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The McKay-Conjecture for exceptional
groups and odd primes

Britta Späth∗

November 19, 2007

Abstract

Let G be a simply-connected simple algebraic group over an algebraically closed
field of characteristic p with a Frobenius map F : G → G and G := GF , such that
the root system is of exceptional type or G is a Suzuki-group or Steinberg’s triality
group. We show that all irreducible characters of CG(S), the centraliser of S in
G, extend to their inertia group in NG(S), where S is any F -stable Sylow torus of
(G, F ). Together with the work in [17] this implies that the McKay-conjecture is
true for G and odd primes ` different from the defining characteristic. Moreover it
shows important properties of the associated simple groups, which are relevant for
the proof that the associated simple groups are good in the sense of Isaacs, Malle
and Navarro, as defined in [15].

1 Introduction

The McKay-conjecture claims that for any finite group H and any prime `, the equation
|Irr`′ (H)| = |Irr`′ (NH(P ))| holds for a Sylow `-subgroup P of H, the normaliser NH(P )
of P in H and Irr`′ (H) := {χ ∈ Irr (H) | ` -χ(1)}. This paper proves this equality for
exceptional groups H and odd primes `, different from the defining characteristic of H.
Furthermore it aims at making a step towards proving this longstanding conjecture by
showing a certain extensibility property (Theorem A). With [17], this implies for any
exceptional group of Lie type H the existence of a bijection Irr`′ (H) → Irr`′ (N) for a
specified group NH(P ) ≤ N � H. This is a part of a set of conditions on simple group,
which according to [15], imply the McKay-conjecture for all finite groups. Theorem B
gives some more technical details related to this condition.

In [15] the authors formulated a condition on simple groups, which verifies the McKay-
conjecture. More precisely they show that a group H fulfils the McKay-conjecture for a
prime `, if all simple groups involved in H are good for `.

Roughly speaking a simple group S is good for ` if for the maximal perfect central
`′-extension G of S the following conditions hold:
∗This research has been supported by the DFG-grant “Die Alperin-McKay-Vermutung für endliche

Gruppen” and an Oberwolfach Leibniz fellowship.
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• There exists a group N � G with N ≥ NG(P ) for some Sylow `-subgroup P of
G with Aut(G) =

〈
NAut(G)(N), Inn(G)

〉
, where Inn(G) and Aut(G) denote the

groups of inner automorphism and all automorphisms of G respectively.

• There exists an NAut(G)(P )-equivariant bijection ′ : Irr`′ (G) → Irr`′ (N).

• For each character χ ∈ Irr`′ (G) one finds a group M B G such that M induces
all automorphisms stabilising χ on G and CM(G) is abelian. The characters χ
and χ′ have extensions χ̃ and χ̃′ to 〈G,CM(G)〉 and 〈N,CM(G)〉 respectively,
such that Irr (CM(G) | χ̃) = Irr (CM(G) | χ̃′), both characters are invariant in M
and NM(N) respectively, and their associated elements in the Schur multipliers
M (M/〈CM(G),G〉) and M(NM(N)/〈CM(G),N〉) are equal under the canonical isomor-
phism.

In [18] it was proven that all simple groups that are not of Lie type are good for every
prime `. If S is a simple group of Lie type, G can be assumed to be the fixed point
subgroup of a simply-connected simple algebraic group under a Frobenius map. It was
shown in [17] that, while ` differs from the defining characteristic, the normalisers of
specific Sylow tori in G can be chosen as N to fulfil the first condition. Furthermore the
desired bijection from the second condition was defined under the assumption that all
irreducible characters χ of L extend to their inertia group in N , where L is the centraliser
of the before mentioned Sylow torus S. We verify this assumption for certain groups G.

The Sylow tori were first introduced in [5] and play a key role in the d-Harish-Chandra
theory.

Theorem A Let G be a simply-connected simple algebraic group defined over Fq and
F : G → G a Frobenius map, such that the root system of G is exceptional or such that
GF is a Suzuki-group or Steinberg’s triality group. Furthermore let S be a Sylow torus
of (G, F ). Then all irreducible characters of L := CGF (S) extend to their inertia group
in N := NGF (S).

For the proof we determine the structure of the groups L and N , which enables us to
prove the following.

Theorem B Assume the setting of theorem A. Let κ ∈ Irr (N), χ ∈ Irr (L | κ) and
φ ∈ Aut(G) stabilising L, N and Irr (L | κ) such that there exists an extension χ̃ of χ
to 〈φ,L〉 with IN (χ) = IN (χ̃). Then κφ = κ.

With this result one should be able to describe how automorphisms act on Irr`′ (N).
This is relevant for proving that the bijection is equivariant. The third condition is still
being worked on.

Moreover theorem A enables us to verify the ordinary McKay-conjecture for excep-
tional groups of Lie type and odd primes. For ` = 3 and GF ∈

{
G2(q), 2F4(22f+1)

}
we

refer to [1] and [16]. In all other cases the verification is an easy consequence of [17] and
theorem A.
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Theorem C Let G and F : G → G be as in theorem A and ` an odd prime with ` - q.
Then

∣∣Irr`′
(
GF

∣∣ ν)∣∣ = |Irr`′ (NGF (P ) | ν)| for every character ν ∈ Irr
(
Z(GF

)
).

This paper is structured in the following way: We begin by recalling the basic def-
initions concerning Sylow tori and generic groups and introduce the general setting.
Afterwards we define Sylow twists, a useful tool in the construction of centralisers and
normalisers of Sylow tori.

We precede with proving theorem A in special cases: under the assumption that S is
a Sylow 1-torus of (G, F ) and F is a standard Frobenius endomorphism (section 5), in
the situation where CGF (S) is abelian (section 6) and in the remaining cases (section
7).

In sections 8 and 9 we prove theorem B. The proof of theorem C is given in the final
section.
Acknowledgements. The author wishes to thank Cédric Bonnafé, Gerhard Hiß, Christoph
Köhler, Frank Lübeck, Jean Michel and Gunter Malle for fruitful conversations, vital
information and/or useful indications.

2 Notation and settings

In this section we introduce the general framework for our further calculations, at the
same time we establish some settings which we will later assume.

Setting 2.1 Let p be a prime number and G be a simply-connected simple algebraic
group with irreducible root system R over the algebraic closure Fp of the field Fp. We
choose a fundamental system RF of R. According to [23, 24] the group G can be seen
as a finitely presented group with the generators xα(t) (t ∈ Fp, α ∈ R). We use the
notation of [24, 8], in particular the definition of the elements hα(t′), nα(t′) and xα(t)
(t ∈ Fp, t′ ∈ F∗p, α ∈ R, where F∗p denotes the multiplicative group of Fp .)

In this situation T :=
〈
hα(t)

∣∣∣ α ∈ R, t ∈ F∗p
〉

is a maximal torus of G with normaliser

N := NG(T) =
〈
nα(t)

∣∣∣ α ∈ R, t ∈ F∗p
〉
. The factor group N/T is the Weyl group W

of G, hence isomorphic to the reflection group of R. We denote the corresponding
epimorphism by

ρ : N →W with nα(t) 7→ wα for α ∈ R, t ∈ F∗p,

where wα is the reflection along the root α ∈ R.
The extended Weyl group V := 〈nα(−1) | α ∈ R〉 introduced in [25] plays a significant

role in our further considerations. Due to the relation

nα(t) = hα(t)nα(−1)

this group fulfils N = 〈V,T〉. The Steinberg relations imply that H := 〈hα(−1) | α ∈ R〉
satisfies H = V ∩T and has order (2, q−1)|RF |. (We denote the greatest common divisor
of a, b ∈ Z (a, b > 0) by (a, b).)
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A finite reductive group is the subgroup of fixed points of a Frobenius endomorphism.
We mainly use the following ones.

Setting 2.2 We assume setting 2.1.

(a) For every power q of p a Frobenius endomorphism F0 : G → G is defined by

xα(t) 7→ xα(tq) (α ∈ R, t ∈ Fp) .

This map is often called a standard Frobenius map. If the Dynkin diagram as-
sociated to RF has a length preserving symmetry σ : RF → RF , the associated
automorphism Γ0 : G → G acts via

xα(t) 7→ xσ(α)(t) (±α ∈ RF , t ∈ Fp) .

The composition Γ0 ◦ F0 is also a Frobenius map on G in the sense of [9, 1.17].

Let Γ ∈ 〈Γ0〉 and F = F0 ◦ Γ. The maximal torus T of G defined in 2.1 is then
F -stable.

(b) The triple (G,T, F ) defines a quintupel G := (X,R, Y,R∨,Wφ) called the generic
group, where X := Hom(T,F∗p), Y := Hom(F∗p,T), R∨ are the coroots of G,
φ is the automorphism of Y , respectively Y := Y ⊗ C, induced by F , and Wφ
its coset in the automorphisms of Y . In addition there exists a perfect pairing
〈−,−〉 : X × Y → Z with 〈α, α∨〉 = 2 (see [6, section 2]).

While the root datum (X,R, Y,R∨) determines the reductive algebraic group over
Fp up to isomorphism, the group GF is similarly determined by the corresponding
generic group G and the prime power q. Thus we may also denote GF by G(q).
The polynomial order |G| of G is a monic polynomial of the form

|G| (x) = xN
∏

d∈Z>0

Φa(d)
d (x) ∈ Z[x]

for some N ∈ Z≥0, the d-th cyclotomic polynomial Φd and a(d) ∈ Z≥0 and fulfils
|G(q′)| = |G| (q′) for every prime power q′.

Besides these reductive groups we also prove statements about Suzuki- and Ree-groups,
for which we have the following, very similar setting.

Setting 2.3 We assume setting 2.1 with G ∈
{
B2(F2),F4(F2),G2(F3)

}
and q := p2a+1

(a ∈ Z, 0 ≤ a) and F0 the standard Frobenius endomorphism of G associated to pa.
Then there exists an automorphism Γ0 : G → G induced from the nontrivial symmetry
σ of the Coxeter diagram of RF acting via

xα(t) 7→

{
xσ(α)(tp) if α is short
xσ(α)(t) otherwise

(±α ∈ RF , t ∈ Fp) .
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The map F := F0◦Γ0 is also a Frobenius endomorphism and the group GF is a Suzuki- or
Ree-group. According to [5] the triple (G,T, F ) defines a quintupel
G := (X,R, Y,R∨,Wφ) as well, called the (tp)-generic group, where X is the charac-
ter lattice of T, Y the coroot lattice,

√
qφ is the automorphism of Z[

√
p] ⊗Z Y induced

by F and Wφ a coset in the automorphisms of Z[
√
p]⊗Z Y .

In this case the polynomial order |G| is monic with |G| (x) = xN
∏

Ψ ΨaΨ(x) ∈ Z[
√
p][x]

for some N ∈ Z≥0, the (tp)-cyclotomic polynomials Ψ, which have been defined in [5,
3.13], and aΨ ∈ Z≥0. It has similar properties.

We further mention some constructions of generic groups which will be used in the
following sections.

Remark 2.4 (Tori and Levi subgroups of generic groups) In [5] some substruc-
tures of generic groups are defined. They correspond to GF -conjugacy classes of F -stable
subgroups of GF .

Generic groups of the form (X/Y ′⊥, Y ′, wφeY ′) = (X/Y ′⊥, ∅, Y ′, ∅, wφeY ′) with w ∈ W
and a wφ-stable sublattice Y ′ of Y are called tori of G. (The sublattice Y ′⊥ of X is
defined by the bilinear form on X × Y in the natural way.) The generic order of a
generic torus T = (X,Y, φ) coincides with the characteristic polynomial of φ on Y ⊗ C,
i.e.,

|T| (x) = det
Y⊗C

(xφ− 1).

Analogously, the Levi subgroups of G are generic groups of the form
(X,R′, Y,R′∨,WR′wφ) for wφ ∈ Wφ and a wφ-stable parabolic subroot system R′ of
R. (The group WR′ is the subgroup of W generated by the reflections along the roots of
R′.) Furthermore one can associate to a generic torus S = (X ′, Y ′, wφeY ′) (w ∈ W ) of
G its centraliser in G. This is the Levi subgroup CG(S) = (X,R′, Y,R′∨,WR′wφ) with
R′ := R ∩ Y ′⊥.

Generic groups of F -stable tori and F -stable Levi subgroups of G are generic tori
and generic Levi subgroups of G respectively. Also taking the centraliser of a torus and
computing the generic group commute with each other.

In the setting 2.2 the Sylow d-tori of G are defined to be the tori S := (X ′, Y ′, wφ) of
G with |S| = Φa(d)

d . In the situation described in 2.3 we call a torus S with |S| = ΨaΨ a
Ψ-torus, where Ψ is a (tp)-cyclotomic polynomial. An F -stable torus of G whose generic
group is a Sylow torus, is also called a Sylow torus. The existence and conjugacy in GF

of all Sylow d-tori of (G, F ) was proven in [5, 3.4].

In our further considerations we will mainly concentrate an groups associated to Sylow
tori.

Definition 2.5 Let S be a Sylow d-torus or a Sylow Ψ-torus of (G,T, F ) respectively.
We call CGF (S) Sylow d-Levi subgroup or Sylow Ψ-Levi subgroup respectively and
NGF (S) the corresponding Sylow d-normaliser or the corresponding Sylow Ψ-normaliser
respectively. By abuse of notation we call a group Sylow torus, if there exists d ∈ Z or a
(tp)-cyclotomic polynomial Ψ, such that S is Sylow d-torus or Sylow Ψ-torus respectively.
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We call a Sylow torus S a regular Sylow torus of (G, F ), if its centraliser in G is a
torus. One can show that a Sylow d-Levi subgroup is a torus iff d is a regular number of
Wφ in the sense of Springer, [22]. By abuse of notation we call d a regular number of
(G, F ) in this case.

In several proofs we will not deal with Sylow d-Levi subgroups and Sylow d-normalisers
of (G, F ), instead we will deal with isomorphic groups which we get by the following
remark.

2.6 Let L be a Sylow d-Levi subgroup of (G, F ) and L′ a Sylow d-Levi subgroup of
(G, gF ) for some g ∈ G. Because of Lang’s theorem [23, 4.4.17] there exists an element
g′ with g′F (g′)−1 = g. Conjugating with g′ maps the Sylow tori of (G, F ) to the Sylow
tori of (G, gF ). As all Sylow d-tori of (G, F ) are conjugate to each other in G, there
exists an inner automorphism of G mapping L onto L′, i.e., there exists an element
x ∈ G with Lx = L′. This element also induces an isomorphism of the corresponding
Sylow d-normalisers. Obviously the analogous statement about Sylow Ψ-tori is true.

3 Sylow twists and some constructions

In the proof of theorem A we need a good way to construct Sylow d-Levi subgroups and
Sylow d-normalisers. This will be done with the help of Sylow d-twists.

Definition 3.1 (Sylow d-twist and Sylow Ψ-twist) (a) We assume setting 2.2
and let d be a positive integer. An automorphism of the form vΓ (v ∈ N) is called
Sylow d-twist of (G, F ), if

Φa(d)
d det

Y
(xρ(v)φ− 1),

i.e., Φa(d)
d is a divisor of the characteristic polynomial of ρ(v)φ on Y .

(b) We assume to have the situation described in 2.3 and Ψ to be a (tp)-cyclotomic
polynomial. An automorphism of the form vΓ0 (v ∈ N) is called Sylow Ψ-twist of
(G, F ) if

ΨaΨ det
Y

(xρ(v)φ− 1).

Altogether we call such automorphisms Sylow twist of (G, F ).

In the case where d is a regular number of (G, F ), Sylow twists can be constructed
with the help of morphisms between the associated braid group, the group V and the
Weyl group W :

Remark 3.2 Assume setting 2.2. Let d be a regular number of (G, F ) and φW the
automorphism of W induced by F .

(a) Then vΓ is a Sylow twist of (G, F ) iff ρ(v)φW is a regular element of WφW .
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(b) Let B be the braid group associated to W with generators s1, . . . , s|RF |, φB the
automorphism of B associated to φW , w0 ∈ B the element corresponding to the
longest element w0 in W , wφB a good d-th φB-root of w0

2 and τ : B → V the
epimorphism with

si 7→ nαi(−1) for all 1 ≤ i ≤ |RF | .

Then τ(w)Γ is a Sylow twist of (G, F ). We call the element τ(w0) = w̃0 the
canonical representative of w0 in G .

Proof. This follows from the fact that ρ(τ(w)) is a regular element of W by [6, 3.14],
hence every n ∈ ρ−1(w) is a Sylow twist according to the definition of regular elements in
[22, 4.2]. Analogously [6, 6.6] and [22, 6.4] prove the equivalent result if Γ is nontrivial.
�

A Sylow d-twist vΓ determines a generic Sylow d-torus of G and the corresponding
algebraic torus of (G, vF ), where vF acts via x 7→ F (xv).

Lemma 3.3 (Construction of Sylow d-tori) Assume setting 2.2. Let d be a regular
number of (G, F ) and vΓ a Sylow d-twist. Further let Y ′ := Y ∩ kerY (Φd(ρ(v)φ)), i.e.,
Y ′ ⊗ C is the product of the eigenspaces of ρ(v)φ to primitive d-th roots of unity, and
X ′ := X/Y ′⊥. Then the generic torus S := (X ′, Y ′, ρ(v)φ) is a Sylow d-torus of G and

S :=
{
t ∈ T

∣∣∣ λ(t) = 1 for all λ ∈ Y ′⊥
}

a Sylow d-torus of (G, vF ).

Proof. According to the definition of Sylow d-twist and the order of a generic torus
mentioned in 2.4 the triple S is a Sylow d-torus of G. By definition (S, F eS) corresponds
to the generic group S. �

The associated Sylow d-Levi subgroup of (G, vF ) is the following.

Lemma 3.4 (Associated Sylow d-Levi subgroup) Let Xα be the root subgroup cor-
responding to α ∈ R. Then:

(a) CG(S) = (X,R′, Y,R′∨,W ′ρ(v)φ) with R′ := R ∩ Y ′⊥ and W ′ := WR′,

(b) CG(S) = 〈T,Xα | α ∈ R′〉.

Proof. The formula in (a) is the definition of CG(S).
According to [10, Proposition 1.14] the group L := CG(S) is reductive. The maximal

vF -stable torus T lies in L := 〈T,Xα | α ∈ R′〉 and (X,Y, ρ(v)φ) is the complete root
datum of (T, vF ). Furthermore the root subgroups of L correspond to R′. �
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Now it remains to compute the associated Sylow normaliser. For a generic Levi sub-
group L or Sylow normaliser L = (X,R′, Y,R′∨,WR′wφ) of G

WG(L) = {w′∈W |w′(R′)=R′ (w′WR′ )
wφ=w′WR′}/WR′

is called the relative Weyl group, see [5, 1B and 2.1.(3)]. This group coincides with
N

GF (L)/L. Furthermore we use the group N = NG(T) from 2.1.

Lemma 3.5 (Sylow normaliser) Assume setting 2.2. Let L := CG(S). Then

(a) NGvF (S) = NvF , if R′ = ∅ and

(b) NGvF (S) =
〈
U,LvF

〉
for every group U ≤ NGvF (T) fulfilling

〈ρ(U),W ′〉/W ′ = WG(L) and U ∩ L ≤ T.

Proof. According to the definition of L and the properties of Sylow tori we have
N := NGvF (S) = NGvF (L).

If R′ = ∅ this shows NvF ≤ N. According to [9, 3.3.6] the groups NvF/TvF and WG(L)
coincide. Together with WG(L) = N

GF (L)/L from [6, 2.1.(3)] this proves (a).
Let U be as in (b) and u ∈ U . Because of L = 〈T,Xα | α ∈ R′〉 it suffices to prove

Tu = T and Xu
α ≤ L for all α ∈ R′. According to the properties of ρ(U) the Stein-

berg relations imply Xu
α ≤ L for all α ∈ R′, see for example [9, 2.5.15]. This shows

〈U,L〉 ≤ NGvF (S) with L := LvF . Because of WG(L) = N
GF (L)/L the equation U∩L ≤ T

implies
〈U,L〉/L ∼= U/(U∩L) ∼= ρ(U) ∼= 〈ρ(U),W ′〉/W ′ = WG(L) = N/L,

where we use the equation ρ(U) ∩W ′ = ρ(U) ∩ (NG(T) ∩ L) ≤ ρ(T) = 1. �

If NvF =
〈
CV (vF ),TvF

〉
, we call vΓ good Sylow twist. This property is equivalent to

ρ(CV (vΓ)) = CW (ρ(v)φ). The constructions introduced above can easily be transferred
to setting 2.3. We omit the details.

4 Good and very good Sylow twists

In this and the two following sections we show theorem A in the case where S is a regular
Sylow torus of (G, F ).

Definition 4.1 (Maximal Extensibility) Let LCN be finite groups and χ ∈ Irr (L).
An extension of χ to its inertia group IN (χ) in N is called maximal extension of χ in
N and in this situation we call χ maximal extendible. If every character χ ∈ Irr (L) is
maximal extendible, we say that maximal extensibility holds with respect to LCN .

For example maximal extensibility holds with respect to LCN whenever N/L is cyclic
by [14, 11.22]. Extending the standard notation we denote the group 〈x ∈ U |χx = χ〉
by IU (χ) for every subgroup U ≤ N . Very often we need the following well-known fact,
which shortens our proofs that the characters are extendible..
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Lemma 4.2 Let LCN , U ≤ N with 〈L,U〉 = N and L abelian. If maximal extensibility
holds with respect to U ∩ LC U , it also holds with respect to LCN .

Proof. Let λ ∈ Irr (L) and δ̃ a maximal extension of δ := λeU∩L to IU (δ). Then

λ̃(vl) := δ̃(v)λ(l) for every u ∈ IU (λ), l ∈ L

defines a maximal extension of λ.�

In the situation of theorem A this lemma has the following consequence.

Corollary 4.3 Assume setting 2.2 or 2.3. Let vΓ be a good Sylow twist and let maximal
extensibility hold with respect to CH(vΓ) C CV (vΓ). Then maximal extensibility holds
with respect to TvF C NvF , as well.

Proof. By the assumptions on vΓ, the groups TvF , CV (vΓ) and NvF satisfy the assump-
tions on L, U and N in lemma 4.2, so the claim is a direct consequence of that result.
�

Sylow twists, for which the above assumption about maximal extensibility holds, will
be called very good. In the next two sections we prove the following theorem, which
implies theorem A, whenever S is a regular Sylow torus of (G, F ).

Theorem D (a) Assume the situation of 2.2 with an exceptional root system R or
such that GF is Steinberg’s triality group. Let d be a regular number for (G, F ).
Then there exists a very good Sylow d-twist of (G, F ).

(b) Assume the situation of 2.3 and Ψ a (tp)-cyclotomic polynomial dividing the generic
order associated to (G, F ). Then there exists a very good Sylow Ψ-twist of (G, F ).

There are two situations where one can easily verify the existence of very good Sylow
twists.

Lemma 4.4 Assume 2 q. Then theorem D holds.

Proof. In the situation of part (a) we choose w to be a regular element of order d in W .
For Ψ in (b) there exists a Sylow Ψ-torus (X ′, Y ′, wφ).

As the characteristic of the underlying field is 2 the groups V and W coincide. see 2.1.
By lemma 3.2 we know that n ∈ ρ(w)−1 ∩ V is a Sylow d-twist. Furthermore V = W
implies that vΓ is a very good Sylow twist, as CH(n) = 1. An analogous statement also
holds in the situation of Suzuki- and Ree-groups.�

The next situation concerns the cases where the relative Weyl group is cyclic. In this
situation the extensibility property is guaranteed.

Lemma 4.5 Assume setting 2.1.
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(a) Let L be a Sylow Levi subgroup and N the associated Sylow normaliser such that
N/L is cyclic. Then maximal extensibility holds with respect to LCN .

(b) Every good Sylow twist vΓ with cyclic CW (ρ(v)φ) is very good.

Proof. This is a consequence of maximal extensibility with cyclic factor groups, see [14,
11.22]. �

The following lemma is a sufficient criteria to assure, that a Sylow twist is very good.

Lemma 4.6 Assume setting 2.2. Let d be a regular number of (G, F ), j an odd divisor
of d and vΓ a Sylow d-twist of (G, F ). Then vΓ is very good, if (vΓ)j is a very good
Sylow d

j -twist of (G,Γj ◦ F0).

Proof. We begin by verifying that vΓ is a good Sylow d-twist, i.e., ρ(U) = CW (ρ(v)Γ)
with U := CV (vΓ).

The inclusion ρ(U) ≤ CW (ρ(v)φ) is clear. Let w ∈ CW (ρ(v)φ). Because of
CW (ρ(v)φ) ≤ CW

(
(ρ(v)φ)j

)
there exists an element n ∈ Uj := CV

(
(vΓ)j

)
≤ U with

ρ(n) = w.
As vΓ induces on Kj := CH

(
(vΓ)j

)
an automorphism of order j with fixed point

subgroup K := CH(vΓ), we can use the equation Kj = K × [Kj , vΓ] from [13, 14.5 (c)]
about coprime actions. Let k2 ∈ K and k1 ∈ Kj such that n−1nvΓ = k2[k1, vΓ].

This implies (nk1)vΓ = nk2[k1, vΓ]kvΓ
1 = nk1k2 and nk1 = (nk1)(vΓ)j

= nk1(k2)j .
Because of 2 - j this shows k2 = 1K , nk1 ∈ U and w ∈ ρ(U). Hence vφ is a good Sylow
d-twist of (G, F ).

Now we have to show maximal extensibility with respect to K C U . Let χ ∈ Irr (K)
and χ̃ an extension of χ on Kj with χ̃e[Kj ,vφ] = 1.

Uj

lllllllll

RRRRRRRRRRR

χ̃′ IUj (χ̃)
llllll U

llllllllllllllllllllllll

〈Kj , IU (χ)〉
lllllll

RRRRRR

χ̃ Kj

RRRRRRRRRR IU (χ)

lllllllll
χ̃′eIU (χ)

K χ

We know U ≤ NV (Kj) and U ≤ NUj ([Kj , vφ]) from the definitions of the groups U
and Kj . This implies IUj (χ̃) ≥ IU (χ). According to the preliminaries there exists an
extension χ̃′ of χ̃ to IUj (χ̃), whose restriction to IU (χ) is a maximal extension of χ. �

5 A special regular case

In this section we give a proof for the case d = 1 and F = F0. Because of lemma 4.4 we
further assume the underlying characteristic p to be odd. In this situation we establish
a strong connection between closed subroot systems of R∨ and the characters Irr (H)
and use this link to prove the following proposition.
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Proposition 5.1 Assume setting 2.2 with F = F0 and p 6= 2. Then 1G is a very good
Sylow 1-twist of (G, F ).

According to corollary 4.3 it suffices for the proof to show that maximal extensibility
holds with respect to H C V . There exists the following connection between subroot
system and Irr (H).

Lemma 5.2 Let χ ∈ Irr (H).

(a) R(χ) := {α ∈ R∨ | hα∨(−1) ∈ ker(χ)} is a closed subroot system of R∨.

(b) ker(χ) = 〈hα(−1) | α∨ ∈ R(χ)〉.

Proof. Part (a) follows from the equation

(1) hα∨(−1)hβ∨(−1) = h(α+β)∨(−1),

which holds according to [12, 1.12.1].
For the equation in (b) we choose a set of elements which generate ker(χ) and ver-

ify that they also lie in the group of the right hand side. Because of the inclusion
ker(χ) ⊆ 〈hα(−1) | α∨ ∈ R(χ)〉 this suffices for the proof.

The group H is the direct product of the groups 〈hα(−1)〉 (α ∈ RF ). The group
ker(χ) is generated by the elements

• hβ(−1) (β ∈ RF ) fulfilling χ(hβ(−1)) = 1 and

• hβ(−1)hβ′(−1) (β, β′ ∈ RF ) with χ(hβ(−1)) = χ(hβ′(−1)) = −1.

Elements of the first type obviously lie in 〈hα(−1) | α∨ ∈ R(χ)〉.
Let β, β′ ∈ RF \R(χ)∨ such that there exists a cycle-free path in the Dynkin diagram

of RF
∨ with starting point β∨ and endpoint β′∨ crossing only vertices corresponding to

roots δ ∈ RF
∨ ∩ R(χ). Let M be the subset of all these roots δ. It is well-known that

γ := β∨ +
∑

α∈M α+ β′∨ is a root in R∨. According to (1) the element hγ∨(−1) lies in
ker(χ). This fact implies γ ∈ R(χ) and

hβ(−1)hβ′(−1) ∈
〈
hα(−1)

∣∣ α∨ ∈ R(χ)
〉
.

All elements of the second type are products of such elements: For each pair of roots
β, β′ ∈ RF \ R(χ)∨ there exists a cycle-free path in the Dynkin diagram with the co-
root β as starting and β′ as end point. The path intersects the set RF \ R(χ)∨ in
the roots {γ1, . . . , γl}, say with this order. The pairs (β∨, γ1), . . ., (γl, β

′∨) satisfy our
above assumption, such that the corresponding elements in H like hβ(−1)hγ1(−1) lie in
〈hα(−1) | α∨ ∈ R(χ)〉. The equation

hβ(−1)hβ′(−1) = (hβ(−1)hγ1(−1)) · · · (hγl
(−1)hβ′(−1))

shows hβ(−1)hβ′(−1) ∈ 〈hα(−1) | α∨ ∈ R(χ)〉 and the equality stated in (b). �
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Moreover relation (1) implies

(2) ker(χ) =
〈
hα(−1)

∣∣ α ∈ R(χ)∨F
〉

for any choice of R(χ)F simple roots of R(χ).
¿From this fact we can already deduce all possible subroot systems R(χ) (χ ∈ Irr (H))

up to W -conjugacy, if R is a root system of type Al. This result also produces some
useful information in the remaining cases.

Lemma 5.3 Let R be a root system of type Al, RF = {α1, . . . , αl}, and 1 6= χ ∈ Irr (H).
Then there exists 1 ≤ j ≤ l and n ∈ V such that

χn(hαi(−1)) =

{
1 i 6= j,

−1 i = j
for any 1 ≤ i ≤ l.

Proof. We know from [3] that every maximal closed subroot system R′ of R∨ = R has
a system of simple roots with l− 1 elements. Furthermore every closed subroot systems
R′ of R with |R′

F | = l − 1 must be a maximal one.
The closed subroot system R(χ) is a maximal closed subroot system: As ker(χ) is

an elementary abelian group with 2l−1 elements and every set which generates ker(χ)
consists of at least l − 1 elements, equation (2) implies that the fundamental system of
R(χ) has at least l − 1 elements.

As R(χ) is a maximal closed subroot system of R there exists an element w ∈W and
j ∈ {1, . . . , l} such that the set {α1, . . . , αj−1, αj+1, . . . , αl} is a system of simple roots
for R(χ)w. This is a consequence of the theorem of Borel-de Siebenthal, see [3].

Because of ρ(V ) = W we can choose an element n ∈ V with ρ(n) = w−1. According
to the Steinberg relations j and n fulfil the equation stated above. �

Remark 5.4 The proof shows that R(χ) is a maximal closed subroot system and any
one can occur.

Although the lemma deals only for root systems of type Al it is also helpful with root
systems of type D4 or Ei (6 ≤ i ≤ 8).

Lemma 5.5 Let R be a root system of type B2, D4, Ei (6 ≤ i ≤ 8), F4 or G2 and
χ ∈ Irr (H). Then StabW (R(χ)) = 〈wα | α ∈ R(χ)〉.

Proof. This statement is mainly verified by computer calculations with the computer al-
gebra system Magma [4]. First assume that R is not a simply-laced root system, i.e., is of
type B2, F4 or G2. For these root systems one calculates the group
StabW (R(χ))/〈wα |α∈R(χ)〉 and verifies the statement for all characters χ ∈ Irr (H).

In the remaining cases the root system R is of type Di (i = 4) or Ei (6 ≤ i ≤ 8) with
root system RF . There exists a subroot system R′ of type Ai−1 with a system of simple
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roots R′
F ⊂ RF . Without loss of generality we can assume that χe〈hα(−1)|α∈R′F 〉 is trivial

or of the form described in lemma 5.3, i.e., there exists a root β ∈ R′
F with

χ(hα(−1)) =

{
1 α ∈ R′

F \ {β} ,
−1 α = β.

There are only a few characters of Irr (H) fulfilling this condition, but every irreducible
character of H is conjugate to such a character in V . For these characters we verify the
statement above. �

This statement is useful for constructing maximal extensions of χ in V :

Lemma 5.6 Let R be a root system of type D4, Ei (6 ≤ i ≤ 8), F4 or G2 and H and V
be as in 2.1. Then maximal extensibility holds with respect to H C V .

Proof. Let χ ∈ Irr (H) be nontrivial. We first show ρ(IV (χ)) = StabW (R(χ)).
According to the Steinberg relations we have hα(−1)n−1

= hρ(n)(α)(−1) for all n ∈ V .
This implies

ρ(n)(R(χ)) = R(χ) for all n ∈ IV (χ),

hence ρ(IV (χ)) ≤ StabW (R(χ)).
Each element n ∈ V with ρ(n) ∈ StabW (R(χ)) stabilises the set {hα(−1) | α ∈ R(χ)∨}

by lemma 5.2 (b). This implies ker(χ)n = ker(χ). As a character of order 2 the charac-
ter χ is uniquely determined by its kernel, hence n ∈ IV (χ). According to the previous
lemma we have IV (χ) = 〈H,nα(−1) | α ∈ R(χ)∨〉. Calculations with the Steinberg rela-
tions show 〈

nα(−1)
∣∣ α ∈ R(χ)∨

〉
∩H =

〈
hα(−1)

∣∣ α ∈ R(χ)∨
〉
≤ ker(χ).

Hence there exists an extension χ̃ ∈ Irr (IV (χ)) of χ with

χ̃(nα(−1)) = 1 for all α ∈ R(χ)∨.

Therefore maximal extensibility holds with respect to H C V , if R is a root system of
the given type. �

Taken together, the above section proves proposition 5.1.

6 The remaining regular cases

We have already proven theorem D in the special case of proposition 5.1. For the
remaining cases we use a mixture of computer calculations and reductions as well as the
lemmas in section 4. We start with some results about Sylow 2-twists.

Lemma 6.1 Assume setting 2.2 with GF as in theorem A and 2 - q. Furthermore let B,
w0 and w̃0 be defined like in remark 3.2. Then the following statements hold:
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(a) The element w̃0 is a very good Sylow 2-twist of (G, F ), if φ = idY .

(b) The element w̃0Γ is a very good Sylow 2-twist of (G, F ) and Γ is a very good Sylow
1-twist of (G, F ), if o(φ) = 2 and R is a root system of type E6.

Proof. According to remark 3.2 the element w̃0 is a Sylow 2-twist with CV (w̃0) = V , if
R is not of type E6. The longest element w0 of W lies in the centre of W . According
to [11, 1.5.1] this implies w0 ∈ Z(B), which moreover shows CV (w̃0) = V . Because of
CV (w̃0) = V and CH(w̃0) = H the element w̃0 is a good Sylow 2-twist and a very good
one according to proposition 5.1.

In the case, where R is a root system of type E6, computer calculations show that
U := CV (w̃0) is isomorphic to the extended Weyl group V ′ of the simply-connected
algebraic group with a root system of type F4 over Fq. The group H ′, the normal toral
subgroup of V ′, is the image of K := CH(w̃0). As CW (w0) is a Coxeter group of type
F4, w̃0 is a good Sylow 2-twist. Because of lemma 5.1 maximal extensibility holds with
respect to H ′ C V ′ and K C U . This shows (a).

For the proof of (b) we assume R to be a root system of type E6. According to [11,
1.5.1] we have CV (w̃0Γ) = V . Here we can again use the arguments of (a) in order
to show that w̃0Γ is a very good Sylow 2-twist. The equation CV (w̃0Γ) = V implies
CV (w̃0) = CV (Γ), which shows that Γ is a very good Sylow 2-twist. �

Before we concentrate on the remaining cases we should make a remark on two ideas
that shorten the computer calculations. The extended Weyl group may have quite a
huge order and is implemented in Magma [4] in such a way that group theory algorithms
cannot be used anymore.

6.2 (Tools for computations) As H is an elementary-abelian 2-group, the groups
IN (χ) and NN (ker(χ)) coincide for every character χ ∈ Irr (H). The character χ can be
extended to IN (χ) if [IN (χ), IN (χ)] ∩H ≤ ker(χ), as χ is a linear character.

We verify theorem A in the case where S is a regular Sylow torus of (G, F ). Although
the arguments of the proofs sometimes coincide we deal with the cases where F is a
standard Frobenius endomorphism, a Frobenius endomorphism induced from a nontrivial
graph automorphism, and where GF is a Suzuki- or Ree-group in separate propositions.

Proposition 6.3 We assume setting 2.2 where F = F0 and GF is one of the groups
mentioned in theorem A. Let d be a regular number of (G, F ). Then there exists a very
good Sylow twist of (G, F ).

Proof. We have already proven the statement for d ∈ {1, 2} in proposition 5.1 and lemma
6.1

Assume first that CW (w) is cyclic for a regular element w ∈W of order d. Let w′ be a
generating element of CW (w) and j ∈ Z such that w = (w′)j . Let si (1 ≤ i ≤ l := |RF |)
be the reflections along the simple roots of R in W and r : W → B be the map
with r(si1 · · · sik) = si1 · · · sik (i1, . . . , ik ∈ {1, . . . , l}) whenever si1 · . . . · sil is a reduced
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expression in W . Then the element v = τ(r(w′)j) is a very good Sylow d-twist of (G, F ),
as τ(r(w′)) lies in CV (v) by construction. This deals with the case where CW (w) is
cyclic.

Type d
CW (ρ(v))
is cyclic

verified
with

reduced to

E6 3 d = 1 with v = 1V

4 v = τ(r(w′)2)
6 d = 2 with v = w̃0

8, 9, 12 ×
E7 3, 5 d = 1 with v = 1V

6 d = 2 with v = w̃0

7, 9, 14, 18 ×
E8 3, 5 d = 1 with v = 1V

6, 10 d = 2 with v = w̃0

4 v = τ(r(w)6)
8 v = τ(r(w)3)
12 d = 4 with v = τ(r(w)6)

15, 20, 24, 30 ×
F4 3 d = 1 with v = 1V

4 v = τ(r(c3))
6 d = 2 with v = w̃0

8, 12 ×
G2 3 d = 1 with v = 1V

6 d = 2 with v = w̃0

Table 1: Proof scheme for the regular numbers d > 2 when F = F0

For some d we verified the existence of very good Sylow d-twists of (G, F ) by computer
calculations. Hereby we restrict ourselves to regular numbers d > 2 of (G, F ), which
are 2-powers and whose associated relative Weyl group is non-cyclic. We obtain Sylow
d-twists from good roots of w0

2 according to remark 3.2. One can find a list of such
elements in [6, Appendix 1]. We use the notation of the elements introduced there.
Table 1 reflects which element v can be chosen for the calculations.

In the remaining cases we use theorem 4.6. We can find a good root w of w0
2 in the

table of [6, Appendix 1], such that τ(wj) is a very good Sylow d-twist of (G, F ) and j
the 2′-part of d, the biggest odd integer dividing d. According to remark 3.2 the element
τ(w) is a Sylow d-twist and proposition 4.6 shows that it is a very good Sylow d-twist
of (G, F ). �

In the next proposition we assume that F is a Frobenius endomorphism induced by a
nontrivial graph automorphism.

Proposition 6.4 Assume the situation of theorem D (a) with Γ 6= idG and 2 - q. Then
there exists a very good Sylow d-twist of (G, F ).
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Proof. The main ingredients of the proof are the same as in the previous proposition.
Only the arguments in the situation where the relative Weyl group is cyclic have to be
revisited.

For d ∈ {1, 2} the statement was proven in lemma 6.1 (b), when R is a root system of
type E6. For some regular numbers we may again use theorem 4.6.

If d is a regular number such that the relative Weyl group of a Sylow d-Levi subgroup
of (G, F ) is cyclic, we have to prove that good Sylow d-twists exist. These are then very
good according to lemma 4.5.

If R is a root system of type E6, the regular numbers with this property are {8, 12, 18}.
Let wφB be a good d-th φB-root of w0

2 from [6, Appendix 1], where φB is the automor-
phism of B induced on the braid group B of R by φ. According to [6, Appendix 1] this
element can be assumed to be φB-invariant and to have order d. The element v := τ(w)
fulfils v ∈ CV (vΓ), 〈v〉 ≤ CV (vΓ) and 〈ρ(v)〉 ≤ ρ(CV (vΓ)). Because of CW (ρ(vΓ)) ∼= Cd

and Cd
∼= 〈ρ(v)〉 ≤ ρ(CV (vΓ)) ≤ CW (vΓ)) ∼= Cd the element vΓ is a good Sylow d-twist

of (G, F ), where Ci denotes the cyclic group of order i.
If R is a root system of type D4 and o(Γ) = 3, we again use vΓ with v := τ(w) as a

Sylow d-twist, where w is a good d-th φ-root of w0
2 from the list in [6, Appendix 1].

We can calculate CW (ρ(v)Γ) ∼= C4. As (vΓ)3 ∈ CV (vΓ), we get

C4
∼=

〈
(vΓ)3

〉
≤ ρ(CV (vΓ)).

This proves that vΓ is a good Sylow d-twist and shows that there exists a very good
Sylow d-twist of (G, F ), if the relative Weyl group is cyclic.

Type d
CW (ρ(v)Γ)

is cyclic
verified for reduced to

2E6 3 d = 1 with vΓ = Γ
4 vΓ = τ(r(c3))Γ
6 d = 2 with vΓ = w̃0Γ

8, 12, 18 ×
3D4 1 vΓ = Γ

2 vΓ = w̃0Γ
3 d = 1 with v = 1V

6 d = 2 with v = w̃0

12 ×

Table 2: Proof scheme when d is regular and Γ 6= 1

In the remaining cases we verify that a Sylow twist constructed with a good root of
w0

2 is very good or we can deduce the existence of a very good Sylow twist with the help
of proposition 4.6. Again the procedure for the various regular numbers can be found in
table 2.
�

The previous two propositions show theorem D (a). The following lemma deals with
part (b).
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Lemma 6.5 Assume setting 2.3 and Ψ to be a (tp)-cyclotomic polynomial such that the
Sylow Ψ-torus of (G, F ) is nontrivial. Then there exists a very good Sylow Ψ-twist of
(G, F ).

Proof. We first show that the centraliser of each Sylow Ψ-torus is a torus. Let
(X/Y ′⊥, Y ′, wφ) be a Sylow Ψ-torus with Y ′ := kerY (Ψ(wφ)) ∩ Y . As ΨaΨ is the charac-
teristic polynomial of wφ on Y ′ we know that the dimension of Y ′ ⊗ C and the degree
of ΨaΨ coincide. ¿From the study of the (tp)-cyclotomic polynomials in [5] one can see
that the degree of ΨaΨ and dim(Y ) coincide and hence every Sylow torus is regular.

Furthermore 2F4(q) and 2B2(q) are defined over fields of even characteristic. With the
methods from the proof of lemma 4.4 we find a very good Sylow Ψ-twist. ¿From [5]
we know that a Sylow Ψ-torus (X ′, Y ′, wφ) of (G, F ) exists. Then the automorphism
vΓ with the unique element v ∈ V such that ρ(v) = w is a very good Sylow Ψ-twist of
(G, F ).

In the remaining case computer calculations show that good Sylow Ψ-twists of (G, F )
exist, which are very good as the associated relative Weyl groups are cyclic. �

Altogether in the last three sections we have proven the following statement.

Proposition 6.6 Assume setting 2.1, such that GF is one of the groups mentioned
in theorem A. Let S be a regular Sylow torus of (G, F ), L the associated Sylow Levi
subgroup and N the associated Sylow normaliser. Then maximal extensibility holds with
respect to LCN .

Proof. By theorem D very good Sylow twists exist. By corollary 4.3 this ensures maximal
extensibility. �

The next section is concerned with the proof of the analogous statement when S is a
nonregular Sylow torus of (G, F ).

7 The nonregular cases

The aim of this section is twofold: On the one hand we verify theorem A in the remaining
cases, where S is a nonregular Sylow torus of (G, F ).

On the other hand we give precise informations about the structure of the Sylow Levi
subgroups and Sylow normalisers. These build the foundation for the proof of theorem
B in the succeeding sections.

The first three columns of table 3 represent the remaining cases: whenever GF and
d are as listed in the table, every Sylow d-torus of (G, F ) is nonregular. The third
column gives the isomorphism type of N/L, where L is a Sylow d-Levi subgroup and N
the associated Sylow d-normaliser. The group G8 denotes the complex reflection group
introduced in [19].

As the table shows, for the proof of theorem A it suffices to restrict to the case where
d = 4 and the underlying root system is of type E7, since N/L is cyclic otherwise. Because
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of our ambition to prove theorem B we also analyse the structure of L and N in the
other cases.

Like in the proof of Proposition 5.1 we first extend a linear character of a subgroup of
L and construct with this character the desired maximal extension.

We now sketch the main ideas for the following proof.

7.1 (Procedure in the nonregular case:) We proceed in the following steps:

• Choose an F -stable subgroup G′ ≤ G and a Sylow d-twist vΓ with nice properties.

• Determine a Sylow d-Levi subgroup L of (G, vF ) and a related one L′ of (G′, vF eG′)
to obtain informations on the inner structure of L.

• Construct the associated Sylow d-normalisers N and N ′.

• Deduce the maximal extensibility with respect to LCN .

For every nonregular number mentioned in table 3 we perform the following compu-
tations:

(a) We choose an element w ∈W and v ∈ V with ρ(v) = w such that

dim(Y ′ ⊗ C) = a(d)Φd(1)

for Y ′ := kerY (Φd(wφ)) ∩ Y . Hence the automorphism vΓ is a Sylow d-twist of
(G, F ).

(b) Let R1 := Y ′⊥ ∩R and R2 := R⊥
1 ∩R. Computer calculations show that R1 ∪R2

and R generate the same subspaces of Y .

To these root systems we associate the algebraic groups

T1 := 〈hα(t) ∈ G | α ∈ R1〉 and G2 := 〈Xα | α ∈ R2〉 ,

and define their finite counterparts T1 := TvF
1 and G2 := GvF

2 . By the property of
R1 and R2 mentioned above and by definition, the finite subgroup L := 〈T1,G2〉vF

forms a Sylow d-normaliser of (G, vF ). The finite groups have the following prop-
erties:

• [T1,G2] = 1,
• L0 := 〈T1, G2〉C L with L/L0

∼= Z := T1 ∩G2

The subgroup structure can be seen in the following diagram.

L
Z

L0 = T1 ◦Z G2

nnnnnnnnnn

PPPPPPPP

T1

PPPPPPPPPP G2

mmmmmmmmmm

Z

1
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(c) Whereas the previous procedure was possible without a careful choice of w and v,
the next steps depend on these choices: We can always choose v and w such that
there exists a subgroup U ≤ CV (vΓ) with U ∩ L < L0 and 〈U,L〉 is the Sylow
d-normaliser associated to L. In some cases U is a cyclic group generated by vΓ
or (vΓ)2 respectively. Furthermore one hopes to get a quite small group U/U0 with
U0 := CU (G2).

Performing the above procedure with the computer gives the following table, where
S3 denotes the symmetric group acting on three points. The calculations also show
U ∩T ≤ L0.

GF d N/L Type of G2 Z U/U0

R2 i := gcd(j, q − 1)
E6,sc(q) 5 C5 A1 A1(q) Ci (j := 2) 1
E7,sc(q) 5 C10 A2 A2(q) Ci (j := 3) C2

E7,sc(q) 10 C10 A2
2A2(q) Ci (j := 3) C2

E7,sc(q) 4 G8 A3
1 A1(q)3 Ci × Ci (j := 2) S3

E7,sc(q) 8 C8 A3
1 A1(q2)× A1(q) Ci (j := 2) C2

E7,sc(q) 12 C12 A3
1 A1(q3) 1 C3

E8,sc(q) 7 C14 A1 A1(q) Ci (j := 2) 1
E8,sc(q) 14 C14 A1 A1(q) Ci (j := 2) 1
E8,sc(q) 9 C18 A2 A2(q) Ci (j := 3) C2

E8,sc(q) 18 C18 A2
2A2(q) Ci (j := 3) C2

2E6,sc(q) 10 C5 A1 A1(q) Ci (j := 2) 1

Table 3: The structure of Sylow Levi subgroups

During the next proof we need the following remark, which deals with characters on
central products.

7.2 (Characters on central products) A group A is the central product of B1 ≤ A
and B2 ≤ A, denoted by A = B1 ◦B1∩B2 B2 or A = B1 ◦ B2 for short, if [B1, B2] = 1
and A = 〈B1, B2〉. According to [14, 4.21] the irreducible characters of A can be deduced
from Irr (B1) and Irr (B2): for every irreducible character χ ∈ Irr (A) there exist unique
characters λ ∈ Irr (B1) and η ∈ Irr (B2) with Irr (B1 ∩B2 | λ) = Irr (B1 ∩B2 | η) and

χ(b1b2) = λ(b1)η(b2) for all b1 ∈ B1, b2 ∈ B2.

We denote χ by λ.η in this situation. The set Irr (B1 ∩B2 | λ) is defined as{
ψ ∈ Irr (B1 ∩B2)

∣∣ (ψeB1∩B2
, λ) 6= 0

}
, where (−,−) denotes the usual scalar product

on class functions.

Now we finish the proof of theorem A and prove the only non-cyclic, nonregular case.

Lemma 7.3 Assume G = E7,sc(Fp), F : G → G to be the standard Frobenius endo-
morphism and S to be a Sylow 4-torus of (G, F ). Let L := CGF (S) and N := NGF (S).
Then maximal extensibility holds with respect to LCN .
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Proof. We use the construction of L and N above. According to the calculations G2 is
the central product of three vF -stable groups, which are isomorphic to SL2(Fp) and will
be called G2,i (i = 1, 2, 3). Here we denote the finite subgroups isomorphic to SL2(q)
by G2,i := GvF

2,i (i = 1, 2, 3). We assume S to be defined with a Sylow 4-twist v ∈ V of
(G, F ). Later we will use an associated Lang map L : G → G with x 7→ F (xv)x−1.

Let χ ∈ Irr (L) and χ0 ∈ Irr (L0 | χ). We first prove maximal extensibility with
respect to L0 C L. Let T̃1 := {x ∈ T1 | ∃g ∈ G2 : xg ∈ Lχ0} with Lχ0 := IL(χ0),
G̃2,i := {x ∈ G2,i | ∃g ∈ 〈T1,G2,j |j 6= i〉 : xg ∈ Lχ0} for i ∈ {1, 2, 3} and
L̃0 := T̃1 ◦ G̃2,1 ◦ G̃2,2 ◦ G̃2,3.

According to the definition L̃0 satisfies L̃0 ∩ L = Lχ0 and I
L̃0

(χ0) = L̃0.

Now we extend χ0 to χ̂0 ∈ Irr
(
L̂0

)
with

(
χ̂eLχ0

)L
= χ. According to remark 7.2 we

find unique characters λ ∈ Irr (T1), ηi ∈ Irr (G2,i) (i ∈ {1, 2, 3}) with χ0 = λ.η1.η2.η3.
As T̃1 is abelian and the groups G̃2,i/G2,i are cyclic, the characters λ, ηi can be extended
to λ̂ ∈ Irr

(
T̃1

)
, η̂i ∈ Irr

(
G̃2,i

)
(i ∈ {1, 2, 3}) respectively. The character λ̂.η̂1.η̂2.η̂3 is

by definition an extension of χ0. As L̃0/L0 is abelian, the theorem of Gallagher [14, 6.17]
implies {

ψeLχ0

∣∣∣ ψ ∈ Irr
(
L̃0

∣∣∣ χ0

)}
= Irr (Lχ0 | χ0) .

According to the Clifford correspondence [14, 6.11] there exists χ̂0 ∈ Irr
(
L̃0

∣∣∣ χ0

)
with

χ =
(
χ̂eLχ0

)L
.

The group L̃0 is a normal subgroup of Ñ0 = Ñ1 ◦ G̃2,1 ◦ G̃2,2 ◦ G̃2,3 with U0 := CU (G2)

and Ñ1 :=
〈
T̃1, U0

〉
. The group I

Ñ1
(χ̂0) coincides with

〈
IU0(χ), L̃0

〉
. The characters of

Irr (L0 | χ) differ in their restriction to G2. Because of [U0,G2] = 1 the character χ0 is
invariant in IU0(χ). As elements of U0 also act trivially on L/L0, each element u ∈ IU0(χ)
stabilises χ̂0eLχ0

and this implies χ̂u
0 = χ̂0.

Now we construct a maximal extension of χ̂0 in Ñ0. Computer calculations prove that
one can choose a subgroup U ≤ V such that 〈L,U〉 = N , L∩U ≤ T1 and that maximal
extensibility holds with respect to U ∩ T1 C U .

Let λ̃0 be a maximal extension of λ0 := λ̂
⌉

U∩T1

in U . With the help of λ̃0 we may

define λ̃, a maximal extension of λ̂ in Ñ1 according to the formula in the proof of 4.2.
The character λ̃.η̂1.η̂2.η̂3 is a maximal extension of χ̂0 in Ñ0. Analogously the character
χ̃′0 :=

(
λ̃.η̂1.η̂2.η̂3

)⌉
I
Ñ0

(χ̂0)∩N
is a maximal extension of χ0 in 〈U0, L〉.

By definition the character χ̃′0 is invariant in IU (χ0)∩IU (χ). As all Sylow subgroups of
U/U0 are cyclic, lemma [14, 11.22] implies that χ̃′0 is extendible to 〈IU (χ0) ∩ IU (χ), Lχ0〉.
For a maximal extension χ̃0 of χ̂eLχ0

in N the character (χ̃0)
IN (χ) is a maximal extension

of χ in N .
A close look at the action of L/L0 and U/U0 on η1.η2.η3 shows that after

conjugation with a suitable element l ∈ 〈x ∈ 〈L,G2〉| L(x) ∈ Z(N)〉 the equation

20



〈
IU (χl

0) ∩ IU (χl), Lχ0

〉
= IN (χl) holds. A key step in the proof of the statement is to

choose a transversal in Irr (G2,i) with respect to the action of G̃2,i. As χl
0 is maximal

extendible in N and l stabilises N , the character χ must also be maximal extendible in
N , which proves the statement. �

A more detailed proof of the above lemma can also be found in [21, 5.3]. In all the
remaining cases the statement of theorem A is clear, as the associated relative Weyl
group is cyclic. The results about the inner structure of the other Sylow Levi subgroups
will be needed in section 9, where we prove an equivariance statement for nonregular
Sylow tori.

8 The action of outer automorphisms and regular Sylow tori

In this section we describe the action of graph, field and diagonal automorphisms on
Irr (N), respectively on maximal extensions of characters on L. For this purpose we
introduce a parameterisation of Irr (N).

Lemma 8.1 Assume setting 2.2, where R is a root system of exceptional type. Let d be
a regular number of (G, F ) and κ the field automorphism of G acting via xα(t) 7→ xα(tp).
Then there exist a Sylow d-torus S, L := CGF (S), N := NGF (S) and a map

Λ : Irr (L) →
⋃

χ∈Irr(N)

Irr (IN (χ) | χ) ,

such that

• Λ(χ) is a maximal extension for every χ ∈ Irr (N),

• Λ(χ)n = Λ(χn) for every n ∈ N and

• Λ(χ)κ = Λ(χκ).

Proof. According to theorem D there exists a very good Sylow d-twist vΓ, i.e., vΓ is a
good Sylow d-twist and maximal extensibility holds with respect to
U := CH(vΓ) CK := CV (vΓ). In Irr (U) we choose a transversal T under the action
of N . This is also a transversal of Irr (N) under the action of 〈K,κ〉, as κ acts trivially
on V . We construct an ’extension map’

Λ′ : Irr (K) →
⋃

λ∈Irr(K)

Irr (IU (λ) | λ)

mapping a character to one of its maximal extensions in U in the following way. First
we choose possible values on T . The other values are then determined uniquely by
Λ′(λn) = Λ′(λ)n for all n ∈ U . By definition this map is equivariant under the action
of 〈U, κ〉. The map Λ fulfilling Λ(χ)(u) = Λ′(χeK)(u) for all u ∈ IU (χ) has the desired
properties. �
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In the case where R is of type B2, E6, F4 or G2 the above statement can be generalised.

Lemma 8.2 Assume setting of lemma 8.1, where R is a root system of type B2, E6, F4

or G2 and q a prime power, such that there exists an automorphism Γ0 of GF induced
from the nontrivial automorphism of the Coxeter diagram stabilising N and L. Let n ∈ V
be a element such that LnΓ0 = L. Then the map Λ in 8.1 can be chosen nΓ0-equivariant.

Proof. We first concentrate on the case where R is of type E6. Let v be a very good
Sylow d-twist with vw̃0 = v, U := CV (v) and K := CH(v). We choose a transversal T in
Irr (K) under the action of 〈U, w̃0Γ0, σ〉. The automorphisms w̃0Γ0 and σ act trivially
on U . With T we construct Λ as in the proof above and get a map with the wanted
properties.

In the remaining cases the field automorphism is a power of the graph automorphism
and it suffices to check Λ(λΓ0) = Λ(λ)Γ0 and the N -equivariance. Let v be a very good
Sylow d-twist with vw̃0 = v, U := CV (v) and K := CH(v). If the root system is of type
B2 or F4 the underlying characteristic is even, K trivial and v can be chosen such that
U is Γ0-stable. There exists an 〈U,Γ0〉-equivariant map Λ′ : Irr (K) → Irr (U) mapping
the trivial character on K onto the trivial character on U . With this map we obtain the
〈N,Γ0, σ〉-equivariant map with the construction of lemma 8.1.

In the case where R is a root system of type G2, every regular number is a divisor
of 6. We have constructed maximal extensions for every λ ∈ Irr (H) in section 5. This
uniquely defines a map Λ′ : Irr (H) →

⋃
λ∈Irr(H) Irr (IV (λ)), mapping each character on

its maximal extension, which has been constructed there. This map is by definition
〈V,Γ0〉-equivariant. Let v be a very good Sylow d-twist, constructed with good roots
of w2

0 in the associated braid group, and the groups K and U defined as above. For
d ∈ {1, 2} the groups coincide with H and V respectively and we can deduce from
Λ′ the map Λ with the construction used above. For d ∈ {3, 6} we construct a map
Λ′′ : Irr (K) →

⋃
λ∈Irr(K) Irr (IU (λ)), mapping each character on its maximal extension

in U , which is constructed with the method introduced in 4.6 and extensions obtained
from the map Λ′. According to this construction the map Λ′′ is equivariant with respect
to all automorphisms induced from 〈V,Γ0〉 stabilising U and K. ¿From this we deduce
the map Λ with the wanted properties.�

It remains to show how diagonal automorphisms act on Λ. Unfortunately in several
cases Λ is not equivariant under the action of diagonal automorphisms.

Lemma 8.3 Assume the setting of lemma 8.1. Let t ∈ T be an element with
tvF t−1 ∈ Z(G), χ ∈ Irr

(
TvF

)
, χ′ an extension of χ to 〈L, t〉 and λ ∈ Irr (IN (χ)) with

Λ(χ) = Λ(χ)tλ. Then λ ∈ Irr (IN (χ)) is faithful on IN (χ)/IN (χ′).

Proof. As χ is linear, λ fulfils λ(n) = Λ(χ)([n, t−1]) = χ([n, t−1]). For n ∈ IN (χ′) we
know 1 = χ′n

−1
(t)χ′(t−1) = χ([n, t−1]) and analogous 1 6= χ([n, t−1]) for

n ∈ IN (χ′) \ IN (χ). This proves the statement.�

Altogether we have the following action on Irr (N).
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Remark 8.4 Let ψ ∈ Irr (N), χ ∈ Irr (L | ψ) and θ ∈ Irr (IN (χ)/L) with (Λ(χ)θ)N = ψ.
Then ψΓj

0σit = ψ (i, j ∈ Z), if and only if there exists n ∈ N with χnΓj
0σi

= χ and
θnΓj

0λ = θ, where the linear character λ ∈ Irr (IN (χ)) is defined by Λ(χ)t = Λ(χ)λ.

9 The action of outer automorphisms and nonregular Sylow
tori

In this section we calculate how outer automorphisms of GF , stabilising some Sylow
torus S of (G, F ), act on Irr (N), where N is the Sylow normaliser of (G, F ) associated
to S. We mainly concentrate on how these automorphisms act on maximal extensions
of χ ∈ Irr (L), where L is the Sylow Levi subgroup associated to S.

As a main tool in the proof we use the properties of L, determined in section 7. We
especially use the results about certain subgroups which are summarised in table 3.
The maximal extensions are constructed with the following procedure. In all succeeding
proofs we will look at maximal extensions constructed this way and with these notations.

9.1 (Construction of χ̃) Let L be a Sylow Levi subgroup constructed as in 7.1, N its
Sylow normaliser and χ ∈ Irr (L). We also use the groups L0 and U from remark 7.1.
Let U0 := CU (G2).

Let λ0 ∈ Irr (U ∩ L | χ) and λ̃0 its maximal extension in U , which exists as maximal
extensibility holds with respect to U ∩ L C U . We define a maximal extension λ̃ of
λ ∈ Irr (T1 | χ) to 〈IU0(χ), T1〉 by

λ̃(ut) = λ̃0(u)λ(t) for all u ∈ IU0(χ) and t ∈ T1.

Because of [L, T1] = 1 the character λ is uniquely defined and IU0(χ) = IU0(λ).
According to 7.2 each character χ0 ∈ Irr (L0 | χ) is of the form λ.η with a unique

character η ∈ Irr (G2), as L0 is the central product of T1 and G2. Analogous λ̃.η is a
irreducible character of 〈IU0(χ), T1〉 ◦G2 and an extension of χ0.

Assume that L̃/L0 is cyclic then one of the following cases holds.

• If χ0 = χeL0
, then an element l ∈ L\L0 with χ(l) 6= 0 exists, as the |L/L0| different

extensions of χ0 are the products of χ and the linear character of L/L0 according
to the theorem of Gallagher [14, 6.17].

The equation χ(l) = χ(lu) for u ∈ IU0(χ) implies χ(u) = λ([l, u])χ(l) and λ([l, u]) =
1 because of [l, u] ∈ T1 ≤ Z(L). This shows IL(λ̃.η) = L. One extension ψ of λ̃.η to
〈IU0(χ), L〉 is at the same time an extension of χ. This character ψ is by definition
invariant in IN (χ) and can be extended to this group.

• Otherwise we have χ = χL
0 . The character λ̃.η is extendible to χ̃0 ∈ Irr (IN (χ0))

as the factor group IN (χ0)/〈IU0
(χ),T1〉◦G2 is a subgroup of U/U0 and hence cyclic. The

character χ̃IN (χ)
0 is then a maximal extension of χ according to Mackey’s lemma.
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In general we always get a maximal extension of χ as we extend χ0 ∈ Irr (L0 | χ) to
〈IU0(χ), L〉 by using the character λ̃0.

For the extensions constructed in this way we prove the following proposition. All
automorphisms of GF are restrictions of automorphisms of G.

Proposition 9.2 Let χ ∈ Irr (L), S be the non-regular Sylow torus of (G, F ), such that
L is the corresponding Sylow Levi subgroup, and κ an automorphism of G with Sκ = S
and χκ = χ, which is as GF -automorphism is a product of an inner, a graph and a
field automorphism of GF . Then every maximal extension χ̃ constructed like in 9.1 is
κ-invariant.

Further let κ be an automorphism of G with Sκ = S and χκ = χ, which is as GF -
automorphism a product of an inner, a diagonal, a graph and a field automorphism of
GF and acts trivially on N/L. Then every maximal extension χ̃ constructed like in 9.1
fulfils χ̃κ = χ̃, if and only if IN (χ′) = IN (χ) for an extension χ′ of χ to 〈L, κ〉.

To prove 9.2 we use the following facts, which can also be used in more general settings.

Remark 9.3 (Some remarks on extensions) (a) Let L C G, ψ ∈ Irr (L),
ψ̃, ψ̃′ ∈ Irr (G) with ψ̃

⌉
L

= ψ̃′
⌉
L

= ψ and T a subset of G fulfilling both 〈T ,L〉 = G

and ψ̃(u) = ψ̃′(u) 6= 0 for every u ∈ T . Then ψ̃ = ψ̃′.

(b) Let LCG, ψ ∈ Irr (L), ψ̃ ∈ Irr (G) with ψ̃
⌉
L

= ψ. Further let κ be an automorphism

stabilising L, G and ψ with (o(κ), |G/L|) = 1, where o(κ) denotes the order of κ as
an automorphism. If κ acts trivially on G/L, then ψ̃κ = ψ̃.

(c) Let LCG, ψ ∈ Irr (L), u ∈ CG(L) and κ an automorphism of G with N κ = N and
uκ = u. If an extension ψ′ of ψ to 〈L, κ〉 fulfils ψ′(κ) 6= 0, then ψ′′(κu) 6= 0 holds
for every extension ψ′′ of ψ to 〈L, κu〉.

Proof. The first part is a direct consequence of the theorem of Gallagher. In the situ-
ation of part (b) the theorem of Gallagher implies ψ̃κ = ψ̃α for some linear character
α ∈ Irr (G/L). The equation ψ̃ = ψ̃κo(κ)

= ψ̃
(
α

o(κ)
)

shows α = 1, as the order of α has
to divide (o(κ), |G/L|).

For the proof of the third statement we extend ψ to ψ′ ∈ Irr (〈L, κ〉) and this character
again to 〈L, κ, u〉, which is possible because of ψ′(κ) 6= 0. Because of u ∈ Z(〈L, κ, u〉)
the statement follows. �

The following remark describes some specific properties, which hold in this situation

Remark 9.4 (a) We use the description of automorphisms of GF introduced in the
previous section. For proving this lemma we may concentrate on the Sylow Levi
subgroups and Sylow normalisers constructed in 7.1 and κ ∈

〈
U, σ,Γ0w̃0, T̃

〉
with

T̃ :=
〈
t ∈ T

∣∣ F (tv)t−1 ∈ Z(GvF )
〉
. The automorphisms in

〈
σ,Γ0w̃0, T̃

〉
act triv-

ially on W and hence on N/L.
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(b) Let κ ∈ 〈U, σ,Γ0w̃0〉 and χ ∈ Irr (L) with χκ = χ. Then σ and Γ0w̃0 act trivially
on U and an Irr (U ∩ L | χ). If χκ

0 = χ0, then (λ̃.η)κ = λ̃.η .

These statements already enable us to prove the following lemma.

Lemma 9.5 Proposition 9.2 holds, if G has a root system of type E6.

Proof. In this situation the group Out(GF ) is generated by a field automorphism σ,
the graph automorphism Γ0 and a diagonal automorphism, whose order as outer auto-
morphism is (3, q − 1), if F acts as a standard Frobenius endomorphism, and (3, q + 1)
otherwise.

As S is a nonregular Sylow torus of (G, F ), we know N/L ∼= C5 from table 2, where N
and L are the associated Sylow normalizer and the associated Levi subgroup respectively.
By the remarks 9.3 (b) and 9.4 (a) we may assume κ ∈

〈
U, σ,Γ0w̃0, T̃

〉
and that κ induces

an automorphism of order 5i (0 ≤ i ∈ Z) on GF because of N/L ∼= C5, hence κ ∈ 〈U, σ〉.
Therefore χ0 ∈ Irr (L0 | χ) is κ-invariant. Now remark 9.4 (b) implies (λ̃.η)κ = λ̃.η .

With this κ-invariant extension of χ0 we also get a κ-invariant extension of χ by remark
9.3 (a).�

In order to prove the analogous statement in the remaining cases we need more infor-
mations which automorphisms stabilise characters χ ∈ Irr (G2). The following remark
generalises lemma 15.1 of [15].

Remark 9.6 Let δ be a diagonal automorphism of SL3(q), Γ0 the graph automorphism
and η ∈ Irr (SL3(q)) with ηδ 6= η. Then one character of

{
η, ηδ, ηδ2

}
is invariant under

〈σ,Γ0〉, if ker(η) 6= 1 or [Z(SL3(q)), σ] = 1. Otherwise one character of
{
η, ηδ, ηδ2

}
is

σΓ0-invariant.

Proof. This follows from the character table of SL3(q), which can be found in [20]. In
order to see the results from the character table one should useωk

ξl ωk

1 ωk


as canonical representative of the conjugacy class C(k,l)

2 (k, l ∈ {0, . . . , |Z(SL3(q))| − 1}),
where ω ∈ F∗q is an element of order |Z(SL3(q))| in F∗q and 〈ξ〉 ∈ F∗q . These are the only
SL3(q)-conjugacy classes which are not stable under the action of GL3(q). �

For succeeding proofs we need the following statement.

Lemma 9.7 Let G := SL3(q), Γ0 be the graph automorphism of G, σ the field automor-
phism and η ∈ Irr (G) with ηΓ0 = ησ = η. Then η is extendible to G o 〈σ,Γ0〉.
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For the proof we need the following fact from [2, 4.3]: Let σ′ be a field automorphism
σ′ of GL3(q), η′ ∈ Irr (GL3(q)) with η′σ

′
= η′ and η̃′ an extension of η′ to 〈GL3(q), σ′〉.

Then η̃′(σ′) 6= 0.

Proof. First we assume that η can be extended to η′ ∈ Irr (GL3(q)). According to
[15, 14.1] we may choose η′ to be σ-invariant. We can extend η′ to a character η′′ ∈
Irr (GL3(q) o 〈σ〉). This character fulfils η′′(σ) 6= 0. By remark 9.3 (a) the character
η′′eSL3(q)o〈σ〉 can be extended to SL3(q) o 〈σ,Γ0〉.

Otherwise η has an extension η′ to 〈Z(GL3(q)),SL3(q)〉 with η′(z) = η(1) for every
element z ∈ Z(GL3(q)), as Z(SL3(q)) ≤ ker(η). The characters η′ and α := η′GL3(q) are
hence 〈σ,Γ0〉-invariant. As the extension α̃ of α to GL3(q) o 〈σ〉 fulfils α̃(σ) 6= 0, the
character α̃ is Γ0-invariant and has an extension α̂ ∈ Irr (GL3(q) o 〈σ,Γ0〉). Because of
the Clifford correspondence there exists a character χ̃ ∈ Irr

(
IGL3(q)o〈σ,Γ0〉(χ)

∣∣ χ)
with

χ̃IGL3(q)o〈σ,Γ0〉(χ) = α̂. Because of α̂(1) = 3χ(1) this is an extension of χ. �

The following remark is relevant for proving proposition 9.2, in situations where
G2

∼= SL2(q).

Remark 9.8 Let σ be a field automorphism of SL2(q) of odd order, η ∈ Irr (SL2(q)) with
ησ = η. Then η̃(σ) 6= 0 for any extension η̃ of η to 〈SL2(q), σ〉.

Proof. If η has an extension of GL2(q) the statement is an easy consequence of [2, 4.3]
and [15, 14.1].

Otherwise η has an extension η′ to 〈SL2(q),Z(GL2(q))〉 with η′(z) = 1 for every
z ∈ Z(GL2(q)) of odd order. According to [15, 14.1], the automorphism σ of odd order
acts trivially on η′. The character (η′)GL2(q) has an extension ψ to 〈GL2(q), σ〉, which
fulfils ψ(σ) 6= 0 because of [2]. The character ψe〈SL2(q),σ〉 is the sum of an extension

ψ̃ of ψ to 〈SL2(q), σ〉 and ψ̃δ with δ =
(

1
ξ

)
, where ξ ∈ F∗q is an element whose

multiplicative order is the 2-part of q − 1. Because of [δ, σ] = 1 this proves the remark.
�

With these statements we can prove the following result.

Lemma 9.9 Proposition 9.2 holds, if G has a root system of type E8.

Proof. The outer automorphism group of GF := E8(q) is generated by the field auto-
morphism σ : GF → GF with xα(t) 7→ xα(tp).

First we assume G2
∼= SL2(Fq). Without loss of generality we may assume κ ∈ 〈U, σ〉.

The equation χκ = χ implies χκl
0 = χ0 for some χ0 ∈ Irr (L0 | χ) and l ∈ L. The group

L0 is the central product of G2
∼= SL2(q) and an abelian group T1. According to remark

7.2 we know χ0 = λ.η for some λ ∈ Irr (T1) and η ∈ Irr (G2). Furthermore the equation
ηκl = η implies ηκ = η and ηl = η according to [15, 15.1]. Because of T1 ≤ Z(L) this
shows χκ

0 = χ0. The maximal extension of χ0 in N from remark 9.1 is by definition
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invariant under κ according to remarks 9.3 and 9.4 (b), hence this also holds for the
constructed maximal extension of χ.

By table 2 we have G2 = SL3(Fp) in the remaining cases and may assume κ ∈ 〈U, σ〉.
From χκ = χ we obtain the equation χκl

0 = χ0 for some χ0 ∈ Irr (L0 | χ) and l ∈ L, where
we may write χ0 = λ.η with certain characters λ ∈ Irr (T1) and η ∈ Irr (G2). Remark
9.6 shows that one can choose χ0 ∈ Irr (L0 | χ) with χκ

0 = χ0. The arguments used in
the case G2

∼= SL2(Fq) prove that the maximal extension of χ in 〈U0, L〉 constructed in
remark 9.1 is κ-invariant. This is a maximal extension of χ in N if IN (χ) ≤ 〈U0, L〉.

Otherwise we may assume κ ∈ 〈U0, σ〉. We consider the cases χeL0
= χ0 and

χeL0
6= χ0 separately. In the first case we extend χ to a character ψ of 〈IU0(χ), L, κ〉.

According to remark 9.3 (c) and statement [2, 4.3] this character fulfils ψ(κ) 6= 0. For
uκσ

i = κ (uκ ∈ U) and u ∈ IU (χ) \U0 we know ψu−1
(κ) = ψ(uu

κσ
i) = ψ([u, u−1

κ ]uκσ
i) =

λ̃0([u, u−1
κ ])ψ(κ). As λ̃0 is a linear character of IU (λ0) and u, uκ ∈ IU (λ0) this shows that

ψ is u-invariant. Hence ψ has an extension to 〈L, IU (χ), κ〉. The same holds for every
other maximal extension of χ in N , because the factor group N/L is abelian and κ acts
trivially on N/L.

Assume χ0(1) 6= χ(1). We first extend λ0.η ∈ Irr (〈U ∩ L,G2〉 | χ0). The character
λ′.η with λ′ := λ̃0

⌉
IU0

(λ0)
is a σi-invariant extension to 〈IU0(λ0), G2〉, if uκσ

i = κ for

some uκ ∈ U0 and i ∈ Z. This character can be extended to ψ on IU0(λ0) ◦
〈
G2, σ

i
〉
.

According to 9.7 we can thereby choose ψ such that ψe〈G2,σi〉 is invariant under the

graph automorphism of G2 acting trivially on σi. Hence ψ can be extended to ψ̃ on
G̃ :=

〈
IU (λ0.η), G2, σ

i
〉
. Let D1 be a representation of ψ̃. The equation

D(tg) = λ(t)D1(g) for g ∈ I
G̃
(χ0), t ∈ T1

defines a representation D on 〈IN (χ0), κ〉. The associated character is a maximal exten-
sion of χ0 in

〈
G̃, T1

〉
. Every other maximal extension of χ in N is also κ-invariant, as

N/L is abelian and κ acts trivially on N/L. �

Similar arguments and some more in-depth calculations prove proposition 9.2 for
groups with a root system of type E7.

10 Proof of Theorem C

As a consequence of theorem A and [17] we can verify the McKay-conjecture for ex-
ceptional groups and odd primes different from the defining characteristic. Two occur-
ring exceptions have already been dealt with in [1] and [16]. Furthermore the McKay-
conjecture has already been verified for 2G2(32f+1) and 2B2(32f+1) in [15, Theorem A].

Proof of theorem C. Let G be a simply-connected algebraic group and F : G → G a
Frobenius map, such that the root system of G is exceptional or GF is a Suzuki-group
or Steinberg’s triality group. Furthermore let ` 6= 2 be a prime with `

∣∣GF
∣∣ and ` 6= 3,

if GF ∈
{
G2(q), 2F4(22f+1

}
, as we use results from [17]. Let ν ∈ Irr

(
Z(GF

)
).
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First assume F to be a Frobenius endomorphism. Let d be the order of q in (Z/`Z)∗ and
S a Sylow d-torus of (G, F ). We know from [17, Theorem 5.14] that there exists a Sylow
`-subgroup P of GF with NGF (P ) ≤ N where N is the Sylow d-normaliser associated
to S. By [17, Theorem 7.8] and theorem A the equation

∣∣Irr`′
(
GF

∣∣ ν)∣∣ = |Irr`′ (N | ν)|
holds.

For ` ≥ 5 and L := CGF (S) we know by [7, Theorem 4.4] that N 6= NGF (P ) implies
` |N/L|. Calculating the primes dividing |W |, where W is the Weyl group of G, shows
` ∈ {3, 5, 7}. By definition d divides `−1, hence d ∈ {1, 2, 3, 4, 6}. By table 3 the number
d is regular for (G, F ), whenever N 6= NGF (P ). As ` = 3 implies d ∈ {1, 2}, we may
assume d to be a regular number of (G, F ).

If F is not a Frobenius endomorphism and hence GF is a Suzuki- or Ree-group,
theorems 8.4 and 8.5 of [17] show that there exists a regular Sylow torus S of (G, F ),
such that N ≥ NGF (P ) for some Sylow `-subgroup P of GF and N := NGF (S), and the
equation

∣∣Irr`′
(
GF

∣∣ ν)∣∣ = |Irr`′ (N | ν)| holds.
We verify the statement by proving |Irr`′ (N | ν)| = |Irr`′ (N1 | ν)| and

|Irr`′ (N1 | ν)| = |Irr`′ (N0 | ν)| with N0 := NN (P ), N1 := 〈N0, L〉 and L := CGF (S).
Let T be a set of representatives of characters χ ∈ Irr (L | ν), which fulfil P ≤ IN (χ),

up to N0-conjugacy. Then T is also a set of representatives of characters χ ∈ Irr (L | ν),
which fulfil ` - |N |

IN (χ) , up to N -conjugacy. By Clifford theory

Irr`′ (N1 | ν) =
·⋃

χ∈T
Irr`′ (N1 | χ) and Irr`′ (N | ν) =

·⋃
χ∈T

Irr`′ (N | χ) .

In the following we prove |Irr`′ (N | χ)| = |Irr`′ (N1 | χ)| for χ ∈ T . As χ extends to
IN (χ) by theorem A, we know |Irr`′ (N | χ)| = |Irr`′ (IN (χ)/L)|. Computer calculations
show that the McKay-conjecture is valid for all U ≤W , hence |Irr`′ (I)| =

∣∣Irr`′
(
NI(P

)
))

∣∣
for I := IN (χ)/L and P := 〈P,L〉/L.

Similar arguments show |Irr`′ (N1 | χ)| = |Irr`′ (IN1
(χ)/L)|. By the Sylow theorems

IN1
(χ)/L = NI(P ), hence |Irr`′ (N | χ)| = |Irr`′ (N1 | χ)|.
In the next step of the proof we verify |Irr`′ (N1 | ν)| = |Irr`′ (N0 | ν)|. We obtain

L = L′ × (P ∩ L), where L′ is the subgroup of all `′-elements in the abelian group L.
As P acts on L′ with (|P | , |L′|) = 1. the equation L′ = [L′, P ] × CL′(P ) holds by [13,
14.5(c)]. The fact P ≤ IN1(χ) implies ker(χ) ≤ [L′, P ], hence

Irr`′ (N0 | ν) =
·⋃

χ∈T
Irr`′

(
N0

∣∣ χeL1

)
for L1 := CL′(P )× (P ∩ L).

As the character χ′ := χeL1
(χ ∈ T ) extends to IN0(χ

′) = IN1(χ) ∩N0, we rewrite
|Irr`′ (N0 | χ′)| = |Irr`′ (IN0

(χ′)/L1)| = |Irr`′ (IN1
(χ)/L)| = |Irr`′ (N1 | χ)|. This proves

|Irr`′ (N | ν)| = |Irr`′ (N0 | ν)|.
The remaining cases where ` = 3 and GF ∈

{
G2(q), 2F4(22i+1)

}
have been dealt with

in [1] and [16]. �
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