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The Cleavage Operad and String

Topology of Higher Dimension

November 26, 2011

1 Introduction

In [Vor05], Voronov gave life to the Cacti operad: An operad whose homology acts on
the shifted homology of the free loop space over a compact, smooth, orientable man-
ifold M � H�pM

S1
q � giving it the structure of a Batalin-Vilkovisky algebra; hereby

recovering the Chas-Sullivan product of [CS99]. As an intermediate operad, Kaufmann
in [Kau05] gave an E2-operad � the spineless cacti operad � whose homology acts to
give a Gerstenhaber structure, underlying the Batalin-Vilkovisky structure of Chas and
Sullivans String Topology; all re�ected in the fact that taking the semi-direct product
of the spineless cacti with SOp2q yields the Cacti operad.
We follow the same general string of ideas, but generalize them by replacing S1 with

a manifold N � R
n�1 � of arbitrary dimension � embedded in euclidean space. Our

methods will involve certain decompositions of N , and for convexly embedded spheres
these decompositions are simple enough to obtain results within topology, our focus will
thus take a shift towards N :� Sn � Rn�1 the unit-sphere.
What we construct is a coloured operad that acts on MN � the space of maps from

N to M � in a related manner to how the Cacti operad acts on MS1
. As revealed by

the previous sentence, we found it necessary to broaden the scope of the use of the word
'operad' � and enter the realm of coloured operads; coloured over topological spaces.
As we describe in section 2, this colouring is similar to picking a category internal to
topological spaces, with traditional operads being one-object gadgets. We show in 5.22
that for N � Sn, the homotopy type of this operad is computable, using combinatorial
methods of [Ber97], as a coloured En�1-operad. We then show how to form a semidirect
product of this operad with SOpn� 1q, providing a pn� 1q-Batalin-Vilkovisky structure
on the homology of MSn .
In [CV06][Ch. 5], an outline is given for a generalisation of the Cacti operad to the

n-dimensional Cacti operad, by replacing lobes with copies of Sn �oating in Rn�1. Our
original motivation was to explicitly compute the structure of this operad; attempting to
construct homotopies equivalating the little pn� 1q-disks operad and the n-dimensional
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cacti operad, as was done in [Bar08] for the 1-dimensional case. However, such attempts
did not seem to have a shortcut, bypassing the structure of the di�eomorphism group
DiffpSnq.
Although we are working with coloured operads, and so give an operad di�erent from

the Cacti operad, morally we take the stance of [Kau05] � starting from a more rigid
structure, where di�eomorphisms have no in�uence until the twisting of section 6 can
be inferred. The coloured operad we de�ne have an operadic structure that is basically
given by cleaving N into smaller submanifolds � timber � and therefore we dub the
operad, the Cleavage Operad over N , CleavN .

BA

C D

N1

N2

N2N1

N3

N2N1

N3

N4

Figure 1: Recursive procedure cleaving a sphere into four pieces of timber

An example of such a cleavage is given in Figure 1, starting in picture A, by cleaving
N by a single hyperplane chopping N into two pieces of timber N1 and N2 in picture
B; and hence succesively cleaving the timber produced into smaller subsets of N . Note
that the non-linear ordering in which the cleaving is done constitutes part of the data;
for instance, interchanging the cuts made in A and B would yield a di�erent cleavage.
However, in order to have an interesting topology, we need to forget as much of the

ordering dictated by the indexing trees as possible. In 3.8, we forget what needs to be
forgotten by de�ning CleavN as a quotient of an operad with k-ary structure given
as pairs pT, P q where T is a k-ary binary tree expressing the ordering with which N
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should be cleaved, and P � tP1, . . . , Pk�1u a tuppel of a�ne hyperplanes � conveying
information on where to cleave by decorating the internal vertices of T .
In terms of Figure 1, this quotient would allow for an interchange of the ordering of

hyperplanes, such that the hyperplane of C cleaves before A and B, as well as allowing
an interchange of the hyperplanes of B and C.

Summary of Results

As usual in String Topology, �x a dimension d of the manifold M , and let H�p�q :�
H��dp�q.
Recall that the correspondence category CorrpCq over a co-complete category C is

given by letting ObpCorrpCqq � ObpCq, and the set of morphisms from objects X to Y ,
CorrpCqpX, Y q be given as diagrams X Z //oo Y where Z is an arbitrary object,
and the arrows are morphisms in C. Composition is given by taking pull-backs.

Theorem A The operad CleavN acts on MN in the category of correspondences over
topological space.

We furthermore indicate how this gives rise to the statement that letting N :� Sn �
R
n�1 the unit sphere, and M a compact, smooth, orientable d-manifold, H�pCleavSnq

acts on H�pM
Snq.

Producing this homological action requires new techniques, and these are the focus of
the upcoming [Bar11]
To examplify the action on correspondences, made precise in section 4, take the cleav-

age in picture D of Figure 1, note �rst that the collective boundary of the submanifolds
N1, N2, N3 and N4 of N has two components C1 and C2. Consider the space

MN
C1,C2

:� tf PMN | fpC1q � tk1u �M, fpC2q � tk2u �Mu

� i.e. the space of maps from N to M that are constant on all of C1 and all of C2. The

correspondence MN MN
C1,C2

ϕ //ιoo
�
MN

	k
is given with ι the inclusion. The other

map ϕ maps into the i'th factor of
�
MN

	k
by taking ϕpfqpmq � f |Nipmq for m P Ni and

for m R Ni letting ϕpfqpmq be the same constant as fpCiq where Ci is the component
separating m from Ni.
In [CJ02], it was discovered that for the Cacti operad, a passage to the latter part

of 1 can be done via spectra to obtain so-called umkehr maps, homologically reversing
one of the arrows in the correspondences. We follow this idea, and as in [CJ02] work
with something stronger than stated in 1, namely that the action is realized by taking
homotopy groups of a stable map between spectra. where an extended and punctured
version of the Cleavage Operad is introduced as technical assistance for this purpose.
This paper will only indicate how the action works pointwise in CleavSn , as well as the
2-ary term of the operad � providing reason to the speci�cs of the de�nitions of CleavSn .
It turns out that working with the punctured cleavage operad corresponds to adjoining

a unit to the algebra of CleavSn . We therefore stress that the algebra described in
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Theorem A is a non-untial algebra, and that the coloured operad CleavSn does not have
0-ary terms.
Section 5 and beyond are used to show the following:

Theorem B The coloured operad CleavSn is a coloured En�1-operad. Taking a semidi-
rect product of CleavSn by SOpn� 1q provides a coloured operad CleavSn �SOpn� 1q
whose homologous actions provides pn� 1q-Batalin-Vilkovisky algebras.

The main technicality in proving the above theorem is the �rst statement of a coloured
En�1-operad. We apply combinatorial methods of [Ber97] to show this theorem in section
5. The �nal part of the statement follows in section 6 by the construction of semidirects
products as given in [SW03]. Brie�y, since CleavSn and its action on MSn is well-
behaved with respect to an action of SOpn � 1q, we can apply a coloured construction
of a semidirect product.
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2 Operadic and Categorical Concepts

In this section we shall introduce language from the world of operads, used troughout.
For a general overview, we refer to the category theoretic [Lei04, 2.1], where they are
called multicategories.

De�nition 2.1 A coloured operad C consist of

• A class ObpCq of objects or colours.

• For each k P N and a, a1, . . . , ak P ObpCq, a class of k-ary morphisms denoted
C pa; a1, . . . , akq.
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• To i P t1, . . . , ku, f P Cpa; a1, . . . , akq k-ary and g P Cpai; b1, . . . , bnq n-ary an
operadiccomposition f �i g P Cpa; a1, . . . , ai�1, b1, . . . , bn, ai�1, . . . , akq of arity k �
n� 1.

• Units 1a P Cpa; aq for any object a.

• An action of Σk, σ. : Cpa; a1, . . . , akq Ñ Cpa; aσp1q, . . . , aσpkqq for all k P N and
ai P ObpCq.

These are subject to the following conditions, where we to a H � t1, . . . ,mu, denote
by ΣH the permutation group along the elements of H. As by convention let Σ|H| denote
the permutation group on the �rst |H| natural numbers. The unique monotone map
H Ñ t1, . . . , |H|u de�nes an isomorphism ρH : ΣH Ñ Σ|H|:

• Associativity: For f P C pa; a1, . . . , akq , g P C pai; b1, . . . , bmq , h P C pbj; c1, . . . , clq
the identity

f �i pg �j hq � pf�iq �j�i�1 h

holds for i P t1, . . . , ku and j P t1, . . . ,mu. For further s P Cpar; d1, . . . , duq where
i   r we require that

pf �i gq �r s � pf �r sq �i�u�1 g.

• Σk-equivariance: For σ P Σk�m and f P Cpa; a1, . . . , akq, g P Cpai; b1, . . . , bmq the
identity

σ.pf �i gq � σ|I .f �σ|Ipiq σ|J .g

holds where I :� t1, . . . , i, i � m � 1, . . . , k � mu is the set of integers from 1 to
k�m excluding the set J :� ti�1, . . . , i�mu. For H � t1, . . . , lu the permutation

σ|H P Σ|H| is given as σ|H :� ρH
��σ|H	 where in turn �σ|H P Σ|H is de�ned from σ

by requiring that to l, p P H we have �σ|Hplq   �σ|Hppq whenever σplq   σppq so σ|H
permutes the ordered symbols of H in the same way that σ permutes t1, . . . , |H|u.

• Unit-identity: For f P Cpa; a1, . . . , akq we have

f �i 1ai � f and 1a �1 f � f

for all i P t1, . . . , ku.

Indeed, a classical operad is simply a coloured operad with a single object. We shall
refer to such gadgets as monochrome operads. On the other hand, a category C is the
same as a coloured operad with Cpa, a1, . . . , akq � H for k ¡ 1.
Familiar concepts like functors, hom-sets and adjoints are extended in the obvious

ways to this multi-arity setting.
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De�nition 2.2 Let pA,bq be a symmetric monoidal category. The underlying coloured

operad Und A is given by letting ObpUnd Aq � ObpAq and

Und Apa; a1, . . . , anq :� HomApa1 b � � �b an, aq.

The usual (monochrome) endomorphism operad End A of an object A P A is given
by considering the full subcategory of Und A generated by tAu � ObpUnd Aq.

De�nition 2.3 An action of a coloured operad C on A is a functor α : C Ñ Und A. A
monochrome action of C is a functor α : C Ñ End A for an object A P A.

In (string) topology, operads are sought after for their actions on topological entities.
As stated in the introduction, we venture on the same basic safari, but seek monochrome
actions of coloured operads. A point is that as long as we seek monochrome actions, the
extra colours on the operad become somewhat opaque � and we get actions similar to
that of monochrome operads. To have topological actions of course requires topology to
enter the game:
To O a coloured operad, denote by Op�; kq the set of all k-ary morphisms of O. Let

OpA; kq be the restriction of Op�; kq with A P ObpOq incomming.

De�nition 2.4 Let O be a coloured operad. We say that O is a coloured topological
operad if both ObpOq and Op�; kq are topological spaces, along with the data of the
following commutative diagram involving a pullback for m, k P N and i P t1, . . . , ku:

Op�; k �m� 1q Op�; kq �ObpOq Op�;mq //

��

�ioo Op�;mq

evin
��

Op�; kq
evi //// ObpOq

where evi evaluates at the i'th outgoing colour and evin evaluates at the incoming
colour
The structure should naturally adhere to the associativity, unit and Σk-equivariance

conditions as speci�ed in 2.1.

Note that homology does not in general preserve inverse limits such as a push-out,
so applying the homology functor to the diagram 2.4 will not yield another push-out
diagram. And in e�ect not lead to a similar structure in graded modules. One can
however de�ne the homology of a coloured topological operad as the coloured operad
de�ned partially by the induced diagram
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H� pOp�; k �m� 1qq

H�

�
Op�; kq �ObpOq Op�;mq

	

,,

))

++WWWWWWWWWWW

�i

OO

H�pOp�; kqq bH�pObpOqq H�pOp�;mqq //

��

H�pOp�;mqq

pevinq�
��

H� pOp�; kqq
peviq� // // H� pObpOqq

which in turn can be taken to lead to a notion of partially de�ned coloured operads.
Partial in the sense that the dotted arrow to the pullback-space is not always invertible.
For the purpose of actions of operads, such a slightly more technical notion of partially
de�ned operads would generally su�ce.
However, the operads we shall de�ne in this thesis will all have contractible colours,

and we can instead of introducing partial operads use the following proposition to see
that in our case, applying the homology functor to our operads will result in classical
operads.

Proposition 2.5 Assume that O is a coloured topological operad with ObpOq � �, and
with evalution maps evi �brations for all i P t1, . . . , ku, or with evin a �bration. Then
applying homology to O de�nes H�pOq as a classical monochrome operad in the category
of graded modules.

Proof. Since ObpOq � �, and the evaluation maps are �brations, the long exact se-
quence of homotopy groups along with the 5-lemma tells us that the pullback spaces
Op�; kq�ObpOqOp�;mq and Op�; kq�Op�;mq are homotopy equivalent for all k,m P N
so we have that

H�pOp�; kq �ObpOq Op�;mqq � H�pOp�; kq �Op�;mqq.

The Künneth formula now gives the map

�i : H�pOp�; kqq b H�pOp�;mqq Ñ H�pOp�; k �m� 1qq

used to de�ne classical operads. By de�nition of coloured topological operads, this map
satis�es the needed associativity, unity and Σk-invariance conditions.

De�nition 2.6 A morphism F : O Ñ P of topological operads internal to pA,bq is
given by morphisms

FOb : ObpOq Ñ ObpP q, Fk : Op�; kq Ñ P p�; kq,Ok,m Ñ P k,m (1)

for all k,m P N, such that these morphisms provide a natural transformation of the
diagrams of the type in 2.4 de�ning the structure for O and P .
A weak equivalence of topological operads is given by a zig-zag of morphisms, where

all continous maps of (1) are weak homotopy equivalences.
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In particular, a weak equivalence P � O of topological coloured operads induces an
isomorphism H�pP q � H�pOq.

Example 2.7 Let P be a monochrome operad, and X a topological space. We form the
trivial X-coloured operad over P , P �X, by setting

• ObpP �Xq :� X

• P �Xp�; kq :� P pkq �X

evaluation maps P pkq � X Ñ X are given by the projection map, �i-composition,
pointwise in X, the same as �i-composition in P .

De�nition 2.8 We say that a coloured operad O is a coloured En-operad if there is a
weak equivalences of operads between O and P � ObpOq, where P is a monochrome
En-operad.

In 5.5, we use methods of [Ber97] to give a combinatorial way of detecting a coloured
En-operad. We then use this to show that the operad we de�ne in the next section is a
coloured En�1-operad.

3 The Cleavage Operad

3.1 De�nition of the Cleavage Operad

The operadic structure we shall de�ne will be induced from the operadic structure of
trees. The trees we consider will all, without further speci�cation, be:

• Binary, in the sense that all vertices are univalent or trivalent.

• Rooted, in the sense that there is a distinguished univalent vertex called the root.

• Labelled, in the sense that for a k-ary tree, the k remaining univalent vertices are
numbered from 1, . . . , k.

• Planar, specifying edges out of a trivalent vertex as left- right- or down-going.

Tree and Treepkq denotes the set of isomorphism classes of trees, respectively k-ary
trees. Grafting of trees de�nes Tree as a (monochrome) operad.
Let GrnpR

n�1q be the oriented Grassmanian of codimension 1 subvectorspaces ofRn�1.

De�nition 3.1 Let the space of a�ne, oriented hyperplanes be given as

Hypn�1 :� GrnpR
n�1q �R

where a pair pH, pq P Hypn�1 de�nes an a�ne hyperplane P � R
n�1 by translating

H along p. We let the orientation of P be given as the orientation of H as a choice of
normal-vector.
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De�nition 3.2 Let

TreeHypn�1pkq :� Treepkq �
�
Hypn�1

	k�1

We call pT, P q P TreeHypn�1pkq a pn�1q-decorated k-ary tree. Here P � pP1, . . . , Pk�1q
denotes the tuple of elements of Hypn�1. Specifying the trivalent vertices of T as v1, . . . , vk�1,
these are matched to the trivalent vertices of T � and we encourage the reader to pretend
that Pi is dangling from vi.
Denote by TreeHypn�1 the operad constituted from the pieces above.

Convention 3.3 Throughout this text, we denote by N � Rn�1 an embedded, smooth
manifold We assume further that N has a recording area, RecpNq � Rn�1 where we have
the requirement that N is the boundary of RecpNq; N � BRecpNq.
We shall allow for the recording area of N to be unspeci�ed from the notation, as it

will often be the obvious choice associated with it. However, as will become clear in the
de�nition of CleavN , the choice of recording area is indeed a part of the data of the
resulting operad, and a priori two di�erent choices of recording area will result in two
di�erent operads.

Example 3.4 The main example in this paper is N :� Sn the unit-sphere inside Rn�1.
The associated recording area will always be RecpSnq :� Dn�1, the closed unit-disk
inside Rn�1.

For P P Hypn�1, Rn�1zP consist of the two components pRn�1q
P
� and pRn�1q

P
�, where

pRn�1q
P
� is the space in the direction of the normal-vector of P . We say that P bisects

R
n�1 into these two open subsets of Rn�1.
Let pT, P q P TreeHypn�1pkq, and designate by VT the set of vertices of T that are not

the root. To our given manifold N and an open submanifold U � N , we associate for
each internal vertex v P VT a subspace Uv � N :
If v is the vertex attached through only a single edge to the root, we let Uv � U .

Since T is binary, for v P VT a trivalent vertex the left-going and right-going edge
connect v to v� and v�, respectively. Let Pv P Hypn�1 be the decoration at v. We let

Uv� � pUvq X
�
R
n�1
�

	Pv
and Uv� � Uv X

�
R
n�1
�

	Pv
. This determines Uv for all v P VT .

This timbering process is illustrated in �gure 2 for the case N � R
2, and three

hyperplanes inside R2, it gives three di�erent examples where trees are decorated by the
hyperplanes in some way.

De�nition 3.5 Let U � N be an open submanifold. A tree pT, P q P TreeHypn�1 is U-
cleaving if we to each trivalent v P VT decorated by Pv and associated with Uv in the
recursive process above have that Pv intersects Uv non-trivially and transversally.
We let TimberN be the set of subsets of N , called timber, where U P TimberN if there

is an N -cleaving tree, T , with U associated to a leaf of T .

Hereby TimberN consist of a subset of certain particular open submanifolds, since
at each vertex of a N -cleaving tree, the submanifolds associated to the two vertices
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Figure 2: Three hyperplanes P1, P2, P3 in R2 decorating three di�erent trees. The four
leafs of the individual trees will be decorated by the four subsets ofR2 indicated
by the associated picture below. Removing subtrees including and above a
trivalent vertex, and the associated hyperplanes decorating the subtree in the
picture below speci�es the decoration of the other vertices.

above the vertex are again open submanifolds. Taking the closure inside N of these
submanifolds will yield a codimension 0 submanifold potentially with boundary and
corners.

De�nition 3.6 We have speci�ed a procedure to an N -cleaving tree pT, P q that asso-
ciates at each vertex v of T an open submanifold Uv. The exact same procedure can be
extended to the recording area RecpNq, so that every vertex v of T has a subset RecpUvq
associated to it, where the boundary of RecpUvq will be the space Uv. We call this the
associated recording area of Uv. In case RecpNq is a manifold, RecpUvq will in turn be a
submanifold of RecpNq.

There is a natural topology on TimberN � described by the space of hyperplanes
giving rise to each timber, we assume this is given and wait until the next section with
describing it explicitly to give the de�nition of the operad as fast as possible.

De�nition 3.7 By the pre-N -cleavage operad, we shall understand the coloured operad{CleavN , given by

• Obp
{CleavNq � TimberN

• {CleavNpU ; kq :�
!
pT, P q P TreeHypn�1pkq | pT, P q is U�cleaving

)
Granted the topology on TimberN , we let

{CleavNp�; kq �
º

UPObp{CleavN q

{CleavNpU ; kq

and endow this with a topology as a subset of TreeHypn �TimberN . The operadic com-
position

10



�i :
{CleavNpU ; kq �

Obp{CleavN q
{CleavNp�;mq Ñ

{CleavNpU ; k �m� 1q

is given by grafting indexing trees, and retaining all decorations of the result.

De�nition 3.8 We let the N -cleavage operad, CleavN be given by letting

ObpCleavNq � tU P TimberN | AU �
º
�nite

�u.

Here AU denotes the complement of U as a subspace of N .

For the k-ary morphisms, we take the full suboperad of
{CleavN on the objects

ObpCleavNq speci�ed above, and apply a quotient: CleavNp�; kq :�
{CleavNp�; kq{ �,

where � is the equivalence relation given by letting pT, P q � pT 1, P 1q if for all i P
t1, . . . , ku the i'th timber Ni associated to pT, P q agrees with the i'th timber N 1

i of
pT 1, P 1q. If pT, P q and pT 1, P 1q are equivalent under �, we say they are chop-equivalent
Since the colours are left unchanged under �, taking operadic composition induced

by
{CleavN is well-de�ned.

We denote an element of CleavNp�; kq by rT, P s, where pT, P q is a representative of
the element.

Remark 3.9 A priori it would su�ce to be given the set TimberN of subsets beforehand,
and from this de�ne the operadic structure through these subsets, with k open substes
whose closure cover U determining the k-ary information operations of CleavNpU ; kq �
avoiding the introduction of trees and hyperplanes.
However, in our forthcoming computations we shall see that it is important that we

have this very strict relationship between the trees decorated by hyperplanes and the
associated timber. If one had given a more arbitrary space of subsets of N instead of
TimberN , the same combinatorial bene�ts would not be available for computations.

Remark 3.10 Note that for N � Sn, the complement inside Sn of U P ObpCleavSnq is
by the generalized Schön�ies theorem [Bro60] always given by a disjoint union of wedges
of disks � the wedging occurring when hyperplanes intersect directly at Sn. We shall
�nd this fact usual for obtaining homotopies of the complement of U .

Remark 3.11 That we for CleavN have taken a subspace of objects; i.e. ObpCleavNq �
TimberN is necessary in order to obtain homological actions via umkehr maps, as we
shall see in the next section.
ForN � S1 we have ObpCleavS1q � TimberS1 ; the complements AU for U P ObpCleavS1q

are always intervals.
Letting N � Sn and n ¡ 1, it follows by a simple Mayer-Vietoris argument of the

H0-groups along the closure of the timber U and AU associated to U P ObpCleavSnq,
that we in taking the subspace ObpCleavSnq � TimberSn are excluding the U that are
disconnected1. Using the generalized Schöen�ies theorem as stated in 3.10 we get that
all rT, P s with in- and out-put connected are indeed in CleavSn .

1such disconnected timber do exist; attempt for instance eating an apple conventionally to disconnect

the peel in the last bite
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If we take N � S1 � S1, forming the subset ObpCleavNq � TimberN removes all
interesting operations from CleavN in the action de�ned in the next section. Basically
since there will always be one complement of some timber that is either a cylinder or
has genus.

The following two examples identify relations among trees in CleavNp�; kq. These
two types of relations � it turns out � are essential in the forthcoming proofs.
To P P Hypn�1, let �P P Hypn�1 denote the hyperplane given by reversing orientation

of P

Example 3.12 Assume that pT, P q is an N -cleaving tree. Let v be an internal vertex of
T , decorated by P . Let T 1 be the tree obtained from T by interchanging the branches
above v, and let P 1 denote the set of hyperplanes with P interchanged with �P .

RR

↔C

S S ′SS ′

S
↔Cvi

vi
S ′ S ′

S

Figure 3: The ØC-relation

Alternatively, the local picture 3 de�nes an equivalence relation pT, P q ØC pT 1, P 1q. In
CleavNp�; kq, we have that rT, P s � rT 1, P 1s

We say that two hyperplanes P,Q P Hypn�1 are antipodally parallel if �Q can be
obtained from P by translating P via its normal vector.

Example 3.13 The local picture between pT, P q and pT 1, P q N -cleaving in 4, describes
when two N -cleaving trees are ØB-related.

R R

S ′

S ′

S ′′

S

SS ′′

vj

vi

v′i

v′j
S ′

S ′′
S

Pj

Pi

↔B

Figure 4: The ØB-relation
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Here the internal vertices vj directly above vi in T , decorated by Pi and Pj of P have
swapped position � along with the branches speci�ed in the picture � in T 1 compared to
T . We let pT, P q ØB pT 1, P q if Pi and Pj are antipodally parallel.
In this case we have rT, P s � rT 1, P s in CleavNp�; kq.

We say that P and Q are parallel if either P,Q or P,�Q are antipodally parallel.

Observation 3.14 Assume that we are given pT, P q P CleavNp�; kq, where all hyper-
planes of P are pairwise parallel. Using the ØC and ØB-relations of 3.12 and 3.13, we
obtain that rT, P s � rLk, P

1s, where Lk is a leftblown tree as in 3.15, and P 1 is obtained
from P by reversing the orientations along some hyperplanes.

3.2 Topology on the Timber

De�nition 3.15 We let the arity k left-blown tree be the tree Lk P Treepkq, with the
right-going edges all ending at leaves, let the only leaf on a left-going edge be labelled
by k � and the leaf other leafs, at level i� 1, labelled by i.

rL4

4 3

2

1

Figure 5: The left-blown tree L4

Let L1 denote the tree with VL1 � H, and a single leaf and root.

Cultivating the cleaving tree appropriately, that is by reversing orientations of hyper-
planes � swapping branches around as in 3.14 � and cutting away unnecessary branches,
we can assume U P TimberN to be on the leaf labelled k � 1 of Lk for some k P N.

Construction 3.16 We specify a topology on TimberRn�1 as a subspace by seeing that

there is an injection ψ : TimberRn�1 Ñ
²
iPN

��
Hypn�1

	i
{Σi



, where the permutation

group Σi permutes the factors of the product.
To specify the injection ψ, note that for U P TimberRn�1 , the boundary of the closure

in N of U , BU contain the information needed to reconstruct pLk, P q having U as the
decoration on the top-leaf. Such hyperplanes are given by taking least a�ne subsets
containing certain parts of BU ; either distinguished by di�erent components of BU � and
otherwise a corner of BU will be the distinguishing feature for pLk, P q. The function ψ

now maps U P TimberRn�1 to the corresponding hyperplanes, pP1, . . . , Pkq P
�
Hypn�1

	k
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decorating Lk and determined by BU . This thus hits the component in the image of ψ
indexed by k.
There is ambiguity in the above de�nition of ψ; any reordering of the hyperplanes

pP1, . . . , Pkq will give rise to the same top-level timber. We therefore quotient by Σi in
the image of ψ.

Let TimberHN :� TimberN YtHu.

Construction 3.17 For N � Rn�1, we have a surjection µN : TimberRn�1 Ñ TimberHN ,
given by µNpUq � N X U , and we specify a topology on TimberHN by letting µN be a
quotient map.
We let TimberN � TimberHN be a subspace

Remark 3.18 Specifying µN as a quotient map means that certain elements rLk, P s P
CleavRn�1 will give rise to the same U X N at the top-leaf, under µN . In particular,
if rLk, P s giving rise to U X N has some leaf decorated by H, we can instead consider
rLk�1, P̂ s as giving rise to U X N , where P̂ is given by removing the hyperplane from
P decorating the vertex below said leaf, since the hyperplane in question will not be
cleaving N .

Proposition 3.19 Let N be a compact submanifold of Rn�1. TimberN is contractible.
Similarly, ObpCleavSnq is contractible for S

n � Rn�1 the unit-sphere

Proof. Given a point U P TimberN will have AU consist of a disjoint union of sub-
manifolds of N that has boundary at the points where U has been cleaved from N by
hyperplanes P1, . . . , Pk. Each Pi has a normal-vector in the direction towards U , and one
in the direction away from U . The topology on TimberN , precisely determined by these
hyperplanes makes it continuous in TimberN to translate P1, . . . , Pk in the direction
away from U . Since N is compact, this translation will in �nite time take each hyper-
plane past tangential hyperplanes of N . Hence each hyperplane eventually disappears
from the cleaving data and by 3.18, eventually this translation provides an element of
CleavN given by the 1-ary undecorated tree L1 as an operation from N to N . This
hence de�nes a homotopy Φt : TimberN Ñ TimberN with Φ0pUq � U and Φ1pUq � N ,
and hence the desired null-homotopy onto N P TimberN .
For the statement on ObpCleavSnq, note that from the de�nition 3.8 and 3.10, that

the submanifolds of AU will consist of a disjoint union of disks. The null-homotopy Φt

above will in this case result in smaller and smaller disks as t increases, and so ΦtpUq
remains withing ObpCleavSnq, and the null-homotopy is given as above..

The following proposition tells us in conjunction with 3.19 that 2.5 applies to CleavN .

Proposition 3.20 The evaluation map evin : CleavNp�; kq Ñ ObpCleavNq is a �bra-
tion
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Proof. To rT, P s P CleavNp�; kq we shall �rst of all for each of the hyperplanes Pi of P
prescribe the following transformation:
Under the relation 3.12, we have to make a choice of normal-vector νi of Pi, this de�nes

an interval Ji �sj�, j�r given by the maximal interval such that translating Pi along νi
with r P Ji as a scalar the hyperplane still participates in a cleaving con�guration as a
decoration of T . Note that since rT, P s is cleaving we have 0 P Ji and denote by cpJiq
the center-point of the interval. Note that the other choice of normalvector �νi will give
rise to the interval �Ji which will leave the following invariant:
Fix ε ¡ 0, if jimin :� mint|j�|, j�u   ε, translate Pi by sgnpcpJiqq � mintε � j, cpJiqu

where sgnpcpJiqq is the sign of cpJiq.
This translation can naturally be done to all the decorations of a decorated tree

rT, P s P CleavNp�; kq simultaneously. Call this transformation ΓεpT, P q, note that since
we are moving all hyperplanes at once, dependent on how large ε is chosen, ΓεprT, P sq
does not a priori result in a cleaving tree.
We seek to �nd a lift in the diagram

Y
ϕ //

��

CleavNp�; kq

evin
��

Y � I
h //

h̃
88qqqqqq

ObpCleavNq

where we can assume that Y is compact, and therefore pick

0   ε   inf
yPY

pmintjimin | Pi decorates ϕpyquq

where jimin is the minimal value where Pi can be translated in order to have it still
participate in a cleavage as de�ned above.
The lift h̃py, tq is now given as Γεpϕpyqq considered as a cleaving tree of the timber

hpy, tq. Note that our choice of ε makes Γεpϕpyqq result in an element of CleavNp�; kq,
basically since along t, the timber hpy, tq will change continuously and therefore by
de�nition of Γε will for a small neighborhood of t P I only give rise to a small change
in how the con�gurations of hyperplanes change, guaranteeing their continual cleaving
attributes.

4 Action of Cleavages

Let M be a compact manifold. We set MN :� tf : N ÑMu � i.e. the space of unbased,
continous maps from N to M , endowed with the compact-open topology.
Above 3.5, we have speci�ed a procedure to an N -cleaving tree pT, P q associates

at each vertex v of T an open submanifold Uv. As noted in 3.6, this procedure can be
extended to the recording area RecpNq, so that every vertex v of T has a subset RecpUqv
associated to it, where the boundary of RecpUqv will be the space Uv. In case RecpNq is
a manifold, RecpUqv will in turn be a submanifold of RecpNq.
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De�nition 4.1 Let RecpUq � RecpNq denote the recording area of U P TimberN as
given above. To a U -cleaving tree pT, P q, we associate the blueprint of pT, P q to be the
following subset of RecpUq:

βpT,P q :� RecpUqz
k¤
i�1

RecpUqi

where RecpUqi is the subset of RecpUq associated to the i'th leaf of pT, P q. By de�nition
of the recursive procedure above 3.5, βpT,P q will be contained in the collective union of
all the hyperplanes of P , loosely it will consist of all points of hyperplanes in P that
have been involved in the recursive bisection process of RecpUq described above 3.5.

In �gure 1 of the introduction, the boundary of βpT,P q will be the collective boundary
of the closure within Sn of the submanifolds in picture D.

De�nition 4.2 We let {π0pβrT,P sq denote the quotient of π0pβrT,P sq, where two pathcom-
ponents are considered equivalent if the same hyperplane in P has given rise to these
components of βrT,P s.

Example 4.3 If N � Sn � R
n�1 as the unit-sphere, bounding the unit disk Dn�1,

convexity of Dn�1 entails that π0pβrT,P sq �
{π0pβrT,P sq.

As an example of where the quotient matters, take N a standard-embedding of S1�S1

in R3, with recording area D1�S1, then cleaving S1�S1 with a single hyperplane into

two annuli would have βrT,P s consist of two components, whereas {π0pβrT,P sq would still
be trivial.

Let CorrpCq denote the correspondance category over C a co-complete category, as
described in the introduction.

Construction 4.4 We construct a functor ΦN : CleavN Ñ End CorrpTopq

MN . That is, an
action of CleavN on MN as an object of the category of natural transformations of
correspondances over Top.
Let rT, P s P CleavNpU ; kq. Let AN1, . . . , ANk denote the complement, inside of N , of

the timbers associated to the leafs of T .
The action is given through the following pullback-diagram

MN
rT,P s

ϕ� //

��

�
MN

	k
res

��

M
{π0pβrT,P sq ϕ // ±k

i�1M
pANiq

(2)

where res is the restriction map onto each complement.

We de�ne ϕ as the induced of a map c :
²k
i�1 pANiq Ñ

{π0pβrT,P sq. To de�ne c, note
that a component C of ANi, will have BCzBU be the result of some cuts of hyperplanes
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decorating T . By de�nition of {π0pβrT,P sq, and since C is a connected component, the cuts

will all constitute the same element, cpCq � of {π0pβrT,P sq making ϕ well-de�ned as the

map constant map along the timber intersecting represenatives of {π0pβrT,P sq nontrivially.
By glueing the functions in the pullback space, we can identify MN

rT,P s as the space

of f P MN such that f is constant along each subspace of the blueprint that is a
representative of π0p{βrT,P sq. We hence have a canonical inclusion ιrT,P s : M

N
rT,P s Ñ MN ,

and in turn a correspondance

MN MN
rT,P s

ιrT,P soo ϕ� //
�
MN

	k

∗1

∗2

Figure 6: The 4-ary operation of the introduction has the complement of its timber
AN1, AN2, AN3, AN4 drawn as the �ve disks on the bottom right corner. The
upwards arrow are the inclusion maps, so that dualizing them provides the
restriction map. The leftwards maps have as target two points, and these should
be considered as collapsing the components of the blueprint βrT,P1,P2,P3s. These
maps are given as the ones where the boundary of each disk is contained in a
component of the blueprint.

Example 4.5 For the cleavage rT, P1, P2, P3s P CleavSnpS
n; 4q in picture D of �gure 1

in the introduction, we can consider the morphisms de�ning diagram (2) through �gure
6, using the mapping functor M p�q to dualize the morphisms indicated in the �gure, we
get the maps that de�ne the pullback diagram (2).

Functoriality of the above pullback-construction in 4.4 gives us
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Proposition 4.6 The construction of 4.4 de�nes an action of CleavN on MN as an
element of the symmetric monoidal category pCorrpTopq,�q.

Proposition 4.7 The map res is a �bration.

Proof. Follows directly since the inclusions ANi Ñ N are closed co�barations, and res is
the dualization under the mapping space functor M�.

Proposition 4.8 Consider the case of N � Sn. For any rT, P s P CleavSnp�; kq, with
associated timber N1, . . . , Nk the number������π0

�
� kº
i�1

ANi

�


�������
���π0 �βrT,P s	���

will be constantly k � 1 for all rT, P s P CleavSnp�; kq.

Proof. Note that βrT,P s constitute the boundary of the disjoint union of wedges of disks²k
i�1 ANi, so the number

���π0 �²k
i�1 ANi

	��� will be constant as long as
���π0 �βrT,P s	��� is con-

stant.
Consider a path γ : r0, 1s Ñ CleavSnp�; kq with

���π0pβγp0qq��� � ���π0pβγp1qq��� � 1 and such

that for a speci�c t0 P r0, 1s, we have for all t ¤ t0,
���π0pβγptqq��� � ���π0pβγp0qq��� and for all

t ¡ t0,
���π0pβγptqq��� � ���π0pβγp1qq���.

By de�nition of the cleaving proces, γpt0q will have two hyperplanes Pl, Pr such that
PlXPrXRecpSnq is a nontrivial subspace of BRecpSnq � Sn, and for any ε ¡ 0, the same
intersection for the hyperplanes of γpt0 � εq will be trivial; meaning that for su�ciently
small ε, such that the hyperplanes do not become parallel, Pl X Pr � R

n�1 will be
contained in Rn�1zRecpNq. This has the e�ect that there is precisely one j P t1, . . . , ku
such that the complement of the timber indexed by j, ANj, for γpt0q has a connected
component containing PlXPrXRecpNq, whereas for γpt0�εq this becomes disconnected
with di�erent boundary components of ANi being formed using intersections with Pl and
Pr respectively. Hence for these basic types of paths, an increase in

���π0pβrT,P sq��� leads to
an equal increase in

���π0p²k
i�1 ANiq

���.
One can use these paths to parametrize a single cleaving hyperplane moving within

CleavSnp�; kq, while the other k� 2 hyperplanes remain �xed. From such parametriza-
tions, one puts together a general path moving all hyperplanes of CleavSnp�; kq and the
result follows.
To compute the constant, take a con�guration of hyperplanes where all hyperplanes

are parallel, so that βrT,P s has k � 1 components. In this case the space of complements
of the associated timber,

²k
i�1 ANi will have pk � 2q spaces ANi that consist of two

disjoint spaces, and the two extremal complements that consist of a single subdisks of
Sn. Hence in total 2pk � 2q � 2 � 2pk � 1q components. In e�ect, the constant will be
2pk � 1q � pk � 1q � k � 1.
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Remark 4.9 The above 4.8 is only stated for the particular case N :� Sn. However the
only place in the proof where we use the nature of Sn is to identify that the number���π0 �²k

i�1 ANi

	��� will be constant as long as
���� {
π0
�
βrT,P s

	���� is constant.
Again, we need to work with

���� {
π0
�
βrT,P s

	���� as de�ned in 4.2 for more general N , however

this also �ts directly into the proof.
Since the hyperplanes of CleavNp�; kq are required to cleave N transversally, one

can indeed use Morse theory to obtain this initial statement of the proof for a general
embedded manifold N . However, we shall not go into detail with this, as we shall only
apply 4.8 in the case where N � Sn.
Of course in the more general case, this constant will no longer be k�1, and indeed the

constant will potentially vary along components of CleavNp�; kq. With CleavSnp�; kq
connected, basically since all hyperplanes will cleave Sn transversally, this variance along
components is not part of the statement of 4.8.

Remark 4.10 Note that as we don't use it in the proof, 4.8 holds even if we drop the
assumption in 3.8 that for all elements of CleavSnp�; kq the associated timberN1, . . . , Nk

should satisfy ANi �
²

�nite �. In fact, this assumption is not needed for this paper, but
will only be applied in [Bar11] to de�ne homological actions from the correspondances
of 4.4.
This is also the case for an extended version of 4.8 to CleavN as indicated in 4.9

Remark 4.11 For the case N � Sn, as mentioned in the remarks above, the correspon-
dance diagram (2) will by certain umkehr maps for the map ϕ� eventually lead to a
homological action in [Bar11]. What we in fact will show is something stronger, namely
that there is a stable action map, residing in the category of spectra:

CleavSnp�; kq �
�
MSn

	k
ÑMSn ^ SdimpMq�pk�1q (3)

Smashing the above map with the Eilenberg-Maclane spectrum, and taking homotopy
groups yields the action mentioned below Theorem 1 of the introduction.
We shall in 4.12 below give an example of the action to illustrate the reasoning behind

the de�nition of CleavSn .
We shall �rst make some remarks on how the constructions of this section provides

the foundation for how this map takes form.
First of all, note that since we in 3.8 have assumed that to rT, P s P CleavNp�; kq the

associated timberN1, . . . , Nk will have ANi consist of a �nite disjoint union of contractible
spaces. Therefore, in the diagram (2), the space

±k
i�1M

ANi is a Poincaré duality space.
That is, up to homotopy it is equivalent to a product of copies of M .
In the caseN � Sn, taking such a speci�c rT, P s as a pointwise version of (3), we should

be able to obtain a map
�
MSn

	k
ÑMSn ^ SdimpMq�pk�1q. Indeed, for �xed rT, P s there

are methods available in the litterature to do this. For instance adapting the methods of
[CK09, p.14/'Umkehr maps in String Topology] provides such a map. Here it is crucial to
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note that the map ϕ is up to homotopy an embedding of codimension dimpMq� pk� 1q
where the pk � 1q-factor comes from 4.7, which provides the dimension-shift in (3).
Yet another method, formulated on the chain-level instead of spectra would be [FT09,

Theorem A].
However, getting from these pointwise umkehr maps to a map such as (3) is a some-

what strenous hike. This is the focus of [Bar11]. Note that while the crucial 4.8 hints that
it is possible to provide the maps for other N than the euclidean embedded unit-spheres
Sn, the geometry involved makes us look only at the interesting case CleavSn .

The complexity of the construction of the umkehr map rises with the arity of the
involved maps. As the arity rises, the map ϕ of (2) will by 4.8 have constant codimension,
whereas the actual dimension will be exposed to sudden jumps in the actual dimensions
of the spaces ϕ is mapping between, as is indicated in the proof of 4.8. The coherence
issues of higher arity lies in patching the instances of such jumps together. The following
example illustrates the case of arity 2 operations where there are no such jumps:

Example 4.12 The 2-ary portion CleavSnp�; 2q is a manifold, speci�ed by a single
cleaving hyperplane, it deformation retracts onto Sn, which is determined by the direc-
tion of the normal-vector of the cleaving hyperplane.
Consider the pull-back diagram

MSn

CleavSn p�;2q
//

��

�
MSn

	2
� CleavSnp�; 2q

res
��

M � CleavSnp�; 2q // M
²2

i�1
ANi

CleavSn p�;2q

(4)

Where AN1 and AN2 denotes the complement inside Sn of the timber associated to

rT, P s P CleavSnp�; 2q. Considering it as a set,M
²2

i�1
ANi

CleavSn p�;2q
is given by the disjoint union²

rT,P sPCleavSn p�;2qM
ANi . The map res in the diagram is given by letting respf1, f2, rT, P sq

be given as the the restriction of f1 to AN1 and f2 to AN2 along the component indexed

by rT, P s. We topologize M
²2

i�1
ANi

CleavSn p�;2q
by making res a quotient map.

Note that by 4.7, pointwise in CleavSnp�; 2q, res is a �bration. One sees that the lifts
of this global map can be constructed to be continous in CleavSnp�; 2q as well.
We hereby have homotopy-equivalences

M
²2

i�1
ANi

CleavSn p�;2q
�M2 � CleavSnp�; 2q �M2 � Sn

and
M � CleavSnp�; 2q �M � Sn.

Stating that the lower portion of the diagram is an embedding of Poincaré duality spaces.
For instance applying one of the methods mentioned in 4.11, this hereby provides the
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�rst sign of an action of CleavSn on M
Sn , and taking homotopy groups of this map, we

get a map in homology

H�

�
CleavSnp�; 2q

	
b H�pM

Snqb2 Ñ H��dimpMqpM
Snq

5 Spherical Cleavages are En�1-operads

We now devote energy to prove that CleavSn is a coloured En�1-operad. A concept
de�ned in 2.8

5.1 Combinatorics of Coloured En-operads

De�nition 5.1 By a full level pn, kq-graph, we shall understand a graph G with k vertices
v1, . . . , vk such that all pairs pvi, vjq are connected by precisely one edge eij. Let n :�

t0, . . . , n� 1u. We let each of the
�
k
2

	
edges of G be labelled by elements of n.

We say that a full level pn, kq-graph G is oriented if there to each edge G eij is
designated a direction; either from vi to vj or from vj to vi.
To σ P Σk, there is a unique orientation of a full level pn, kq-graph, G. Namely by

letting eij point from vi to vj if σpiq   σpjq, and point from vj to vi if σpjq   σpiq. We
call σ the permutation associated to G.
Indeed, assuming that this orientation of G is oriented with no cycles and comes

equipped with a sink and a source, one can reconstruct the permutation σG associated
to G from the orientation of G: Let the index of the sink of G be mapped to k under σG,
and successively remove the sink of an oriented full pn, iq-graph with sink, source and no
cycles to obtain a full pn, i� 1q-graph with induced orientation being guaranteed a sink
by the pigeonhole principle. The index of this sink is mapped to i under σG. Continuing
this process until only the source of G is left makes σG a well-de�ned permutation since
G has no cycles.

De�nition 5.2 Let K npkq denote the set of full level pn, kq-graphs, oriented via Σk as

above. This gives a bijection np
k
2q � Σk Ø K npkq.

We have that K n is an operad: To Gk P K npkq and Gm P K npmq, inserting the m
vertices of Gm instead of i'th vertex of Gn, we obtain a full level pn,m � k � 1q graph
Gk �i Gm, by labelling and orienting the edges of Gk �i Gm in the following way:
Since we have replaced the i'th vertex of Gk with k vertices from K npmq, Gk lives as

a subgraph of Gk �i Gm in k di�erent ways � one for each choice of replacement vertex
for i in Gm. The graph Gm has all its vertices retained in Gk �i Gm, so there is only one
choice of subgraph for Gm.
We label and orient all edges of Gk �i Gm via the labellings and orientations of the

possibilities of subgraphs Gk and Gm.
An example operadic composition is given in �gure 7
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Figure 7: An operadic composition of a 3-ary with a 2-ary operation in the full-graph
operad. The labellings i, j, k,m are elements of n. Note that in the 4-ary oper-
ation both graphs are contained in the �nal result, and we copy the labelling of
the edges that are going to the vertex the operadic composition is happening
at

Observation 5.3 Using 5.2, we see how K n is an operad of posets. First of all, letting
K np2q � n � Σ2 be given by setting Σ2 � tid, τu and partially ordering through the
arrows of the diagram

p0, idq //

$$IIIIIIIII
p1, idq //

""EE
EE

EE
EE

E
� � � //

""EEEEEEEEE pn, idq

p0, τq //

::uuuuuuuuu
p1, τq //

<<yyyyyyyyy
� � � //

<<yyyyyyyyy
pn, τq

(5)

Consider the maps γij : K npkq Ñ K np2q, given by the subgraph, with one edge, of
Gnpkq spanned by vi and vj. Following [Ber97, 1.5], we let the partial ordering be given
by the coarsest ordering such that γij is order preserving for all i   j P t0, . . . , ku.

De�nition 5.4 Given O a coloured operad, let SpOq denote the coloured operad in
posets, with objects the subsets of ObpOq, and k-ary morphisms subsets of Op�; kq.
The operad is an operad in posets through inclusions of subspaces.
That is, we let ObpSpOqq � t0, 1uObpOq. Let SpOqp�; kq :� t0, 1uOp�;kq. These �t into

the diagram

SpOqp�; k �m� 1q SpOqp�;mq �ObpSpOqq SpOqp�; kq
�ioo //

��

SpOqp�; kq

evi
��

SpOqp�;mq
evin // ObpSpOqq

Where as usual evi evaluates at the i'th colour of SpOqp�; kq, given as a subset of
ObpOq and evin evaluates the incoming colour of SpOqp�;mq.
Operadic composition is induced from composition in O, pointwise. In the sense that

�i : SpOqp�;mq �ObpSpOqq SpOqp�; kq Ñ SpOqp�; k � m � 1q is given by the subset of
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Op�; k �m � 1q obtained by to any point of Op�;mq �ObpOq Op�; kq as an element of
SpOqp�;mq�ObpSpOqqSpOqp�; kq applying the �i-operation from Op�;mq�ObpOqOp�; kq
to Op�; k�m� 1q, and taking the union over the speci�c subset of these compositions.

Recall from 2.7 that to P a monochrome operad, and X a space, the coloured topo-
logical operad P �X is coloured over X and the k-ary morphisms are formed by taking
the cartesian product of P pkq with X.
The Berger Cellularization Theorem, written in a monochrome fashion in [Ber97, Th.

1.16] hereby transfers to our coloured setting:

Theorem 5.5 Let O be a topological coloured operad. The operad O is a coloured
En-operad, 2.7 if there is a functor Fk : K npkq � SpObpOqq Ñ SpOqp�; kq that is, both
a functor with respect to the poset structure as well as a morphism of coloured operads,
satisfying the following:

(A) Let C0 P SpObpOq. The latching space of α P K npkq is given by Lpα,C0q :��
β α Fkpβ, C0q. We require that the morphism

Lpα,C0q ïÑ Fkpα,C0q

is a co�bration.

(B) For all α P K npkq, we require a natural transformation of weak equivalences
between the functor Fkpα,�q and the identity funtor on SpObpOqq.

(C) colimpα,C0qPK n pk q�ObpSpOqq Fkpα,C0q � Op�; kq, where the colimit is using the poset-

structure on K npkq � given in 5.3 � and inclusions of subsets in SpObpOqq. These
inclusions should be compatible with the equation, in the sense that OpU ; kq should
be given by restricting the colimit to the C0 P ObpSpOqq satisfying C0 � U in the
indexing category.

Proof. First of all, note that K npkq as a �nite poset is a Reedy Category in the sense
of [Dug08, 13.1]; explicitly a degree function deg : K npkq Ñ Z can be given by letting

degpαq be determined by the sum of the
�
k
2

	
labels in t0, . . . , n� 1u of the edges of the

graph α.
From the assumptions (A)-(C) we get the following homotopy equivalence:

Op�; kq � colimpα,C0qPK npkq�SpObpOqq Fkpα,C0q �

colimC0PSpObpOqq colimαPK npkq Fkpα,C0q �

colimC0PSpObpOqqphocolimαPK npkq � � C0q �

colimC0PSpObpOqqp|N pK nq| � C0qpkq �

p|N pK nq| � ObpOqqpkq
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The �rst identi�cation is given in assumption (C), which in turn splits out into a
double colimit. To obtain the homotopy equivalence: Since K npkq is a Reedy Cate-
gory, the assumption (A) allows us to apply [Dug08, 13.4] giving a homotopy equiv-
alence hocolimαPK npkq Fkpα,C0q Ñ colimαPK npkq Fkpα,C0q for �xed incoming colours
C0 P SpObpOqq. From (B) we get a homotopical identi�cation of Fkpα,C0q with C0

and this computes the homotopy colimit, geometrically realizing the nerve of the full
graph operad, along with a cartesian product of the colours C0 P SpObpOqq � indepen-
dent of α P K npkq. The �nal identi�cation follows since the naturality of (B) supplies us
with a cartesian product of the nerve along with an actual direct limit of all inclusions
of SpObpOqq which can be identi�ed with the �nal target of the inclusions, ObpOq.
One now utilizes F as a morphism between coloured operads to check that this gives

an operadic weak equivalence O � |N pK nq| � ObpOq

De�nition 5.6 To O a coloured topological operad, we call F : K n�SpObpOqq Ñ SpOq
an En-functor if it satisifes the conditions of 5.5

Remark 5.7 In order to get an equivalence back to something known, let Disk n�1 de-

note the little disk operad. We hereby have that the coloured operad Disk n�1�ObpCleavSnq

is a coloured En�1-operad in the sense of 2.8, coloured over the same objects as CleavSn .

5.2 An En�1-functor for CleavSn

Remark 5.8

Construction 5.9 We shall provide the combinatorial data, giving the link between the
full graph operad, and the spherical cleavage operads.
For each n P N, let I � r�1, 1s ïÑ R

n�1 denote the interval as sitting inside the
�rst coordinate axis of Rn�1. Choosing k � 1 distinct points x1, . . . , xk�1 P I speci�es a
partition of I into k intervals X1 � r�1, x1s, X2 � rx1, x2s, . . . , Xk � rxk�1, 1s. We endow
the collection of these intervals with an ordering, determined by σ P Σk, ordering them
as Xσp1q, . . . , Xσpkq.
Parametrize Sn :� ts � ps1, . . . , sn�1q P R

n�1 | }s} � 1u to consider the map η : Sn Ñ
I given by ηps1, . . . , sn�1q � s1. Any subinterval Xi � I de�nes timber X̃i of S

n, by
η�1pXiq.
Positioning hyperplanes P1, . . . , Pk�1 orthogonal to I � such that Pi contains the point

pxi, 0, . . . , 0q, as decorations on a cleaving tree we can choose their normal-vector of Pi
to point towards p1, 0, . . . , 0q and get colours that are labelled by 1 to k from left to right
along the �rst coordinate axis.
Under the chop-equivalence of 3.8, we can always choose a representing cleaving tree

with two leaves labelled i and i�1 directly above an internal vertex for any i P t1, . . . , k�
1u. For this particular representative of a cleaving tree with the particular orientations
of P1, . . . , Pk�1, applying the transposition between i and i � 1 corresponds exactly to
inverting the orientation of the decoration at the vertex below the two leafs.
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Since Σk is generated by these transpositions, we can permute the labelleing of the
colours by σ P Σk, and hereby obtain rTσ, Pσs P CleavSnpUkq, with U P ObpCleavSnq
and outgoing colours decorated by σp1q, . . . , σpkq from left to right along the �rst coor-
dinate axis of Rn�1.

De�nition 5.10 For a given σ P Σk, the collection of all rTσ, P σs as given above speci�es
an element of the subsets of CleavSnp�; kq, where for U P ObpCleavSnq this involves a
restriction to the U -cleaving trees pTσ, P σq.
Note that to U P ObpCleavSnq choosing the hyperplanes P σ to be in equidistant

position from each other, and the closest hyperplanes that no longer cleave U , de�nes
an embedding of U ïÑ CleavSnpU ; kq for each σ P Σk.

Observation 5.11 We de�ne JU � r�1, 1s as sitting inside the �rst coordinate axis
of Rn�1 as the subspace where any U -cleaving pTσ, P σq have decorating hyperplanes
contain points of JU .
We shall for the sake of this section allow ourselves to assume that JU � r�1, 1s

is a non-empty subinterval; formally, this can be done by rede�ning CleavSn as a full
suboperad of CleavSn given by restricting ObpCleavSnq to the timber U for which JU
is U -cleaving.
Similar to 3.19, one can de�ne a homotopy that pushes the hyperplanes de�ning U

towards tangenthyperplanes of Sn to show that this restriction de�nes a deformation
retraction of the objects, and hence makes the inclusion a weak equivalence of operads.

Remark 5.12 We �nd it enlightening to note that we can form a suboperad, the cater-
pillar operad 2 Cater Sn , of CleavSn by taking the full suboperad under the condition
that rT, P s P Cater Snp�; kq if rT, P s is of the form rTσ, P σs as in 5.10 for some σ P Σk.
The caterpillar operad will control the product structure on H�pM

Snq, however in
order to obtain the higher bracket in the Gerstenhaber Algebra, we shall need more
than just parallel hyperplanes � and engage all the ways hyperplanes can rotate in
CleavSn , in contrast to the sole translational data of Cater Sn .
Said in a di�erent way, there is an obvious operadic map from Cater Sn to the little

intervals operad, see e.g. [MS04, ch. 2], determined by how the hyperplanes of Cater Sn
partition the x-axis into intervals. The little intervals operad has the k-ary space given as
the space of embeddings of k intervals inside r0, 1s. We can expand these little intervals
linearly until they touch each other, and hereby similarly to Cater Snp�; kq partitioning
r0, 1s into k smaller intervals. This provides a map that is a weak equivalence of coloured
operads from Cater Sn to the little intervals operad, considered as a coloured operad
with trivial colours. This hence provide the A8- or E1-structure on the String Product
associated to MSn for the action in spectra that is constructed in [Bar11]. The rest of
this section is hence devoted to determining the rest of the En�1-structure of CleavSn .

In order to engage the combinatorics of this rotational data, i.e. de�ne a En�1-functor,
we shall prescribe explicit transformations of the hemispheres parametrizing the hyper-
planes involved in the cleavages.

2collapse the components of the blueprint to a single point, to make a visual link to this name
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De�nition 5.13 We prescribe a function κ : Sn �Rn�1 Ñ Hypn�1 by letting κps, tq be
given as the oriented hyperplane that contains the point s � t and has s as a normal
vector. In comparison to the tangent plane at the unit-sphere at s P Sn � Rn�1, κps, tq
has been translated by t.

De�nition 5.14 In the following, when referring to a sphere Si, we shall generally
consider it as sitting inside a string of inclusions

S0 � � ι0 // S1 � � ι1 // � � � �
� ιn�1

// Sn�1 � �ιn�1
// Sn (6)

where all are subsets of Rn�1, where Si�1 is embedded equatorially into the �rst i
coordinates of Si � Ri.
Let Si� � tpx0, . . . , xnq P S

n | xi ¥ 0, xi�1 � � � � � xn�1 � 0u and Si� � tpx0, . . . , xn P
R
n�1 | xi ¤ 0, xi�1 � � � � � xn�1 � 0u. Restrictions of ιi in (6), yields the partially

ordered set of inclusions:

S0
�

� � //
� o

��@
@@

@@
@@

S1
�

� � //
� o

��?
??

??
??

??
� � � �

� //� p

!!CC
CC

CC
CC

C Sn�1
�

� � //
� p

!!CC
CC

CC
CC

Sn�

S0
�

� � //
/ �

??~~~~~~~
S1
�

� � //
/�

??���������
� � � �

� //
. �

=={{{{{{{{{
Sn�1
�

� � //
. �

=={{{{{{{{
Sn�

(7)

Since these are all inclusions of closed lower-dimensional submanifolds, it is a partially
ordered set of co�brations.

De�nition 5.15 Consider the partially ordered set Ik with objects αj � t1, . . . , ku,
where j indicates that αj is of cardinality j, and morphisms generated by the opposite
arrows of simple inclusions αj�1 Ñ αj.
To f P Ik, where f : αj Ñ αp let the domain be denoted by Dpfq :� αj denote the

domain of f , and the target T pfq :� αp. A simle inclusion ιl de�nes a lost number

jιl :� T pιlqzDpιlq P t1, . . . , ku.
An i-string of morphisms in Ik is given by a sequence ι � pι1, . . . , ιk�1q of opposite

arrows of simple inclusions such that Dpιrq � T pιr�1q � and with Dpι1q � t1, . . . , ku and
T pιk�1q � tiu.
Let Ik|i denote the set of i-strings of Ik.

Remark 5.16 While we shall mainly �nd it convenient to use the notation of 5.15, note
that the data of ι P Ik|i exactly corresponds to a permutation of t1, . . . , ku, where we to
i assign the lost number of ιi.
We shall thus allow ourselves to consider ι as an element of Σk where we here use the

notation ιpiq P t1, . . . , ku to indicate the value of i under the permutation.

Construction 5.17 We shall conglomerate the above constructions into a speci�c recur-
sively de�ned function that provide the technical core in the de�nition of the En-functor.
For each i P t1, . . . , k � 1u, we want to de�ne a function
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ΘU : Σk � Ik�1|i �
�
RU X

�
Sn �Rn�1

	k�1


Ñ CleavSnpU ; kq.

Where RU � pSn �Rn�1q
k�1

, amounts to a corestriction of each pSn �Rn�1q-factor
that will be speci�ed below.
Each ιi will specify a hyperplane via its lost number, 5.15, as Pjιi of P σ.
We shall produce a U -cleaving tree that is decorated by the hyperplanes

κps1, r1q, . . . , κpsk�1, rk�1q.

In order to specify the U -cleaving tree that these hyperplanes decorate, we utilize
the ordering from left to right of the hyperplanes of P σ, speci�ed in 5.9, as well as the
i-string ι.
We build this tree recursively, and start by positioning κps1, r1q as the decoration of

a 2-ary tree T2. We hereby restrict ΘU by letting the �rst pSn �Rn�1q-factor of RU be
such that pT2, κps1, r1q is U -cleaving.
In the recursive step, assume that we have de�ned the �rst l�1 factors of RU and that

we are given an l-ary U -cleaving tree pTl, κps1, r1q, . . . , κpsl�1, rl�1qq such that taking l�1
hyperplanes of P σ, Pjι1 , . . . , Pjιl�1

, and assigning Pjιi to replace the decoaration κpsi, riq,
also yields a U -cleaving tree.
The hyperplane Pjιl cleaves timber associated to a speci�c leaf of the decorated tree

pTl, Pjι1 , . . . , Pjιl�1
q. We graft a 2-ary tree onto Tl at this leaf, to obtain the pl � 1q-

ary Tl�1. We let κpsl, rlq be the decoration at the new internal vertex of Tl�1, where
we de�ne the l'th factor of RU by requiring that psl, rlq P S

n � Rn�1 makes the dec-
orated pTl�1, κps1, r1q, . . . , κpsl, rlqq U -cleaving. The timber at the leafs of the deco-
rated tree pTl�1, κps1, r1q, . . . , κpsl, rlqq are induced by the timber at the same leafs of
pTl�1, Pjι1 , . . . , Pjιl q.
We make the following restriction on RU the ensure that in each step of ι, the

reparametrization is happening continously and the second a technical condition for
the proof of 5.21:

(�) From RU we exclude the tuppels pps1, r1q, . . . , psk�1, rk�1qq where the hyperplane
ΘUpG, ι, ps1, r1q, . . . , prk�1, rk�1qq is not in the pathcomponent of rTσG , PσGs.

(:) We further intersect RU by
±k�1
l�1 pS

n �RecpUκpsl,rlqqq, where the cleaved recording
area RecpUκpsl,rlqq � R

n�1 associated to the vertex decorated by κpsl, rlq is given
in 3.6.

Any edge eij of a graph G P K npkq is uniquely determined as the edge attached to the
vertices labelled by some ordered pair i   j P t1, . . . , ku. Let ωGpi, jq P Z2 �: t1�1,1�1u
be given by ωGpi, jq �

1 �1 if eij points from i to j and ωGpi, jq �
1 �1 if eij points from j

to i.
Denote by λGpi, jq P t0, . . . , n� 1u the labelling of the edge eij.
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Construction 5.18 We shall construct an En�1-functor for CleavSn . That is, we are
after a functor D : K n�1 � SpObpCleavSnqq Ñ SpCleavSnq.
Let G P K n�1pkq be a graph with underlying permutation given by σG P Σk

Given a i-string ι P Ik�1|i, for l P t1, . . . , k � 1u, we consider the two lost numbers jιl
and jιl�1

in the sense of 5.15, to account for the case l � 1, we let jι0 :� k. Denote by
ιlmax :� maxtjιl , jιl�1

u and ιlmin
:� mintjιl , jιl�1

u.

Denote by RUpιlq the restriction of the subspace S
λGpιlmin

,ιlmax q

ωGpιlmin
,ιlmax q

� R
n�1 considered

as the i'th input to ΘU , i.e. speci�ed by the space RU of 5.17. Here, the hemispheres

S
λGpιlmin

,ιlmax q

ωGpιlmin
,ιlmax q

are given in the diagram (7).

With this in mind, we de�ne the k'th operadic constituent of D as follows:

DkpG,A0q �

¤
a0PA0

¤
iPt1,...,k�1u

¤
ιPIk�1|i

Θa0pσG, ι, pRa0pι1q, . . . , Ra0pιk�1qq (8)

5.3 Proof that Cleavages are En�1

To state the �rst lemma, note that maps GÑ G1 P K npkq given by raising the index of
an edge of G from i to l where i   l, will induce injective maps DpG,A0q ïÑ DpG1, Aq
given by a restriction of the inclusion Si ïÑ Sl as one of the coordinates of RUpιjq under
DkpG,A0q Ñ DkpG

1, A0q. This describes how D is a functor of posets, and we use the
the following three lemmas to check the conditions (A)-(C) of 5.5 to prove that CleavSn

is a coloured En�1-operad.

Lemma 5.19 As in (A) of 5.5, consider the latching space LpG,A0q �
�
G1 GDkpG

1, A0q.
The induced map LpG,A0q ïÑ DkpG

1, A0q is a co�bration

Proof. The inclusions of submanifolds in (7) are of codimension strictly larger than 0,
so these are automatically co�brations. The maps out of DkpG

1, A0q are built out of
these maps by restricting to a0 P A0-cleaving trees, along with pushouts and factors
of cartesian products. Since whether a decoration of a a0-cleaving tree is cleaving or
not is an open condition (that is, if it holds for the hyperplane it holds for a small
neighborhood of the hyperplane), the associated restriction of inclusions induced from
(7) will again be an inclusion of submanifolds that are of codimension greater than 0.
Each DkpG

1, A0q ïÑ DkpG,A0q will hence result in a co�bration, that can be obtained as
a lower-dimensional skeleton of a CW-structure on DkpG,A0q. Since the latching space
is given by a �nite union of these lower-dimensional spaces, the map from the latching
space is again a co�bration.

Lemma 5.20 colimpG,A0qPpK n�1�ObpCleavSn qqpkqDkpG,A0q � pCleavSnqp�; kq

Proof. Any rT, P s P CleavSnp�; kq can be obtained as an element of (8) for some choice
of hemispheres determined by G P K npkq. Note namely that the de�nition of ΘU is a
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function that exactly mimics the cleaving procedure above 3.5, and therefore willrT, P s
as obtained by this cleaving procedure be obtained since the hemispheres involved in the
image of DkpG,A0q cover S

n, and since we in (�) of 5.17 are taking of path-components
of rTσ, Pσs for all σ P Σk

We say that for pT, P q an Sn-cleaving tree that the hyperplane of the decoration Pj
dominates another hyperplane Pl of the decoration of T if Pj and Pl intersect within
Dn�1 and there are points of Pl that lie on βrT,P s and on one of the subspaces of Rn�1

that has been bisected by Pj, but none on the other side.

Lemma 5.21 Given A0 P SpObpCleavSnqq and G P K n�1pkq, we have a homotopy
equivalence ofDkpG,A0q with the subspaceA0; considered as a subspace of CleavSnp�; kq
by 5.10.

Another usage of terminology would be that we supply a deformation retraction
onto A0, that is not a strong deformation retraction, in that we supply a homotopy
F : CleavSnp�; kq � r0, 1s Ñ CleavSnp�; kq, where we only guarantee F pa0, tq � a0 for
a0 P A0 � CleavSnp�; kq included as above.

Proof. We break the proof into some steps
Step 1: Assume that the labelling of the edges of G P K n�1pkq satisfy λGpi, jq � 0 for

all i   j P t1, . . . , ku, that is all edges of G are labelled by 0. In this case, we have that
DkpG,A0q will pointwise in A0 be the space of all hyperplanes sets of k� 1 hyperplanes
P1, . . . , Pk�1 orthogonal to the �rst coordinate axis of Rn�1 that cleaves a0 P A0, where
the parallel hyperplanes are ordered as PσG of 5.9, where σG P Σk is the permutation
associated to G.
The space DkpG,A0q is homotoped onto A0 by considering the interval Ja0 � r�1, 1s of

the �rst coordinate axis ofRn�1 as given in 5.11. Homotoping P1, . . . , Pk to be equidistant
within Ja0 for each a0 P A0 yields a deformation retraction onto A0 in the sense of 5.10,
since the topology of ObpCleavSnq as determined by hyperplanes forming the timber lets
the endpoints of Ja0 � as points in R vary continuously as functions of ObpCleavSnq.
Step 2: For a general G P K npkq and a �xed i-string ι, and a0 P A0, we see that

the space Θa0pσG, ι, pRa0pι1q, . . . , Ra0pιk�1qqq is weakly equivalent to a product of hemi-
spheres, considered as a subspace of CleavSnp�; kq.
We homotope Θ in k � 1 steps according to its recursive de�nition of 5.17. For the

�rst step, the points ps1, r1q P Ra0pι1q de�nes a hyperplane by κps1, r1q that cleaves a0.
We de�ne a function µ : ObpCleavSnq � Ra0pι1q � r0, 1s Ñ ObpCleavSnq, such that for
any s1 P Sn, κps1, r1q will cleave µpa0, ps1, r1q, 1q P ObpCleavSnq.
In order to do de�ne this function, note that a0 as an element of ObpCleavSnq is

de�ned by choosing some hyperplanes H1, . . . , Hr that cleave S
n. For any one of these

r hyperplanes, Hi, there is a well-de�ned normal-vector νi that points away from the
hyperplane κps1, r1q. Understood in the sense that translating Hi in the direction of νi
will leave κps1, r1q cleaving. Similar to the proof of 3.19, we can therefore de�ne the
function µ by translating the hyperplanes Hi simultaneously in the direction of νi, we
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do this until the hyperplanes are close enough to tangent-hyperplanes of Sn, formally
requiring that the minimal distance between Hi X Sn and Hj X Sn is larger than some
given ε ¡ 0 for all i, j P t1, . . . , ru. That any s1 P Sn hereby will have κps1, r1q cleave
µpa0, pr1, r1q, 1q can be seen by 3.11 since the complement of this subspace of Sn will
consist of disjoint disks, and by (:) of 5.17, r1 P Recpa0q � Recpa1q so κps

1, r1q will always
intersect a1 non-trivially.
This hence de�nes a1 :� µ1pa0, ps1, r1q, 1q P ObpCleavSnq. In a very similar fashion,

we wish to further deform the k� 1 hyperplanes involved in the recursively de�ned Θa0 .
To this end, assume we are given the hyperplanes H1, . . . , Hr�l where for all i, j   r � l
where i � j HiXS

n and HjXS
n are of distance at least ε to HiXS

n. We can take these
r � l as data for the l'th step of a deformation of Θa0pRa0pι1q, . . . , Ra0pιk�1qq, where
the �rst r hyperplanes de�nes timber as de�ned under µ above, and the remaining l
are hyperplanes that cleave this timber. By assumption in the de�nition of Θa0 , we are
given a hyperplane κpsl�1, rl�1q that cleave some al P ObpCleavSnq as de�ned through
a portion of the hyperplanes H1, . . . , Hl�r.
Only choosing j :� l�r will potentially satisfyHjXHiXS

n � H, and we therefore wish
to push Hr�l in the direction of the normal-vector νr�l, away from κpsl�1, rl�1q. Blindly
pushing κpsl�1, rl�1q in the direction of νrl will deform al to incorporate more hyperplanes
than the ones used to de�ning al, and we need to ensure continuity with respect to these
hyperplanes. Let therefore again νi denote the normal-vector of Hi in the direction away
from κpsl�1, rl�1q. Let similarly distpHiq P R� denote the distance by the hyperplane Hi

must be translated along νi to become a hyperplane, let ApUq P R� denote the area of
an n�1-dimensional subspace inside Sn. Assume that Hr�lXS

n and HiXS
n are within

ε distance of each other; potentially intersecting, for i P KHr�l � t1, . . . , l � r � 1u. We
push the hyperplanes indexed by KHr�l and Hr�l simultaneously to obtain hyperplanes
Hr�lptq and Hiptq where i P KHr�lptq at time t, hereby forming the timber alptq. Let

as usual Balptq denote the boundary of the closure of al within S
n. We push Hi in the

direction of νi with with speed distpHiptqq � p1�
ApBalptqXHiptq
ApSnXHiptqq

q while Hr�l is pushed with

speed distpHr�lptqq �maxiPKHr�l p
ApBalptqXHiptq
ApSnXHiptqq

q, and we stop once Hr�lptq is at distance at

least ε � miniPt1,...,r�l�1u distpHiptqq from Hiptq for all i P t1, . . . , rr�l�1u.
These formula ensure that Hr�l is only pushed past the subspace Hi X Sn if there is

a signi�cant portion of this subspace forming part of Bal. Hereby, we hence obtain the
timber al that κps

1, rl�1q cleaves for all s
1 P Sn, since the complement Aal will consist of

a disjoint union of subdisks of Sn.
For l � k � 1, this hence gives a subspace of CleavSnp�; kq parametrized by the

space
±k�1
l�1 pS

λσG pιlmin
,ιlmax q

ωσG pιlmin
,ιlmax q

� Recpalqq, where we again use (:) of 5.17, to identify the

parametrizing Rn�1-factor. Since RecpUq can be seen to be contractible, in fact convex,
for any U P ObpCleavSnq, the subspace to our given i-string is weakly equivalent to a
product of hemispheres.
Step 3: Given ι a i-string, and λ a l-string, we show that the associated spaces of ι

and λ,

Θa0pσG, ι, pRa0pι1q, . . . , Ra0pιk�1qqq and Θa0pσG, λ, pRa0pλ1q, . . . , Ra0pλk�1qqq
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respectively, are glued together along contractible subsets, where we consider these as
subsets of CleavSnp�; kq. Since step 2 tells us that the space associated to ι and the one
associated to λ are contractible, we have that the glued spaces are contractible. This
follows combining the Mayer-Vietoris sequence, Hurewicz map and the Van Kampen
theorem so that if A and B are two contractible spaces and A X B is contractible
then A Y B is again a contractible space. As we shall see, all spaces associated to
elements of

�k�1
i�1 Ii will be glued together along the common basepoint determined by

the hyperplanes P σG
orthogonal to the �rst coordinate axis of Rn�1 as determined by

the orientation of G. In e�ect, the glueing of all these spaces will result in a contractible
space.
In order to see how the spaces are glued together, we see in 5.17 that the spaces

associated to ι and λ are given by choosing new normal-vectors for the hyperplanes
P1, . . . , Pk of P σG

and decorating them on di�erent trees.
Considering ι and λ as permutations in Σk as given in 5.16, it a neccesary but not

su�cient condition that points in the spaces associated to ι and λ determined by the
tuppels pps1, r1q, . . . , psk�1, rk�1q and pps

1
1, r

1
1q, . . . , ps

1
k�1, r

1
k�1qq satisfy

psι�1piq, rι�1piqq � ps1λ�1piq, r
1
λ�1piqq (9)

for all i P t1, . . . , k � 1u, since the associated timber of the cleaving trees have to agree.
The condition (9) is not su�cient since the way the hyperplanes dominate each other

might be di�erent according to the two trees that the hyperplanes are decorating. Note
�rst of all that if (9) is satis�ed, and sι�1piq � sλ�1piq is the point S0

ωpιpiq all the hyper-
planes are parallel and parrallel to the �rst coordinate axis, where there is no dominance
amongst hyperplanes, identifying the points.
We have an ordering on the hyperplanes of the spaces associated to ι and λ, given by

Pιp1q, . . . , Pιpk�1q and Pλp1q, . . . , Pλpk�1q. Assume we are given rT, Pιs and rT
1, Pλs satisfying

(9) such that they agree as elements of DkpG,A0q. We want to show that there is a
unique path homotoping them onto trees decorated by hyperplanes orthogonal to the
�rst coordinate axis, in which case step 1 applies to provide the deformation retraction.
For the hyperplane Pιp1q, no other hyperplanes Pιp2q, . . . , Pιpk�1q will dominate Pιp1q.
We can use step 2 to assume that for the 2-ary tree decorated by only Pι1 , the reparam-

etization of the hyperplane along the geodesic path along the hemisphere S
λGpι1min

,ι1max q

ωGpι1min
,ι1max q

will always be contained in CleavSnp�; 2q.
However, we need to consider these paths for our trees decorated by multiple hyper-

planes. The condition (�) of 5.17 tells us that the geodesic path along the hemisphere

S
λGpι1min

,ι1max q

ωGpι1min
,ι1max q

parametrizing Pιp1q will be contained in the space associated to ι. Since the

elements rT, Pιs and rT 1, Pλs agree, the hyperplane Pλ�1pιp1q as a decoration of rT 1, P λs
will be bound to dominate the same hyperplanes as Pιp1q as an element of rT, P ιs, and
this will remain true along the reparametization along the geodesic, until Pιp1q no longer
dominates any other hyperplanes, since otherwise either rT, P ιs or rT, P λs would be
reparametrized to non-cleaving trees. To ensure that no new dominance occurs after the
potential step where Pιp1q no longer dominates any other hyperplanes, one translates
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along the �rst coordinate of Rn�1 in S
λGpι1min

,ι1max q

ωGpι1min
,ι1max q

� Rn�1 at the same speed in the

opposite direction as Pιp1q is moving away from the hyperplanes it used to dominate.
This eventually brings the hyperplanes Pιp1q parallel with the �rst coordinate axis of

R
n�1, and one iterates this construction for the remaining Pιp2q, . . . , Pιpk�1q in that order,

to � along a geodesic in the parametrizing hemispheres � bring them all parallel to the
�rst coordinate axis. Finally, having used step 2, one applies the inverse homotopy of µ
in step 2, to make these hyperplanes cleave a0.
As noted previously, step 1 now applies to �nish the proof.

Theorem 5.22 CleavSn is a coloured En�1-operad.

Proof. The lemmas 5.19, 5.20, 5.21 check (A)-(C) in 5.5 the functor D of 5.18 should
satisfy in order for CleavSn to be En�1. Note that 5.21 indeed gives the full naturality
as stated in (B), since we give an explicit homotopy equivalence onto ObpCleavSnq �
CleavSnp�; kq that respects morphisms of SpObpCleavSnqq.

Corollary 5.23 There is an equivalence of operads

H�pCleavSnq � H�pDisk n�1q

Proof. By 3.19 the colours of CleavSn are contractible, and by further 3.20, we can
apply 2.5, so H�pCleavSnq is a monochrome operad and 5.22 together with 5.7 gives the
corollary.

6 Semidirect Products of the Cleavage Operads

Given a topological space, X, we let HomeopXq denote the group of self-homeomor-
phisms of X.
Similar to having a monochrome G-operad in the category of G-spaces, for coloured

topological operads we give the following de�nition

De�nition 6.1 A topological group G acts on a coloured topological operad, O if we
are given

• . : G Ñ HomeopObpOqq a continuous map. Given g P G and U P ObpOq, under
adjunction, we denote the corresponding acted upon element as g.U .

• αi : GÑ HomeopOp�;mqq continous maps for all i P t1, . . . ,mu and m P N.

and these respect the topological structure of operads; i.e. letting g P G the following
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diagram should be commutative for all i P t1, . . . , ku and j P t1, . . . ,mu:

OpA; k �m� 1q

αi�j�1pgq
qqqqqqqqqqqqqqqq

xxqqqqqqqqq
OpA; kq �ObpOq Op�;mq //

�i

OO

��

xxqqqqqqqqqqqqqqqqqqqqqqqqqqqq
Op�;mq

evin
��

αjpgq
wwwwwwwwwwwwwwww

{{www
ww

OpA; k �m� 1q OpA; kq
evi // //

αipgq
qqq

qqq

xxqqqqqqqqqqqqqqqqqqqq

ObpOq

.gw
ww

ww
ww

ww
ww

{{ww
ww

ww
ww

ww
wOpA; kq �ObpOq Op�;mq //

�i

OO

��

Op�;mq

evin
��

OpA; kq
evi //// ObpOq

(10)

In the classical setting, when O is a monochrome operad, this recovers the notion
of a G-operad. We in this spirit call a coloured operad satisfying the above a coloured

G-operad.
In [SW03, 2.1], semidirect products of monochrome operads are introduced, and we

can expand the notion to the coloured setting by only expanding a little on the operadic
evaluation maps:

De�nition 6.2 For a coloured topological operad O with an action of a group G, we can
form the semidirect product of O by G, as for the monochrome setting denoted O �G,
by letting

• ObpO �Gq � ObpOq

• O �G � Op�; kq �Gk

Letting evi and evin denote the operadic evaluation maps of O. The operadic evalua-
tion maps evGi and evGin for the semidirect product are given by evGi pω, ρ1, . . . , ρkq �
ρi. evipωq and evGin � evin. As for the monochrome case, the operadic composition
�i : pO �Gqp�; kq �ObpOq pO �Gqp�;mq Ñ pO �Gqp�; k �m� 1q is given by twisting
the composition of O through the action of G in the following sense:

pω; ρ1, . . . , ρkq �i pω
1; η1, . . . , ηmq � pω �i ρi.ω

1; ρ1, . . . , ρi�1, ρi.η1, . . . , ρi.ηm, ρi�1, . . . , ρkq

Observation 6.3 As a gadget constructed from R
n�1, there is an induced action of

SOpn� 1q on CleavSn , precisely:
To an a�ne oriented hyperplane P P Hypn�1 and ρ P SOpn�1q, letting ρ act on Rn�1

by rotation leads P to the a�ne oriented hyperplane ρ.P . Hereby SOpn� 1q acts on the
space Hypn�1.
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There is also an action of SOpn�1q on ObpCleavSnq rotating timber U P ObpCleavSnq
obtained by cleaving Sn along some hyperplanes to the timber ρ.U obtained by cleaving
Sn along the hyperplanes rotated along ρ.
Let rT, P s P CleavSnpU ; kq, for some U P ObpCleavSnq. Let ρ.rT, P s � rT, ρ.P s,

understood in the sense that ρ rotates the decorations of T simultaneously. Having
rT, P s an element of CleavSnpU ; kq this should be interpreted in the sense that ρ.rT, P s
is an element of CleavSnpρ.U ; kq, ensuring that the decorated tree cleaving ρ.U and in
turn making this action of SOpn� 1q on CleavSn satisfy 6.1.

The action of 6.3 de�nes the semidirect product of CleavSn by SOpn�1q, in the sense
of 6.2.

Observation 6.4 We can extend the action of CleavSn along correspondances as given
in 4.4 to an action of CleavSn �SOpn� 1q on MSn by to prT, P s, ρ1, . . . , ρkq an element
of pCleavSn � SOpn� 1qqp�; kq considering the following pullback-diagram:

MSn

rT,P s

ϕ�ρ
//

��

�
MSn

	k
resρ

��

M
{π0pβrT,P sq ϕ // ±k

i�1M
pANiq

Where all spaces are as in 4.4, as is the map ϕ. However, the twisted restriction map

resρ is given by at the i'th factor of
�
MN

	k
be de�ned as resANi .ρ

�1
i , where the map

resX : MSn Ñ MX denotes the restriction map to the space X � Sn. The element
ρi P SOpn � 1q is considered as a di�eomorphism of Sn, and resX .ρ

�1
i denotes the

precomposition of ρ�1
i of the domain of f P MSn prior to applying the restriction map.

This preapplication of ρ�1
i allows us to consider resANi .ρ

�1
i as a map that takes points of

ρipANiq � Sn and brings these to ANi where a restriction map is subsequently applied.
Note that whereas this allows us to let ϕ be given as the same morphism as in 4.4,

which in turn allows us to again identify the pullback space MSn

rT,P s as maps from Sn

to M that are constant along the blueprint of rT, P s. However, the fact that we are
applying a twisted restriction map means that the associated map ϕ�ρ in the pullback

will be di�erent from 4.4. Concretely, ϕ�ρ is given by having the i'th image maps from

Sn to M that are constant along ρipANiq.
Note that this description of ϕ�ρ makes this action of correspondanes respect the op-

eradic composition, in the sense that for prT, P s, ρ1, . . . , ρkq and prT
1, P 1s, η1, . . . , ηmq �i-

composable as elements of CleavSn � SOpn� 1q, the change of colours by ρi : S
n Ñ Sn

in the operadic composition of the semidirect product makes it necessary for commu-
tativity of operadic associatativity diagrams to map MSn

rT,P s�iρi.rT 1,P
1s to the i � j � 1'th

factor of
�
MSn

	k�m�1
that are constant along the subspace ηjpρipANi�j�1qq � Sn, where

j P t1, . . . ,mu and i P t1, . . . , ku.
In [Bar11], we shall see that this makes the e�ect of SOpn�1q non-trivial in the action

of CleavSn �SOpn� 1q compared to CleavSn
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Proposition 6.5 Actions of H�pCleavSn �SOpn� 1qq are BVn�1-algebras, when H�p�q
denotes homology with coe�cients in a �eld.

Proof. Since CleavSn is a coloured En�1-operad; 5.22, with contractible colours as; 3.19,
we have that H�pCleavSnq is in particular a quadratic operad, with 3-ary operations
relations determined by the Gerstenhaber relations.
Hereby, the statement follows directly by applying [SW03, 4.4], to see that operadic ac-

tions of H�pCleavSn � SOpn�1qq agrees with operadic actions of H�pDisk n�1� SOpn�
1qq.

It is natural to conjecture that there is a weak equivalence of operads CleavSn � SOpn�
1q � Disk n�1� SOpn � 1q. However the string of equivalences of 5.5 does not end up
with an equivalence in 5.22 with intermediate terms, involving the nerve of the full graph
operad, that does not see the action of SOpn� 1q on Rn�1. One option for proving this
could be to attempt at making SOpn � 1q-equivariant versions of the nerve of the full
graph operad. We shall however not go into these considerations in this paper.
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