) ψs(e) = e(s).

Moreover it maps a morphism (σ, κ, η, µ) between objects (K , E , f , S , M ) and
(K ′, E ′, f ′, S ′, M ′) to a morphism (σ, κ, η, µ) between the objects
(K , E , f , S , {ψs}s∈S , M ) and (K ′, E ′, f ′, S ′, {ψ′

s}s∈S , M ′).

5. Connection between the categories

In the theorem below we formalize the intuitive feeling that these categories are
”the same”. We will not further investigate the properties of our categories in the
present set of notes.

THEOREM 5.4. The functors F and G defined above have the following properties.

(1) F and G are covariant.
(2) G ◦ F = 1A and F ◦ G = 1CA.
(3) F and G are fully faithful.

So F and G are isomorphic categories.
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Proof. Only (2) requires a small proof, since (3) is an immediate corollary of (2).
To prove (2) the only thing which needs verification is that we end up with the same
maps in the respective categories. But F maps a function φi : E → x to ẽ = φi(e)
and G finds functions ψs as ψs(e) = ẽ(s) = φs(e). For the other direction start
with a function e : S → M. Then G maps e to e and defines functions φi(e) = e(s)
and after returning we find ẽ(i) = φi(e) = e(i). �



CHAPTER 6

Examples

Below we describe several examples of authentication code schemes as examples
of A. They also illustrate how wide the possibilities are for construction of authen-
tication schemes.

1. Gilbert-McWilliams-Sloane and its dual

The following construction is taken from [3].
Let L be a line in the projective plane PG(2, q) defined over the finite field Fq.
Then the points on L are the source states, the points not on L are the encoding
rules, and the lines different from L are the encoded message. Given a source state
s and an encoding rule e, we obtain the encoded message 〈s, e〉.
Abstractly (in A) this corresponds to:

• A = E is the set of points not on L and ι = 1A;
• I is an index set of the points on L;
• X is the set of lines different from L, and
• the φi transform a point r into line 〈r, i〉.

Dually we could consider the code where abstractly A′ = E′ is the lines not
through a given point p′, the index set I′ comes from the lines through p, X is
the set of points different from p and the φi are the projections onto line i through
p.
Intuitively, it is clear the two above codes are ”the same”, and using our above
terminology, it is easy to check that a duality of the projective plane yields an
isomorphism between these two codes. (A duality of a projective plane with point
set P and line set B is a permutation of P ∪B which preserves incidence and
switches P and B.)
Moreover, if in any of the two schemes above we don’t use all the source states,
we clearly obtain subcodes of the given codes.

Automorphism group. An automorphism of the code is nothing else than an
automorphism of the projective plane fixing the line L. So the automorphism group
is isomorphic to PΓL3(q)L.

2. De Soete’s scheme

The scheme below based on generalized quadrangles is due to De Soete [1].

19
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FIGURE 6.1. Gilbert-McWilliams-Sloane scheme.

Let x be a fixed point of a GQ Γ = (P , B, I) of order (s, t), s 6= 1 6= t. The
t + 1 lines of the GQ through x are the source states, the points not collinear with
x are the keys, and the points collinear with, but different from x are the messages.
If Alice wants to send a message to Bob, she chooses one of the lines l of the GQ
through x. If the key is the point k, then by (GQ3) there is a unique point r on l
collinear with k. Alice sends the pair (l, r) to Bob. When receiving a (line, point)-
pair, Bob checks if the point r is collinear with k. If this is the case, he decides
Alice has sent the message.
In the category A this example is easily described as follows.

• A = E = P \ x⊥ and ι = 1A;
• X = x⊥ \ x;
• I is the index set of the lines through x, and
• φi is the projection on line Li through x.

THEOREM 6.1 ([1]). The De Soete scheme yields a Cartesian authentication code
with

(32) |S | = t + 1, |M | = (t + 1)s, |E | = ts2.

Furthermore, P0 = P1 = 1
s .

Automorphism group. This is much more tricky than for the previous scheme.
We defer its calculation to a later section.
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FIGURE 6.2. De Soete’s scheme.

3. A perfect scheme using generalized dual arcs

Let Π be a hyperplane of PG(n + 1, q) and let D be a generalized dual arc of
degree d in Π of type (n, n1, . . . , nd+1).
The elements of D are the messages and the points of PG(n + 1, q) not in Π
are the keys. The authentication tag that belongs to a message and a key is the
generated (n1 + 1)-dimensional subspace.
This defines a perfect MAC of order r = d + 1 with attack probabilities

(33) Pi = qni+1−ni .

This example considered as an object in A has the following description:

• A = E is the set of points not contained in the hyperplane, and ι = 1A;
• X is the collection of (n1 + 1) dimensional spaces intersecting Π in an

arc element,
• I = {1, 2, . . . , |D |}, and
• the φi are the maps which send an element e of E to the space spanned by

e and the arc element with index i.

Automorphism group. Calculating the automorphism group will heavily de-
pend on the type of arc. We do not go into any details on this matter.
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FIGURE 6.3. A-scheme from generalized dual arc.

4. An example using elementary number theory

As a third example we use the Chinese remainder theorem.
Let n1, . . . , nk be integers which are relatively prime, let N = n1 · · · nk and let
a1, . . . , ak be arbitrary integers. Then there is a unique integer x, 0 ≤ x ≤ N − 1
such that

(34) x ≡ ai mod ni.

We make the following element o of A (and thus CA!):

• A = E is the set of integers from 0 to N − 1 and ι = 1A;
• X is the set of integers from 0 to N − 1
• I = {1, 2, . . . , k}, and
• the φi are the maps modulo ni.

Automorphism group. An automorphism of o is a permutation α of
Z/NZ such that
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(35) a ≡ b mod ni =⇒ α(a) ≡ α(b) mod ni ∀i.

To such an automorphism of the code corresponds a unique permutation of
Z/niZ by the above rule, since the above equation tells us that equivalence classes
are mapped onto equivalence classes.
Conversely given automorphisms αi of Z/niZ we can construct an automorphism
α of Z/NZ as follows. Given y ∈ Z/NZ, calculate yi ≡ y mod ni. Then
by the Chinese remainder theorem we can define α(y) as being the unique integer
z with 0 ≤ z ≤ N − 1 such that z ≡ αi(yi) mod ni ∀i. We need to check
that α is a permutation. This follows immediately from the fact that the αi are
permutations. For the readers sake we check this here explicitly. First injectivity,
so suppose α(y) = α(z). Then we have

(36) α(y)i ≡ α(y) mod ni ≡ α(z)i ≡ α(z) mod ni.

By definition this means yi ≡ y mod ni ≡ zi ≡ z mod ni. By the Chinese
remainder theorem this implies y = z. Bijectivity follows immediately since there
are only a finite number of equivalence classes.
Clearly the permutation groups of Z/niZ are symmetric groups Sni . The copies
of them inside our automorphism group are the ones corresponding with taking all
αj = 1Z/njZ for all j 6= i. These yield normal subgroups. So our automorphism
group is isomorphic to

(37) Sn1 × · · · × Snk .

REMARK 6.2. As an algebraic structure the automorphism group of Z/NZ is
equal to

(Z/n1Z)× × · · · × (Z/nkZ)×.
Every such automorphism automatically fulfills

a ≡ b mod ni =⇒ α(a) ≡ α(b) mod ni ∀i.

Indeed, if α is an automorphism of Z/NZ we need to have α(x + y) = α(x) +
α(y). Hence if a = b + kni we obtain α(a) = α(b) + α(k)ni. We will describe
this example in a more abstract setting later on.





CHAPTER 7

Other examples coming from GQs

Below, we describe further examples of authentication schemes coming from gen-
eralized quadrangles, taken from [11]. The reader is invited to translate the exam-
ples in the more abstract theory described in the previous two chapters.

1. Construction

Suppose S is a GQ of order (s, t). Suppose S ′ is a subGQ of S of order (s, t/s);
then an easy counting exercise shows that each line of S meets S ′ in either 1 or
s + 1 points. Let x be a point of S \S ′; then the t + 1 points of S ′ which are
collinear with x (and which respectively correspond to the lines incident with x by
the previous property) are two by two non-collinear; since t + 1 = s · t/s + 1,
this means that these points form an “ovoid”, Ox, of S ′. (An ovoid is a point set
meeting each line precisely once.) This ovoid is subtended by x.

Now suppose {S1, S2, . . . , Sr} is a set of r > 0 distinct subGQs of order (s, t/s)
of the GQ S of order (s, t), where s 6= 1 6= t but we allow t/s = 1. Let Σ be the
number of points in

(38)
r⋃

i=1

Si,

so that the number of points outside this union is

(39) (s + 1)(st + 1)− Σ.

The Sjs are the source states. The keys are the points of S \ ⋃r
i=1 Si, and the

messages are the ovoids in the GQs Sj which are subtended by a point outside
their union.

Let k be the maximal number of points outside
⋃r

i=1 Si that subtend the same
ovoid of some Sj. Then

(40) P0 ≤
|E (m)|
|E | =

k
(s + 1)(st + 1)− Σ

.

25
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FIGURE 7.1. Construction.

By [8, 1.4.1], we have

(41) k ≤ s2

t
+ 1

so that

(42) P0 ≤
s2/t + 1

(s + 1)(st + 1)− Σ
.

We want to focus on two particular situations that appear to yield satisfying results.

(1) Let t = s2 so that t/s = s. Then

(43) P0 ≤
2

(s + 1)(s3 + 1)− Σ
.

Suppose now that in S we have the following situation: Γ is an (s + 1)× (s +
1)-grid (that is, a subGQ of order (s, 1)), and all the Sjs contain Γ — it then
follows easily that Γ is precisely the pairwise intersection of any two distinct Sjs.
Moreover, if z is a point outside the subGQ union, and Sg, Sh 6= Sg are elements
of {S1, S2, . . . , Sr}, then z obviously subtends different ovoids in Sg and Sh.



2. AUTHENTICATION WITH ARBITRATION: H-SCHEMES 27

In order to avoid a trivial situation, we assume r < s + 1 (if r = s + 1, then
∪iSi = S ). Whence

(44)

P0 ≤
2

(s + 1)(s3 + 1)− (s + 1)2 − r(s3 − s)
=

2
(s + 1)(s2 − s)(s + 1− r)

.

Note that we can choose the subGQs in such a way that the inequality becomes
strict.

(2) Let t = s, so that t/s = 1 and

(45) P0 ≤
s + 1

(s + 1)(s2 + 1)− Σ
.

Also, let Γ be two distinct intersecting lines, and let all the Sjs contain Γ —
it follows (again) that Γ is precisely the pairwise intersection of any two dis-
tinct Sjs. If z is a point outside the union, and Sg, Sh 6= Sg are elements of
{S1, S2, . . . , Sr}, then z subtends different ovoids in Sg and Sh. Whence

(46) P0 ≤
s + 1

s(s2 + (1− r)s− 1)
.

REMARK 7.1. The schemes described in this section are Cartesian. Furthermore,
the scheme is perfect if every ovoid is subtended by the same number of points.
Examples of this situation are given below.

2. Authentication with arbitration: H-schemes

Consider the following situation. {S1, S2, . . . , Sr} is a set of distinct Q(4, q)-
subGQs in a Q(5, q) (which, as above, can be chosen in a suitable position), and
let those subGQs be source states. Let x be a point of Q(5, q) outside the union of
the subGQs, which is chosen by Bob. For such a point x and for each source state
Sj, let Ox be the ovoid of Sj which is subtended by x. The arbiter chooses a point
cj of Sj on Ox.
We can now make a scheme with arbitration as follows. For the system we choose
a list H of subgroups of Aut(Q(5, q)), being O−(6, q) o Gal(Fq2 /Fp) (q is a
power of the prime p). Bob chooses a fixed subgroup H in H. Bob hands H and
his chosen point x to the arbiter. The subgroup H has different orbits on Q(5, q).
The arbiter hands cj and the H-orbit cj, denoted by cH

j , as encoding rule to Alice
for a given source state Sj. If Alice transmits a message to Bob, then she picks a
source state Sj and sends the triple (Sj, cj, cH

j ) to Bob. When receiving a triple
(a, b, c) Bob accepts it as valid if b is on the ovoid of a and c is the H-orbit of b.
In case of a dispute concerning a triple (a, b, c), the arbiter checks if b is the point
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he handed to Alice for the subGQ a and if c is the orbit under H of b. If this is the
case, then he decides Alice sent the message, otherwise that she has not. If Bob
wants to cheat (that is, to imitate Alice), he has to make a guess about the point
cj. If Alice wants to cheat (that is, to imitate Bob), she has to make sure she gets
the right group. It is almost impossible for Alice to guess H from the orbits she
sees, except possibly by exhaustive search through all subgroups of Aut(Q(5, q))
if there are only very few groups producing an orbit she observes. But the arbiter
can avoid this by choosing the appropriate points. Besides that, Alice has to find
x, which is essentially not possible since cj is contained in at least (q3 − qΣ′)/2
subtended ovoids in Sj, Σ′ being the number of distinct lines on cj which are com-
pletely contained in ∪iSi. An opponent has to guess both cj and the group H, an
even harder task.

We do not make calculations in detail, but once one has chosen the list of allowed
subgroups one can adapt the scheme to one’s own needs. This scheme depends
largely on the list H of subgroups we allow. By choosing them appropriately, one
can control the length of the orbits.
For the abstract side of the story, we refer to the appendix to this text.

REMARK 7.2. (i) Similar schemes can be built from other incidence geome-
tries, such as the natural embedding of Hermitian quadrangles H(3, q2) ⊂
H(4, q2), or from nonclassical situations.

(ii) We always assume that the points outside the union of subGQs are chosen
with equal probability. One could define a natural probability

(47) P : S \ ∪iSi 7→ (0, 1)

on this set by comparing, for a pre-chosen subgroup G of Aut(S )∪iSi ,
the size of the G-orbit G(x) that contains x, to |S \ ∪iSi|.



CHAPTER 8

Addition and multiplication

In this chapter, we will call an object o = (A , E , ι, I, {φi}I, X) ∈ A Cartesian if
for i 6= j in I, we have that

(48) φi(E ) ∩ φj(E ) = ∅.

Notation. If o = (A , E , ι, I, {φi}I, X) ∈ A, then we define functions A (.)
and S (.) by A (o) = A = E (o) and, S (o) = {1, 2, . . . , k}.
Let A = {ai|i ∈ I} and B = {bj|j ∈ J} be sets; then by ( f (ai, bj))ij, with
f : A× B −→ C any map to some set C, we mean the (unordered) row consisting
of all elements of { f (a, b)|(a, b) ∈ A× B}.
By slight abuse of notation, we index the functions with 1, 2, . . . , k, although the
index set I is allowed to have any (and so also uncountable) cardinality. Below,
finiteness of the objects is nowhere required (although in applications, some things
will only make sense when they are finite).

1. Addition

Let o = (A , E , ι, I, {φi}I, X) and o′ = (A ′, E ′, ι′, I′, {φ′j}I′ , X′) be objects of
A. We define an addition ⊕ as follows:

(49) o ⊕ o′ = (A ä A ′, E ä E ′, ι ä ι′, I× I′, X ä X′, (φi ä φ′j)ij).

Here, for sets C and D, C ä D means the disjoint union between C and D (that
is, C ä D = C × {0} ∪ D × {1}). Also, φi ä φ′j(c) (= (φi ä φ′j)(c)), with
c ∈ X ä X′ is φi(c) when c ∈ X × {0} and φ′j(c) otherwise.
In the next observation (the last part), we implicitly assume that index sets of ob-
jects in A do not have size 1.

OBSERVATION 8.1. o ⊕ o′ is an object of A with |A (o ⊕ o′)| = |A (o)| +
|A (o′)| and |S (o ⊕ o′)| = |S (o)| × |S (o′)|. Also, o ⊕ o′ ∼= o′ ⊕ o, and
o ⊕ o′ is never Cartesian.

Proof. Only the last assertion needs a small proof. Let m be an element of
∪i,j(φi(E ) ä φ′j(E

′)), and suppose without loss of generality that m ∈ φi(E )×
{0} for some i ∈ I. (This i need not be unique since we do not demand o to be
Cartesian.) Then m ∈ φi(E ) ä φ′j(E

′) for all j ∈ I′. �
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Note that |A ä A ′| = |A |+ |A ′|.

REMARK 8.2. Note that the fact that we require disjoint unions instead of ordinary
set theoretic unions is a necessity: for o ⊕ o′ to be well-defined, one needs the
property that for each i and j, φi and φ′j have the same action on the elements of
E ∩ E ′ (in order that when combined, they still define a map on E ∪ E ′).

2. Multiplication

We consider o and o′ as above, and define o ⊗ o′ as follows:

(50) o ⊗ o′ = (A ×A ′, E × E ′, ι× ι′, I× I′, (φi × φ′j)ij, X × X′).

Here, φi × φ′j(e, e′) = (φi(e), φ′j(e′)).

OBSERVATION 8.3. o ⊗ o′ is an object of A with |A (o ⊗ o′)| = |A (o)| ×
|A (o′)| and |S (o⊗ o′)| = |S (o)| × |S (o′)|. Also, in general o⊗ o′ 6∼= o′ ⊗ o,
and o ⊗ o′ is Cartesian if and only if both o and o′ are.

Proof. Again, only the last part will be indicated. Let (m, m′) be an element
of ∪i,j(φi(E )× φ′j(E

′)); if o and o′ are Cartesian, then clearly there is only one
element φi(E )× φ′j(E

′) containing (m, m′). The converse is also clear. �

Here, |A ×A ′| = |A | × |A ′|.
In a later section, we will obtain the precise connections between the probability
parameters of authentication codes and those of their sums/products. As a direct
corollary, we will find the relation between perfectness of authentication codes and
perfectness of sums/products.

3. Matrix representation

Consider o = (A , E , ι, I, {φi}I, X) ∈ A. Then o can also be represented by a
matrix M(o), for which the rows are indexed by E and the columns by I, such that
the er-entry of M(o) is φr(e).

OBSERVATION 8.4. Consider two objects o and o′.
SUM We have that M(o ⊕ o′) is an (|E |+ |E ′|)× k · k′-matrix.

PRODUCT Moreover, M(o⊗ o′) is precisely a tensor-like product “M(o)⊗M(o′)”,
with as entries all possible products (φi(e), φ′j(e′)).

�



CHAPTER 9

Example of sum and product

We now consider the Gilbert-MacWilliams-Sloane scheme constructed from the
smallest plane, and the De Soete scheme constructed from an easy generalized
quadrangle. We then make sum and product, presented in the matrix form.

1. Gilbert-MacWilliams-Sloane

Consider the Fano plane with points s0, s1, s2, e0, e1, e2, e3 and with as lines

(51) L0 = {s0, s1, s2}, L1 = {s0, e0, e1}, L2 = {s0, e2, e3}, L3 = {s1, e0, e2},

L4 = {s1, e1, e3}, L5 = {s2, e0, e3}, L6 = {s2, e1, e2}.
We construct the affine plane of order 2 by deleting the line L0, and keeping the
same notation for the other lines.

The Gilbert-MacWilliams-Sloane scheme is then encoded in the following matrix.

GMWS s0 s1 s2
e0 L1 L3 L5
e1 L1 L4 L6
e2 L2 L3 L6
e3 L2 L4 L5

s1

e0

e2

s0

s2

e1

e3

FIGURE 9.1. The unique projective plane of order 2 (“Fano plane”).
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P1 P4 P7 b1P1

P5 P8

M1

M2

b2

P3 P9

P2

b3

a1

P6

a2 a3

b3

P

FIGURE 9.2. A grid of order (3, 1).

2. De Soete

Consider a GQ of order (3, 1) with special point P and denote the two lines through
P by M1 = {P, a1, a2, a3} and M2 = {P, b1, b2, b3} respectively. The other lines
are

(52) {a1, P1, P2, P3}, {a2, P4, P5, P6}, {a3, P7, P8, P9},

{b1, P1, P4, P7}, {b2, P2, P5, P8}, {b3, P3, P6, P9}.

The corresponding authentication scheme is then given by:

DS M1 M2
P1 a1 b1
P2 a1 b2
P3 a1 b3
P4 a2 b1
P5 a2 b2
P6 a2 b3
P7 a3 b1
P8 a3 b2
P9 a3 b3
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3. Sum

The sum of the above schemes is depicted below. The source states are point-line
pairs consisting of one of the three points of the GMWS-scheme and one of the two
lines of the De Soete scheme. The encoding rules consist of the (disjoint) union
of the encoding rules of both schemes. The encoded messages belong to either
the GMWS-scheme or the De Soete scheme according to where the encoding rule
comes from.

SUM (s0, M1) (s0, M2) (s1, M1) (s1, M2) (s2, M1) (s2, M2)
e0 L1 L1 L3 L3 L5 L5
e1 L1 L1 L4 L4 L6 L6
e2 L2 L2 L3 L3 L6 L6
e3 L2 L2 L4 L4 L5 L5
P1 a1 b1 a1 b1 a1 b1
P2 a1 b2 a1 b2 a1 b2
P3 a1 b3 a1 b3 a1 b3
P4 a2 b1 a2 b1 a1 b1
P5 a2 b2 a2 b2 a2 b2
P6 a2 b3 a2 b3 a2 b3
P7 a3 b1 a3 b1 a3 b1
P8 a3 b2 a3 b2 a3 b2
P9 a3 b3 a3 b3 a3 b3

4. Product

As an illustration of our product we combine the above two schemes. Source states
are couples (si, Mj) with si a source state of the Fano plane, and Mj a source state
from the De Soete scheme of above. Encoding rules are couples (er, Ps), with er
an encoding rule of the Fano plane and Ps one from the De Soete scheme. Message
encoding is componentwise. Since this is a 36x6 matrix we have only listed some
of the rows.

PROD (s0, M1) (s0, M2) (s1, M1) (s1, M2) (s2, M1) (s2, M2)
(e0, P1) (L1, a1) (L1, b1) (L3, a1) (L3, b1) (L5, a1) (L5, b1)
· · · · · · · · · · · · · · · · · · · · ·
(e2, P4) (L2, a2) (L2, b1) (L3, a2) (L3, b1) (L6, a2) (L6, b1)
· · · · · · · · · · · · · · · · · · · · ·
(e3, P9) (L2, a3) (L2, b3) (L4, a3) (L4, b3) (L3, a3) (L5, b3)





CHAPTER 10

Automorphism groups and operations

In this chapter we investigate what happens with automorphism groups when ap-
plying the standard operations. A warning: one has to be very careful when rea-
soning with automorphism groups. Sometimes, it might be tempting to think that
automorphisms will be induced “by the operations”. In general this is completely
false.
We will use the obvious notations below.

1. Automorphism of a sum

THEOREM 10.1. Isomorphic copies of Aut(o) and Aut(o′) are contained in
Aut(o ⊕ o′). Moreover, an isomorphic copy of their direct product is also in
Aut(o ⊕ o′).

Proof. With α ∈ Aut(o) one can associate α̃, which acts as α on o and as the
identity on o′. The isomorphic copy of Aut(o) thus obtained is clearly a subgroup
of Aut(o ⊕ o′). Clearly, the copies normalize each other, so their direct product is
contained in Aut(o ⊕ o′). �

2. Automorphism of a product

A slightly stronger statement can be obtained for the product.

THEOREM 10.2. Isomorphic copies of Aut(o) and Aut(o′) are contained in Aut(o⊗
o′). Moreover, an isomorphic copy of their direct product is also in Aut(o ⊗ o′).
In fact, Aut(o) and Aut(o′) can be seen as normal subgroups of Aut(o ⊗ o′).

Proof. If α = (v, a, e, x) ∈ Aut(o) and α′ = (v′, a′, e′, x′) ∈ Aut(o′) then
(v × v′, a × a′, e × e′, x × x′) ∈ Aut(o ⊗ o′). Indeed, since everything works
componentwise, we obtain bijections and the diagrams will still commute.
If in the above construction one takes α′ = 1o′ we obtain an isomorphic copy G of
Aut(o) contained in Aut(o × o′). Then G is a normal subgroup of Aut(o × o′).
(Indeed take an arbitrary element s ∈ Aut(o × o′). Then for all g ∈ G it follows
that s−1gs ∈ G.) Similarly an isomorphic copy of Aut(o′) is contained as a nor-
mal subgroup in Aut(o × o′). Hence the product is a direct product. �
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CHAPTER 11

Calculation of parameters

We keep using the standard notation.

1. Pi-Formulas

Consider an object o of A. We want to find an expression for the probability
parameters of o, so we have to determine, for a given natural number n,

(53) E (m) = {e ∈ E |mi ∈ ∪jφj(e) ∀i ∈ {1, . . . , n}},

with m = (m1, m2, . . . , mn) any element of M n, where M = ∪iφi(E ). We will
keep using the “bar notation” in this sense throughout.
It is obvious that

(54) E (m) =
n⋂

i=1

(
k⋃

j=1

φ−1
j (mi)),

again remarking that similar formulas hold for infinite n and k. The probability
formulas can now easily be computed. (Below, uniform probability distributions
are assumed, although one easily adapts the formulas to general distributions using
the expression (54).)

THEOREM 11.1 (P0-Formula). For o ∈ A, we have that

(55) P0 =
|⋃k

j=1 φ−1
j (m)|

|E | ,

for any m ∈ ∪iφi(E ) �

THEOREM 11.2 (Pj-Formula, j > 0). For o ∈ A and j > 0, we have that

(56) Pj =
|⋂n+1

i=1 (
⋃k

j=1 φ−1
j (mi))|

|⋂n
i=1(

⋃k
j=1 φ−1

j (mi))|
,

for any m = (m1, m2, . . . , mn) and m′ = (m1, m2, . . . , mn, mn+1). �
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38 11. CALCULATION OF PARAMETERS

For Cartesian codes, these formulas get a lot simpler. (In the theorems stated below,
`(m) denotes the unique element of I determined by m.)

THEOREM 11.3 (Cartesian P0-Formula). For o ∈ A Cartesian, we have that

(57) P0 =
|φ−1

`(m)(m)|
|E | ,

for any m ∈ ∪iφi(E ) �

THEOREM 11.4 (Cartesian Pj-Formula, j > 0). For o ∈ A Cartesian and j > 0,
we have that

(58) Pj =
|⋂n+1

i=1 φ−1
`(mi)

(mi)|
|⋂n

i=1 φ−1
`(mi)

(mi)|
,

for any m = (m1, m2, . . . , mn) and m′ = (m1, m2, . . . , mn, mn+1). �

2. Pi-Formulas for addition and product

We now start with objects o and o′ (using the notation of above), and consider the
Pi-values of o ⊕ o′.

2.1. Addition. We have that

(59) P0 =
|⋃i,j φ−1

i ä φ−1
j (m)|

|E |+ |E ′| ,

for any m ∈ ∪i,jφi ä φ′j(E ä E ′). Suppose without loss of generality that m ∈
(∪iφi(E ))× {0} ⊆ X × {0}. We have

(60) |
⋃
i,j

φ−1
i ä φ−1

j (m)| = |(
⋃

i

φ−1
i (m))× {0}|.

Let o and o′ be objects in A with P-vectors P(o) = (P0(o), P1(o), . . . , Pr(o))
and P(o′) = (P0(o′), P1(o′), . . . , Pr′(o′)). (The P-vector of o is the element
(x0, . . . , xr) of [0, 1[r+1 for some r ∈ N for which xi = Pi(o) if i ≤ r, and
such that Pr+1(o) = 1.) We need to calculate, for any feasible natural n, and
(m1, m2, . . . , mn) ∈ (M ä M ′)n:

(61) Pj =
|⋂n+1

i=1 (
⋃

u,v(φ−1
u ä φ′−1

v )(mi))|
|⋂n

i=1(
⋃

u,v(φ−1
u ä φ′−1

v )(mi))|
.
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Of course, the problem here is that we don’t know whether, for given i, mi is in
M × {0} or M ′ × {1}. (This problem will luckily not occur for the product
formulas.) So suppose, for now, that m1, m2, . . . , mk ∈ M × {0} with k ≤ n and
the other entries of m′ are in M ′ × {1}. The formula for E (m) becomes

(62)
k⋂

i=1

(
⋃
u

(φ−1
u (mi)× {0}) ∩

n⋂
i=k+1

(
⋃
v

(φ′
−1
v (mi)× {1}).

So E (m) = ∅ as soon as m 6∈ M n ∪M ′n. It is clear that in general, even when
one has assumed uniform distributions for the messages in M and M ′, the same
property will not be true for M ä M ′, so we want to calculate Pj using the formula

(63) Pj(o ⊕ o′) = ∑
m∈(M ä M ′)j

P(m)maxm∈M ä M ′P(m|m),

where m is as usual. By the above observation, (63) simplifies to

(64)
Pj(o ⊕ o′) = ∑m∈(M×{0})j P(m)maxm∈M×{0}P(m|m)

+ ∑m∈(M ′×{1})j P(m)maxm∈M ′×{1}P(m|m).

Of course, in the latter expression P(m) (in the first, respectively second, summa-
tion) is not the P(m) in the calculation of Pj(o), respectively Pj(o′); the probability
is measured in (M ä M ′)j and (M ä M ′)j+1. On the other hand, one notes that
for m ∈ (M × {0})j, we have

(65) maxm∈M ä M ′P(m|m) = maxm∈M×{0}P(m|m),

and the same remark holds for m ∈ (M ′ × {1})j.

Finally, assuming uniform distribution for the total message space, we obtain the
very pleasant expression

(66) Pj(o ⊕ o′) =
Cj
|M |

Cj
|M |+|M ′|

Pj(o) +
Cj
|M ′|

Cj
|M |+|M ′|

Pj(o′).

Here, Cn
m denotes the number of n-subsets in an m-set.

|M | = |M ′|, one obtains the natural formula

(67) Pj(o ⊕ o′) =
Cj
|M |

Cj
2|M |

(Pj(o) + Pj(o′)).
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The reader notes that for j = 0, exactly the same can be done as for the case j > 0.

2.2. Multiplication. In this section, we suppose a uniform distribution for the
messages in o and o′.

Let (m, m′) be in
⋃

i,j φi(E )× φ′j(E
′). Then

(68) P0 =
|⋃i,j φ−1

i × φ−1
j (m, m′)|

|E | × |E ′| .

Note that

(69) |
⋃
i,j

φ−1
i × φ−1

j (m, m′)| = |(
⋃

i

φ−1
i (m))× (

⋃
j

φ′
−1
j (m′))|.

It follows that we have the following satisfying formula:

(70) P0(o ⊗ o′) = P0(o)× P0(o′).

Now let o and o′ be objects in A with P-vectors P(o) = (P0(o), P1(o), . . . , Pr(o))
and P(o′) = (P0(o′), P1(o′), . . . , Pr′(o′)). Then we need to calculate, for any fea-
sible natural n (which we will easily make explicit below), and ((m1, m′

1), (m2, m′
2),

. . . , (mn, m′
n)) ∈ (M ×M ′)n:

(71)
n⋂

i=1

(
⋃

j

φ−1
j (mi)×

⋃
r

φ′−1
r (m′

i)) = (
n⋂

i=1

(
⋃

j

φ−1
j (mi)))× (

n⋂
i=1

(
⋃
r

φ′−1
r (m′

i))).

Whence we have the following formula for the general case:

(72) Pj(o ⊗ o′) = Pj(o)× Pj(o′).

Notice that for Cartesian objects o and o′, the latter expression again can be greatly
simplified.

COROLLARY 11.5. Let o and o′ be perfect objects in A with P-vectors of lengths `
and `′ respectively. Then o ⊗ o′ is again a perfect object with a P-vector of length
max(`, `′).

Proof. Follows directly from the product formula (72) and the equalities in |E | =
∏`

i=1
1

Pi(o) and |E ′| = ∏`′
i=1

1
Pi(o′) . �



CHAPTER 12

Automorphisms of the De Soete example

In this chapter we will compute the automorphism group of the scheme of De Soete
which was explained earlier. As the reader will notice, this is not trivial. (A reader
not familiar with quadrangles might want to skip this chapter at first reading.) In
general, the automorphism group of the scheme will be bigger than the automor-
phism group of the quadrangle fixing x (see also the observation below), and it
will appear that the former can be identified with the automorphism group of a ge-
ometry which completely encodes the properties of the authentication code. That
geometry strips off the geometrical structure of the generalized quadrangle which
cannot be seen from the point of view of the code.

1. Γ(o) and Π(o)

We denote the GQ by S , and we choose a fixed point x of S . Its point set is P .
We do not suppose a priori that the quadrangle is finite (in the infinite case, one
also obtains interesting geometrical results).
First one notices the following, the proof of which we will leave to the reader.

OBSERVATION 12.1. Let o ∈ A correspond to the scheme by De Soete with the
above data. Then Aut(S )x induces a subgroup of Aut(o). �

Let α ∈ Aut(o). Then clearly α has the property that yIL if and only if yαILα,
when y ∈ x⊥ \ {x}, and LIx. So locally it induces an automorphism of S . (We
assume without loss of generality that x is also fixed.) Since the fibers (inverse
images) of φi, where i ∈ I is arbitrary, must be mapped to the fibers of φα(i), it
follows that if U is any subset of x⊥ \ {x}, then

(73) (
⋂

u∈U

u⊥)α =
⋂

u∈U

uα⊥.

In particular, if v ∈ P \ x⊥, then ∩w∈{x,v}⊥w⊥ =: {x, v}⊥⊥ is bijectively sent to
{x, vα}⊥⊥ = ({x, v}⊥⊥)α. Moreover, if r ∈ {a, x}⊥⊥, then rα ∈ {aα, x}⊥⊥. We
have proved the next theorem.

THEOREM 12.2. The automorphism group of o is isomorphic to the stabilizer of
the point x in the automorphism group of the rank 2 geometry Γ(o), of which

• the POINTS are the points of S , and
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42 12. AUTOMORPHISMS OF THE DE SOETE EXAMPLE

• the LINES are of two types: lines incident with x, and sets {x, u}⊥⊥ \
{x}, with u 6∼ x.

(Incidence is the natural one.) �

(Notice that finiteness is not used.) In general, it follows that Aut(o) is bigger than
Aut(S )x. The following theorem explicitly describes this phenomenon.

THEOREM 12.3. Aut(S )x is strictly contained in Aut(o) if at least one span
{x, v}⊥⊥ with v 6∼ x has size at least 3.

Proof. Suppose some span S = {x, w}⊥⊥ with w 6∈ x⊥ contains a point a differ-
ent from x and w. Define the following element β of Aut(Γ(o)): β fixes all points
of S not in S, and induces an arbitrary nontrivial permutation of S \ {x}. Then β
clearly is not in Aut(S )x. �

Conversely, one might wonder whether Aut(S )x = Aut(o) if all spans of the
form {x, v}⊥⊥ have size 2; this can be shown to be so, for instance, when the
order of the GQ is (s, s2) [19]. (We refer the reader to [19] for much more consid-
erations on this matter.)

More generally, if {Tj|j ∈ J} is the set of all such spans (with the point x already
left out), and by S(Ω) we denote the symmetric group on a given set Ω, then
Theorem 12.2 “generates” an automorphism group of Γ(o) isomorphic to the direct
product

(74) Πj∈JS(Tj)

which fixes all points of x⊥. In a generalized quadrangle, the only such group must
act freely on P \ x⊥ (by [8, 8.1.1]).

There is another transparent way to calculate Aut(o). Define the rank 2 geometry
Π(o) as follows:

• POINTS are the points of x⊥;
• LINES are the lines incident with x and perps {u, x}⊥, u 6∼ x;
• INCIDENCE is (symmetrized) containment.

Clearly,

(75) Aut(Γ(o))x = T o Aut(Π(o))x,

where T is the subgroup of Aut(Γ(o))x which fixes x⊥ pointwise (that is, the
kernel of the action of Aut(Γ(o))x on Π(o)). Note that we already met T as

(76) T = Πj∈JS(Tj).
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2. Example

Now suppose that S is finite, s = t, and x a regular point. Then it is easy to
see that Π(o) is a projective plane of order s. Putting for instance S equal to
the symplectic quadrangle W(q), which has as point set the points of projective
3-space PG(3, q) over the finite field Fq, and as lines the totally isotropic lines
of a given symplectic polarity of that space, this observation holds true (since any
point of W(q) is regular [8, Chapter 5], and s = t = q). In that case, Π(o) is
isomorphic to the Desarguesian plane PG(2, q), and

(77) Aut(Π(o))x ∼= PΓL3(q)x.

The set P \ x⊥ is partitioned in precisely q2 sets Ti, each of size q, since x is a
regular point, so that

(78) T = Πq2

i=1Sq.

Together with (75), we obtain a precise description of Aut(o) for the De Soete
scheme with S = W(q) and x arbitrary.





CHAPTER 13

Group schemes

In this chapter, by using our abstract setting, we introduce a general type of authen-
tication scheme using groups, and note that many known examples are particular
instances of this scheme.

Let G be a finite group, and {Gi|i = 1, . . . , n} a set of nontrivial subgroups of G.
Then these data define the following object in A:

(79) (G, G, id, I, (φi)i∈I,∪i∈IG/Gi),

where I = {1, 2, . . . , n} and φi : G −→ G/Gi sends any g to gGi. (Here G/Gi
denotes the left coset space of Gi in G.) Often we will abbreviate the data by
(G, {Gi}i).
Note that the object is Cartesian since gGi = hGj implies i = j.
The P-values are given by the following expressions (below we assume the typical
uniform probability distributions, although again all formulas are easily adapted to
the general case):

(80)


P0 =

|Gi|
|G|

Pj =
|G1 ∩ G2 ∩ · · · ∩ Gj+1|
|G1 ∩ G2 ∩ · · · ∩ Gj|

for j > 0,

where in the first formula, the size of Gi is independent of i by assumption (and
similar remarks hold for the second formula). Note that for any l ∈ G, we have
|lGi| = |Gi|, and for any set S ⊆ G, and any set of subgroups {Gs|s ∈ S, Gs ≤
G}, we have that

(81) | ∩s∈S sGs| = | ∩s∈S Gs|
if ∩s∈SsGs is not empty.

1. Normal subgroups

An interesting example is when each Gi is a normal subgroup of G (which we then
denote by Ni). So in that case we have, for each i, exact sequences
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46 13. GROUP SCHEMES

(82) 0 −→ Gi −→ G −→ G/Gi −→ 0.

2. Geometrical examples

We call the scheme geometrical if G is an elementary abelian p-group for some
prime p. In that case, G can be seen as a u-dimensional vector space over Fp
(where |G| = pu), and the Gi can be seen as subspaces. (Note that the geometrical
examples are special cases of the normal ones.) The whole situation can equally
be represented in PG(u, p) by projectively completing G, that is, by adding the
hyperplane at infinity so as to obtain a projective space.

The scheme of Klein, Schillewaert and Storme (using generalized dual arcs) [6]
is an example of this geometrical scheme. For, if D is a generalized dual arc in
PG(n, q), the elements of D having dimension n1, one embeds PG(n, q) as a hy-
perplane in PG(n + 1, q). Defining AG(n + 1, q) to be PG(n + 1, q) without
PG(n, q), and choosing an affine point z, the spaces zβi with βi ∈ D can be seen
as subgroups of T of size qn1+1, where T is the translation group of AG(n + 1, q).
Since T is an elementary abelian p-group, putting G = T, Gi = zβi and interpret-
ing everything over Fp, we obtain that the scheme indeed is geometrical. (Note
that in the generalized dual arc scheme, one chooses an affine point e as encoding
rule, and the encoded message, after choosing the source state i, is the space eβi;
this space corresponds precisely with the coset eGi.)

3. Multiple transitivity

Let G be a finite group acting n-transitively on the set S, and identify I with S. Put
{Gi} = {Gs|s ∈ S}. Then for j ≤ n− 1, the P-values are easily computed as:

(83) Pj =
1

|S| − j
.

Particularly, with |S| = n ∈ N and G isomorphic to the symmetric group Sn
acting naturally on S, we obtain that

(84) |G| = Πn−1
i=0 (n− i),

so that the obtained schemes are perfect and Cartesian. (We have no doubt that the
multiply transitive examples were already known in one way or another.)

4. Arithmetical example

For retaining the aforementioned arithmetic example, just put G = Z/NZ, Gi =
Z/niZ (where N = n1n2 . . . nk and the ni have no common nontrivial divisors);
the φi are projections
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(85) φi : G −→ G/Gi : x + NZ −→ x + niZ(+NZ).

5. The Gilbert-McWilliams-Sloane example as a group scheme

Consider group scheme data (G, {Gi}I), and suppose that for all i ∈ I we have
that |G| = |Gi|2 = c2, c ∈ N0,1 = N \ {0, 1}, |I| = c + 1, and suppose that
Gi ∩ Gj = {1} when i and j are different. It follows that GiGj = G for any such
i, j. Define a rank 2 geometry Γ ≡ Γ(G, {Gi}I) as follows:

• POINTS are elements of G;
• LINES are the left cosets gGi;
• INCIDENCE is (symmetrized) containment.

Then it is easy to see that Γ is an affine plane of order c. Moreover, G acts sharply
transitively on Γ by left multiplication, while fixing all parallel classes. So, by
definition, Γ is a translation plane with translation group G. As a corollary, G is
an elementary abelian p-group for some prime p.
Consider the corresponding scheme o = (G, G, id, I, (φi)i∈I,∪i∈IG/Gi). Then
the reader notices the next theorem:

THEOREM 13.1. o is isomorphic to the Gilbert-McWilliams-Sloane scheme for the
projective completion Γ of Γ. �

As before, it is easy to prove that the automorphism group of o coincides with
Aut(Γ). On the other hand, note that the subgroup of Aut(G) which stabilizes
the set G = {G/Gi|i ∈ I} (the “stabilizer of the scheme” in Aut(G)) does not
coincide with Aut(o). (The left action of G is not contained in Aut(G).) Still, the
following is easily seen to be true:

OBSERVATION 13.2. Aut(G)G ≤ Aut(o). Moreover, for any point g ∈ Γ, we
have that Aut(Γ)g ∼= Aut(G)G . �

6. De Soete schemes as group schemes

We can easily imitate the previous example so as to obtain a similar viewpoint
for the De Soete schemes. For consider a GQ S = (P , B, I) of order (s, t) with
s 6= 1 6= t. Suppose that for some point x of S , there is a subgroup E of Aut(S )x
which fixes every line through x, and acts sharply transitively on P \ x⊥ (so that
|E| = s2t). Let L0, L1, . . . , Lt be the lines incident with x. Choose any point z not
collinear with x, and let xi = projLi

z for all i. Define for such i, Ei to be Exi .

THEOREM 13.3. In this setting, o = (E, E, id, I, (φi)i∈I,∪i∈IE/Ei) is isomorphic
to the De Soete scheme constructed from the pointed GQ (S , x).

Proof. The isomorphism is natural: send a point v of P \ x⊥ to the α ∈ E for
which zα = v, let the permutation of I be the identity, and let a point y ∈ x⊥ \ {x}
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correspond to lEi if yILi, with l any element of E which sends xi to y. �

Later, we will see that in some situations, the De Soete scheme “covers” the
Gilbert-McWilliams-Sloane scheme.

7. Automorphism groups

In general, it is not possible to give a unifying formula for the automorphism groups
of group schemes — the automorphism groups depend heavily on the structure of
G and the given subgroups Gi (for instance, in the Gilbert-McWilliams-Sloane
group scheme determination of Aut(o) boils down to determination of the auto-
morphism group of the plane). But still, in some situations it is possible to say
slightly more (thinking especially of variations on the arithmetic example).

THEOREM 13.4. Consider group scheme data (G, {Gi}I), and suppose that for
i 6= j, (|Gi|, |Gj|) = 1 and GiGj = GjGi. Also assume that |G| = Π|I|

i=1|Gi|.
Write |Gi| = ni for i ∈ I. Then

(86) Aut(o) ∼= G o (Π|I|
i=1Sni−1).

Proof. It is clear that G acts by left multiplication on o, and sharply transitively
on the encoding rules, so that we can fix any point in G, say 1, and look at the point
stabilizer. Clearly, since (ni, nj) = 1 for i 6= j, an element α in Aut(o)1 must fix
all subgroups Gi. So α induces a permutation in each of the Gis which fixes 1.
(Note at this point that Gi ∩ Gj = {1} for all i 6= j.) Vice versa, let αi ∈ S(G×

i )
be arbitrary. Note that since GiGj = GjGi for all i, j, we have that

(87) G = G1G2 · · ·Gk,

with k = |I|, and each element of G can be uniquely be written in the form
g1g2 · · · gk, with gj ∈ Gj. It follows now that (α1, α2, . . . , αk) naturally induces an
element of Aut(o)1 which induces in each Gi the element αi. �

COROLLARY 13.5. Consider group scheme data (G, {Gi}I), and suppose that for
i 6= j, (|Gi|, |Gj|) = 1. Assume that |G| = Π|I|

i=1|Gi|, and that the Gi are all
normal subgroups of G. Write |Gi| = ni for i ∈ I. Then

(88) Aut(o) ∼= G o (Π|I|
i=1Sni−1).

In particular, the theorem holds when G is abelian. �

Putting G = Z/NZ and Gi = Z/niZ for natural numbers N and ni such that
N = n1n2 . . . nk, and (ni, nj) = 1 for i 6= j, we obtain again the automorphism
group of the numerical scheme!



CHAPTER 14

Construction of examples — Algorithms

In this chapter, we show, using the multiplication in A/CA, that there are trans-
parent algorithms to produce authentication codes à la minute. In fact, what the
algorithms essentially say is that given a set of parameters of a hypothetical “very
good” authentication code (so which does not violate the necessary standard arith-
metic inequalities), such codes actually exist.

1. Practical — short length

From the practical point of view, the most important probability parameters for
authentication codes are the P0 (= PI) and the P1 (= PS) values. In that case, one
wants to have codes at hand where the Pi, i = 0, 1, are as small as possible with
respect to the number of encoding rules. A natural additional assumption for hav-
ing a strong code is demanding minimal decay for P1, that is, demanding that P1
is close to P0. So an important class of authentication codes consists of the perfect
codes with

(89) |E | = 1
P0
· 1

P1
=

1
P2

0
.

The only such codes known seem to be the GMWS-schemes from projective planes;
there, if n is the order of the plane, |E | = n2 and P0 = P1 = 1/n. It is important
to note that it is conjectured that the order of a finite projective plane is always a
prime power — see [17] for more details.
The following theorem presents a broad generalization of this construction.

THEOREM 14.1. Let k ∈ N be any natural number different from 0, 1. Then there
exists a perfect authentication A-scheme with

(90) |E | = k2 and
1
PI

=
1
PS

= k.

Proof. We will give a constructive proof.

STEP 1 Write down the prime power decomposition for k:

(91) k =
r

∏
i=1

pni
i ,

49
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where the pi are distinct primes and the ni nonzero natural numbers.

STEP 2 For each i ∈ {1, 2, . . . , r}, put oi equal to the GMWS-scheme constructed
from the Desarguesian projective plane PG(2, pi

ni) over the field with
pi

ni elements. For each i, this is a perfect scheme with probability pa-
rameters Pi

I = 1/(pi
ni) = Pi

S.

STEP 3 Apply Corollary 11.5 to construct the perfect scheme

(92) o =
r⊗

i=1

oi

which is the desired code.

�

Note that for any i, one is allowed to construct a GMWS-scheme from any projec-
tive plane of order pi

ni , so that Theorem 14.1 truly gives an algorithm for construc-
tion a great deal of such schemes (which can easily be computed in function of
the prime power decomposition, and the number χ(`) of nonisomorphic projective
planes of a given prime power order `).

If one wants to concentrate on PS and PI , and for instance aims to construct
schemes where equality PI = PS holds, but not necessarily perfect schemes, one
can consider, e.g., a set S of De Soete schemes and GMWS-schemes, and apply
the previous algorithm to obtain products of elements in S.

REMARK 14.2. Let o be an A-code (without splitting), such that P0 = P1 = 1/c
for some c ∈]0, 1[. It is well-known that

(93) |E | ≥ |I|(c− 1) + 1,

and equality holds if and only if the incidence matrix of E is an orthogonal array
OA(c, |I|, λ) with λ = (|I|(c − 1) + 1)/c2 and each e ∈ E is used with equal
probability. (And of course, in general, |E | ≥ c2.) Although the codes from
which we start in Theorem 14.1 indeed come from orthogonal arrays, one must
note that the eventually constructed codes do not; it is easily verified that equality
cannot hold because the cardinalities of the source sets are multiplied. Still, all the
constructed codes “are” very close to equality.

The following theorem presents a variation on the algorithm of Theorem 14.1. It
constructs perfect codes with |E | = 1

PI PS
, PI and PS still being very close to each

other, but not equal. It generalizes the shorth length schemes based on sharply
2-transitive groups.
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THEOREM 14.3. Let k ∈ N be any natural number different from 0, 1. Then there
exists a perfect authentication A-scheme with

(94) |E | = k
r

∏
i=1

(pi
ni − 1) and

1
PI

= k,
1
PS

=
r

∏
i=1

(pi
ni − 1),

where ∏r
i=1 pi

ni is the prime number decomposition of k.

Proof. Again we provide a constructive proof.

STEP 1 As in Theorem 14.1, write down the prime power decomposition for k:

(95) k =
r

∏
i=1

pni
i ,

where the pi are distinct primes and the ni nonzero natural numbers.

STEP 2 For each i ∈ {1, 2, . . . , r}, put oi equal to the group scheme constructed
from a sharply 2-transitive group K acting on a set of pi

ni letters. For each
such i, this is a perfect scheme with probability parameters Pi

I = 1/(pi
ni)

and Pi
S = 1/(pi

ni − 1).

STEP 3 Apply Corollary 11.5 again to construct the perfect scheme

(96) o =
r⊗

i=1

oi

which is the desired code.

�

Theorem 14.1 and Theorem 14.3 can now be combined to construct still other large
classes of perfect schemes with similar properties as those constructed in Theorem
14.3.

The reader can of course substitute “sharply 2-transitive” by “sharply 3-transitive”
(for instance by considering the groups PGL2(q) in their natural action on the
projective line over Fq) in the above approach to generate similar examples with
probability length 3, etc.

2. Theoretical — any length

Now we construct some perfect group schemes of any length. Both algorithms be-
low are based on the symmetric group schemes considered earlier.
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2.1. Power algorithm. First construct the group scheme o from the symmet-
ric group Sr+1, with r ∈ N0; it is perfect and for j ∈ {0, 1, . . . , r − 1}, we have
that

(97)
1
Pj

=
1

r + 1− j
.

For any w ∈ N0, now consider

(98)
w⊗

i=1

o,

which is a perfect scheme with |E | = ((r + 1)!)w and probability parameters

(99)
1
Pj

=
1

(r + 1− j)w .

The advantage of this construction is the fact that we fix the probability length of
the scheme, which remains perfect throughout the process, while getting the worst
parameter (Pr−1) as small as we want. (The cost being the fact that |E | grows ex-
ponentially.)

2.2. Breakdown algorithm. A second code we propose is the following.
Let k ∈ N0,1 be any natural number, and write

(100) k =
n

∏
i=1

ki,

where ki ∈ N0,1 is not necessarily a prime power.
For each k j, j ∈ {1, . . . , n}, construct the group scheme oj from the symmetric
group Sk j ; it is a perfect scheme with probability parameters

(101)
1

Pj
m

=
1

k j −m

for m = 0, 1, . . . , k j − 2.
Now multiply all schemes to obtain

(102) o :=
n⊗

i=1

oi.

It is a perfect A-scheme with I = ∏n
i=1 k j,

(103) |E | =
n

∏
i=1

(ki)! ≤ k!,
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and parameters

(104)
1
Pu

=
n

∏
i=1

1
ki − u

,

where in the latter, we put 1/(kv − v) = 1 if v ≥ kv. The probability length of o
is maxj(k j).

2.3. Combining short and arbitrary length. It is now easy to construct per-
fect codes of arbitrary probability length `, with strong PI and PS paramaters, as
follows.

Take any of the above perfect code schemes of probability length ` (or any other
such code), and multiply it with any short length scheme. By Corollary 11.5, we
still have a perfect scheme (with the same probability length of the “longest fac-
tor”), which is concentrated in PI and PS.
The latter two can be chosen as small (and as close together) as we want by taking
the appropriate short length code, and all parameters can be easily controlled.

2.4. Generation of algorithms. Combining both addition and multiplication,
one can describe a universe of algorithms by starting from some initial set of good
authentication codes, in the spirit of the previous sections.





CHAPTER 15

Covers

Suppose (S , x) is a pointed generalized quadrangle of order (s, s), s 6= 1 and
s < ∞, and let x be a regular point. Moreover, suppose E is a subgroup of
Aut(S )x fixing each line on x and acting sharply transitively on the points not
collinear with x. As before, with respect to some fixed point z not collinear with
x, we introduce the subgroups Ei for i = 0, 1, . . . , s. Each of these subgroups has
size s2 (and E itself has size s3). It can be proved (cf. [18]) that E has a subgroup
E of order s, of which each of the elements fixes every point of x⊥. (Essentially,
this expresses group theoretically that x is a regular point.) We note that s is the
maximal possible size for a subgroup with this property. Let o ∈ A be the group
theoretical De Soete code defined by the data (E, {Ei}I), with I = {0, 1, . . . , s}
(cf. §6).

As E is a normal subgroup of E, we can now consider the data

(105) (E/E, {Ei/E}I),

and construct the code o′ out of it. Note that E/E has size s2, each Ei/E has
size s, and for i 6= j, (Ei/E) ∩ (Ej/E) is trivial. Whence we have a group the-
oretical Gilbert-McWilliams-Sloane scheme (which corresponds with the scheme
constructed from the projective plane Π(x)).

So the first code o “covers” the second one o′ (through the group E) — in other
words, o is an “extension” of o′ and o′ a “quotient” of o. This observation opens an
interesting setting to pass from one code to another.

1. Covers and quotients

In general, we say that a group scheme determined by data (G, {Gi}I) covers the
scheme with data (H, {Hi}I), if there is a normal subgroup G of G contained in⋂

i∈I Gi such that

(106)
{

G/G = H
Gi/G = Hi for all i ∈ I,

possibly up to a permutation of I. We also use the terms “quotient” and “exten-
sion” as above. The cover is maximal if G =

⋂
i∈I Gi. We require that G does not

coincide with any of the Gis for obvious reasons. (So both codes indeed have the

55
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same index sets I.)

2. Automorphisms of covers

Suppose a code o determined by data (G, {Gi}i∈I) is a maximal cover of the code
o′ through the normal subgroup G. Without loss of generality we may suppose that
o′ is given by data

(107) (G/G, {Gi/G}i∈I).

Let α ∈ Aut(o) fix the element 1 of G. Then α must fix G. Still, there is no
reason to conclude that α induces an element of Aut(o′), since α is not necessarily
a group morphism (so that one does not know a priori what happens with the left
cosets). But if α would be an automorphism of G, it is clear that it would induce
an element of Aut(o′).

On the other hand, if we start from an automorphism β of o′ it is always possible
to lift β in a maximal sense (i.e., by a theoretical maximal number of ways) to
automorphisms of o. For suppose β is as such. Let

(108) F = {gG|g ∈ G}
be the set of fibers of the projection morphism defined by G; its size is |G|/|G| =
r. For the sake of convenience, we write F = {Fj|j ∈ J} with J a set of size r,
and see each Fj as a copy of some set F. Let γ = (γ1, . . . , γr) be any element of
Πr

i=1S(Fi). Then (β, γ) determines an automorphism of o in the following way:
the action on F is determined by β and, for Fi ∈ F, the action on the points of Fi

is given by the action of γi on F (with images lying in the copy Fβ
i ).

We have proved that

(109) (Πr
i=1S(Fi)) o Aut(o′) ≤ Aut(o),

a formula which we already observed in the special case of the De Soete scheme
(with some additional assumptions). Here, Πr

i=1S(Fi) can be seen as a group fix-
ing F elementwise.

REMARK 15.1 (Combinatorial covers). One could also introduce the concept of
“combinatorial covering”, so that one does not need the group theoretical setting,
while the formula (109) still holds. The group theoretical notion then becomes a
particular instance of the combinatorial one. We leave the details to the reader, who
can use the combinatorial connection between the general De Soete scheme (with
x a regular point and s = t) and the general Gilbert-McWilliams-Sloane scheme
as a model.
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Cohomology

Consider the De Soete scheme o(S , x) arising from a pointed generalized quad-
rangle (S , x), and let o ∈ A correspond to o(S , x). We have seen that the auto-
morphism group Aut(o) of o is in general much bigger than Aut(S )x, although
the latter is a subgroup of Aut(o) in a natural way. On the other hand, the geometry
Γ(o) has the same automorphism group (stabilizing x) as o. The factor

(110)
|Aut(o)|
|Aut(S )x|

expresses the fact that a big part of the geometric structure of the quadrangle is not
used (and not necessary) in the scheme o. And on the contrary, we have

(111)
|Aut(o)|

|Aut(Γ(o))x|
= 1.

So the two latter fractions measures in a sense the cohomological property how
essential the geometry is for the scheme.

We want to formalize this idea.

1. Cohomology principle

Let o ∈ A. We say that a mathematical structure Γ(o) is a module for o if a
(concrete) model of o can be defined “as a substructure” of Γ(o). (This model is
just an element of CA.) (Think of the De Soete scheme which is defined on a
substructure of S .) We say Γ(o) is natural if

(112) Aut(Γ(o))o/K ≤ Aut(o),

where Aut(Γ(o))o denotes the stabilizer of the defining substructure for o in
Aut(Γ(o)), and K the kernel of the induced action on the substructure. (In the De
Soete scheme, Aut(Γ(o)) = Aut(S )x and K is trivial — note that here Γ(o) has
a different meaning than in the De Soete section.) Then to o we associate the set
S(o), which we call the moduli space of o, which consists of all natural modules
of o. The cohomology of o with respect to Γ(o) is

(113) H(o, Γ(o)) = Aut(o)/(Aut(Γ(o))o/K),
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where the latter denotes the left coset space of Aut(Γ(o))o/K in Aut(o). The
cohomology H(o) of o is the set of all H(o, Γ(o)) where Γ(o) varies over S(o).
The size of an element H(o, Γ(o)) of H(o) expresses how “close” the structure
of the module Γ(o) is to the structure of the scheme o, that is, how much of the
structure of the module is used in the construction of the scheme. So of special
interest are the modules with trivial cohomology spaces.
If a cohomology space H(o, Γ(o)) is large, it means that the scheme o can be con-
structed in modules with much less structure, and in particular in modules which
might look completely different in nature than Γ(o) (while the scheme still is the
same one!). It might therefore be a good idea to calculate the cohomology once a
construction of an authentication code is given, in order to check the strength of
the construction. Of course, usually this is a hard problem.

OBSERVATION 16.1 (Cohomology principle). If H(o, Γ(o)) is “large”, the prob-
ability is “large” that the scheme can be/has been constructed in another setting.

This principle can easily be explained with an example. In the scheme of De Soete,
applied to the symplectic quadrangle W(q), we have that

(114) |H(o, W(q))| = (q!)q2

q
,

while |H(o, Γ(o))| = 1, meaning that one can construct many geometries (the
many being some function of q) in between Γ(o) and W(q) which are all natural
modules for o, with cohomology “in between” the one point space and H(o, W(q)).
Note that now we use the Γ(o)-notation of §12 (both W(q) and Γ(o) are o-modules).
Another good example we already met is the Gilbert-McWilliams-Sloane example
where the cohomology is trivial (which makes the planar module a very good one).

2. Cohomology of covers

Suppose that o is a maximal cover of o′ (in the group theoretical setting); we use
the notation of §2. Then

(115) (Πr
i=1S(Fi)) o Aut(o′) ≤ Aut(o).

Remark that the translations by elements of G form a subgroup of Aut(G)o which
intersects trivially with (Πr

i=1S(Fi)) o Aut(o′).
Elements of Aut(G)o induce elements of Aut(G/G)o′ . Conversely, there is no
general way to lift elements of Aut(G/G)o′ to elements of Aut(G)o. It follows
that
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(116)


|Aut(o)|
|Aut(o′)| ≥ |G| · (|G|!)r;

|Aut(G)o|
|G| ≤ |Aut(G/G)o′ |.

We have obtained the following, noting that the cohomology for both o and o′ (with
respect to Γ(o) = (G, {Gi}I) and Γ(o′) = (G/G, {Gi/G}I)) is well-defined,
since both modules are natural.

THEOREM 16.2 (Cohomology of covers). The cohomology of a maximal cover o
of o′ (with respect to the group data (G, {Gi}I)) is bigger than the cohomology of
o′ (with respect to (G/G, {G/Gi}I)). More precisely, we have that

(117) |H(o, Γ(o))| ≥ |H(o′, Γ(o′))| · (|G|!)r.

�

The theorem expresses the fact that once an authentication code (maximally) cov-
ers another one (by a nontrivial normal subgroup), it always uses the structure of
the group data by which it is defined in a less essential way than the code it covers.

The reader might see this result (relative the comparison of sizes) in the light of
the Lyndon-Hochschild-Serre five-term exact sequence which states that, when A
is an abelian H-module and K a normal subgroup of G, we have

(118) 0 −→ H1(H/K, AK) −→ H1(H, A) −→ H1(K, A)H/K −→
H2(H/K, AK) −→ H2(H, A).

REMARK 16.3. The general cohomology we defined (of an object o ∈ A with
respect to a natural module Γ(o)) seems to be the first cohomology of some appro-
priately defined “complex” (Ci, ∂i)i∈N of objects related to group modules. We ex-
pect that the 0-th cohomology might be something like K (the kernel of the action of
Aut(Γ(o))o on o). We suspect that ∂0(C0) = Aut(Γ(o))o and ker(∂1) = Aut(o).





APPENDIX A

Authentication codes with arbitration

Below we briefly describe how one can also view authentication codes with ar-
bitration in a formal categorical setting. We will however not explore this in full
depth, and let the reader fill in the details.

1. Abstract category

Let I be an arbitrary index set and let AR, ER, AT, ET and X be nonempty sets,
ιt : AT → ET and ιr : AR → ER bijections, and α : AR → AT and τi : ET → X
mappings, i ∈ I. Finally the ρis are mappings of the form ER → P(X) (the
latter is the power set of X), i ∈ I. Then the category of authentication codes with
arbitration Aarb has as its objects tuples

(119) (AR, ER, ιr, AT, ET, ιt, α, I, {τi}i∈I, {ρi}i∈I, X).

For tuples

(120) (AR, ER, ιr, AT, ET, ιt, α, I, {τi}i∈I, {ρi}i∈I, X)

and

(121) (A′
R, E′R, ι′r, A′

T, E′T, ι′t, α′, I′, {τ′i }i∈I′ , {ρ′i}i∈I′ , X′)

defined over index sets I and I′ with |I| = |I′|, and for a bijective mapping
ν : I → I′, one can define morphisms as tuples (ν, ar, at, er, et, x), which are
mappings making the following diagrams commute

(122)

AR
ιr−−−→ ER

ar

y er

y
A′

R
ι′r−−−→ E′R

(123)

AT
ιt−−−→ ET

at

y et

y
A′

T
ι′t−−−→ E′T

and
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(124)

AR
α−−−→ AT

ar

y at

y
A′

R
α′−−−→ A′

T

For all i ∈ I we want

(125)

ET
τi−−−→ X

et

y x

y
E′T

τ′
ν(i)−−−→ X′

and finally we want the following commutative diagram, where x : P(X) →
P(X′) is naturally induced by x : X → X′:

(126)

ER
ρi−−−→ P(X)

er

y x

y
E′R

ρ′
ν(i)−−−→ P(X′)

2. Concrete authentication codes with arbitration

An object in the category of concrete authentication codes with arbitration CAarb
is a tuple

(127) (KR, ER, fr, KT, ET, ft, α, S , M ).

Here fr : KR → ER and ft : KT → ET are bijections and α : KR → KT is
a mapping. The set ET consists of mappings et : S → M . The set ER consists
of mappings er : S → P(M ). A morphism between two objects is a tuple
(κr, ηr, κt, ηt, σ, µ) making the necessary diagrams commute.

In the A2-model, we assume that Alice and Bob do not trust each other. In this
case, they do not agree upon an encoding rule. Instead, a trusted person, the ar-
biter, is also involved in the scheme. Now Alice has a set of encoding rules ET,
and Bob a set of decoding rules ER. If Alice and Bob want to communicate, Bob
chooses a key kr in KR and calculates his encoding rule er = fr(kr). He then
sends kr to the arbiter. Upon receipt of the key kr the arbiter forms kt = α(kr) and
sends it to Alice. With kt corresponds an encoding rule et = ft(kt) ∈ Et. When
Alice wants to communicate, she picks a source state s ∈ S and she sends the pair
(s, et(s)) to Bob. When Bob receives a pair (s, m), he checks whether m ∈ er(s).
If so, he accepts it as a valid one. If there is a dispute between Alice and Bob about
a pair (s, m), the arbiter checks if m = et(s). If so he decides that Alice has sent
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the message, otherwise that she has not.

We define a functor Farb from the abstract to the concrete category as follows. It
maps an object (AR, ER, ιr, AT, ET, ιt, α, I, {τi}i∈I, {ρi}i∈I, X) of Aarb to an ob-
ject (AR, ẼR, f̃r, AT, ẼT, f̃t, α, I, X ). Here ẼR = ψ(ER) is a set of mappings
ψr(er) = ẽr : I → P(X) corresponding to elements er ∈ ER such that for all
i ∈ I : ẽr(i) = ρi(er). Moreover ẼT = ψ(ET) is a set of mappings ψt(et) = ẽt :
I → X corresponding to elements et ∈ ET such that for all i ∈ I: ẽt(i) = τi(et).
The maps f̃r and f̃t make the following diagrams commute:

(128)

AR
ιr−−−→ ER

id

y ψr

y
AR

f̃r−−−→ ẼR

(129)

AT
ιt−−−→ ET

id

y ψt

y
AT

f̃t−−−→ ẼT

The notion of morphisms is left to the reader to introduce.

3. Examples

As for codes without arbitration we illustrate our general concept with some exam-
ples. We first describe the “practical code” and then give its abstract form.

3.1. Johansson’s example. The scheme below is due to Johansson [5]. Take
a fixed line L in PG(3, q). The points on L are regarded as the source states. The
decoding rules are the points not on L, and the encoding rules are the lines not
intersecting L. The messages are planes spanned by a source state and an encoding
rule. When Alice and Bob want to communicate, Bob chooses a decoding rule F
and hands it to the arbiter. The arbiter chooses an encoding rule e which contains
F and hands e to Alice. If Alice wants to transmit a message, she chooses a source
state s and sends s and the plane 〈s, e〉 to Bob. In case of a dispute, the arbiter
checks if the encoding rule he gave to Alice is contained in the transmitted plane.
If this is the case, he decides Alice has sent the message, otherwise he decides it
was someone else. This defines a 2-fold perfect Cartesian code with P0 = P1 = 1

q .

The abstract code
• AR = ER consists of the points not on L;
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• I is indexed by the points on L;
• the map α is determined by the line which the arbiter picks for a given

choice of a point;
• AT = ET consists of the lines not intersecting L;
• the τi take a line M of ET to the plane spanned by point i of L and M, i.e.
〈i, M〉;

• the ρi associate to a given point y of ER the set of planes intersecting L in
a point i and containing y;

• X is the set of all planes not containing L.

3.2. The use of generalized dual arcs. The scheme below is due to A. Klein,
J. Schillewaert and L. Storme [6]. We work over a finite field Fq.

Consider the space Πn spanned by a generalized dual arc of type (n = n0, . . . , nl+1)
and embed Πn in an (n + 2)-dimensional space Πn+2. The source states are the
n1-dimensional spaces which are the elements of the generalized dual arc, the de-
coding rules are the points in Πn+2\Πn, the encoding rules are the lines in Πn+2
which are skew to Πn, and the encoded messages are the (n1 + 2)-dimensional
spaces generated by a source state and an encoding rule. We assume that Alice
and Bob do not trust each other. When Alice and Bob want to communicate, Bob
chooses a point x in Πn+2\Πn as decoding rule and sends it to the trusted ar-
biter. The arbiter picks one of the lines L through x skew to Πn as encoding rule
and sends it to Alice. When receiving an (n1 + 2)-dimensional space Πn1+2, Bob
checks if x ∈ Πn1+2. If this is the case he accepts the message, else he does not.
The goal for an opponent Eve is thus to produce a pair (Πn1 , Πn1+2) such that
x ∈ Πn1+2.
If there is a dispute between Alice and Bob about a valid message, then the arbiter
checks if the encoding rule which he handed to Alice is contained in Πn1+2. If this
is the case, then he decides that Alice has sent the message, else that she has not.
If Alice wants to fool Bob, she has to produce an (n1 + 2)-dimensional space
containing x but not L. If Bob wants to fool Alice, he has to produce an (n1 + 2)-
dimensional space which contains the line L.

The number of encoding rules for the transmitter is the number of lines skew to
Πn; this is equal to |ET| = q2n0+2. The number of decoding rules is the number of
points in Πn+2\Πn; this is |ER| = (q + 1)qn0+1.

If an opponent wants to cheat, he has to produce an (n1 + 2)-space containing the
point x. His chance to do so after having seen i pairs is POi = qni−ni−1 . If Alice
wants to fool Bob, she has to guess which point x on L is Bob’s decoding rule.
Hence, she has a chance PT = 1

q+1 . If Bob wants to fool Alice, he has to pro-
duce an (n1 + 2)-space containing L. After seeing i pairs, this chance is equal to
qni−ni−1 .
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Comparing with the lower bounds above, this scheme is perfect.

The abstract authentication code
• AR = ER consists of the points not in Πn;
• I is indexed by the elements of the arc;
• the map α is determined by the line which an arbiter picks for a given

choice of a point;
• AT = ET consists of the lines skew to Πn;
• the maps τi take a line M of E to the space spanned by arc element i and

M;
• the ρi associate to a given point y of ER the set of (n1 + 2)-dimensional

spaces containing y and intersecting Πn in the arc element i;
• X is the set of the (n1 + 2)-dimensional spaces spanned by an arc element

and a line skew to Πn.
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