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Positive recurrence of piecewise Ornstein-Uhlenbeck
processes and common quadratic Lyapunov functions

A. B. Dieker, Xuefeng Gao

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332

{ton.dieker@isye.gatech.edu, gxf1240@gatech.edu}

Abstract

We study the positive recurrence of piecewise Ornstein-Uhlenbeck (OU) diffusion
processes, which arise from many-server queueing systems with phase-type service re-
quirements. These diffusion processes exhibit different behavior in two regions of the
state space, corresponding to ‘overload’ and ‘underload’. The two regimes cause stan-
dard techniques for proving positive recurrence to fail. Using and extending the frame-
work of common quadratic Lyapunov functions from the theory of control, we construct
Lyapunov functions for the diffusion approximations corresponding to systems with and
without abandonment. With these Lyapunov functions, we prove that piecewise OU
processes have a unique stationary distribution.

Keywords: stability, common quadratic Lyapunov function, Lyapunov function, piece-
wise OU process, multi-server queues, customer abandonment, Halfin-Whitt regime, phase-
type distribution.

1 Introduction

Since the pioneering paper of Halfin and Whitt (1981), and particularly within the last 10
years, there has been a surge of interest in diffusion approximations for queueing systems
with many servers. These queueing systems model customer contact centers with hundreds
of servers. Empirical study in Brown et al. (2005) suggests that the service time distribution
is far from exponential. Despite past and foreseeable advances in computer hardware and
architectures, the sheer size of such systems prohibits exact (numerical) calculations even
when the arrival process is Poisson and the service time distribution is of phase type.
Diffusion approximations such as piecewise Ornstein-Uhlenbeck (OU) processes can be
used to approximate the queue length process. Such approximations are rooted in many-
server heavy traffic limits proved in Puhalskii and Reiman (2000) and Dai et al. (2010).
These approximations are remarkably accurate in predicting system performance measures,
sometimes for systems with as few as 20 servers, see He and Dai (2011).

For a diffusion approximation to work, it is critical to know whether the approximating
diffusion process has a unique stationary distribution. In this paper we prove that, under
some natural conditions, this is the case for piecewise OU processes. Thus, this paper
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provides a solid mathematical foundation for He and Dai (2011), who devise an algorithm
to numerically compute the stationary distribution of a piecewise OU process.

Piecewise OU processes exhibit different behavior in two regions of the state space, cor-
responding to ‘overload’ and ‘underload’. The two regions are separated by a hyperplane,
which corresponds to ’critical load’. In each of the two regions, a piecewise OU process can
be thought of as a first-order linear differential equation with stochastic noise. A standard
technique in proving its positive recurrence is to use a quadratic Lyapunov function to
prove stability of such first-order linear differential equations. However, the two different
regions of a piecewise OU process pose considerable challenges to apply this methodology.
A natural approach would be to ’paste together’ two quadratic Lyapunov functions from
the two regions, but all attempts in this direction have failed. In fact, it is well-known that
a diffusion with two stable regimes can lead to an instable hybrid system, see Yin and Zhu
(2010) for related examples. Moreover, Blondel and Tsitsiklis (2000) prove that in general
it is undecidable to determine whether this kind of switched linear system is stable.

Using the interpretation of the diffusion parameters in terms of a many-server queueing
system, our main results can be formulated as follows: (1) For a slightly underloaded system
without abandonment, we show that there exists a quadratic Lyapunov function which
yields the desired positive recurrence using the Foster-Lyapunov criterion (Theorem 2). In
general, this quadratic Lyapunov function is not explicit and non-unique. (2) We show
that no quadratic Lyapunov function can satisfy the Foster-Lyapunov criterion for systems
with abandonment. (3) We construct a suitable non-quadratic Lyapunov function to prove
positive recurrence for systems with abandonment (Theorem 3).

The main building blocks for these two types of Lyapunov functions are so-called com-
mon quadratic Lyapunov functions (CQLFs) from the theory of control. There is a vast
body of literature on CQLFs and related problems, see the survey Shorten et al. (2007)
for details. Although quadratic Lyapunov functions are ubiquitous in the literature on
queueing systems Dai and Prabhakar (2000); Gamarnik and Momčilović (2008); Tassiulas
and Ephremides (1992), to our knowledge, our paper is the first to exploit CQLFs in this
context.

As mentioned in the section on open problems of Shorten et al. (2007), it is of consider-
able interest to determine simple conditions for the existence of CQLFs. Theorem 1, which
is our main technical contribution in this space, establishes such a result in the context
of M-matrices and rank-1 perturbations. The theorem shows that existence of a CQLF is
guaranteed after merely verifying that certain vectors are nonnegative. It is a first result of
this kind. Its proof relies on a delicate analysis involving Chebyshev polynomials, as well
as on an extension of recent work of King and Nathanson (2006) and Shorten et al. (2009)
summarized in Proposition 3 below.

This paper is organized as follows. Section 2 discusses the required background on
piecewise OU process and positive recurrence. Section 3 is devoted to common quadratic
Lyapunov functions. Section 4 summarizes the main results and Section 5 contains the
proofs of the main results. The proof of Proposition 3, which mainly uses existing method-
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ology from the theory of control, is given in Appendix A. Appendix B shows that no
quadratic Lyapunov function can work in the Foster-Lyapunov criterion if abandonment is
allowed.

Notation

All random variables and stochastic processes are defined on a common probability space
(Ω,F ,P) unless otherwise specified. For some d ∈ N, Rd denotes the d-dimensional Eu-
clidean space. The space of functions f : RK → R that are twice continuously differentiable
is denoted by C2(RK). We use ∇ to denote the gradient operator. Given x ∈ R, we set
x+ = max{x, 0}. All vectors are envisioned as column vectors. For a K-dimensional vector
u, we use uk to denote its kth entry and we write |u| for its Euclidean norm. We also write
u′ for its transpose. For two K-dimensional vectors u and v, we write u′ ≥ v′ (u′ > v′) if
uk ≥ vk (uk > vk) for each k = 1, 2, . . . ,K. The inner product of u and v is denoted by
u′v, which is

∑K
k=1 ukvk. Given a K × K matrix M , we use M ′ to denote its transpose

and Mij for its (i, j) th entry. We write M > 0 (M < 0) if M is a positive (negative)
definite matrix and M ≥ 0 (M ≤ 0) if it is a positive (negative) semi-definite matrix. Let
the matrix norm of M be |M | =

∑
ij |Mi,j |, where |Mij | is the absolute value of Mij . We

reserve I for the K ×K identity matrix and e for the K-dimensional vector of ones.

2 Piecewise OU processes and positive recurrence

This section introduces the piecewise Ornstein-Uhlenbeck (OU) processes studied in this
paper, and discusses preliminaries on positive recurrence.

2.1 Piecewise OU processes

We first define M-matrices. We call a matrix nonnegative when each element of the matrix
is nonnegative.

Definition 1 (M-matrix). A K × K matrix R is said to be an M-matrix if it can be
expressed as R = sI−N for some s > 0 and some nonnegative matrix N with the property
that ρ(N) ≤ s, where ρ(N) is the spectral radius of N. The matrix R is nonsingular if
ρ(N) < s.

We next define piecewise Ornstein-Uhlenbeck (OU) processes, which are special dif-
fusion processes. Let B(t) be a standard Brownian motion in any dimension. A K-
dimensional diffusion process Y is the strong solution to a stochastic differential equation
of the form

dY (t) = b(Y (t))dt+ σ(Y (t))dB(t),
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where the drift coefficient b(·) and the diffusion coefficient σ(·) have appropriate sizes and
satisfy the following Lipschitz continuity condition: there exists some C > 0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y| for all x, y ∈ RK . (2.1)

For a real-valued function V ∈ C2(RK), the generator G of Y applied to V is given by, for
y ∈ RK ,

GV (y) = (∇V (y))′b(y) +
1

2

∑
i,j

(σσ′)ij(y)
∂2V

∂yi∂yj
(y). (2.2)

We refer to (Rogers and Williams, 2000, Chapter V) for more details on diffusion processes.

Definition 2 (Piecewise OU processes). Let p be a K-dimensional probability vector, and
let R be a K ×K nonsingular M-matrix. For α, β ∈ R, a K-dimensional diffusion process
Y is called a piecewise Ornstein-Uhlenbeck (OU) process if it has drift coefficient

b(y) = −βp−R(y − p(e′y)+)− αp(e′y)+, (2.3)

and diffusion coefficient σ(y) ≡ σ for all y ∈ RK , such that σσ′ is a K ×K nonsingular
matrix.

Equation (2.3) in conjunction with σ(y) ≡ σ implies the Lipschitz continuity condition
(2.1). As a consequence, the piecewise OU process Y is well-defined as a diffusion process.

The quantities α, β,R, p on the right-hand side of (2.3) come from the queueing system
that gave rise to the piecewise OU diffusion. Their queueing interpretation is as follows:
α is the abandonment rate, β is the slack in the arrival rate relative to a critically loaded
system, while p and R are the parameters of the service-time distribution (assumed to be
of phase-type). For more details, we refer to Dai et al. (2010).

Throughout the paper, we impose the following assumption.

Assumption 1. Each component of the row vector e′R is nonnegative, i.e.,

e′R ≥ 0′.

2.2 Positive recurrence and Lyapunov functions

In this section, we recall the definitions and the criteria for positive recurrence and expo-
nential ergodicity in the context of general diffusion processes.

Let Eπ be the expectation operator with respect to a probability distribution π.

Definition 3 (Positive recurrence and stationary distribution). For a K-dimensional dif-
fusion process Y, we say that Y is positive recurrent if for any y ∈ RK and any compact
set C in RK with positive Lebesgue measure, we have

E(τC |Y (0) = y) <∞,
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where τC = inf{t ≥ 0 : Y (t) ∈ C} is the hitting time of the set C. We call a probability dis-
tribution π on RK a stationary distribution for Y if for every bounded continuous function
f : RK → R,

Eπ[f(Yt)] = Eπ[f(Y0)] for all t ≥ 0.

In the following, we assume that the diffusion coefficient of the diffusion process Y is
uniformly nonsingular. That is, there exists some c ∈ (0,∞) such that for all y ∈ RK and
a ∈ RK ,

a′σ(y)σ(y)′a ≥ ca′a. (2.4)

The next result gives a sufficient criterion for positive recurrence of diffusion processes,
see (Meyn and Tweedie, 1993, Section 4).

Proposition 1 (Foster-Lyapunov criterion). Let Y be a diffusion process satisfying (2.4).
Suppose that there exists a nonnegative function V ∈ C2(RK) and some r > 0 such that,
for any |y| > r,

GV (y) ≤ −1.

In addition, suppose that V (y) → ∞ as |y| → ∞. Then Y is positive recurrent and has a
unique stationary distribution. The function V is called a Lyapunov function.

We now introduce the concept of exponential ergodicity. For any positive measurable
function f ≥ 1 and any signed measure m, we write ||m||f = sup|g|≤f |m(g)|.

Definition 4 (Exponential ergodicity). Suppose that the diffusion process Y is positive
recurrent and that it has a unique stationary distribution π. Given a function f ≥ 1, we
say that Y is f -exponentially ergodic if there exists a γ ∈ (0, 1) and a real-valued function
B such that for all t > 0 and y ∈ RK ,

||P t(y, ·)− π||f ≤ B(y)γt,

where P t is the transition function of Y. If f ≡ 1, we simply say that Y is exponentially
ergodic.

For f ≥ 1, we have ||P t(y, ·)−π||1 ≤ ||P t(y, ·)−π||f , and we deduce that f -exponential
ergodicity implies exponential ergodicity. The following result gives a criterion for expo-
nential ergodicity, see (Meyn and Tweedie, 1993, Section 6).

Proposition 2. Suppose that Y is a diffusion process with a unique stationary distribution.
If there is a nonnegative function V ∈ C2(RK) such that V (y) → ∞ as |y| → ∞ and for
some c > 0, d <∞,

GV (y) ≤ −cV (y) + d for any y ∈ RK ,

then Y is (V + 1)-exponentially ergodic.
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3 Common quadratic Lyapunov functions

In this section we introduce common quadratic Lyapunov functions (CQLFs). Such func-
tions play a central role in the stability analysis of deterministic switched linear systems,
which is discussed in Section 3.2. We use CQLFs as building blocks to construct Lyapunov
functions to prove positive recurrence of piecewise OU processes. At this point it is best to
distinguish CQLFs for switched linear systems from the Lyapunov functions in the context
of the Foster-Lyapunov criterion. We connect these two concepts in Section 4.

3.1 Background and definitions

Quadratic Lyapunov functions form a cornerstone of stability theory for ordinary differen-
tial equations. Consider the linear system ẏ(t) = By(t) where y(t) ∈ RK , B ∈ RK×K is
a fixed real matrix and ẏ(t) is the derivative of y with respect to t. For Q ∈ RK×K , the
quadratic form L given by L(y) = y′Qy for y ∈ RK is called a quadratic Lyapunov function
for the matrix B if Q is positive definite and QB + B′Q is negative definite. In this case,
there exists a constant C > 0 such that

d

dt
L(y(t)) = y(t)′(QB +B′Q)y(t) ≤ −CL(y(t)) < 0 for all t ≥ 0,

and thus we can conclude that L(y(t)) ≤ e−CtL(y(0)). This implies that L(y(t)) → 0 as
t→∞, thus y(t)→ 0 as t→∞.

It is standard fact in Lyapunov stability theory that the existence of a quadratic Lya-
punov function L is equivalent to all eigenvalues of B having negative real part.

The following definition, tailored to our setting in order to allow for a singular matrix,
plays an important role in our analysis. Other versions can be found in Shorten and
Narendra (2003) and Shorten et al. (2007). Recall that an eigenvalue of a matrix is called
(geometrically) simple if its corresponding eigenspace is one-dimensional.

Definition 5 (CQLF). Let B1 ∈ RK×K have all eigenvalues with negative real part and let
B2 ∈ RK×K have all eigenvalues with negative real part except for a simple zero eigenvalue.
For Q ∈ RK×K , the quadratic form L given by L(y) = y′Qy for y ∈ RK is called a common
quadratic Lyapunov function (CQLF) for the pair (B1, B2) if Q is positive definite and

QB1 +B′1Q < 0,

QB2 +B′2Q ≤ 0.

3.2 The CQLF existence problem

The CQLF existence problem for a pair of matrices has its roots in the study of stability
criteria for switched linear systems. These systems have the form ẏ(t) = B(τ)y(t) where
B(τ) ∈ {B1, B2} with Bi ∈ RK×K for i = 1, 2 and where the switching function τ may

6



depend on both y and t. The existence of a CQLF for the pair (B1, B2) guarantees that
all solutions of the systems are bounded under arbitrary switching function τ. The CQLF
existence problem is also closely related to the Kalman-Yacubovich-Popov lemma in the
development of adaptive control algorithms and the Lur’e problem in nonlinear feedback
analysis. For more details consult Kalman (1963), Boyd et al. (1994) and the recent survey
paper by Shorten et al. (2007). For an arbitrary matrix pair, no simple analytic and
verifiable conditions are known for the pair to admit a CQLF. However, in the special case
where the difference of the matrices has rank one, the following result provides a simple
test.

Let B ∈ RK×K be a real matrix and let g, h ∈ RK . The proposition below is stated in
Shorten et al. (2009) under the assumptions that (B, g) is controllable, meaning that the
vectors g,Bg,B2g, . . . span RK , and that (B, h) is observable, meaning that the vectors
h,B′h, (B′)2h, . . . span RK . Using techniques from King and Nathanson (2006), we show
that these assumptions are unnecessary and we state the result in its full generality here.
A proof is given in Appendix A.

Proposition 3. Suppose that all eigenvalues of matrix B have negative real part and all
eigenvalues of B − gh′ have negative real part, except for a simple zero eigenvalue. Then
there exists a CQLF for the pair (B,B− gh′) if and only if the matrix product B(B− gh′)
has no real negative eigenvalues and a simple zero eigenvalue.

4 Main results

In this section, we present our results on positive recurrence of the piecewise OU process
Y . Key to these results is the following theorem, which uses Proposition 3 to establish the
existence of a CQLF for certain matrix pairs. Recall the definitions of R, p and e from
Definition 2 in Section 2.1, and note that we are working under Assumption 1.

Theorem 1. There exists a CQLF for both the pair (−R,−R(I − pe′)) and the pair
(−R,−(I − pe′)R).

By Theorem 1, there exists a CQLF L for the pair (−R,−R(I − pe′)) and another
CQLF L̃ for the pair (−R,−(I − pe′)R). Typically there are many CQLFs corresponding
to these pairs, i.e., L and L̃ are not unique. Note that L and L̃ are closely related in the
following sense. If the CQLF L for the pair (−R,−R(I − pe′)) is given by L(y) = y′Qy for
some Q > 0 and for all y ∈ RK , then one readily checks that the quadratic form L̃ given
by L̃(y) = y′(R′QR)y for y ∈ RK is a CQLF for the pair (−R,−(I − pe′)R). We remark
that, apart from special cases, the CQLFs from Theorem 1 are not explicit.

We know from Theorem 1 that there exists a CQLF L for the pair (−R,−R(I − pe′)),
where L is given by L(y) = y′Qy for some Q > 0 and for all y ∈ RK . We are able to use the
quadratic form L as a Lyapunov function in the Foster-Lyapunov criterion of Proposition 1
to prove the following result.
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Theorem 2. If α = 0 and β > 0, then the piecewise OU process Y is positive recurrent
and has a unique stationary distribution.

For α > 0, no quadratic function can serve as a Lyapunov function in the Foster-
Lyapunov criterion to prove positive recurrence of the piecewise OU process Y , see Ap-
pendix B for details. Despite this fact, still relying on Theorem 1, we overcome this difficulty
in Section 5.3 by constructing a suitable non-quadratic Lyapunov function. Specifically,
there exists a CQLF L̃ for the pair (−R,−(I − pe′)R) by Theorem 1, where L̃ is given by
L̃(y) = y′Q̃y for some Q̃ > 0 and for all y ∈ RK . A suitable approximation to the function
f , given by for all y ∈ RK ,

f(y) = (e′y)2 + κL̃(y − p(e′y)+) for some large constant κ,

provides the desired non-quadratic Lyapunov function in the Foster-Lyapunov criterion to
prove positive recurrence of Y when α > 0. Moreover, applying Proposition 2 with the
same non-quadratic Lyapunov function yields exponential ergodicity of Y for α > 0. We
use a smooth approximation of f as a Lyapunov function in the Foster-Lyapunov criterion
of Proposition 1 instead of using f directly since f /∈ C2(RK). This leads to the following
result.

Theorem 3. If α > 0, then the piecewise OU process Y is positive recurrent and has a
unique stationary distribution. Moreover, Y is exponentially ergodic.

5 Proof of the main results

5.1 Proof of Theorem 1

Proof of Theorem 1. We only establish the existence of a CQLF for the pair (−R,−R(I −
pe′)), since the existence of a CQLF for the other pair (−R,−(I − pe′)R) follows directly.
In view of Proposition 3, we need to check three conditions:

(a) All eigenvalues of −R have negative real part;

(b) All eigenvalues of −R(I − pe′) have negative real part except for a simple zero eigen-
value;

(c) The matrix product R2(I − pe′) has no real negative eigenvalues and a simple zero
eigenvalue.

We first prove (a) and (b). It is known that all eigenvalues of a nonsingular M-matrix
have positive real part, and all eigenvalues of a singular M-matrix have nonnegative real
part, see (Berman and Plemmons, 1994, Chapter 6). Since R is a nonsingular M-matrix,
we immediately get (a). For (b), it is clear that −R(I − pe′) has a simple zero eigenvalue.
We notice that (I − pe′)R = R− pe′R where e′R ≥ 0′ by Assumption 1, so the off-diagonal
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elements of (I − pe′)R are nonpositive. Using this in conjunction with the fact that both
I − pe′ and R are M-matrices, we find that (I − pe′)R is also an M-matrix and all its
eigenvalues have nonnegative real part, see (Berman and Plemmons, 1994, Exercise 5.2).
Thus we get (b) after a similarity transform.

We now concentrate on proving (c). The key ingredient of the proof is an identity for
Chebyshev polynomials. Suppose that R2(I − pe′) has a real negative eigenvalue −λ with
λ > 0, and write v for the corresponding left eigenvector, thus we have v′R2(I−pe′) = −λv′.
Right-multiplying by p on both sides, we obtain v′p = 0 and the following equality:

0 = v′R2(I − pe′) + λv′ = v′R2(I − pe′) + λv′(I − pe′) = v′(R2 + λI)(I − pe′). (5.1)

Since R is a nonsingular M-matrix having only eigenvalues with positive real part, the
matrix (R2 + λI) is invertible for all λ > 0. It follows from (5.1) that v′ = ce′(R2 + λI)−1

for some c 6= 0. We show below that e′(R2 + λI)−1 is a positive vector for all λ > 0, i.e,

e′(R2 + λI)−1 > 0′ for all λ > 0. (5.2)

This yields a contradiction in view of v′p = 0. By definition of an M-matrix, R is of the form
sI −N , where N is a nonnegative matrix with ρ(N) < s and e′R ≥ 0 by Assumption 1.
Equation (5.2) thus states that for all λ > 0 and for every nonnegative matrix N with
ρ(N) < s and se′ ≥ e′N,

e′((sI −N)2 + λI)−1 > 0′.

Equivalently, we show the following inequality: for all y ∈ (0, 1) and for every nonnegative
matrix N with ρ(N) < 1 and e′ ≥ e′N,

e′(y(I −N)2 + (1− y)I)−1 > 0′. (5.3)

Therefore, to show (c), it suffices to prove (5.3) for fixed N and y ∈ (0, 1).
Our strategy to prove (5.3) is to use a matrix series expansion and connections with

Chebyshev polynomials. Chebyshev polynomials of the second kind Un can be defined by
the following trigonometric form:

Un(cos θ) =
sin(n+ 1)θ

sin θ
for n = 0, 1, 2, 3, . . . . (5.4)

Moreover, for z ∈ [−1, 1] and t ∈ (−1, 1), the generating function of Un is

∞∑
n=0

Un(z)tn =
1

1− 2tz + t2
. (5.5)

Refer to (Abramowitz and Stegun, 1992, Chapter 22) for more details. The scalar version
of the left-hand side of (5.3) admits the following expansion: for x, y ∈ (0, 1),

1

y(1− x)2 + 1− y
=

∞∑
n=0

Cn(y)xn, (5.6)
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where Cn(y) = Un(
√
y)(
√
y)n for all n ≥ 0. This can readily be verified with (5.5). In

particular, we have
C0(y) = U0(y) ≡ 1 for all y ∈ (0, 1). (5.7)

For fixed y ∈ (0, 1), the radius of convergence of the power series in (5.6) is larger than 1.
Since ρ(N) < 1, we immediately obtain that for y ∈ (0, 1),

(y(I −N)2 + (1− y)I)−1 =
∞∑
n=0

Cn(y)Nn. (5.8)

Let y ∈ (0, 1) be fixed and define θ through
√
y = cos θ ∈ (0, 1). Using the trigonometric

form (5.4) of Un, we can then show by induction that for any m ≥ 1,

m∑
n=1

Cn(y) =

m∑
n=1

Un(
√
y)(
√
y)n

=
m∑
n=1

sin(n+ 1)θ

sin θ
· (cos θ)n

=
cos2 θ

sin2 θ
[1− (cos θ)m−1 · cos (m+ 1)θ] > 0. (5.9)

Since N is nonnegative and e′ ≥ e′N , we immediately get e′Nn ≥ e′Nn+1 ≥ 0 for all n ≥ 0.
Combining this fact with (5.9), we obtain

e′
k∑

n=1

Cn(y)Nn ≥
k∑

n=1

Cn(y)e′Nk ≥ 0′ for all k ≥ 1. (5.10)

Therefore, from (5.7), (5.8) and (5.10) we conclude that for all y ∈ (0, 1),

e′((1− y)I + y(I −N)2)−1 = e′
∞∑
n=0

Cn(y)Nn

= lim
k→∞

e′
k∑

n=1

Cn(y)Nn + e′

≥ 0′ + e′ = e′ > 0′.

This concludes the proof of (c) and we deduce that there exists a CQLF for the pair
(−R,−R(I − pe′)).

To prove the existence of a CQLF for the other pair (−R,−(I − pe′)R), we note that
−(I − pe′)R has the same spectrum as −R(I − pe′) and the matrix product R(I − pe′)R
has the same spectrum as R2(I − pe′). Application of Proposition 3 completes the proof of
Theorem 1.
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5.2 Proof of Theorem 2

In this section we prove Theorem 2. Key to the proof is the CQLF constructed from
Theorem 1.

Proof of Theorem 2: If α = 0, then from (2.3) we know that Y has the piecewise linear
drift

b(y) = −βp−R(y − p(e′y)+).

By Theorem 1, there exists a CQLF

L(y) = y′Qy, (5.11)

where Q is a positive definite matrix such that

Q(−R) + (−R)′Q < 0, (5.12)

Q(−R(I − pe′)) + (−(I − ep′)R′)Q ≤ 0. (5.13)

We claim that given any positive constant C > 0, there exists a constant M > 0 such
that if |y| > M ,

(∇L(y))′b(y) ≤ −C. (5.14)

We discuss the cases e′y < 0 and e′y ≥ 0 separately.
Case 1: e′y < 0. In this case, we have

(∇L(y))′b(y) = y′[Q(−R) + (−R)′Q]y − 2βp′Qy.

By (5.12), the quadratic term dominates if |y| is large. Thus there exists a constant M1 > 0
such that when e′y < 0 and |y| > M1,

(∇L(y))′b(y) ≤ −C.

Case 2: e′y ≥ 0. In this case, we have

(∇L(y))′b(y) = y′[Q(−R(I − pe′)) + (−(I − ep′)R′)Q]y − 2βp′Qy. (5.15)

To overcome the difficulty caused by the singularity of −R(I − pe′), we decompose y as
follows:

y = ap+ ξ, (5.16)

where ξ′p = 0 and a ∈ R. Then we have

|y|2 = |ap|2 + |ξ|2 and e′y = a+ e′ξ ≥ 0. (5.17)

Note that p′[Q(−R(I − pe′)) + (−(I − ep′)R′)Q]p = 0, which implies p′[Q(−R(I − pe′)) +
(−(I − ep′)R′)Q] = 0′. Thus we have

p′Q = be′R−1 for some b 6= 0.
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Using this fact, we rewrite the left-hand side of (5.13) as follows:

Q(−R(I − pe′)) + (−(I − ep′)R′)Q
= ((I − ep′)R′) · (−QR−1 − (R−1)′Q) · (R(I − pe′)). (5.18)

After left-multiplying by (R−1)′ and right-multiplying by R−1 in (5.12), we deduce that
[−QR−1− (R−1)′Q] is a negative definite matrix. Moreover, since ξ′p = 0, from (5.16) and
(5.18) we know that there exists some c > 0 such that

y′[Q(−R(I − pe′)) + (−(I − ep′)R′)Q]y

= y′[(I − ep′)R′ · (−QR−1 − (R−1)′Q) ·R(I − pe′)]y
= ξ′((I − ep′)R′) · (−QR−1 − (R−1)′Q) · (R(I − pe′))ξ
≤ −c|ξ|2. (5.19)

Therefore, from (5.15) we have that for any y with e′y ≥ 0,

(∇L(y))′b(y) ≤ −c|ξ|2 − 2βp′Qξ − 2βap′Qp (5.20)

≤ −c|ξ|2 − 2βp′Qξ + 2βp′Qpe′ξ, (5.21)

where the second inequality is obtained from (5.17), β > 0 and p′Qp > 0. For |y| large, if
|ξ| ≥ r for some large constant r, we obtain (∇L(y))′b(y) ≤ −C since the quadratic term
−c|ξ|2 in (5.21) dominates. If |ξ| < r and |y| large, we deduce from (5.17) that a must be
positive and large, i.e.,

a ≥ 1

|p|
√
|y|2 − r2.

Hence the dominating term in (5.20) is−2βap′Qp and we immediately obtain (∇L(y))′b(y) ≤
−C whenever |y| is large. Therefore, there exists a constant M2 > 0 such that when e′y ≥ 0
and |y| > M2,

(∇L(y))′b(y) ≤ −C.

On setting M = max{M1,M2}, we immediately get (5.14).
Now set C = |

∑
i,j Qij(σσ

′)ij |+ 1. Equations (5.11) and (5.14) imply that for |y| > M ,

GL(y) =
∑
i,j

Qij(σσ
′)ij + (∇L(y))′b(y) ≤ −1.

The proof of Theorem 2 is complete after applying Proposition 1.

5.3 Proof of Theorem 3

In this section we prove Theorem 3. Throughout this section, C is a generic positive
constant which may differ from line to line but is independent of y.
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By Theorem 1, there exists a positive definite matrix Q̃ with |Q̃| = 1 such that

Q̃(−R) + (−R)′Q̃ < 0, (5.22)

Q̃(−(I − pe′)R) + (−R′(I − ep′))Q̃ ≤ 0. (5.23)

We construct a non-quadratic Lyapunov function V ∈ C2(RK) as follows. Let

V (y) = (e′y)2 + κ[y − pφ(e′y)]′Q̃[y − pφ(e′y)], (5.24)

where κ is a positive constant to be decided later and φ(x) is a real-valued C2(R) function,
approximating x 7→ x+. Specifically, fix ε > 0 and let

φ(x) =


x if x ≥ 0,

−1
2ε if x ≤ −ε,

smooth if −ε < x < 0.

We piece x ≥ 0 and x ≤ −ε together in a smooth way such that φ is in C2(R), −1
2ε ≤

φ(x) ≤ x+ and 0 ≤ φ̇(x) ≤ 1 for any x ∈ R, where φ̇ is the derivative of φ. This function
φ evidently exists. Note that V ∈ C2(RK), but that it is not a CQLF due to its non-
quadratic nature. We summarize the key result in the following proposition, which implies
Theorem 3.

Proposition 4. If α > 0, there exists a constant C > 0 such that when |y| is large enough,
we have

(∇V (y))′b(y) ≤ −C|y|2 and

∣∣∣∣ ∂2V∂yi∂yj
(y)

∣∣∣∣ ≤ C|y| for any i, j. (5.25)

Consequently, when |y| is large,

GV (y) ≤ −C|y|2 ≤ −1. (5.26)

Proof. We first study (∇V (y))′b(y). From (5.24), we have for all y ∈ RK ,

(∇V (y))′ = 2(e′y)e′ + 2κ(y′ − p′φ(e′y))Q̃[I − pe′φ̇(e′y)]. (5.27)

We discuss the cases e′y ≥ 0, e′y ≤ −ε and −ε < e′y < 0 separately.
Case 1: e′y ≥ 0. In this case, let x = e′y and z = y − px = (I − pe′)y, then we have

(∇V (y))′b(y) = [2(e′y)e′ + 2κy′(I − ep′)Q̃(I − pe′)](−R(I − pe′)y − αpe′y − βp)
= −2αx2 − κz′[Q̃(I − pe′)R+R′(I − ep′)Q̃]z − 2xβ − 2xe′Rz.

Suppose we have shown that there exists C > 0 such that

z′[Q̃(I − pe′)R+R′(I − ep′)Q̃]z ≥ C|z|2, (5.28)
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we then obtain that

(∇V (y))′b(y) ≤ −2αx2 − κC|z|2 − 2xβ − 2xe′Rz.

Since α > 0, we can select κ > 0 large so that 1
2(2αx2 + κC|z|2) > 2|xe′Rz| for any (x, z),

where κ is independent of (x, z) or y. Then we have,

(∇V (y))′b(y) ≤ −αx2 − 1

2
κC|z|2 − 2xβ.

Note that |y| = |px + z| ≤ C|(x, z)|, so that |(x, z)| is large whenever |y| is large. We
conclude that for |y| large,

(∇V (y))′b(y) ≤ −C|(x, z)|2

≤ −C|y|2.

It remains to prove (5.28). We use a similar argument as for (5.19). Observe that

(R−1p)′[Q̃(I − pe′)R+R′(I − ep′)Q̃](R−1p) = 0,

which implies that Q̃R−1p = be for some b ∈ R. Thus, we obtain

z′[Q̃(I − pe′)R+R′(I − ep′)Q̃]z

= z′R′(I − ep′)[(R−1)′Q̃+ Q̃R−1](I − pe′)Rz. (5.29)

Since R is a nonsingular M-matrix, R−1 is a nonnegative matrix (Berman and Plemmons,
1994, Chapter 6) and we deduce that

e′R−1p > 0. (5.30)

This implies that (I − pe′)Rz 6= 0 since e′z = e′(I − pe′)y = 0 in this case. From (5.22) we
know that (R−1)′Q̃+ Q̃R−1 is a positive definite matrix. Now (5.28) follows from (5.29).

Case 2: e′y < −ε. In this case, we have φ(e′y) = −1
2ε and φ̇(e′y) = 0. From (5.22),

there exists C > 0 such that

(∇V (y))′b(y) = (2(e′y)e′ + 2κy′Q̃+ κεp′Q̃)(−Ry − βp)

= −2κ

[
y′(Q̃R+R′Q̃)y +

1

2
(εp′Q̃R+ βp′Q̃)y +

1

2
εβp′Q̃p

]
−2e′y · (e′Ry + β)

≤ −2κ

[
C|y|2 +

1

2
(εp′Q̃R+ βp′Q̃)y +

1

2
εβp′Q̃p

]
− 2e′y · (e′Ry + β)

≤ −2κ

[
C|y|2 +

1

2
(εp′Q̃R+ βp′Q̃)y +

1

2
εβp′Q̃p

]
+ κC(|y|2 + |y|)

≤ −κ(C|y|2 − C|y| − C),
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where κ is again chosen to be independent of y, but large enough such that |2e′y · (e′Ry +
β)| < κC(|y|2 + |y|). Thus for |y| large and e′y < −ε, we have

(∇V (y))′b(y) ≤ −C|y|2.

Case 3: −ε ≤ e′y ≤ 0. In this case we use the property that 0 ≤ φ̇(e′y) ≤ 1. Note
that we have

(∇V (y))′b(y)

= (2(e′y)e′ + 2κ(y′ − p′φ(e′y))Q̃(I − pe′φ̇(e′y)))(−Ry − βp)
= 2e′ye′(−Ry − βp)

+2κφ̇(e′y)(y′ − p′φ(e′y))Q̃(I − pe′)(−Ry − βp)
+2κ(1− φ̇(e′y))(y′ − p′φ(e′y))Q̃(−Ry − βp).

We write
y = aR−1p+ ξ,

where ξ is orthogonal to R−1p and a ∈ R, so that

|y|2 = ca2 + |ξ|2, for some c > 0. (5.31)

From (5.30), we have e′R−1p > 0. Without loss of generality we assume that e′R−1p = 1.
Then e′y = a+ e′ξ and we get

(∇V (y))′b(y)

= −2(a+ e′ξ)(β + e′Rξ + a)

+κφ̇(e′y)(ξ′[Q̃(−(I − pe′)R) + (−(I − pe′)R)′Q̃]ξ − 2p′Q̃(I − pe′)Rξφ(e′y))

+κ(1− φ̇(e′y))(y′[−Q̃R−R′Q̃]y + βy′Q̃p− φ(e′y)p′Q̃Ry − p′Q̃pβ). (5.32)

Since ξ′R−1p = 0, one checks as for (5.28) that there exists a constant C > 0 such that

ξ′[Q̃(−(I − pe′)R) + (−(I − pe′)R)′Q̃]ξ ≤ −C|ξ|2. (5.33)

Moreover, from (5.22) and (5.31), we deduce that

y′[−Q̃R−R′Q̃]y ≤ −C|y|2 = −Ca2 − C|ξ|2. (5.34)

Substituting (5.33) and (5.34) into (5.32), and using 0 ≤ φ̇(e′y) ≤ 1 as well as |φ(e′y)| ≤ ε,
we obtain

(∇V (y))′b(y) ≤ −2(a2 + C|a||ξ|+ C|a|) + κ(−C|ξ|2 + C|ξ|+ C|a|+ C). (5.35)

Since e′y = a+e′ξ ∈ [−ε, 0], we must have |a| ≤ C+ |ξ| and consequently |y| ≤ C|a|+ |ξ| ≤
C|ξ|+ C. Thus for |y| large, we can choose κ large so that the dominating term in (5.35)
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is −κC|ξ|2. Using the fact that |y|2 ≤ C|ξ|2 when |y| is large, we then deduce that there
exists a constant C > 0 such that for |y| large,

(∇V (y))′b(y) ≤ −C|y|2.

This concludes the proof for the third case.
On combining the above three cases we obtain that, for |y| large,

(∇V (y))′b(y) ≤ −C|y|2,

as claimed in the proposition.
We now proceed to study the second derivative of V , which is denoted by V̈ . We also

write φ̈ for the second derivative of φ. From (5.27), we find

V̈ (y) = 2ee′ + 2κ[Q̃+ ee′ · p′Q̃p(φ̈(e′y)φ(e′y) + φ̇(e′y)2)

−(Q̃pe′ + ep′Q̃)φ̇(e′y)− ee′ · y′Q̃pφ̈(e′y)]. (5.36)

If e′y /∈ [−ε, 0], we obtain 0 ≤ φ̇(e′y) ≤ 1 and φ̈(e′y) = 0. Therefore, for any i, j, there
exists some C > 0 such that ∣∣∣∣ ∂2V∂yi∂yj

(y)

∣∣∣∣ ≤ C.
If e′y ∈ [−ε, 0], then |φ̈(e′y)| ≤ C for some C > 0 since φ ∈ C2(R) and [−ε, 0] is compact.
Moreover, since 0 ≤ φ̇(e′y) ≤ 1, the dominating term in (5.36) is −2κee′ ·y′Q̃pφ̈(e′y) for |y|
large. This implies that if e′y ∈ [−ε, 0] and |y| is large, then there exists a constant C > 0
such that for any i, j, ∣∣∣∣ ∂2V∂yi∂yj

(y)

∣∣∣∣ ≤ C|y|,
where C is independent of y. This concludes the proof of (5.25). Now for |y| large, we
deduce from (5.25) that

GV (y) = (∇V (y))′b(y) +
1

2

∑
i,j

(σσ′)ij
∂2V

∂yi∂yj
(y) ≤ −C|y|2 ≤ −1.

The proof of Proposition 4 is complete.

Proof of Theorem 3. In order to show that Y is positive recurrent and has a unique station-
ary distribution, we only have to check that V (y)→∞ as |y| → ∞ in view of Proposition 1
and (5.26).

Let x = e′y and z = y−px+, then |y|2 ≤ C(x2 + |z|2). We can rewrite (5.24) as follows:

V (y) = x2 + κ(y′ − p′φ(x))Q̃(y − pφ(x))

≥ x2 + C|y − pφ(x)|2

= x2 + C|z + p(x+ − φ(x))|2

≥ x2 + C|z|2 − Cε2

≥ C|y|2 − Cε2,
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where the second last inequality uses the fact 0 ≤ x+ − φ(x) ≤ 1
2ε. Therefore, V (y) → ∞

as |y| → ∞ and we conclude that Y has a unique stationary distribution.
To prove that Y is exponentially ergodic, we observe from (5.24) that there exists some

C > 0 such that V (y) ≤ C|y|2 + C for all y ∈ RK . Moreover, (5.26) implies that for |y|
large,

GV (y) ≤ −CV (y) + C.

Putting this together with the fact that V ∈ C2(RK), we know that there exist some c > 0
and d <∞ such that

GV (y) ≤ −cV (y) + d for any y ∈ RK .

Since V ≥ 0, Proposition 2 implies that Y is f -exponentially ergodic, where f = V + 1. In
particular, Y is exponentially ergodic since f ≥ 1.

A Proof of Proposition 3

To prove Proposition 3, we first introduce a lemma which gives an equivalent formulation
of the CQLF existence problem. The lemma is an analog of Proposition 2 in King and
Nathanson (2006). In King and Nathanson (2006), each matrix of the pair is nonsingular
while in our case one of the matrices is singular.

Lemma 1. Suppose that all eigenvalues of the matrix B have negative real part and all
eigenvalues of B − gh′ have negative real part, except for a simple zero eigenvalue. Then
the following statements are equivalent:

(a) The pair (B,B − gh′) does not have a CQLF.

(b) There are positive semidefinite matrices X and Z such that

BX +XB′ + (B − gh′)Z + Z(B′ − hg′) = 0,

BX +XB′ 6= 0 and (B − gh′)Z + Z(B′ − hg′) 6= 0.

(c) There are nonzero, positive semidefinite matrices X and Z such that

BX +XB′ + (B − gh′)Z + Z(B′ − hg′) = 0, (A.1)

where Z 6= cB−1gg′(B−1)′ for any c ∈ R.

Proof. We first prove the equivalence of (a) and (b). To set up the notation, let SK×K be
the space of real symmetric K ×K matrices. For an arbitrary matrix A ∈ RK×K , define
the linear operator LA on SK×K by

LA : SK×K → SK×K , LA(H) = AH +HA′. (A.2)

17



It is well-known that if A has eigenvalues {λi} with eigenvectors {vi}, then LA has eigen-
values {λi + λj} with eigenvectors {viv′j + vjv

′
i} for all i ≤ j. Since all eigenvalues of the

matrix B have negative real part, LB is invertible.
Following King and Nathanson (2006), we formulate the CQLF existence problem in

terms of separating convex cones in SK×K . Define Cone(B) = {LB(X)|X ≥ 0} and
Cone(B− gh′) = {L(B−gh′)(Z)|Z ≥ 0}. Both are closed convex cones in SK×K . Let SK×K

be equipped with the usual Hilbert-Schmidt inner product 〈X,Z〉 = tr(XZ). We obtain
that for any Q ∈ SK×K ,

〈X,QB +B′Q〉 = 〈Q,BX +XB′〉 = 〈Q,LB(X)〉.

It follows that QB+B′Q < 0 if and only if 〈Q,M〉 < 0 for all nonzero M ∈ Cone(B). Using
a similar argument one finds that Q(B−gh′)+(B−hg′)Q ≤ 0 if and only if 〈Q,T 〉 ≤ 0 for
all nonzero T ∈ Cone(B − gh′). Moreover, since B only has eigenvalues with negative real
part, we deduce that QB + B′Q < 0 for Q ∈ SK×K implies that Q is positive definite by
Theorem 2.2.3 in Horn and Johnson (1994). By definition of CQLF, we thus obtain that
(B,B − gh′) has a CQLF if and only if there exists a Q ∈ SK×K such that QB +B′Q < 0
and Q(B−gh′)+(B−hg′)Q ≤ 0. Equivalently, (B,B−gh′) has a CQLF if and only if there
exists a Q ∈ SK×K such that 〈Q,M〉 > 0 for all nonzero M ∈ Cone(−B) and 〈Q,T 〉 ≤ 0
for all nonzero T ∈ Cone(B − gh′). Therefore, finding a CQLF for the pair (B,B − gh′) is
the same as finding a separating hyperplane in SK×K for Cone(−B) and Cone(B − gh′).
By the separating hyperplane theorem, we conclude that (B,B − gh′) not having a CQLF
is equivalent to Cone(−B) and Cone(B−gh′) having nonzero intersection. This completes
the proof of the equivalence of (a) and (b).

We now turn to the equivalence of (b) and (c), for which we use the aforementioned
spectral properties of the linear operator (A.2). Since LB is invertible, we deduce that
LB(X) = 0 is equivalent to X = 0. We know that all eigenvalues of (B − gh′) have
negative real part except for a simple zero eigenvalue, hence L(B−gh′) also has a simple
zero eigenvalue with eigenvector cB−1gg′(B−1)′ for some nonzero c ∈ R while all of its
other eigenvalues have negative real part. Consequently, (B − gh′)Z + Z(B − gh′)′ 6= 0 is
equivalent to Z 6= cB−1gg′(B−1)′ for any c ∈ R. The proof of the lemma is complete.

Proof of Proposition 3. In view of Theorem 3.1 of Shorten et al. (2009), we need to check
that controllability of (B, g) and observability of (B, h) need not be verified in the CQLF ex-
istence problem. Recall that controllability of (B, g) means that the vectors g,Bg,B2g, . . .
span RK , and observability of (B, h) means that the vectors h,B′h, (B′)2h, . . . span RK .
To simplify the notation, let B̃ = B − gh′.

We first show that in the CQLF existence problem for the pair (B,B − gh′), we can
assume without loss of generality that (B, g) is controllable . The proof relies on Lemma 1.
Let U be the span of vectors g,Bg,B2g . . .. Suppose U is a proper subspace of RK with
dim(U) < K, and note that RK = U ⊕ U⊥ where U⊥ is the orthogonal complement of U .
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In view of this decomposition, we perform a change of basis and rewrite B, B̃, X and Y
in the block form

B =

(
B1 B2

0 B3

)
, B̃ =

(
B̃1 B̃2

0 B3

)
, X =

(
X1 X2

X ′2 X3

)
, Z =

(
Z1 Z2

Z ′2 Z3

)
, (A.3)

where B − B̃ = gh′ and g, h are represented in the new basis. We use the same notation
for the matrices and vectors after the change of basis to save space, and we remark that
the orthogonal transformation does not affect the existence of a CQLF for the pair (B, B̃)
or the existence of real negative eigenvalues of BB̃. Namely, for any orthonormal matrix
O ∈ RK , one readily checks that the pair (B, B̃) has a CQLF if and only if the pair
(OBO′, OB̃O′) has a CQLF. Furthermore, BB̃ has no real negative eigenvalues if and
only if (OBO′)(OB̃O′) has no real negative eigenvalues. Let g1, h1 be the orthogonal
projection of g, h on the subspace U, so that B1 − B̃1 = g1h

′
1. Since U is the span of the

vectors g,Bg,B2g . . ., we deduce that g1, B1g1, B
2
1g1 . . . span U by (A.3), i.e., (B1, g1) is

controllable. We now use Lemma 1 to argue that there exists a CQLF for (B, B̃) if and
only if there exists a CQLF for (B1, B̃1), where (B1, g1) is controllable. Note that (A.3)
implies, using (A.1) in Lemma 1,

B3(X3 + Z3) + (X3 + Z3)B
′
3 = 0.

Since B has only eigenvalues with negative real part, B3 also has this property. We thus
obtain X3 +Z3 = 0. Using the fact that X and Z are positive semidefinite, we deduce that
X3 = Z3 = 0, and consequently X2 = Z2 = 0. This leads to

B1X1 +X1B
′
1 + B̃1Z1 + Z1B̃

′
1 = 0. (A.4)

Thus for the pair (B,B − gh′), the existence of nonzero X,Z ≥ 0 such that (A.1) holds
implies the existence of nonzero X1, Z1 ≥ 0 such that (A.4) holds. Conversely, if there
exists nonzero X1, Z1 ≥ 0 such that (A.4) holds, setting X2 = X3 = Z2 = Z3 = 0, we
then obtain that there exists nonzero X,Z ≥ 0 such that (A.1) holds. Since B − gh′

has only eigenvalues with negative real part except for a simple zero eigenvalue, so does
B1 − g1h′1. For c ∈ R, since g ∈ U, one finds that g′(B−1)′ = (g′1(B

−1
1 )′, 0′) by (A.3). Thus

Z 6= cB−1gg′(B−1)′ is equivalent to Z1 6= cB−11 g1g
′
1(B

−1
1 )′. Putting these facts together,

we apply Lemma 1 to conclude that (B, B̃) has no CQLF if and only if (B1, B̃1) has no
CQLF, where (B1, g1) is controllable. Therefore, without loss of generality, we can assume
that (B, g) is controllable in the CQLF existence problem for the pair (B,B − gh′) .

We next show that without loss of generality we can assume that (B, h) is observable
in the CQLF existence problem for the pair (B,B − gh′). Note that for Q > 0, we have
QB + B′Q < 0 and Q(B − gh′) + (B′ − hg′)Q ≤ 0 if and only if Q−1B′ + BQ−1 < 0
and Q−1(B − hg′) + (B′ − gh′)Q−1 ≤ 0. Hence (B,B − gh′) has a CQLF if and only if
(B′, B′ − hg′) has a CQLF. From the preceding paragraph, we know that in the CQLF
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existence problem for the pair (B′, B′ − hg′), we can assume that (B′, h) is controllable
without loss of generality. By definition, (B′, h) being controllable is the same as (B, h)
being observable. Therefore, we conclude that we can assume without loss of generality
that (B, h) is observable.

Finally, we argue that the pair (B,B − gh′) has a CQLF if and only if the matrix
product B(B − gh′) has no real negative eigenvalues. Assuming that (B, g) is controllable
and that (B, h) is observable, Theorem 3.1 in Shorten et al. (2009) states that (B,B−gh′)
has a CQLF if and only if the matrix product B(B− gh′) has no real negative eigenvalues.
We have shown that we can always assume that (B, g) is controllable and that (B, h) is
observable in the CQLF existence problem by reduction to proper subspaces. So it only
remains to check that in the process of reduction, the spectral property of having no real
negative eigenvalues of the matrix product is preserved. Specifically, in the above proof
that controllability of (B, g) can be assumed without loss of generality, we obtain that
(B,B − gh′) has a CQLF if and only if (B1, B1 − g1h′1) has a CQLF, where (B1, g1) is
controllable. We next prove that B(B − gh′) has no real negative eigenvalues if and only
if B1(B1 − g1h′1) has no real negative eigenvalues, i.e., the desired spectral property of the
matrix product is preserved in the process of reduction from (B,B−gh′) to (B1, B1−g1h′1).
Observe that the spectrum of B(B − gh′) is the union of the spectrum of B1(B1 − g1h′1)
and B2

3 by (A.3). Since all eigenvalues of B3 have negative real part, we deduce that
B1(B1−g1h′1) having no real negative eigenvalues is equivalent to B(B−gh′) having no real
negative eigenvalues. A similar argument applies for observability instead of controllability.
We have therefore completed the proof of Proposition 3.

B Any quadratic function fails for α > 0

In this section, we give a simple example showing that, in general, no quadratic function can
serve as a Lyapunov function in the Foster-Lyapunov criterion to prove positive recurrence
of the piecewise OU process Y for α > 0. We first introduce a lemma which implies that
the matrix −R(I − pe′)− αpe′ is nonsingular for α > 0.

Lemma 2. If α > 0, then all eigenvalues of the matrix −R(I − pe′)− αpe′ have negative
real part.

Proof. It is clear that the matrix has an eigenvalue −α with right eigenvector p. Suppose
λ 6= −α is an eigenvalue of the matrix with left eigenvector θ, i.e.,

θ′(−R(I − pe′)− αpe′) = λθ′, (B.1)

then we obtain that θ′p = 0. It follows from (B.1) that λ is an eigenvalue of the matrix
−R(I − pe′). Moreover, λ cannot be zero since otherwise θ′ = ce′R−1 for some nonzero
c ∈ R, which contradicts the fact that e′R−1p > 0 as seen in (5.30). From condition (b) in
the proof of Theorem 1, we know that all nonzero eigenvalues of the matrix −R(I − pe′)
have negative real part. This completes the proof of the lemma.
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Lemma 3. Suppose that Q is a real K ×K positive semidefinite matrix such that at least
one of the matrices Q(−R) + (−R′)Q and Q(−R(I − pe′)−αpe′) + (−(I − ep′)R′−αep′)Q
fails to be negative definite. Let the quadratic function L be given by L(y) = y′Qy for
y ∈ RK . Then there exists some β ∈ R and v ∈ RK such that GL(tv) ≥ 0 for any t ≥ 0.

Proof. Suppose that Q(−R) + (−R′)Q fails to be negative definite, then there exists some
λ ≥ 0 and nonzero vector v ∈ RK such that [Q(−R) + (−R′)Q]v = λv and e′v ≤ 0. By
definition of generator of Y in (2.2), we thus obtain

GL(tv) =
∑
i,j

Qij(σσ
′)ij + (∇L(tv))′b(tv)

=
∑
i,j

Qij(σσ
′)ij + t2v′[Q(−R) + (−R′)Q]v − 2tβp′Qv

=
∑
i,j

Qij(σσ
′)ij + λv′vt2 − 2tβp′Qv. (B.2)

Since Q is positive semidefinite, we infer that
∑

i,j Qij(σσ
′)ij = tr(Qσσ′) = tr(σ′Qσ) ≥ 0.

Set β = 0. We conclude from (B.2) that GL(tv) ≥ 0 for any t ≥ 0. A similar argument
applies to the case where Q(−R(I−pe′)−αpe′)+(−(I−ep′)R′−αep′)Q fails to be negative
definite. The proof of the lemma is complete.

In view of Lemmas 2 and 3, we give the following definition of strong CQLF which is
slightly different than Definition 5 given in Section 3.1. For more details, refer to Shorten
and Narendra (2003) and King and Nathanson (2006).

Definition 6 (strong CQLF). Let A and B be real K×K matrices having only eigenvalues
with negative real part. For Q ∈ RK×K , the quadratic form L given by L(y) = y′Qy for
y ∈ RK is called a strong common quadratic Lyapunov function (strong CQLF) for the
pair (A,B) if Q is positive definite and

QA+A′Q < 0,

QB +B′Q < 0.

We remark that it suffices to require Q to be a symmetric matrix in the above definition
by Theorem 2.2.3 in Horn and Johnson (1994).

We now formulate an example showing that, in general, no quadratic function can serve
as a Lyapunov function in the Foster-Lyapunov criterion to prove positive recurrence of
the piecewise OU process Y for α > 0. Let R be a matrix given by

R =

 1 −1 0
0 1 −1
0 0 1

 ,

so that R is a nonsingular M-matrix. Let α = 133 and p′ = [0, 0, 1].
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Lemma 4. For any quadratic function L given by L(y) = y′Qy for some real K × K
positive semidefinite matrix Q and all y ∈ RK , there exists some β ∈ R and v ∈ RK such
that GL(tv) ≥ 0 for any t ∈ R in the above example.

Proof. In view of Lemma 3, it suffices to prove that there is no strong CQLF for the pair
(−R,−R(I−pe′)−αpe′) for α > 0. Equivalently, it suffices to show that the matrix product
R(R(I − pe′) + αpe′) has real negative eigenvalues by Theorem 1 in King and Nathanson
(2006). One readily checks that R(R(I − pe′) + αpe′) has three different eigenvalues: −7,
5 −
√

82 and 5 +
√

82. Thus, it has two real negative eigenvalues and we deduce that
(−R,−R(I − pe′) − αpe′) has no strong CQLF in this example. Application of Lemma 3
completes the proof of the lemma.
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