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LEGENDRIAN KNOTS IN LENS SPACES

SİNEM ÇELİK ONARAN

Abstract. In this note, we first classify all topological torus knots lying
on the Heegaard torus in Lens spaces, and then we classify Legendrian
representatives of torus knots. We show that all Legendrian torus knots
in universally tight contact structures on Lens spaces are determined up
to contactomorphism by their knot type, rational Thurston-Bennequin
invariant and rational rotation number.

1. Introduction

A Legendrian knot in a contact 3-manifold is a knot which is everywhere
tangent to the contact planes. Legendrian knots are very natural objects in
contact 3-manifolds and they play an important role in the theory. Legen-
drian knots are used to distinguish contact structures [16], to detect topolog-
ical properties of knots [19] and to detect overtwistedness of contact struc-
tures [9].

There have been some recent progress in the classification of Legendrian
knots in tight contact structures after the classification of Legendrian un-
knots done by Eliashberg and Fraser [5] and the classification of Legendrian
torus knots and the figure eight knot done by Etnyre and Honda [8]. Leg-
endrian knots in a cabled knot type are studied in [10] and complete classi-
fication is given in [20]. Recently, Legendrian twists knots are classified in
[11]. Legendrian knots in 3-manifolds other than S3 are also studied. For
example, in [13], Legendrian linear curves on 3-torus T 3 are classified and
in [1], Legendrian rational unknots in Lens spaces are classified.

In this note, we study Legendrian knots in Lens spaces. We focus on a
class of knots called torus knots. Torus knots are knots that lie on the Hee-
gaard torus without any points of intersection. First of all, not all torus knots
in Lens spaces are null-homologous but all are rationally null-homologous.
In Section 2, we study topological properties of torus knots. First, we find
constrain on when a torus knot is null-homologous. Next, we compute the
group of torus knots. By studying the diffeotopy group of Lens spaces, we
completely classify all torus knots up to isotopy. Lastly, we construct a ratio-
nal Seifert surface for a torus knot and we calculate its Euler characteristic.
In section 3, we give a review of basic concepts in convex surface theory
and we fix notation. In Section 4, by using convex surface theory tools, we
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2 SİNEM ÇELİK ONARAN

study contact geometric properties of Legendrian torus knots. We study
Legendrian representatives of torus knots in universally tight contact struc-
tures on Lens spaces. With the help of the rational Seifert surfaces that we
constructed for torus knots, we calculate the rational Thurston-Bennequin
invariants and the rational rotation numbers of Legendrian torus knots.
By following the strategy outlined in [8], we first classify Legendrian torus
knots with maximal rational Thurston-Bennequin invariant, and then we
show that all Legendrian torus knots without maximal rational Thurston-
Bennequin invariant destabilize and finally we determine the relationship
between their stabilizations. We prove:

Theorem 1.1. Legendrian torus knots in universally tight contact structures
on a Lens space L(p, q) are determined up to contactomorphism by their knot
type, rational Thurston-Bennequin invariant and rational rotation number.

In last section, we list several remarks and questions related to Legendrian
knots in Lens spaces. We conclude:

Theorem 1.2. Transverse torus knots in universally tight contact structures
on Lens spaces are determined up to contactomorphism by their knot type
and rational self-linking number.

2. Topological Torus Knots in Lens spaces

For fixed relatively prime integers p > q > 0, let (V1, V2) be the genus 1
Heegaard splitting of a Lens space L(p, q) which is described as

L(p, q) = V1 ∪ϕ V2

where V1 and V2 are both D2 × S1. The gluing map ϕ : ∂V1 → ∂V2 is an
orientation reversing map given by the matrix

(

−q q′

p p′

)

with pq′ + qp′ = 1. In particular, the image of the meridian µ1 of ∂V1 is the
curve −qµ2 + pλ2 in ∂V2.

Let K(a,b) curve on the Heegaard torus ∂V2 be a curve wraps a times in
the meridional direction and b times in the longitudinal direction on ∂V2. If
a and b are relatively prime then K(a,b) curve is a knot, in this case K(a,b) is
called a (a, b)-torus knot in the Lens space L(p, q).

Let µ2 and λ2 be a positive meridian-longitude basis for H1(∂V2). Then
the torus knot K(a,b) can be written as a[µ2] + b[λ2] in homology. Note that
any knot in a Lens space L(p, q) is rationally null-homologous. Let r be the
order of K(a,b) in L(p, q), that is r is the smallest integer such that r[K] = 0
in H1(L(p, q)) = Zp. For a knot K(a,b) of order r in L(p, q), p | rb. Note
also that not all torus knots in L(p, q) are null-homologous. The torus knot
K(a,b) is null-homologous if and only if p | b. Furthermore, considering the
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corresponding meridional curves of the Heegaard splitting on ∂V2, for any
torus knot K(a,b) of order r we have

r[K] = m[µ1] + l [µ2] = m(−q[µ2] + p[λ2]) + l [µ2] ∈ H1(∂V2).

where m = rb
p
, l = ra + mq = ra + rb

p
q. In the case when K(a,b) is null-

homologous, we have r = 1.

Proposition 2.1. Let K(a,b) be a (a, b)-torus knot on the Heegaard torus
∂V2 in Lens space L(p, q).

(1) The group of a torus knot K(a,b) can be presented as

π1(L(p, q)−K(a,b)) =< u, v | ub = vpa+qb >

(2) Two torus knots K(a,b) and K(a′,b′) have isomorphic groups if and
only if |b| = |b′| and |pa + qb| = |pa′ + qb′| or |b| = |pa′ + qb′| and
|b′| = |pa+ qb|.

Proof. The complement of a neighborhood ν(K(a,b)) of a torus knot K(a,b)

in L(p, q) is the union of two solid tori glued along an annulus A where
the core C of the annulus A is isotopic to the torus knot K(a,b). Namely,

L(p, q) \ K(a,b) = Ṽ1 ∪ Ṽ2 where Ṽi = Vi \ ν(K(a,b)) two solid tori, i = 1, 2,
glued along the annulus A = (L(p, q) \K(a,b)) ∩ ∂V2.

Let µ̃i and λ̃i be meridian and longitude pair for Ṽi where µ̃i and λ̃i

represent the trivial element and a generator of π1(Ṽi), respectively. For
convenience we use the multiplicative notation for the fundamental group.
We want to remark that throughout the paper we use additive notation for

the homology group. Note that [C] = [µ̃1]
−p′a+q′b[λ̃1]

pa+qb
= [λ̃1]

pa+qb
since

K(a,b) is on ∂V2 and
(

−q q′

p p′

)−1(
a
b

)

=

(

−p′ q′

p q

)(

a
b

)

=

(

−p′a+ q′b
pa+ qb

)

Also, [C] = [µ̃2]
a[λ̃2]

b
= [λ̃2]

b
. Then, by Seifert-van Kampen theorem,

π1(K(a,b)) =< u, v | ub = vpa+qb >

where u = [λ̃1] and v = [λ̃2]. This proves (1).
Note that the subgroup < ub > generates the centre of the knot group

π1(K(a,b)) and π1(K(a,b))/ < ub >= Z|b| ∗ Z|pa+qb|. Note also that u and
v generate non-conjugate maximal finite cyclic subgroups of order |b| and
|pa+ qb| of Z|b| ∗ Z|pa+qb|, respectively. Therefore, if K(a,b) and K(a′,b′) have
isomorphic groups, then |b| = |b′| and |pa+qb| = |pa′+qb′| or |b| = |pa′+qb′|
and |b′| = |pa+ qb|, proving (2).

�

Lemma 2.2. (1) If K(a,b) and K(a′,b′) are two null-homologous torus
knots in L(p, q) that have isomorphic groups, then (a′, b′) is equal to
one of the following pairs:
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• (a, b), (−a,−b), B = (−2qb−pa
p

, b), −B = (2qb+pa
p

,−b),

C = ( b−qpa−q2b
p

, pa+ qb), −C = (−b+qpa+q2b
p

,−pa− qb),

D = ( b+qpa+q2b
p

,−pa− qb), −D = (−b−qpa−q2b
p

, pa+ qb),

(2) If K(a,b) and K(a′,b′) are two rationally null-homologous but not null-
homologous torus knots in L(p, q) that have isomorphic groups, then
(a′, b′) is equal to one of the following pairs in the following cases:

• (a, b), (−a,−b) if p 6= 2 and q2 6≡ ±1 (mod p),

• (a, b), (−a,−b), C = ( b−qpa−q2b
p

, pa+qb), −C = (−b+qpa+q2b
p

,−pa−

qb) if p 6= 2 and q2 ≡ 1 (mod p),

• (a, b), (−a,−b), D = ( b+qpa+q2b
p

,−pa−qb), −D = (−b−qpa−q2b
p

, pa+

qb) if p 6= 2 and q2 ≡ −1 (mod p),
• (a, b), (−a,−b), (−b−a, b), (b+a,−b), (−a, 2a+b), (a,−2a−b),
(a+ b,−2a− b), (−a− b, 2a+ b) if p = 2.

Proof. By Proposition 2.1(2) we know that K(a,b) and K(a′,b′) have isomor-
phic groups if and only if |b| = |b′| and |pa+qb| = |pa′+qb′| or |b| = |pa′+qb′|
and |b′| = |pa + qb|. Part (1) follows from the analysis of these cases. For
part (2), we know that if K(a,b) is not null-homologous then p ∤ b. There-

fore, when p 6= 2 the cases (−2qb−pa
p

, b), (2qb+pa
p

,−b) do not occur and the

cases ( b−qpa−q2b
p

, pa + qb), (−b+qpa+q2b
p

,−pa − qb) occur only if p | (1 − q2).

Similarly, the cases ( b+qpa+q2b
p

,−pa− qb), (−b−qpa−q2b
p

, pa+ qb) occur only if

p | (1 + q2). The case when p = 2 and hence q = 1 is clear. �

Let us now classify all topological torus knots on a Heegaard torus in Lens
spaces up to isotopy. Recall that two knots K1 and K2 in a 3-manifold M
are isotopic if there is a diffeomorphism φ : M → M such that φ(K1) = K2

and φ is isotopic to the identity map.

Theorem 2.3. The torus knot K(a,b) is isotopic to K(a′,b′) in L(p, q) if and
only if K(a′,b′) is equal to one of the following pairs in the given cases:

(1) {K(a,b)} if q 6= 1 or p− 1,
(2) {K(a,b),KC = K

( b−qpa−q2b
p

,pa+qb)
} if p 6= 2 and q = 1 or p− 1,

(3) {K(a,b),K(−a,−b),KC = K(−a,2a+b),K−C = K(a,−2a−b)} if p = 2.

For the proof of Theorem 2.3 we need the following theorem:

Theorem 2.4 (Bonahon [4, Theorem 3]). The group of isotopy classes of
diffeomorphisms of L(p, q) for p ≥ 2 is given by

(1) Z2 with generator τ if q2 6≡ ±1 (mod p)
(2) Z2 ⊕ Z2 with generator τ and σ+ if q2 ≡ 1 and q 6≡ ±1 (mod p)
(3) Z2 with generator τ if q ≡ ±1 (mod p) and p 6= 2
(4) Z4 with generator σ− if q2 ≡ −1 (mod p) and p 6= 2
(5) Z2 with generator σ− if p = 2
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Let (V1, V2) be the genus 1 Heegaard splitting of the Lens Space L(p, q)
defined as above. In Theorem 2.4, τ is the diffeomorphism that preserves
each of the solid tori Vi = D2 × S1 and acts by a complex conjugation
on each factor of each Heegaard torus. Note that τ always exists and if
p = 2, then τ is isotopic to the identity. In general, L(p, q) does not admit
a diffeomorphism that exchanges V1 and V2 except when q2 ≡ ±1 (mod
p). If q2 ≡ 1 (mod p), there exists a diffeomorphism σ+ that exchanges
the Heegaard tori, namely σ+ : (u, v) ∈ V1 ↔ (u, v) ∈ V2. If q = 1 or
p − 1 then σ+ is isotopic to the identity. Similarly, when q2 ≡ −1, L(p, q)
admits a diffeomorphism σ− that exchanges V1 and V2 and acts by complex
conjugation on each Vi as follows: σ− : (u, v) ∈ V1 7→ (ū, v) ∈ V2 and
(u, v) ∈ V2 7→ (u, v̄) ∈ V1. For diffeotopy groups of Lens spaces also see [14].

Proof. of Theorem 2.3. Let us first consider null-homologous knots case,
not null-homologous case follows from the same argument. Let K(a,b) and
K(a′,b′) be two isotopic null-homologous knots on the Heegaard torus ∂V2 in
L(p, q). Since K(a,b) and K(a′,b′) have isomorphic groups, from Lemma 2.2,
we know that the candidates for (a′, b′) are (−a,−b), B, −B, C, −C, D and
−D. Moreover, since [K(a,b)] = [K(a′,b′)] in homology, the cases C, −C, D,
−D occur only if q = 1 or p− 1.

We first identify the diffeomorphisms that send K(a,b) to possible K(a′,b′)’s
and then we analyze when such diffeomorphisms are isotopic to the identity.
Clearly, τ sends K(a,b) to K(−a,−b). Note that σ+ sends K(a,b) on ∂V2 to
K(a,b) on ∂V1. Then after applying the gluing map φ : ∂V1 → ∂V2 with
pq′ + qp′ = 1, we get

(

−q q′

p p′

)(

a
b

)

=

(

−qa+ q′b
pa+ p′b

)

=

(

a′

b′

)

Note that for a′ = −qa+ q′b and b′ = pa+ p′b we have pa′ + qb′ = p(−qa+
q′b) + q(pa + p′b) = (pq′ + qp′)b = b. By Proposition 2.1(2), it follows that
we are in the case when b = pa′ + qb′ and |b′| = |pa + qb|. More precisely,
b = pa′ + qb′ and b′ = pa+ p′b = pa+ qb or b′ = pa+ p′b = −pa− qb. Since
(a, b) = 1, the latter case does not occur. If we choose p′ such that qp′ ≡ 1
(mod p), then we are left with the only case b = pa′ + qb′ and b′ = pa + qb

and in this case (a′, b′) = ( b−qpa−q2b
p

, pa + qb) = C. Therefore, σ+ sends

K(a,b) to KC .
By a similar argument one can observe that the diffeomorphism σ− sends

K(a,b) to KD. By homological reasons as we mentioned above the cases D

and −D occur only if q = 1 or p− 1 and since σ− exists only when q2 ≡ −1,
K(a,b) is not isotopic to KD or K−D via a diffeomorphism which is isotopic
to the identity. Also, we want to remark that there is no diffeomorphism
of L(p, q) sending K(a,b) to B or −B. If there was such a diffeomorphism,
then by [4], it would be σ+ or σ− or τ . From above we see that it cannot
be σ+ or σ−. Therefore, it must be τ but the fact that τ2 = id gives us a
contradiction.
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Now, using Theorem 2.4 we observe that when p = 2 the diffeomorphisms
τ and σ+ are isotopic to the identity and hence we have Case (3). In Case
2, when p 6= 2 and q = 1 or p− 1 the knots K(a,b) and KC are isotopic since
in this case only σ+ is isotopic to the identity. In the remaining cases, only
τ exists and when p 6= 2, τ is not isotopic to the identity. This proves Case
(1). �

Lemma 2.5. A torus knot K(a,b) in L(p, q) has a rational Seifert surface
SK(a,b)

of Euler characteristic

χ(SK(a,b)
) =

|rb|+ (1− |rb|)|rap+ rbq|

p

where r is the order of K(a,b).

Proof. Let K(a,b) be a rationally null-homologous torus knot of order r in
L(p, q). We may construct a rational Seifert surface SK(a,b)

for r copies

of K(a,b) as follows: First recall that r[K] = m[µ1] + l[µ2] = m(−q[µ2] +

p[λ2])+l[µ2] inH1(∂V2) wherem = rb
p
, l = ra+ rb

p
q and p | rb. Construct the

rational Seifert surface SK(a,b)
by taking |m| parallel copies of the meridional

disk µ1 of ∂V1 and |l| parallel copies of the meridional disk µ2 of ∂V2 and
then attaching a haft twisted band at each intersection for a total number
of p|l||m| = |l||rb| bands. Then, the Euler characteristic χ(SK(a,b)

) of SK(a,b)

is χ(SK(a,b)
) = #(disks)−#(bands):

χ(SK(a,b)
) = |l|+ |m| − |l||rb|

= |ra+ rbq
p
|+ |rb|

p
− |ra+ rbq

p
||rb|

= |rb|+(1−|rb|)|rap+rbq|
p

.

�

Also, see [2, Lemma 2.3] for rational Seifert surface construction for torus
knots.

3. Convex Surfaces

A closed oriented surface Σ in a contact 3-manifold is called convex if
there is a contact vector field v, that is a vector field whose flow preserves
the contact structure ξ, transverse to Σ. Given a convex surface Σ in a
contact 3-manifold with a contact vector field v, the dividing set ΓΣ of Σ is
defined as ΓΣ = {x ∈ Σ : v(x) ∈ ξx}. The dividing set ΓΣ is a multi-curve,
possibly disconnected and possibly with boundary. The dividing set ΓΣ is
transverse to the characteristic foliation, Σ \ ΓΣ = Σ+ ⊔ Σ− and there is a
vector field v that expands/contracts a volume form w on Σ+/ Σ− and v
points out of Σ+.

Theorem 3.1 (Giroux’s tightness criterion). A convex surface Σ in a con-
tact 3-manifold has a tight neighborhood if and only if Σ 6= S2 and ΓΣ has
no homotopically trivial dividing curves or Σ = S2 and ΓΣ is connected.
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For more information and details, see [12], [15].

3.1. Legendrian knots. The positive/negative stabilization S+(L)/S−(L)
of a Legendrian knot L in the standard tight contact structure on R3 is
obtained by modifying the front projection of L by adding a down cusp/an
up cusp as in Figure 1, respectively. Since stabilizations are done locally,
by Darboux’s theorem this defines stabilizations of Legendrian knots in any
contact 3-manifold.

Figure 1. The positive stabilization S+(L) and the negative
stabilization S−(L) of L.

The classical invariants of Legendrian knots are the topological knot type,
the Thurston-Bennequin invariant tb(L) and the rotation number rot(L).
The Thurston-Bennequin invariant measures the contact framing with re-
spect to the Seifert framing and the rotation number of an oriented null-
homologous Legendrian knot L can be computed as the winding number
of TL after trivializing the contact structure along a Seifert surface for
L. After stabilizing a Legendrian knot, the classical invariants change as
tb(S±(L)) = tb(L)− 1 and rot(S±(L)) = rot(L)± 1.

Proposition 3.2 (Kanda [17, Proposition 4.5]). Let L be a Legendrian curve
on a surface Σ and let twΣ(L) denote the twisting of the contact planes along
L measured with respect to the framing on L given by Σ. Then Σ may be
made convex relative to L if and only if twΣ(L) ≤ 0. If Σ is a convex surface
with dividing curves Γ, then

(1) twΣ(L) = −
1

2
#(L ∩ Γ).

Moreover, if Σ is a Seifert surface of L, the above formula computes the
Thurston-Bennequin invariant tb(L) of L and in this case the rotation num-
ber rot(L) of L is

(2) rot(L) = χ(Σ+)− χ(Σ−).

Also, from above proposition it follows that

Lemma 3.3. A surface Σ with boundary may be made convex if and only
if the twisting of contact planes along each boundary component is less than
or equal to zero.
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3.2. Convex Torus in Standard Form. By Giroux’s tightness criterion,
a convex torus in a tight contact 3-manifolds has dividing set consists of 2n
closed, parallel, homotopically non-trivial curves. A convex torus in standard
form is a torus of slope s with characteristic foliation that consists of a 1-
parameter family of curves of singularities with slope s, called Legendrian
divides, and other 1-parameter family of curves with slope r 6= s, called
Legendrian rulings. By Giroux’s flexibility theorem, [12], [15], any convex
torus with slope s in a tight contact 3-manifold can be put in a standard
form with any ruling slope r 6= s.

Theorem 3.4 (Classification of tight contact structures on solid torus, [12],
[15]). There are |(r0+1) · · · (rk−1+1)(rk)| tight contact structures on a solid
torus S1 ×D2 with standard convex boundary having two dividing curves of
slope −p

q
, where p > q > 0 and −p

q
= r0 −

1
r1−

1

r2···−
1
rk

. Moreover, all these

contact structures are distinguished by the number of positive regions on a
convex meridional disk with Legendrian boundary.

Proposition 3.5 ([15, Proposition 4.16]). Let ξ be a tight contact structure
on T 2 × I with convex boundary having boundary slopes s0 and s1 on the
boundary. Then for any s between s0 and s1, there is a convex torus parallel
to the boundary of T 2 × I with slope s.

3.3. Bypasses. Let Σ be a convex surface in a contact 3-manifold, a bypass
for Σ is a convex half disk D with Legendrian boundary such that

(1) ∂D = γ0 ∪ γ1, γ0, γ1 are two arcs that intersect at their end points,
(2) D ∩ Σ = γ0,
(3) the characteristic foliation of D has three elliptic singularities along

γ0, two positive elliptic singularities at the end points of γ0 and one
negative elliptic singularity on the interior of γ0, and only positive
singularities along γ1, alternating between positive elliptic and pos-
itive hyperbolic singularities,

(4) γ0 intersect ΓΣ exactly at three elliptic singularities of γ0.

Figure 2 is a diagram illustrating a bypass disk.

+

+

+

++

-

Γ

γ

Σ
γ

0

1

Figure 2. A bypass disk D.
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A dividing curve γ ⊂ ΓΣ is called boundary parallel if γ cuts off a half disk
which contains no other component of ΓΣ in its interior. As the following
propositions show, a boundary parallel curve allows us to find bypasses.

Proposition 3.6 (Imbalance Principle, [15, Proposition 3.17]). Let Σ =
S1 × [0, 1] be a convex annulus with Legendrian boundary embedded in a
tight contact 3-manifold. If twΣ(S

1 × {0}) < twΣ(S
1 × {1}) ≤ 0, then there

exists a boundary parallel curve and hence a bypass along S1 × {0}.

Proposition 3.7 (Honda [15, Proposition 3.18]). Let Σ be a convex surface
with Legendrian boundary. If the dividing set ΓΣ contains a boundary parallel
dividing curve γ, then there exists a bypass for Σ, provided that Σ is not a
disk with tb(∂Σ) = −1.

Remark 3.8. Note that an orientable Legendrian knot L and its (posi-
tive/negative) stabilization L′ cobound a bypass disk. The stabilization L′

of L is obtained by pushing L across this bypass disk. Therefore, locating
bypasses, in particular boundary parallel curves are helpful in showing that
a Legendrian knot destabilizes.

3.4. Relative Euler classes. We will use the relative Euler class of a
T 2 × [0, 1] region in our calculations. Let ξ be a tight contact structure
on M = T 2 × [0, 1] with convex boundary in standard from. Assume ξ|∂M
is trivializable and let s be a nowhere vanishing section of ξ|∂M . The rel-
ative Euler class e(ξ, s) ∈ H1(M,∂M,Z) is the obstruction to extend s to
all of M . If γ is an oriented Legendrian curve on T 2 × {0} and assume
the annulus A = γ × [0, 1] is convex and has Legendrian boundary, then
e(γ) ≡ e(A) = χ(A+) − χ(A−) where A± are the positive and negative
regions of A determined by the dividing set of A.

4. Legendrian Torus Knots in Lens spaces

A contact structure on a 3-manifold is universally tight if its pullback to
the universal cover is tight. In this section, we classify Legendrian torus
knots L(a,b) of knot type K(a,b) in universally tight contact structures on
a Lens space L(p, q), where p > q > 0. We identify L(p, q) as the quo-
tient of T 2 × [0, 1] obtained by collapsing y = constant curves on T 2 × {0}
and collapsing (−q, p)-curve on T 2 × {1} to a point. The universally tight
contact structure ξut on L(p, q) is induced from minimally twisting univer-
sally tight contact structure on T 2 × [0, 1] with minimal number of dividing
curves of slopes s0 = 0 on T 2 × {0} and s1 = −p

q
on T 2 × {1}. There

are two such universally tight contact structures on T 2 × [0, 1] and they
satisfy PD(e(ξ, s)) = ±((−q, p) − (−1, 1)), [15, Proposition 5.1]. We as-
sume that ξut is induced from the universally tight contact structure with
PD(e(ξ, s)) = (−q, p) − (−1, 1). The results in this section similarly hold
for the other case and can be easily written down. There are exactly two
universally tight contact structure on L(p, q) when q 6= p − 1 and there is
only one when q = p− 1, [15, Proposition 5.1].
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Remark 4.1. Note that, by Proposition 3.5 in a universally tight Lens
space L(p, q), we can find a convex torus T with dividing curves of any slope
in (−p

q
, 0).

The definition of Thurston-Bennequin invariant and the rotation number
can be extended for rationally null-homologous Legendrian knots. They are
defined and studied in [1]. Also rational Thurston-Bennequin invariant has
been studied for knots in Lens spaces in [3] and for links in rational homology
spheres in [18].

The rational Thurston-Bennequin invariant measures the contact framing
of a rationally null-homologous Legendrian knot with respect to the rational
Seifert framing of the knot. Let L(a,b) be a Legendrian torus knot of knot
type K(a,b) of order r in the universally tight contact structure ξut on L(p, q).
Now recall the rational Seifert surface SK(a,b)

construction for r copies of
K(a,b) in the proof of Lemma 2.5. The rational Seifert framing of L(a,b)

coming from SK(a,b)
is 1

r
plm
r

= 1
r
lb where m = rb

p
, l = ra+ rb

p
q. Furthermore,

by Equation (1) in Proposition 3.2, by using the set of dividing curves Γ
for the Heegaard torus containing L(a,b), the contact framing of L(a,b) can

be computed as −1
2#(L(a,b) ∩ Γ). Here #(L(a,b) ∩ Γ) is the unsigned count

of intersection number of L(a,b) and Γ. Note that arbitrary (a, b)-curve and

(c, d)-curve on a torus intersect |det

(

a c
b d

)

| times. If the dividing curves

Γ have slope − t
s
and if 2n is the number of dividing curves, then the rational

Thurston-Bennequin invariant of a Legendrian torus knot L(a,b) is

tbQ(L(a,b)) =
1

r
lb− n|det

(

a −s
b t

)

|.

Let L(K) denote the set of all rationally null-homologous Legendrian
knots in knot type K. The maximal rational Thurston-Bennequin invariant
tbQ(K) of the knot type K is defined as

tbQ(K) = max{tbQ(L) | L ∈ L(K)}.

Theorem 4.2. For a, b relatively prime integers, the maximal rational
Thurston-Bennequin invariant tbQ(K(a,b)) is

(1) tbQ(K(a,b)) =
1
r
lb− (a+ b) if a, b ≥ 0,

(2) tbQ(K(a,b)) =
1
r
lb− |ac+ b| if −∞ < b

a
≤ −p

q
,

(3) tbQ(K(a,b)) =
1
r
lb if −p

q
< b

a
< 0,

where l = ra+ rb
p
q, −c = ⌊−p

q
⌋+ 1 and r is the order of K(a,b).

Proof. (1) By Remark 4.1, we know that we can find a convex torus T
with dividing curves of any slope in (−p

q
, 0). In particular, there is a

convex torus T with two dividing curves of slope −1 which contains a
Legendrian knot L(a,b) of knot type K(a,b) as a Legendrian ruling curve.
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Figure 3. −c = ⌊−p
q
⌋+ 1

For a, b ≥ 0, #(L(a,b) ∩ Γ) is minimal on T . Therefore, tbQ(K(a,b)) =

1
r
lb− |det

(

a −1
b 1

)

| = 1
r
lb− (a+ b).

(2) In the case when −∞ < b
a

≤ −p
q
, #(L(a,b) ∩ Γ) is minimal on a

convex torus T with two dividing curves of slope −c = ⌊−p
q
⌋ + 1. Then,

tbQ(K(a,b)) =
1
r
lb− |det

(

a −1
b c

)

| = 1
r
lb− |ac+ b|.

(3) When −p
q
< b

a
< 0, by Remark 4.1 again there is a convex torus T with

two dividing curves of slope b
a
and T contains L(a,b) as a Legendrian divide.

This implies that the contact framing of L(a,b) is 0 and thus tbQ(K(a,b)) =
1
r
lb. �

The rational rotation number rot(L) of an oriented rationally null-homolo-
gous Legendrian knot L of order r can be computed as the winding number
of TL after trivializing the contact structure along a rational Seifert surface
for L divided by r.

Let L(a,b) be a Legendrian torus knot of order r with maximal rational
Thurston-Bennequin invariant that sits on a Heegaard torus T in (L(p, q), ξut).
In what follows, we will explain how to compute the rational rotation num-
ber rotQ(L(a,b)) of L(a,b) in a similar way as Etnyre and Honda computed for

Legendrian torus knots in standard tight S3 in [8]. Let L(p, q) = V1 ∪T V2

where V1 and V2 are both D2 × S1 with meridional curve µ1 and µ2 respec-
tively. Define an invariant of homology classes of curves on Heegaard torus
T as follows: Let v be any globally non-zero section of ξut and w a section
of ξut|T which is tangent to the Legendrian divides and transverse to and
twists along the Legendrian ruling curves. Let fT (γ) equal to the rotation
of v relative w along a closed oriented curve γ on T . If L is a ruling curve
or a Legendrian divide on T then fT (L) = r rot(L). For details and the
properties of the function fT , see [7] and [8].
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The rational rotation number of a Legendrian torus knot L(a,b) on the
Heegaard torus ∂V2 = T can be computed as

(3) r rotQ(L(a,b)) = mfT (µ1) + lfT (µ2)

where m = rb
p
, l = ra+ rb

p
q and r is the order of L(a,b).

Theorem 4.3. Let L(a,b) be a Legendrian torus knot with maximal ratio-
nal Thurston-Bennequin invariant. The range of possible rational rotation
numbers rotQ(L(a,b)) of L(a,b) is

(1) {1
r
m((p− q)− 1)} if a, b ≥ 0,

(2) {1
r
(m((p− cq)− 1) + l(c− 1))} if −∞ < b

a
≤ −p

q
,

(3) if −p
q
< b

a
< 0, we have

• {1
r
(±(m|pa+qb|±(m−2mk))+l(1−|b|))}, k ∈ Z, 0 ≤ k ≤ pn−q,

|a| = |b|n+ e if −1 ≤ b
a
< 0,

• {1
r
(m(|pa+ qb| − 1) + l(|b| − 1))} if −p′′

q′′
< b

a
< −1,

• {1
r
(±(m|pa+qb|+±(m−2mk))+ l(1−|b|))}, k ∈ Z, 0 ≤ k ≤ n,

|pa+ qb| = |p′′a+ q′′b|n+ e if −p
q
< b

a
≤ −p′′

q′′
,

where m = rb
p
, l = ra+ rb

p
q, −c = ⌊−p

q
⌋+1, r is the order of L(a,b) and −p′′

q′′

is the point on ∂H2 which is closest to −1 and has an edge to −p
q
.

Proof. (1) If a, b ≥ 0, we know that Legendrian torus knot L(a,b) with maxi-
mal rational Thurston-Bennequin invariant is on a standard convex torus T
of slope −1 in L(p, q) = V1 ∪T V2. To compute the rational rotation number
for L(a,b), we need to compute fT (µ1) and fT (µ2).

For fT (µ1), consider the meridional disk DV1 of V1. We may isotope DV1

to be convex relative to µ1. We can do this by arranging the Legendrian
ruling curves on T to be (−q, p)-curves. Then we see that the twisting of
the contact planes along µ1 will be less than or equal to zero; and hence
by Lemma 3.3, we can make DV1 convex. Now since the dividing curves on
T are (−1, 1)-curves and intersect µ1, 2(p − q) times, the dividing curves
on DV1 intersect µ1, 2(p − q) times. The key observation here is that the
dividing curves on the meridional disk DV1 separate off disks of the same
sign, positive sign, that contain no other dividing curves. A way to see
that is by considering a solid torus V containing V1 and by looking at the
annulus A = D \DV1 where D is the meridional disk for V . If the dividing
curves were not as claimed, then there would be bypasses of both signs on
DV1 . Then, we would glue one of the bypasses to a bypass of the same
sign on A and that would result in an overtwisted disk. Therefore, the
dividing curves are as claimed. To match the bypasses on DV1 and A one
may use Slide Maneuvers trick, see [15]. Lastly, note that on DV1 all the
disks, bypasses, have positive sign since we fix the universally tight contact
structure on L(p, q) in this way. Then, by Equation (2) in Proposition 3.2,
we have fT (µ1) = (p− q)− 1.
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For fT (µ2), we will argue in the same way as above by considering the
meridional disk DV2 of V2. The dividing curves on DV2 intersect µ2, 2 times
since the dividing curves on T intersect µ2, 2 times. Thus, we have only
one possible configuration for the dividing curves and by Equation (2) in
Proposition 3.2, fT (µ2) = 0. This proves (1).

(2) If −1 < b
a

< 0, this time L(a,b) with maximal rational Thurston-
Bennequin invariant is on a standard convex torus T of slope −c where
−c = ⌊−p

q
⌋ + 1. Thus, the dividing curves on T intersect µ2, 2c times and

intersect µ1, 2(p− cq) times. By the same reasons as in Case (1), fT (µ2) =
c − 1 and fT (µ1) = (p − cq) − 1. Then by Equation (3), r rotQ(L(a,b)) =
mfT (µ1) + lfT (µ2) = m((p− cq)− 1) + l(c− 1).

(3) When −p
q
< b

a
< 0, by Remark 4.1 there is a convex torus T with

two dividing curves of slope b
a
which contains L(a,b) as a Legendrian divide

in L(p, q) = V1 ∪T V2. We have three subcases in this last case. In Case (i),

when −1 ≤ b
a
< 0, and in Case (iii), when −p

q
< b

a
≤ −p′′

q′′
, the convex torus

T falls in a solid torus region. In Case (ii), when −p′′

q′′
< b

a
< −1, the convex

torus T falls in a positive T 2 × I region. By positive T 2 × I region we mean
that if T 2 × I decomposed into basic slices, (see [15] for a description), then
all have the same sign, positive sign. All basic slices have the same sign
since we work in a universally tight contact structure and they all have the
positive sign since from the beginning we fix the universally tight contact
structure in this way.

Case (i), when −1 < b
a
< 0, by Proposition 3.5, inside V1 there is a solid

torus Vn+1 with two dividing curves of slope − 1
n+1 and there is a solid torus

Vn containing V1 with two dividing slope of − 1
n
, where |a| = n|b| + e. Set

Tn+1 = ∂Vn+1 and Tn = ∂Vn. In this case, the solid torus V2 is contained in
Vn+1 and V2 contains Vn. To compute possible rational rotation numbers we
need to compute the followings: fT (µ1), fT (µ2), and in this case to compute
fT (µ1) we need the possible values for fTn

(µ′
1) where µ′

1 is the boundary of

the meridional disk of L(p, q) \ Vn. Computations in this case and in Case
(iii) are very similar to the computation of rotation numbers of negative
Legendrian torus knots in [8]. Let us first compute fT (µ2).

fT (µ2) = 1−|b| or |b|−1 : Let DVn+1 and DV2 be convex meridional disks
for Vn+1 and V2 respectively (if necessary isotope the disks to be convex
by arranging Legendrian rulings to be meridional and by using Lemma 3.3)

and let DVn+1 = A ∪ DV2 where A = DVn+1 \DV2 . The dividing curves
ΓTn+1 on Tn+1 = ∂Vn+1 are (−(n + 1), 1)-curves and intersect ∂DVn+1 , 2
times. Moreover, the dividing curves ΓT on T = ∂V2 are (a, b)-curves and
hence intersect µ2 = ∂DV2 , 2|b| times. Note that by the same reasons as in
Case (1) the dividing curves on DV2 separate off disks of the same sign and
contain no other dividing curves. Then, by Equation (2) in Proposition 3.2,
fT (µ2) = 1− |b| or |b| − 1.
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fTn
(µ′

1) ∈ {pn − q − 1, pn − q − 3, . . . , 3 + q − pn, 1 + q − pn} : Let

D′ be a convex meridional disk for L(p, q) \ Vn and let µ′
1 = ∂D′. Note

that µ′
1 is a (−q, p)-curve on T . Therefore, the dividing curves ΓTn

on Tn

intersect the boundary of D′, 2(pn−q) times and between each two adjacent
points in ΓTn

∩ ∂D′ there is one point in ΓD′ ∩ ∂D′ where ΓD′ denotes
the dividing curves on D′. Also, by Giroux’s tightness criterion, there are
no homotopically trivial dividing curves on D′. It follows that, there are
exactly (pn− q) dividing curves on D′. By Equation (2) in Proposition 3.2
and by examining possible configurations of dividing curves of D′, we have
fTn

(µ′
2) ∈ {(pn− q)− 1, (pn− q)− 3, . . . , 3− (pn− q), 1− (pn− q)}.

If fT (µ2) = 1−|b|, then fT (µ1) = fTn
(µ′

1)+ pn− q−|ap+ qb| : Let eT 2×I

be the relative Euler class for the region T 2 × I between T and Tn. Then,
eT 2×I(µ1) = fTn

(µ′
1)− fT (µ1). We know the possible values of fTn

(µ′
1) from

(b), now to compute fT (µ1) we need to compute eT 2×I(µ1).
First, recall that µ1 is a (−q, p)-curve on T . Start with a convex annulus

A of slope −p
q
between Tn+1 and Tn with Legendrian boundary. Make the

Legendrian ruling curves on T to be of slope −p
q
and consider subannulus

An, between T and Tn, and subannulus An+1, between Tn+1 and T . Note
that the dividing curves ΓA on A intersect Tn ∩ A in 2(pn − q) points, T
in 2|pa + qb| points and Tn+1 ∩ A in 2(pn + p − q) points. Note also that
2(pn − q) dividing curves run from one boundary component to the other
boundary component of A. Therefore, on An, (pn − q) dividing curves run
from one boundary component to the other boundary component and there
are |pa+ qb| − pn− q other dividing curves whose boundaries are on T . See
Fact 3 in [8] for details. These |ap + qb| − pn − q dividing curves on An

separate off disks that contain no other dividing curves and the disks are of
the same sign, otherwise by arguing in the same way as in Case(1), we can
find an overtwisted disk in L(p, q). Thus, eT 2×I(µ1) = |pa + qb| − (pn − q)
or (pn− q)− |pa+ qb|.

Now, we will show that when fT (µ2) = 1−|b|, eT 2×I(µ1) = pn− q−|pa+

qb|. Make the Legendrian curves on Tn to be slope b
a
curves and consider the

convex annulus A′ of slope b
a
between T and Tn. The dividing curves ΓA′ on

A′ intersect only Tn ∩ A′ in 2|a + bn| = 2e points. Thus, the Euler class of
the region equals e or −e (since there are no nested bypasses). On the other
hand, the Euler class of this region can be calculated as eT 2×I(mµ1+ lµ2) =
1
r
(meT 2×I(µ1) + leT 2×I(µ2)). Note that eT 2×I(µ2) = fTn

(µ2) − fT (µ2) =
−fT (µ2) = 1 − |b| since fTn

(µ2) = 0. If we assume that eT 2×I(µ1) = |pa +
qb| − (pn − q), then |eT 2×I(mµ1 + lµ2)| 6= e. Therefore, eT 2×I(µ1) = pn +
q − |ap + qb|. Note that if eT 2×I(µ1) = pn − q − |pa + qb|, then in when
a > 0, b < 0, we have eT 2×I(mµ1 + lµ2) = −e and when a < 0, b > 0, we
have eT 2×I(mµ1 + lµ2) = e.
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Now by Equation (3), we have

r rotQ(L(a,b)) = mfT (µ1) + lfT (µ2)
= m(fTn

(µ′
1) + pn− q − |pa+ qb|) + l(1− |b|)

= −m|pa+ qb| − (m− 2mk) + l(1− |b|),

where k ∈ Z, 0 ≤ k ≤ pn− q.
If fT (µ1) = |b| − 1, then fT (µ2) = fTn

(µ′
1) + |pa + qb| − (pn − q) : This

case is similar to the previous case, for this reason we left the details to the
reader. In this case, by Equation (3), we have

r rotQ(L(a,b)) = mfT (µ1) + lfT (µ2)
= m(fTn

(µ′
1) + |pa+ qb| − (pn− q)) + l(|b| − 1)

= m|pa+ qb|+ (m− 2mk) + l(|b| − 1),

where k ∈ Z, 0 ≤ k ≤ pn− q.
This proves Case (i) of Case (3).

Case (ii), when −p′′

q′′
< b

a
< −1, let T be a standard convex torus of slope

b
a
on which L(a,b) sits as a Legendrian divide. Unlike the previous case,

we have only possible rational rotation number in this case. The dividing
curves intersect µ1, 2|pa+qb| times and intersect µ2, 2|b| times. By the same
arguments as in Case (1), we have fT (µ1) = |pa+qb|−1 and fT (µ2) = |b|−1.
Then by Equation 3, we have r rotQ(L(a,b)) = mfT (µ1)+ lfT (µ2) = m(|pa+
qb| − 1) + l(|b| − 1).

For the last case of Case (3), when −p
q
< b

a
< −p′′

q′′
, let T be a standard

convex torus with slope b
a
on which L(a,b) sits as a Legendrian divide and let

L(p, q) = V1 ∪T V2. The important observation here is that inside V1 there

is a solid torus Vn+1 with two dividing curves of slope −p+(n+1)p′′

q+(n+1)q′′ and there

is a solid torus Vn containing V1 with two dividing slope of −p+np′′

q+nq′′
, where

|pa+ qb| = |p′′a+ q′′b|n+ e.
Now, set Tn+1 = ∂Vn+1 and Tn = ∂Vn. To compute possible rational

rotation numbers we need to compute the followings: fT (µ1), fT (µ2), and
to compute fT (µ1) we need the possible values for fTn

(µ′
1) where µ′

1 is the

boundary of the meridional disk of L(p, q) \ Vn. These computations are
very similar to the previous cases and left to the reader.

(a) fT (µ2) = 1− |b| or |b| − 1,
(b) fTn

(µ′
1) ∈ {n−1, n−3, . . . , 1−n}. Here note that the dividing curves

ΓTn
of Tn are (−(q+nq′′), p+np′′)-curve and intersect µ′

1 (which is a (−q, p)-

curve), 2|det

(

−(q + nq′′) p+ np′′

−q p

)

| = 2|n(qp′′−pq′′)| = 2n times. Note

that qp′′ − pq′′ = 1 since −p
q
has an edge to −p′′

q′′
.

(c) If fT (µ2) = 1− |b|, then fT (µ1) = fTn
(µ′

1) + n− |pa+ qb|,
(d) If fT (µ2) = |b| − 1, then fT (µ1) = fTn

(µ′
1) + |pa+ qb| − n.

�
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Theorem 4.4. Legendrian torus knots are uniquely realized up to contac-
tomorphism if and only if they have the same knot type, the same rational
Thurston-Bennequin invariant and the same rational rotation number.

The proof of the Theorem 4.4 follows from the following lemmas.

Lemma 4.5. Two Legendrian (a, b)-torus knots L and L′ in (L(p, q), ξut)
with same maximal rational Thurston-Bennequin invariant are uniquely re-
alized up to contactomorphism if and only if rotQ(L) = rotQ(L

′).

Proof. Let T and T ′ be standard convex tori on which L and L′ respectively
sit in L(p, q). Also, let V1 ∪T V2 and V ′

1 ∪T ′ V ′
2 be the Heegaard splittings

associated to T and T ′. Since tbQ(L) = tbQ(L
′), the slopes of the dividing

curves on T and T ′ are the same. Then, by Theorem 3.4, by the classification
of tight contact structures on solid tori, there is a contactomorphism φ :
V1 → V ′

1 such that φ(L) = L′. By Theorem 3.4 again, the contactomorphism
type of a tight contact structure on V2 or V ′

2 is determined by the number of
positive bypasses on meridional disks. If r is the order of L and L′ in L(p, q),
then the number of positive bypasses on meridional disks are determined by
r times the rational rotation number of the Legendrian knots L and L′,
respectively. Therefore, we can extend the contactomorphism φ to all of
L(p, q) provided that L and L′ have the same rational rotation number. �

Lemma 4.6. If L(a,b) is a Legendrian torus knot in (L(p, q), ξut) with non-
maximal rational Thurston-Bennequin invariant then there is a Legendrian
torus knot L′

(a,b) such that L(a,b) is a stabilization of L′
(a,b).

Proof. For the proof we have three cases, we will explain Case(1) in detail,
other cases are quite similar to this case.

Case (1), a, b ≥ 0. Let T be a standard convex torus on which the
Legendrian torus knot L(a,b) sits. Since tbQ(L) < tbQ(L(a,b)), the dividing

curves ΓT on T have slope − t
s
6= −1. Recall that when a, b ≥ 0, L(a,b) with

maximal rational Thurston-Bennequin invariant lies on a convex torus with
two dividing curves of slope −1. By Remark 4.1, we know that we can find
a convex torus T ′ with dividing curves of any slope in (−p

q
, 0). In particular,

there is a convex torus T ′ with two dividing curves of slope −1. Now take the
T × [0, 1] region between T and T ′ and take the annulus A = L(a,b) × [0, 1].
Furthermore, arrange the ruling curves on both boundary components of
T 2 × I to be slope b

a
. Then ∂A will be Legendrian ruling curves on the

boundary of T 2 × I and the twisting of contact planes along each boundary
component will be less than zero. Therefore by Lemma 3.3, we can make
A convex. The dividing curves on T = T 2 × {0} intersect A in 2n(at + sb)
points, where n is the number of dividing curves and the dividing curves on
T ′ = T 2 × {1} intersect A in 2(a+ b) points. Since 2n(at+ bs) > 2(a + b),
there is a boundary parallel dividing curve along T = T 2 × {0} and hence
by Proposition 3.7 a bypass for L(a,b). In other words, L(a,b) destabilizes.
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Case(2), if −∞ < b
a
≤ −p

q
. In this case L(a,b) with maximal rational

Thurston-Bennequin invariant lies on a convex torus T ′ with dividing slope
−c = ⌊−p

q
⌋ + 1 on which the intersection number of L and the dividing

curves on T is minimal. Let L(a,b) be on a standard convex torus T with

dividing slope − t
s
6= −c. As in the proof of Case(1) take a region T 2 × [0, 1]

between T and T ′ and argue as in Case(1).
Case(3), if −p

q
< b

a
< 0. We know that L(a,b) with maximal rational

Thurston-Bennequin invariant lies on a convex torus T ′ with dividing slope
b
a
. Let L lie on the convex torus T with dividing slope − t

s
6= b

a
. Again, we

take a region T 2 × [0, 1] between T and T ′ and argue as in Case(1).
�

Note that the knot type K(a,b) has a unique Legendrian realization with
maximal ratioanal Thurston-Bennequin invariant in the following cases when

a, b ≥ 0 or −∞ < b
a
≤ −p

q
or when −p′′

q′′
< b

a
< −1. Therefore in these cases,

a Legendrian torus knot with non-maximal rational Thurston-Bennequin
invariant destabilizes to the unique Legendrian torus knot with maximal
rational Thurston-Bennequin invariant. For the remaining cases, when −1 ≤
b
a
< 0 or when −p

q
< b

a
≤ −p′′

q′′
, take two Legendrian torus knots L and L′

realizing K(a,b) with maximal rational Thurston-Bennequin invariant. Now
let us understand the relationship between their stabilizations.

Lemma 4.7. Let L and L′ be (a, b)-torus knot with maximal rational Thurston-

Bennequin invariant in (L(p, q), ξut) where −1 ≤ b
a
< 0 or −p

q
< b

a
≤ −p′′

q′′
.

If the rational rotation numbers of L and L′ are r and r − 2e respectively,
then Se

−(L) and Se
+(L

′) are Legendrian contactomorphic. If the rational ro-

tation numbers of L and L′ are r and r−2(q− e) respectively, then Sq−e
− (L)

and Sq−e
+ (L′) are Legendrian contactomorphic. Here when −1 ≤ b

a
< 0, e

is an integer such that |a| = |b|n + e and when −p
q
< b

a
≤ −p′′

q′′
, e satisfies

|pa+ qb| = n|p′′a+ q′′b|+ e.

By two knots being Legendrian contactomorphic, we mean that there is
a contactomorphism of the 3-manifold sending one knot to the other.

Proof. The proof is similar to the case for negative Legendrian knots in
standard tight S3. The proof follows from examining the annulus A of slope
b
a
between T and Tn. In the first case when −1 ≤ b

a
< 0, the dividing curves

on Tn are of slope − 1
n
and in the latter case when −p

q
< b

a
≤ −p′′

q′′
, dividing

curves on Tn are of slope −p+np′′

q+nq′′
. The proof follows the proof of Lemma

4.12 in [8]. �

5. Final Remarks and Questions

Remark 5.1. Legendrian knots can be classified up to contact isotopy or up
to global contactomorphism. By Eliashberg, [6, Theorem 2.4.2], the group
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of co-orientation preserving contactomorphisms of the standard tight S3 is
connected. Therefore, for Legendrian knots in standard tight S3, these two
classifications are equivalent. However, for arbitrary tight contact closed 3-
manifolds the group of co-orientation preserving contactomorphisms is not
well understood. In particular, nothing is known for tight contact Lens
spaces. It would be very interesting to know:

Question 1. What can one say about the group π0(Diff(L(p, q), ξ)) of path
components of Diff(L(p, q), ξ), where Diff(L(p, q), ξ) denotes the group of
contactomorphisms of L(p, q) and ξ is a tight contact structure on L(p, q)?

In particular,

Question 2. Is the group of co-orientation preserving contactomorphisms
of universally tight contact structures on Lens spaces connected?

We want to remark that positive answer to Question 2 and Theorem 4.4
that we proved in previous section together provide us the classification of
Legendrian torus knots up to Legendrian isotopy in universally tight Lens
spaces.

Remark 5.2. Recall that a transverse knot in a contact 3-manifold is a
knot which is everywhere transverse to the contact planes. There are two
types of classical invariants for null-homologous transverse knots; knot type
and self-linking number. One can define the rational self-linking number for
a rationally null-homologous transverse knot using a rational Seifert surface
of the knot, see [1]. From [8, Theorem 2.10], we know that two transverse
knot in a contact 3-manifold are transversely isotopic if and only if their
Legendrian push offs are Legendrian isotopic after each has been negatively
stabilized some number of times. Note that, this is also true when we re-
place transverse isotopic and Legendrian isotopic by contactomophic. As a
consequence, from Theorem 4.4 we have

Theorem 5.3. Transverse torus knots in universally tight contact structures
on Lens Spaces are determined up to contactomorphism by their knot type
and rational self-linking number.

Another interesting question is

Question 3. For what knot types in Lens spaces are all Legendrian realiza-
tions determined by their classical invariants?
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