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WEAK-DUALITY BASED ADAPTIVE FINITE ELEMENT

METHODS FOR PDE-CONSTRAINED OPTIMIZATION WITH

POINTWISE GRADIENT STATE-CONSTRAINTS

M. HINTERMÜLLER1, M. HINZE2, AND R.H.W. HOPPE3

Abstract. Adaptive finite element methods for optimization problems for
second order linear elliptic partial differential equations subject to pointwise

constraints on the `2-norm of the gradient of the state are considered. In a

weak duality setting, i.e. without assuming a constraint qualification such as
the existence of a Slater point, residual based a posteriori error estimators are

derived. To overcome the lack in constraint qualification on the continuous

level, the weak Fenchel dual is utilized. Several numerical tests illustrate the
performance of the proposed error estimators.

1. Introduction

In this paper we study the state constrained optimal control problem

(P )


minimize J(y, u) := 1

2‖y − yd‖
2
0,Ω + α

2 ‖u‖
2
U over (y, u) ∈ V × U

subject to Ay = u+ f in V ∗,

|∇y| ≤ ψ a.e. in Ω,

where Ω ⊂ Rn, n ∈ {1, 2, 3}, is an open, bounded domain with boundary Γ := ∂Ω,
V := H1

0 (Ω), U = L2(Ω), yd ∈ L2(Ω), α > 0, A : V → V ∗ denotes a self-adjoint
second order linear elliptic partial differential operator, f ∈ L2(Ω), and ψ ∈ L2(Ω)
with ψ ≥ ψ a.e. in Ω for some ψ ∈ R++. Here and below ‖ · ‖0,Ω refers to the

standard L2(Ω)-norm. In (P ) we have ‖ · ‖U = ‖ · ‖0,Ω. We call y the state and u
the control. Of course, more general objective functionals are conceivable, but our
choice reflects the often considered tracking-type objective involving a desired state
yd, which may result from measurements, and control costs α. Moreover, convex
quadratic objectives and affine partial differential equation (PDE) constraints such
as those in (P ) appear naturally in sequential quadratic programming approaches
in optimization.

Pointwise constraints on the gradient of the state, as imposed in (P ), are impor-
tant, e.g., in material science in order to avoid large material stresses. Such stresses
may arise from unbalanced cooling regimes in transient phenomena and/or due to
the geometric structure of the underlying PDE domain. Usually large stresses cause
adverse effects in the material leading to reduced life time or other deterioration.
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Geometric features of the PDE domain such as cracks or re-entrant corners play
also a crucial role in stationary cases in elasticity, where stresses are usually high at
the crack tip or the re-entrant corner of, e.g., an L-shaped domain. Thus, it might
be desirable to exercise some control in order to reduce these potentially adverse
effects.

Even in situations where the PDE domain is smooth, from an optimization
theoretic point of view pointwise constraints on the state lead to poor multiplier
regularity when characterizing first order optimality by means of a Karush-Kuhn-
Tucker (KKT) system. Corresponding theoretical studies can be found in [7, 8, 9].
For the derivation of such a KKT-system it is commonly invoked that the feasible set
of the optimization problem (like (P )) admits a so-called Slater point. In connection
with (P ), this requirement results in a function space setting of V := W 2,r(Ω) ∩
H1

0 (Ω), with r > n, for the state space and U := Lr(Ω) for the control space. This
yields ∇y ∈ C(Ω̄)n which is needed for the existence of a Slater point.

For pointwise constraints on the gradient and less regular domains (like cracked
domains or L-shapes) such a high regularity of the state is out of reach [14]. Hence,
the derivation of a primal-dual first order optimality characterization cannot rely
on standard tools requiring a constraint qualification such as the existence of a
Slater point. As a consequence, one may need to work under a weaker first order
condition, i.e., without a bounded set of multipliers associated with |∇y| ≤ ψ a.e.
in Ω. We also note that the domain and the bound ψ have to be compatible in order
to yield a non-empty feasible set of (P ). For example, requiring ψ ∈ L∞(Ω) in the
presence of a crack, which, however, rules out L∞-regularity of the gradient of the
solution of our PDE with L2(Ω)-right-hand side, causes an incompatibility and,
thus, an empty feasible set. In such cases the optimization problem (P ) is void.
Hence, throughout this paper we assume that such a data compatibility holds true,
i.e., we may assign a well-defined solution operator G : V ∗ → V to the PDE in (P ).

Adaptive finite element methods have been widely and successfully used for the
efficient numerical solution of boundary and initial-boundary value problems for
partial differential equations; see, e.g., the monographs [1, 3, 4, 13, 23, 26] and
the many references therein. Recently, residual based a posteriori as well as dual-
weighted residual based goal oriented estimators for PDE-constrained optimization
problems with pointwise constraints on the control or the state were studied; see,
e.g., [5, 17, 18, 19, 21, 22, 27]. Concerning constraints on the gradient of the
state, however, the present literature is rather scarce; here we refer to recent a
priori estimates in [11] based on a certain mixed finite element approach, and to
[15]. Compared to pointwise constraints on the state, i.e., y ≤ Ψ a.e. in Ω, gradient
constraints involve the gradient operator, which has a non-trivial kernel, and require
very smooth, i.e. C1(Ω̄), states in order to guarantee a constraint qualification,
such as the existence of a Slater point. Both aspects trouble the existence of a
bounded set of Lagrange multiplier with the latter preventing practically relevant,
non-smooth PDE domains, as pointed out above. This also has an immediate effect
in the a posteriori error analysis as one has to avoid explicit use of a Lagrange
multiplier.

In the present paper we are, thus, interested in developing reliable residual based
a posteriori error estimators for an adaptive finite element discretization of (P ). In
particular we study the case of non-smooth domains such that the Slater condi-
tion fails to hold due to poor state regularity. In section 2 we use a state-reduced
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approach and tools from convex analysis for deriving a first order optimality char-
acterization. Due to the lack of a constraint qualification, the existence and bound-
edness of Lagrange multipliers cannot be expected in our setting. In order to get
some insight into existence and regularity of multipliers we study the Fenchel dual
of (P ). Then, in the subsequent section 3, we investigate a discrete version of (P )
and its dual. Section 4 is devoted to residual based a posteriori error estimators for
adapting our finite element discretization. The final section 5 contains a selection
of numerical tests showing the efficiency of our estimators.

Notation. Throughout this paper we use bold face characters for vectors or
vector-valued functions or measures. Similarly, for function spaces such as L2(Ω)n

we use L2(Ω) = L2(Ω)n. For two Banach spaces B1 and B2, L(B1, B2) represents
the space of linear, continuous operators from B1 to B2. If B = B1 = B2, then
we write L(B) instead of L(B,B). Adjoint operators and dual spaces are denoted
by superscript ’∗’. The indicator function of a set S is written as IS and satisfies
IS(s) = 0 if s ∈ S and IS(s) = +∞ otherwise. By ‖ · ‖0,Ω and (·, ·)0,Ω we denote
the standard L2(Ω)-norm and L2(Ω)-inner product. In a slight misuse of notation
we use the same symbols for the norm and inner product in L2(Ω). By | · | we
denote the Euclidean norm of a vector in Rn. Weak convergence is denoted by ⇀

and weak∗ convergence by
∗
⇀. Further, ’a.e.’ stands for ’almost everywhere’.

2. Optimality characterizations, dual problem, and weak solutions

As pointed out in the introduction, without a suitable constraint qualification,
such as the existence of a Slater point for the pointwise inequality constraint, La-
grange multipliers for characterizing first order optimality may fail to exist. Here,
in our rather weak setting without Slater points, we pursue two directions: on one
hand, we study a primal optimality characterization based on a state-reduced prob-
lem and the normal cone of the convex feasible set, and on the other hand, utilizing
the technique of [12] we study the Fenchel-dual problem of (P ).

2.1. Optimality characterization. Let V̂ with V̂ ⊂ V ⊂ L2(Ω) be a reflexive

Banach space. We assume that Ĝ : L2(Ω)→ V̂ is the invertible operator associating
with a given u ∈ U the solution y = y(u) of Ay = u + f in L2(Ω). Its existence
is guaranteed by a data compatibility assumption. This allows us to express u in
terms of u = Ĝ−1y−f . Inserting this relation into (P ), we obtain the state-reduced
problem

(P̂ ) minimize Ĵ(y) + IK̂(y) over y ∈ V̂ ,

where Ĵ(y) = J(y, Ĝ−1y − f) and the closed convex set K̂ ⊂ V̂ is given by

K̂ := {v ∈ V̂ : |∇v| ≤ ψ a.e. in Ω}.

Note K̂ is nonempty, and that Ĵ(·) is a closed convex and proper functional. Fur-

ther, J(·, Ĝ−1 · −f) is continuous at y0 = 0 ∈ K̂. Like (P ), (P̂ ) admits a unique
solution y ∈ V . Hence, [2, Thm. 9.5.5] yields that the optimal solution y satisfies

0 = Ĵ ′(y) + w

= Jy(y, Ĝ−1y − f) + Ĝ−∗Ju(y, Ĝ−1y − f) + w for some w ∈ NK̂(y).(2.1)

Here, NK̂(y) denotes the normal cone of K̂ given by

(2.2) NK̂(y) = {ξ ∈ V̂ ∗ : 〈ξ, z − y〉V̂ ∗,V̂ ≤ 0 for all z ∈ K̂}.
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Applying Ĝ∗ to (2.1) we obtain

(2.3) 0 = Ĝ∗Ĵ ′(y) + Ĝ∗w = Ĝ∗Jy(y, Ĝ−1y − f) + Ju(y, Ĝ−1y − f) + Ĝ∗w.

In order to get an amenable representation for (2.3) we define

p := Ĝ∗Jy(y, Ĝ−1y − f) + Ĝ∗w ∈ L2(Ω).

This yields the adjoint equation

(2.4) Ap− Jy(y, Ĝ−1y − f)− w = 0 in V̂ ∗

and (2.3) becomes

(2.5) p+ Ju(y, Ĝ−1y − f) = 0.

We call p the adjoint state associated with (2.1). Utilizing Ay = u+f , we summarize
our above findings.

Theorem 2.1. The optimal solution (y, u) ∈ V ×L2(Ω) of (P ) is characterized by

the existence of a unique pair (p, w) ∈ L2(Ω)× V̂ ∗ satisfying

Ay − u = f in L2(Ω),(2.6)

Ap− y − w = −yd in V̂ ∗,(2.7)

p+ αu = 0 in L2(Ω),(2.8)

w ∈ NK̂(y) ⊂ V̂ ∗,(2.9)

with the normal cone NK̂(y) defined by (2.2).

Note that Theorem 2.1 does not provide further insight into structural properties
of the Lagrange multiplier associated with the constraints in K̂. For this purpose
and later use in the discretized setting we switch to the Fenchel dual of (P ). Before
we commence with studying the dual, we briefly discuss Theorem 2.1 in the smooth
setting V̂ = W 2,r(Ω) ∩H1

0 (Ω) with r > n which was considered in [8]. In this case
there exists a so-called Slater point, which is a feasible point of (P ) such that there
exists δ > 0 with |∇(y0 +y)| ≤ ψ in Ω for all feasible y ∈ B∞(0; δ), where B∞(0; δ)
denotes the ball of radius δ about 0 in C1(Ω̄). In fact, u0 = −f and y0 = 0 with
|∇y0| < ψ ≤ ψ in Ω defines such a Slater point. Under these assumptions, the

existence of a Lagrange multiplier µ in M(Ω̄), the space of regular Borel vector
measures on Ω̄, is deduced in [8] such that w in our setting may be identified with
−divµ.

2.2. Dual problem and weak solution. For the derivation of the dual we remain,
for the time being, in the general setting of (P ) and use the solution operator

G : V ∗ → V associated with the PDE in (P ). As for Ĝ before, its existence is
guaranteed by a data compatibility assumption. This allows us to rewrite (P ) in
control-reduced form as

(2.10) inf F(u) + G(Λu) over u ∈ U
with

F : U → R, F(u) = J(Gu, u),(2.11)

G : L2(Ω)→ R, G(q) = IK(q),(2.12)

and

(2.13) Λ := ∇G, Λ : L2(Ω)→ L2(Ω),
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where IK(·) denotes the indicator function of the convex set

K = {w ∈ L2(Ω) : |w| ≤ ψ a.e. in Ω}.
The convex conjugate of F , denoted by F∗, is defined by

F∗(u∗) = sup{(u∗, u)0,Ω −F(u) : u ∈ U};
analogously for G∗. For our particular choice of F we easily verify

(2.14) F∗(u∗) =
1

2
‖u∗ +G∗yd + αf‖2M−1 ,

where M = G∗G+α id and ‖ · ‖2M−1 = (M−1·, ·)0,Ω. Observe that ‖ · ‖2M−1 , indeed,
defines a norm on L2(Ω) since the Fredholm-operator M : L2(Ω) → L2(Ω) is
positive-definite and admits a uniformly bounded inverse, which is positive-definite
as well. The convex conjugate of G is

(2.15) G∗(q∗) =

∫
Ω

ψ |q∗| dx.

Indeed, we have G∗(q∗) = sup{(q∗,q)0,Ω − IK(q) : q ∈ L2(Ω)} which implies
0 ∈ q∗ − ∂IK(q). This is equivalent to

(2.16) (q∗, r− q)0,Ω ≤ IK(r)− IK(q) for all r ∈ K.

Since q ∈ K we consider, for all r ∈ K, the following two cases:

(i) |q∗| = 0. We immediately obtain G∗(q∗) = 0.
(ii) |q∗| > 0. In this situation we have (q∗, r − q)0,Ω ≤ 0 for all r ∈ K, from

which we deduce

(q∗, r)0,Ω ≤ (q∗,q)0,Ω ≤
∫

Ω

ψ |q∗| dx.

On the other hand, choosing r∗ = ψq∗|q∗|−1 we have |r∗| ≤ ψ a.e. in Ω
and further

(q∗,q)0,Ω ≥ (q∗, r∗)0,Ω =

∫
Ω

ψ |q∗| dx.

In conclusion, we obtain

G∗(q∗) =

∫
Ω

ψ |q∗| dx.

Summarizing both cases (i) and (ii), we infer (2.15). Using [12, Chap. III] and
recalling (2.13), the dual of (2.10) is

(2.17) sup −F∗(Λ∗q∗)− G∗(−q∗) over q∗ ∈ L2(Ω).

The above statements prove the following result.

Proposition 2.1. The Fenchel-dual problem of (P ) is given by

(D) inf
1

2
‖G∗(∇∗µ + yd) + αf‖2M−1 +

∫
Ω

ψ |µ| dx over µ ∈ L2(Ω).

Note that compared to (2.17) we write (D) as a minimization problem, we use
G∗∇∗ = Λ∗ : L2(Ω)→ L2(Ω) and q∗ = µ. Below it will turn out that µ is related
to the Lagrange multiplier associated with the pointwise constraint in K.

Next we study stability of (2.10) respectively (D). A typical stability criterion
for (2.10) is the existence of a point u0 ∈ U such that F(u0) < +∞, G(Λu0) < +∞
and such that G is continuous at Λu0. While the first two conditions appear to be
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unproblematic in our setting, with respect to the latter we have that G = IK is
only continuous at Λu0 if ∇y0 ∈ C(Ω̄) with y0 = G(u0 + f) and |∇y0| ≤ ψ− τ in Ω
for some τ > 0, i.e., y0 is a Slater point. Then one deduces from the chain-
rule for convex mappings [12, Chap. I, Prop. 5.7] that ∂(IK ◦ (∇ ◦ G))(u) =
G∗∇∗∂IK(G(u)) and the existence of a Lagrange multiplier µ ∈M(Ω̄) associated
with |∇y| ≤ ψ in Ω; see [8]. Such a (high) regularity requirement for the state space,
however, rules out practically relevant domains with, e.g., re-entrant corners, which
are admitted in our general problem setting.

Now we are interested in stability of the dual problem (D). In fact, it is straight
forward to conclude that F∗ and G∗ are continuous on L2(Ω) and that there exist
points where both functionals are finitely valued. Hence, by [12, Chap. III, Thm
4.1] (D) is stable and (with a slight misuse of notation)

(2.18) inf (P ) = sup (D).

Further we conclude that (P ) has a solution. Note that this result does not imply
a solution of (D).

Let us assume for the moment that (D) would admit a solution µ ∈ L2(Ω).
Then, by first order optimality, we obtain

(2.19) 0 ∈ ∇GM−1 (G∗(∇∗µ + yd) + αf) + ψ∂|µ|.

Defining the quantities

y := G(u+ f) ∈ V,(2.20)

u := M−1 (G∗(∇∗µ + yd) + αf)− f ∈ L2(Ω),(2.21)

p := G∗(y − yd −∇∗µ) ∈ V,(2.22)

we get the relation

0 = (G∗G+ α id)(u+ f)−G∗(∇∗µ + yd)− αf
= G∗(y − yd −∇∗µ) + αu

= p+ αu,(2.23)

which yields a regularity gain of u. From (2.19) we conclude

(2.24) −∇y ∈ ψ∂|µ|.

We recall that ∂|µ| = {ξ ∈ L2(Ω) : ξ · (ν − µ) ≤ |ν| − |µ| for all ν ∈ L2(Ω)}.
Thus, choosing first ν = 0 and then ν = 2µ, (2.24) yield

(2.25) ∇y · µ = ψ |µ|.

Moreover, from the definition of the subdifferential of | · | we conclude

|∇y| = ψ if |µ| > 0 and |∇y| ≤ ψ if |µ| = 0 a.e. in Ω.

From this we infer the complementarity relation

(2.26) |∇y| ≤ ψ and (|∇y| − ψ) |µ| = 0 a.e. in Ω.

Alternatively, using the definition of ∂| · | and (2.24), (2.26) may be written as

(2.27) (q−∇y,µ)0,Ω ≤ 0 for all q ∈ L2(Ω), |q| ≤ ψ a.e. in Ω.

Observe that (2.20)–(2.23) and (2.27) represent the first order optimality (or Karush-
Kuhn-Tucker) system for (D). Moreover, (y, u) be the solution of (P ). The unique-
ness follows from the coercivity of ‖u‖2U in U .
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A close inspection of the objective functional of (D), however, reveals that it
lacks coercivity in L2(Ω) such that existence of a solution cannot be guaranteed.
But due the structure of the objective we still have the following result.

Theorem 2.2. Let (µk) ⊂ L2(Ω) be a minimizing sequence for (D). Then there

exists µ ∈M(Ω) and a subsequence (µkl) such that µkl
∗
⇀ µ in M(Ω).

Proof. Let (µk) ⊂ L2(Ω) be a minimizing sequence, and note that we have∫
Ω

ψ|µ|dx ≥ ψ
∫

Ω

|µ|dx

with ψ > 0. From this and since µ = 0 is feasible for (D), we have that (µk) is

bounded in L1(Ω). Hence, there exists µ ∈M(Ω) and a subsequence (kl) such that

µkl
∗
⇀ µ in M(Ω). �

Finally we note that the dualization process may be performed for a tightened
version of (P ) given by

(P̂ )


minimize J(y, u) := 1

2‖y − yd‖
2
0,Ω + α

2 ‖u‖
2
0,Ω over (y, u) ∈ V̂ × L2(Ω)

subject to Ay = u+ f in L2(Ω),

|∇y| ≤ ψ a.e. in Ω,

Now we assume ∇ ∈ L(V̂ ,L2(Ω)). The Fenchel dual associated with (P̂ ) reads

(D̂) inf
1

2
‖Ĝ∗(∇∗µ + yd) + αf‖2M−1 +

∫
Ω

ψ |µ| dx over µ ∈ L2(Ω).

Let (µk) denote a minimizing sequence for (D̂). Then the invertibility of Ĝ :

L2(Ω)→ V̂ yields the weak convergence of ∇∗µkl ⇀ w in V̂ ∗ along a subsequence.
This proves the following result.

Theorem 2.3. Let (µk) ⊂ L2(Ω) be a minimizing sequence for (D̂). Then there

exists µ ∈M(Ω) and a subsequence (µkl) such that µkl
∗
⇀ µ in M(Ω) and ∇∗µkl ⇀

w in V̂ ∗. Moreover, the limit element w ∈ V̂ ∗ satisfies

Ay − u = f in L2(Ω),(2.28)

Ap+ w − y = −yd, in V̂ ∗,(2.29)

p+ αu = 0 in L2(Ω).(2.30)

Note that (2.28)–(2.30) corresponds to (2.20)–(2.22) with ∇∗µ replaced by w.
However, the limit process in Theorem 2.2 does not provide a limit version of
the complementarity system (2.26). On the other hand, in view of (2.27) and
µ ∈M(Ω), we expect the extension

(2.31) 〈q−∇y,µ〉M(Ω)∗,M(Ω) ≤ 0 for all q ∈M(Ω)∗, |q| ≤ ψ a.e. in Ω.

As we pointed out above, V̂ = W 2,r(Ω) ∩ H1
0 (Ω) allows for Slater points. Since

C(Ω̄) ⊃W 1,r(Ω)∩H1
0 (Ω) we have ∇y ∈ C(Ω̄) and obtain a multiplier µ ∈M(Ω̄) =

C(Ω̄)∗ for |∇y| ≤ ψ in Ω. As M(Ω̄) is not reflexive, a solution y ∈ V satisfying
∇y ∈M(Ω̄)∗ (but ∇y /∈ C(Ω̄)) and (2.28)–(2.31) is called a weak solution of (P ).
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3. Discrete problem and duality

From here onwards we assume that A = −div(a∇·) + d·, and that due to a

non-smooth domain Ω we have V̂ = W 1,r
0 (Ω) for some r > 1. The dual of V̂ is

denoted by V̂ ∗ = W−1,s(Ω) with r−1 + s−1 = 1. Such an assumption is supported
by the results in [14]. For convenience we repeat the first order optimality system of
Theorem 2.1 in a variational form. Below, a(·, ·) : V ×V → R denotes the bounded
and V -elliptic bilinear form induced by A.

a(y, v) − (f + u, v)0,Ω = 0 for all v ∈W 1,s
0 (Ω),(3.32a)

a(z, p) − (y − yd, z)0,Ω − 〈w, z〉W−1,s,W 1,r
0

= 0 for all z ∈W 1,r
0 (Ω),(3.32b)

p + αu = 0,(3.32c)

w ∈NK̂(y) ⊂W−1,s(Ω).(3.32d)

We proceed by discretizing (P̂ ), respectively (P ). For this purpose we introduce
the space of linear finite elements

Vh := {vh ∈ C0(Ω̄) | vh ∈ H1
0 (Ω) is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements. Here Th ≡ Th(Ω) denotes
a quasi-uniform triangulation of Ω with Eh(D) denoting the set of element edges
contained in D ⊆ Ω, and Nh(D) the set of nodal points contained in D. For T ∈ Th
and E ∈ Eh we set hT := diam(T ) and hE := |E|. The maximum mesh size is
h := max{hT |T ∈ Th}. For vh ∈ Vh the quantity

[∇vh · η]E := ∇vhT · ηT +∇vhT ′ · ηT ′

denotes the jump of the normal fluxes of vh along the inter-element edge E joining
the elements T and T ′, where ηT denotes the unit outward normal on ∂T . Through-
out we suppose that Ω̄ is the union of the elements of Th so that element edges lying
on the boundary might be curved.

The discrete approximation of the operator G is considered next. In fact, for
given v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Vh the solution of

a(zh, vh) = (v, vh)0,Ω for all vh ∈ Vh.

Note that Gh : L2(Ω)→ Vh is surjective. Moreover, by well known inverse estimates
we have for every v∗h ∈ V ∗h and s ≥ 1

(3.33) ‖G∗hv∗h‖20,Ω ≥ C‖v∗h‖2W−1,s

with a constant C > 0 independent of h. Observe that V̂h = Vh and, thus, Ĝh = Gh.
For each T ∈ Th let zT ∈ Rn denote a constant vector. We define

Ch := {zh : Ω→ Rn : zh|T = zT on T}, and Kh := {zh ∈ Ch : |zh|T | ≤ ψh, T ∈ Th},

where we set ψh := 1
|T |
∫
T
ψ on T ∈ Th. Observe that ψh ≥ ψ > 0 in Ω.

Employing the variational discretization scheme of [20] when discretizing (P̂ ),
we obtain

(P̂h)

{
minimize Jh(u) := 1

2‖yh − yd‖
2
0,Ω + α

2 ‖u‖
2
0,Ω over u ∈ L2(Ω)

subject to yh = Gh(u+ f) and ∇yh ∈ Kh.

Due to the convexity of (P̂h) and the existence of a Slater point for ∇yh ∈ Kh we
obtain the following result, which can readily be deduced from [28].
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Lemma 3.1. Problem (P̂h) admits a unique solution uh ∈ L2(Ω). Moreover, there
exist Lagrange multipliers µT ∈ Rn, T ∈ Th and ph ∈ Vh such that yh = Gh(uh+f)
is characterized by

a(vh, ph)− (yh − yd, vh)0,Ω −
∑
T∈Th

∇vh|T · µT = 0 ∀vh ∈ Vh,(3.34)

ph + αuh = 0 in Ω,(3.35) ∑
T∈Th

(
qT −∇yh|T

)
· µT ≤ 0 ∀qh ∈ Kh.(3.36)

Next we associate with µ the function µh ∈ L2(Ω) through

(f,µh)0,Ω :=
∑
T∈Th

∮
T

f dx · µT for all f ∈ L2(Ω).

Then, µh|T = µT , and since µh ∈ L2(Ω) the negative weak divergence of µh - as

an element of W−1,s(Ω) - is given by

〈−∇∗µh, v〉W−1,s,W 1,r
0

= (∇v,µh)0,Ω for all v ∈W 1,r
0 (Ω).

Using this definition, the system (3.34)-(3.36) may be reformulated as

a(yh, vh) − (f + uh, vh)0,Ω = 0 ∀vh ∈ Vh,(3.37a)

a(vh, ph) − (yh − yd, vh)0,Ω + 〈∇∗ · µh, vh〉W−1,s,W 1,r
0

= 0 ∀vh ∈ Vh ,
(3.37b)

ph + αuh = 0,(3.37c) ∑
T∈Th(Ω)

(qh|T −∇yh|T ) · µh|T ≤ 0 ∀qh ∈ Kh.(3.37d)

The Fenchel dual associated with (P̂h) reads

(D̂h) inf
1

2
‖G∗h(∇∗µh + yd) + αf‖2

M−1
h

+

∫
Ω

ψh|µh|dx over µh ∈ Ch,

where Mh := GhG
∗
h + α id. For every h > 0, (D̂h) admits a solution µh, which

together with uh, yh, ph satisfies (3.37). Furthermore, in analogy to (2.18) we have

min(P̂h) = max(D̂h).

Moreover, since 0 is feasible for every (D̂h) we have

max{‖µh‖L1 , ‖∇∗µh‖W−1,s} ≤ C,

with a constant C > 0 independent of the mesh size h. The latter estimate follows
from (3.33). Furthermore, we have the following representation of the discrete
multipliers.

Lemma 3.2. Let uh denote the unique solution of (P̂h) with corresponding state
yh = Gh(uh + f) and multiplier (µT )T∈Th . Then we have

(3.38) µT = |µT |
1

ψh
∇yh|T for all T ∈ Th.
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Proof. Fix T ∈ Th. The assertion is immediate if µT = 0. Suppose that µT 6= 0,
and define qh : Ω̄→ Rn by

qh|T̃ :=

{
∇yh|T , T̃ 6= T,

ψh
µT

|µT |
, T̃ = T.

Clearly, qh ∈ Kh so that (3.36) implies

µT ·
(
ψh

µT
|µT |

− ∇yh|T
)
≤ 0.

Thus, since
(
∇yh|T

)
T∈Th

∈ Kh, we find

ψh|µT | ≤ µT · ∇yh|T ≤ ψh|µT |.

Hence, we obtain
µT
|µT |

=
1

ψh
∇yh|T which yields the assertion. �

As a consequence of Lemma 3.2 we immediately infer that

(3.39) |µT | =
1

ψh
µT · ∇yh|T for all T ∈ Th.

4. Residual based a posteriori error estimator

We continue with an a posteriori analysis of our discrete problem. In order to
prepare the main result, our residual-type a posteriori error estimator is introduced
next:

η := ηy + ηp ,(4.40)

ηy :=
( ∑
T∈Th(Ω)

ηry,T +
∑

E∈Eh(Ω)

ηry,E

)1/r

,

ηp :=
( ∑
T∈Th(Ω)

ηsp,T

)1/s

+
( ∑
E∈Eh(Ω)

ηsp,E

)1/s

.

Here, ηy,T , ηp,T , T ∈ Th(Ω), are the element residuals associated with the strong
form of the state and the adjoint state equations

ηry,T := hrT ‖f + uh +∇ · a∇yh − dyh‖r0,T ,(4.41a)

ηsp,T := hsT ‖yh − yd +∇ · a∇ph − dph‖s0,T ,(4.41b)

whereas ηy,E , ηy,E stand for the edge residuals

ηry,E := h
r/2
E ‖νE · [a∇yh]E‖r0,E ,(4.42a)

ηsp,E := h
s/2
E ‖νE · ([µh]E − [a∇ph]E)‖s0,E .(4.42b)

Our main result is stated next.

Theorem 4.1. Let (y, u, p, w) ∈ W 1,r
0 (Ω) × L2(Ω) × W 1,s

0 (Ω) × W−1,s(Ω) and
(yh, uh, ph,µh) ∈ Vh×Vh×Vh×Ch be the solutions of (3.32a)-(3.32d) and (3.37a)-
(3.37d). Moreover, let η be the estimator according to (4.40). Then it holds that

‖y − yh‖2W 1,r
0

+ ‖u− uh‖20,Ω . η2
y + η2

p − 〈w, y − yh〉W−1,s,W 1,r
0
.(4.43)

‖y − yh‖20,Ω + ‖u− uh‖20,Ω . ηy + η2
p − 〈w, y − yh〉W−1,s,W 1,r

0
.(4.44)
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The proof of Theorem 4.1 will be split into a series of lemmas. For the discrete
control uh ∈ Vh and the discrete multiplier µh ∈ Ch, we introduce an intermediate

state y(uh) ∈ W 1,r
0 (Ω) and an intermediate adjoint state p(µh) ∈ W 1,s

0 (Ω) as the
solution of

(4.45) a(y(uh), v) − (f + uh, v)0,Ω = 0 ∀v ∈W 1,s
0 (Ω),

(4.46) a(z, p(µh)) − (yh−yd, z)0,Ω + 〈∇∗µh, z〉W−1,s,W 1,r
0

= 0 ∀z ∈W 1,r
0 (Ω).

We start by estimating the error between the optimal state and its adjoint and
the intermediate state and adjoint, respectively.

Lemma 4.1. Let (yh, uh, ph,µh) ∈ Vh × Vh × Vh ×Ch be the solution of (3.37a)-

(3.37d) and let (y(uh), p(µh)) ∈ W 1,r
0 (Ω) ×W 1,s

0 (Ω) be the intermediate states as
given by (4.45),(4.46). Then it holds that

‖y(uh)− yh‖1,r .
( ∑
T∈Th

ηry,T

)1/r

+
( ∑
E∈Eh(Ω)

ηry,E

)1/r

(4.47a)

‖p(µh)− ph‖1,s .
( ∑
T∈Th(Ω)

ηsp,T )
)1/s

+
( ∑
E∈bEh(Ω

ηsp,E

)1/s

.(4.47b)

Proof. We denote by Π
(t)
h : W 1,t → Vh for 2 ≤ t <∞ the Scott-Zhang interpolation

operator satisfying

‖v −Π
(t)
h v‖0,t,T . hT ‖v‖1,t,DT , T ∈ Th(Ω) ,(4.48a)

‖v −Π
(t)
h v‖0,p,E . h

1/2
E ‖v‖1,t,DE , E ∈ Eh(Ω) ,(4.48b)

whereDT :=
⋃
{T ′ ∈ Th(Ω) | Nh(T ′)∩Nh(T ) 6= ∅} andDE :=

⋃
{T ′ ∈ Th(Ω) | Nh(T ′)∩

Nh(E) 6= ∅} (cf., e.g., [24]).
The generalization of the Lax-Milgram Lemma (cf. Theorem 5.4 in [25]) gives

‖y(uh)− yh‖1,r ≤ sup
‖v‖1,s≤1

|a(y(uh)− yh, v)| .(4.49)

Since Π
(s)
h v ∈ Vh is an admissible test function in (3.37a),(4.45), we get

a(y(uh)− yh, v) = a(y(uh)− yh, v −Π
(s)
h v)(4.50)

= (f + uh, v −Π
(s)
h v)0,Ω − a(yh, v −Π

(s)
h v) .

Green’s formula and a straightforward estimation yield

a(y(uh)− yh, v −Π
(s)
h v)(4.51)

=
∑
T∈Th

(f + uh +∇ · a∇yh − dyh, v −Π
(s)
h v)0,T

−
∑

E∈Eh(Ω)

(νE · [a∇yh]E , v −Π
(s)
h v)0,E

≤
∑
T∈Th

‖f + uh +∇ · a∇yh − dyh‖0,r,T ‖v −Π
(s)
h v‖0,s,T

+
∑

E∈Eh(Ω)

‖νE · [a∇yh]E‖0,r,E ‖v −Π
(s)
h v‖0,s,E .
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The local approximation properties (4.48a),(4.48b) of Π
(s)
h give

a(y(uh)− yh, v −Π
(s)
h v)(4.52)

≤
∑
T∈Th

hT ‖f + uh +∇ · a∇yh − dyh‖0,r,T ‖v‖1,s,DT

+
∑

E∈Eh(Ω)

h
1/2
E ‖νE · [a∇yh]E‖0,r,E ‖v‖1,s,DE

≤
( ∑
T∈Th

hrT ‖f + uh +∇ · a∇yh − dyh‖r0,r,T
)1/r ( ∑

T∈Th

‖v‖s1,s,T
)1/s

+
( ∑
E∈Eh(Ω)

h
r/2
E ‖νE · [a∇yh]E‖r0,r,E

)1/r ( ∑
E∈Eh(Ω)

‖v‖s1,s,DE
)1/s

≤ ‖v‖1,s

( ∑
T∈Th

ηry,T

)1/r

+
( ∑
E∈Eh(Ω)

ηry,E

)1/r

 .(4.53)

Now, (4.47) follows readily from (4.49)-(4.52).
On the other hand, the generalization of the Lax-Milgram theorem (cf. Theorem
5.4 in [25]) yields

‖p(µh)− ph‖1,s ≤ sup
‖z‖1,r≤1

|a(z, p(µh)− ph)| .(4.54)

Since Π
(r)
h z ∈ Vh is an admissible test function in (3.37b) and (4.46), we find

a(z, p(µh)− ph) = a(z −Π
(r)
h z, p(µh)− ph) .(4.55)

Using (4.46), we obtain

a(z −Π
(r)
h z, p(µh)− ph)(4.56)

= (z −Π
(r)
h z, yh − yd)− 〈∇∗µh, z −Π

(r)
h z〉W−1,s,W 1,r

0
− a(z −Π

(r)
h z, ph)

=
∑
T∈Th

(z −Π
(r)
h z, yh − yd +∇ · a∇ph − dph)0,Ω

−
∑

E∈Eh(Ω)

(z −Π
(r)
h z,νE · ([a∇ph]E − [µh]E))0,E .

Here we have used the fact that

〈∇∗µh, vh〉W−1,s,W 1,r
0

= −
∑

E∈Eh(Ω)

(νE · [µh]E , vh)0,E ,

which follows from the definition of ∇∗µh, µh|T ∈ P0(T )2, and integration by parts.

Taking advantage of the local approximation properties (4.48a),(4.48b) of Π
(r)
h ,

straightforward estimation yields
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|a(z −Π
(r)
h z, p(µh)− ph)|

(4.57)

≤
∑
T∈Th

‖z −Π
(r)
h z‖0,r,T ‖yh − yd +∇ · a∇ph − dph‖0,s,T

+
∑

E∈Eh(Ω)

‖z −Π
(r)
h z‖0,r,E ‖νE · ([a∇ph]E − [µh]E)‖0,s,E

≤
∑
T∈Th

hT ‖yh − yd +∇ · a∇ph − dph‖0,s,T ‖z‖1,r,DT

+
∑

E∈Eh(Ω)

h
1/2
E ‖νE · ([a∇ph]E − [µh]E)‖0,s,E ‖z‖1,r,DE

≤
( ∑
T∈Th

hsT ‖yh − yd +∇ · a∇ph − dph‖s0,s,T
)1/s ( ∑

T∈Th

‖z‖r1,r,DT
)1/r

+
( ∑
E∈Eh(Ω)

h
s/2
E ‖νE · ([a∇ph]E − [µh]E)‖s0,s,E

)1/s ( ∑
E∈Eh(Ω)

‖z‖r1,r,DE
)1/r

≤ ‖z‖1,r,Ω
(( ∑

T∈Th

ηsp,T

)1/s

+
( ∑
E∈Eh(Ω)

ηsp,E

)1/s)
.

Then, (4.47b) is an immediate consequence of (4.54) and (4.57). �

The error between the optimal control and its finite element approximation, and
between the optimal state and the discrete optimal state is estimated next.

Lemma 4.2. Let (y, u, p,µ, w) ∈ W 1,r
0 (Ω) × L2(Ω) ×W 1,s

0 (Ω) ×M ×W−1,s(Ω)
and (yh, uh, ph,µh) ∈ Vh × Vh × Vh × Ch be the solutions of (3.32a)-(3.32d) and

(3.37a)-(3.37d), respectively, and assume that (y(uh), p(uh)) ∈W 1,r
0 ×W 1,s

0 are the
intermediate states as given by (4.45),(4.46). Then, it holds that

(4.58) ‖y − yh‖20,Ω + ‖u− uh‖20,Ω . ‖y(uh)− yh‖W 1,r
0

+

+ ‖p(uh)− ph‖2W 1,s
0
− 〈w, y − yh〉W−1,s,W 1,r

0
.

Proof. In view of (3.32c) and (3.37c) we obtain

α‖u− uh‖20,Ω = (u− uh, p(µh)− p)0,Ω + (u− uh, ph − p(µh))0,Ω =: (1) + (2) .

(4.59)
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Using the complementarity condition (3.37d) together with uniform boundedness
of ‖∇∗µh‖W−1,s in h we have

(1) = a(y−y(uh), p(µh)−p) = (yh−y, y−y(uh))0,Ω−〈w+∇∗µh, y−y(uh)〉W−1,s,W 1,r
0

= −‖yh − y‖20,Ω + (yh − y, yh − y(uh))0,Ω − 〈w +∇∗µh, y − y(uh)〉W−1,s,W 1,r
0

≤ −1

2
‖yh − y‖20,Ω +

1

2
‖yh − y(uh)‖20,Ω−

− 〈w +∇∗µh, y − yh〉W−1,s,W 1,r
0
− 〈w +∇∗µh, yh − y(uh)〉W−1,s,W 1,r

0

≤ −1

2
‖yh − y‖20,Ω +

1

2
‖yh − y(uh)‖20,Ω−

− 〈w, y − yh〉W−1,s,W 1,r
0
− 〈w +∇∗µh, yh − y(uh)〉W−1,s,W 1,r

0

≤ −1

2
‖yh−y‖20,Ω +

1

2
‖yh−y(uh)‖20,Ω−〈w, y−yh〉W−1,s,W 1,r

0
+C‖yh−y(uh)‖W 1,r

0
.

Finally, for the second addend in (4.59) an application of Young’s inequality gives

(2) ≤ α

2
‖u− uh‖20,Ω + 2α−1 ‖p(µh)− ph‖2W 1,s

0
,(4.60)

which implies the assertion. �

Combining our preparatory results we prove our main theorem.
Proof of Theorem 4.1. Taking into account that

‖y − y(uh)‖2
W 1,r

0
≤ C ‖u− uh‖20,Ω

for some C > 0, we get

‖y − yh‖2W 1,r
0

+ ‖u− uh‖20,Ω(4.61)

≤ 2 ‖y − y(uh)‖2
W 1,r

0
+ 2 ‖y(uh)− yh‖2W 1,r

0
+ ‖u− uh‖20,Ω

≤ 2 ‖y(uh)− yh‖2W 1,r
0

+ (1 + 2C) ‖u− uh‖20,Ω .

Now the assertions (4.44) and (4.43) follow from an application of the results of
Lemma 4.1 and Lemma 4.2 in (4.61). �

5. Numerical tests

Finally we present some numerical tests related to problem (P). We set A := −∆,
f = 0 and consider the two-dimensional domain Ω := {(x1, x2) = (r cosφ, r sinφ) ∈
R2 : r ∈ (0, 1), φ ∈ (0, ω)} with boundary parts Γ1 := {(cosφ, sinφ) ∈ R2 : φ ∈
(0, ω)} and Γ2 := ([0, 1] × {0}) ∪ {(r cosω, r sinω) : r ∈ (0, 1)}. We choose α = 1,
yd = r

π
ω sin π

ωφ and ψ ∈ Lr(Ω) with appropriate r > 1. The optimization problem
considered here for the numerical experiments reads

(P2)
min J(yh, u) = 1

2‖yh − yd‖
2
L2(Ω) + α

2 ‖u‖
2
L2(Ω) over (yh, u) ∈ Vh × L2(Ω)

s.t.
∫

Ω
∇yh,∇vhdx = (u, vh)0,Ω∀ vh ∈ Vh, yh = sin π

ωφ on Γ1, yh = 0 on Γ2,

|∇yh|2 ≤ ψ2
h in Ω̄.

We note that for the solution of the problem

−∆y = 0 in Ω, y = sin
π

ω
φ on Γ1, y = 0 on Γ2,
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we have y ∈W 1,r(Ω) and |∇y(x)| = π
ω |x|

π−ω
ω ∈ Lr(Ω) with r := 2ω

ω−π .

The numerical solution of (P2) is obtained by the semi-smooth Newton method
applied to the optimality system of (P2), see e.g. [16]. For the description of the
method we follow [10]. Let c > 0 be fixed and let us split the index set • of all
nodes into Γ, the index set of all boundary nodes, and I, the index set of all interior
nodes. In order to cope with the non-homogenous Dirichlet boundary conditions
we introduce the modified stiffness matrix

K̃ :=

[
IΓ 0ΓI

KIΓ KI

]
∈ Rnp×np,

where np denotes the number of vertices of the triangulation of Ω. Then the
optimality system of (P2) can be expressed in the form

F (yh, uh, µ̃h) =


αK̃uh +

[
0Γ

MI•(yh − yd) +
[∑
T

2µ̃h|T∇yh|T · ∇bj|T
]
j∈I

]
K̃yh −

[
yΓ

MI•uh

]
[
−µ̃h|T + max(0, µ̃h|T + c(|∇yh|T |2 − ψ2

h|T ))
]nt
T=1

 = 0,

which is amenable to the semi-smooth Newton method. We note that the scalar
multiplier µh of problem (P̂h) is coupled to µ̃h through the relation µh|T = 2ψh|T µ̃h|T .

In the following numerical examples mesh-refinement is based on the residual
estimators defined in (4.40) and on the right-hand side (4.44). For the refinement
the following bulk- and/or max-marking procedure is employed. For this purpose
let

η1,T = hrT ‖f + uh +∇ · a∇yh− dyh‖r0,T , η2,T = hsT ‖yh− yd +∇ · a∇ph− dph‖s0,T ,

η3,E =
1

2

∑
E⊂∂T

h
r/2
E ‖νE ·[a∇yh]E‖r0,E , η4,E =

1

2

∑
E⊂∂T

h
s/2
E ‖νE ·([a∇p]E−[µh]E)‖s0,E .

For ϑ1, ϑ2 ∈ [0, 1] the bulk criterion chooses minimal subsets M1,M2 of triangles
such that ∑

T∈M1

η1,T + η3,E ≥ ϑ1

∑
T

η1,T + η3,E ,

and ∑
T∈M2

η2,T + η4,E ≥ ϑ2

∑
T

η2,T + η4,E .

The max-marking criterion for ϑ1, ϑ2, ϑ3, ϑ4 ∈ [0, 1] chooses these subsets ac-
cording to

Mi := {T : ηi,T ≥ ϑi max
T

ηi,T }, i = 1, . . . , 4.

Consequently, set of triangles marked for refinement is given by

M := ∪iMi.

In our numerical experiments we choose ϑi = 0.7 for bulk marking, and ϑi = 0.5
for max-marking. We use local congruent refinement with conforming closure,
where a new node is projected onto the circle containing his mother nodes. This
procedure produces nice meshes for the domains which we consider in our numerical
experiments. The parameters r and s are associated with the regularity of the
involved variables and satisfy 1

r + 1
s = 1.
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In the following numerical solutions and the contributions to the error indicators
are displayed on uniformly refined meshes Tl, whose mesh parameters for ω = 3

2π
are displayed in Tab. 1.

l np nt h
1 35 48 0.4203
2 117 192 0.2219
3 425 768 0.1138
4 1617 3072 0.0578
5 6305 12288 0.0292
6 24897 49152 0.0146
7 98945 196608 0.0073

Table 1. Mesh parameters for ω = 3
2π: l refinement level, np

number of vertices, nt number of triangles, h grid size.

5.1. Example 1 with inactive origin. In this example we use ω = 5
4π, r = 10,

and ψ(x) = 2|x|− 1
5 + |x| − 1.9 ∈ L10(Ω). The gradient constraints are not active in

the origin, but in the crescent-shaped black area, see Fig. 1 where the numerical
solution uh and yh together with the active set (black area) is presented. Fig.

Figure 1. uh (left), yh (middle), and active set of all T with
|∇yh|T | = ψ(xT ) (right) for l = 6.

2 shows the adaptively refined meshes obtained by bulk-marking (left) and max-
marking. Refinement due to the error indicators associated to the dual variables
(i.e. p and µ) is enforced in the crescent-shaped black area, whereas refinement
caused by the primal variable (i.e. y and u) is observed in the origin. In Fig.
3 the different contributions to the total error estimator defined in (4.41a)-(4.42b)
are displayed on a uniform mesh for refinement level l = 4. One clearly observes
that the edge-residual of the dual variables delivers by far the largest contribution.
In Fig. 4 the contributions of ph and µh to (4.42b) are displayed separately. One
finds that the contribution of ph is dominant.
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Figure 2. Mesh with bulk-marking (np = 4020, nt = 7976) (left),
mesh with max-marking (np = 3417, nt = 6744) (right).
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Figure 3. η for l = 4.

5.2. Example 2 with active origin. In this example we choose ω = 3
2π, r = 6,

and ψ(x) = 0.1|x|− 1
3 + 0.9 ∈ L6(Ω). The gradient constraints are active in the

origin, see Fig. 5, where the numerical solution uh and yh together with the active
set (black area) is presented. The control now is pronounced in a neighborhood of
the origin, which causes refinement there. Fig. 6 presents the adaptively refined
meshes obtained by bulk-marking (left) and max-marking (right). Refinement due
to the error indicators associated to the primal and dual variables is enforced near
the origin, and due to the dual variables in the black area of active constraints. In



18 M. HINTERMÜLLER1, M. HINZE2, AND R.H.W. HOPPE3

 

η
4,T

, p−part

 

0.1

0.2

0.3

0.4
 

η
4,T

, µ−part

 0

2

4

6

8

x 10
−4

Figure 4. η4,E-parts for l = 4.

Figure 5. uh (left), yh (middle), and active set of all T with
|∇yh|T | = ψ(xT ) (right) for l = 6.

Fig. 7 the different contributions to the error estimator defined in (4.41a)-(4.42b)
are displayed on a uniform mesh for refinement level l = 4. One clearly sees that
the edge-residual of the dual variables delivers by far the largest contribution in a
neighborhood of the origin. In Fig. 8 the contributions of ph and µh to (4.42b) are
displayed separately. It is clearly shown that the contribution of ph is dominant.

5.3. Example 3 with inactive origin. Now we have ω = 7
4π, r = 14

3 , and ψ(x) =

2|x|− 3
7 + 2|x| − 3 ∈ L

14
3 (Ω). The numerical results are very similar to those of

Example 1, where in the present example the crescent-shaped area is even more
pronounced, see Fig. 9. The meshes obtained by the different marking strategies
under investigation are shown in Fig. 10. As before, we in Fig. 11 and 12 depict
the various contributions to the error estimator for mesh refinement. As announced
earlier, the conclusions are similar as in Example 1.
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Figure 6. Mesh with bulk-marking (np = 2345, nt = 4559) (left),
mesh with max-marking (np = 4392, nt = 8692) (right)
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Figure 9. uh (left), yh (middle), and active set of all T with
|∇yh|T | = ψ(xT ) (right) for l = 6.
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