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GETZLER RESCALING VIA ADIABATIC DEFORMATION AND A

RENORMALIZED LOCAL INDEX FORMULA

KARSTEN BOHLEN, ELMAR SCHROHE

Abstract. We prove a local index theorem of Atiyah-Singer type for Dirac oper-
ators on manifolds with a Lie structure at infinity (Lie manifolds for short). After
introducing a renormalized supertrace on Lie manifolds with spin structure, defined
on a suitable class of rapidly decaying functions, the proof of the index theorem relies
on a rescaling technique similar in spirit to Getzler’s rescaling. With a given Lie
manifold we associate an appropriate integrating Lie groupoid. We then describe the
heat kernel of a geometric Dirac operator via a functional calculus with values in the
convolution algebra of sections of the rescaled bundle over the adiabatic groupoid and
introduce a rescaling of the heat kernel encoded in a vector bundle over the adiabatic
groupoid. Finally, we calculate the right coefficient in the heat kernel expansion using
the Lichnerowicz theorem on the fibers of the groupoid and the Lie manifold.

1. Introduction

There are various routes to the Atiyah-Singer index theorem (cf. [4], [5], [6]) for the
Fredholm index of elliptic operators on a closed manifold. Different proofs in turn
have often given rise to profound generalizations, in particular to the index theory of
elliptic operators on non-compact manifolds modeled on manifolds with singularities,
manifolds with boundary or manifolds with corners. A particularly fruitful approach
is based on the deformation groupoid (the tangent groupoid) introduced by A. Connes,
[10]. It has given rise to a number of extensions and generalizations, see e.g. [8], [14],
[32]. In the analysis of non-compact manifolds modeling different types of singular
manifolds, Lie groupoids enter naturally as models for singular spaces, an observation
first made by A. Connes. The problem then is to find ellipticity conditions implying the
Fredholm property of a suitable class of differential operators acting between appro-
priate Sobolev spaces as the most natural condition, namely the pointwise invertibility
of the invariantly defined principal symbol, is no longer sufficient. If the noncompact
manifold is the interior of a compact manifold with corners and the boundary strata
are embedded submanifolds of the same dimension, the index theory of foliations ini-
tiated by A. Connes and G. Skandalis [12] provides a basis for the formulation of an
index problem. In general, however, the dimension of the strata will vary. Moreover,
Connes realized that the natural receptacle for the foliation index is the K-theory of
the C∗-algebra of the holonomy groupoid of the foliation. Similarly, for a manifold with
corners, the corresponding generalized analytic index maps into the K-theory of the
C∗-algebra of the Lie groupoid which desingularizes the manifold. The task therefore
is to find a purely topological interpretation of the generalized analytic index. This has
been achieved for several cases of singular manifolds, see e.g. [32] for Lie manifolds.
A significant drawback of this approach is that the generalized analytic index almost
never equals the Fredholm index. In fact, both agree for closed manifolds, since in this
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2 KARSTEN BOHLEN, ELMAR SCHROHE

case the groupoid under consideration is the pair groupoid whose C∗-algebra is the
algebra of the compact operators. In other interesting cases the Fredholm index does
not equal the generalized analytic index. The more difficult problem is therefore to
calculate the Fredholm index in topological terms, thus generalizing the Atiyah-Singer
index theorem to a large class of non-compact manifolds.
In this article we focus on such a large class, namely, the manifolds with a Lie structure
at infinity or Lie manifolds for short. While many special instances of these manifolds
have been considered in the literature and index theorems of the above type have
been proven by different techniques, a general Fredholm index theorem, valid for any
Lie manifold, has not yet been obtained. We refer to the excellent survey [36] for
more information. The problem lies in the more complicated Fredholm conditions on
non-compact manifolds and the fact that the boundary strata give rise to non-local
invariants in the resulting index theorem. Only in the simplest case of asymptotically
flat Lie structures is a direct analogue of Atiyah-Singer possible, cf. [11].
In this article we will follow the strategy to first establish a local index theorem via
the heat kernel and then use this local index theorem to prove the Atiyah-Singer in-
dex formula. On the other hand we adhere to the program, started by A. Connes
and continued by other authors, of using deformation groupoids in order to extract
the Fredholm index and to express it in topological terms. The particular technique,
however, is different from the tangent groupoid proof in [10], because this proof would
a priori only calculate the generalized analytic index. (Note, however, that at least for
manifolds with boundary, the authors in [8] have obtained a groupoid version of the
Atiyah-Patodi-Singer index theorem by modifying Connes’ technique.) We describe
instead a proof which combines the rescaling technique of Getzler with the adiabatic
groupoid.
Early proofs of the local index theorem are due to Atiyah-Bott-Patodi [3], Gilkey [17]
and Patodi [39]. Our proof is based on Getzler’s rescaling proof, see [16] and also [7]
for a very good exposition. We think that it is possible to use the idea of Getzler of

replacing the heat kernel k by a rescaled heat kernel k(u, t, x) = u
n
2 k(ut, u

1
2x), 0 <

u ≤ 1, subsequent calculation of the asymptotic expansion of the rescaled kernel and
application of the Lichnerowicz theorem in the limit u→ 0+, and adapt it to our more
general case. Nevertheless, we have chosen to apply a deformation groupoid argument.
The idea for such an argument in the standard case, using the tangent groupoid, can be
found already in Quillen’s notebooks, [40]. We partly rely on unpublished notes by P.
Siegel [43] and the expository account of Getzler’s argument by J. Roe [41]. Siegel gives
an account of a rescaling technique using the tangent groupoid, deriving the local index
formula for a smooth closed manifold. In our more general case one has to confront a
number of difficulties which we will explain in the sequel.

1.1. Overview. Manifolds with a Lie structure at infinity have been introduced by
Ammann, Lauter and Nistor, [1]. They can be used to model many types of singular
manifolds. A Lie manifold is a tuple (M,A,V) where M is a compact manifold with
corners and V ⊂ Γ(TM) is a Lie algebra of smooth vector fields. Moreover, V is assumed
to be a subset of the Lie algebra Vb of all vector fields tangent to the boundary strata
and to be a finitely generated projective C∞(M)-module. Also the compact manifold
with corners M is thought of as a compactification of a non-compact manifold with
a degenerate, singular metric which is of product type at infinity. We denote by ∂M
the (stratified) boundary of M and M0 = M \ ∂M the interior. By the Serre-Swan
theorem there exists a vector bundle A → M such that Γ(A) ∼= V. The bundle A
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has the structure of a Lie algebroid. A further piece of information we need is a Lie
groupoid G ⇒ M . It is known that for any Lie structure there is an s-connected Lie
groupoid G such that A(G) ∼= A. For general Lie algebroids, Crainic and Fernandes
[13] obtained computable obstructions for the integrability. In our case we have to
construct a holonomy groupoid G with good topological properties (e.g. amenable and
Hausdorff) for the given Lie structure, see e.g. [33]. We make the common assumption
that A|M0

∼= TM0 and G|M0
∼= M0 ×M0 are the tangent bundle and pair groupoid on

the interior, respectively. Additionally, we say that the Lie manifold is non-degenerate,
if we can find an integrating Lie groupoid which is Hausdorff. We recall particular
examples of such groupoids in the main body of the paper.
We also assume that the Lie manifold (M,A,V) is spin, i.e. there is a spin structure
S → M , cf. [2]. We let W be a Cl(A)-module, where Cl(A)→ M denotes the bundle
of Clifford algebras on the fibers of A. By D we denote a geometric Dirac operator
obtained from an admissible connection ∇W , cf. [26]. We will call a bilinear form
g = gA defined on A, which yields a Riemannian metric when restricted to M , a

compatible metric, cf. [2]. The heat kernel κt of e−tD
2

will not be of trace class in
general, because the trace does a priori only exist on the interior of the manifold with
corners M . We therefore introduce the renormalized super-trace VTrs which relies on
a regularization at infinity. In addition, we introduce a suitable class S(G) of rapidly
decaying functions or distributions over the integrating groupoid and a corresponding
class VS(M) over the Lie manifold. If the Lie structure is non-degenerate, we can assume
G to be Hausdorff. In this case we prove that VS(M) can be identified with S(G) via
the vector representation % : End(C∞(G))→ End(C∞(M)). The vector representation
is characterized by the equality: %(P )(f ◦ r) = (Pf) ◦ r, where r is the range map of
the groupoid (a surjective submersion), P ∈ End(C∞(G)) and f ∈ C∞(M), see also
[1], [38].
In the classical setting, the tangent groupoid deforms the pair groupoid over the
manifold M into its tangent bundle TM . In our case we deform the integrating
groupoid G, rather than just the pair groupoid, and consider the adiabatic groupoid
Gad = G × (0, 1] ∪ A(G) × {0} which deforms G into the Lie algebroid A(G). Then we
perform the rescaling over the adiabatic groupoid adapted to a formal Ansatz for the
asymptotic expansion of the heat kernel. The geometric admissible Dirac operator D
on a Lie manifold is realized as the vector representation of a corresponding geometric
admissible Dirac operator /D on the Lie groupoid, see [26]. Hence given the heat kernel
kt on the Lie groupoid whose vector representation is the heat kernel κt on the Lie
manifold, we consider the Ansatz for the asymptotic expansion of kt. We also gather
from [45] and [46] the proof of the approximation of the heat kernel on Lie groupoids
as described for complete Riemannian manifolds in [7]. We use this approximation
and the estimates from [45] to show that the heat kernel is contained in the Schwartz

class S(G). The asymptotic expansion Ansatz is e−t /D
2

∼ (4π)−
n
2 t−

n
2
∑∞

i=0 ait
i. We

next describe a way to extract the coefficient an/2 in the asymptotic expansion of

the heat kernel. For this we deform /D into a smooth equivariant family of operators
on the Lie algebroid A(G) associated to M . The rescaling deforms /D in such a way
that the Clifford multiplication is taken into account and at the same time the right
coefficient in the Ansatz is extracted. This is done by a rescaling of the Clifford al-
gebra. The result is that /D is deformed into a polynomial coefficient operator whose
supertrace has the right asymptotics. We then study the groupoid convolution algebra
C∞c (Gad,Hom(S)) where hom(S)→M given by hom(S)x ∼= hom(Sx, Sx) ∼= Cl(Ax⊗C)
is lifted to an equivariant bundle Hom(S)→ Gad. Given a Clifford filtration by degree
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Cl0 ⊆ Cl1 ⊆ · · · ⊆ Cl(A ⊗ C), we can extend this filtration to a neighborhood of A
within the adiabatic groupoid Gad. Here we view A as an embedded boundary stratum
of the manifold Gad and use the accompanying tubular neighborhood to extend the
filtration. Subsequent to this we introduce an equivariant rescaling bundle S̃ → Gad
extending Hom(S) such that the sections of this bundle have a polynomial coefficient
expansion, where the coefficients are contained in the sections of the extended Clif-
ford filtration. We define a functional calculus which realizes the groupoid heat kernel
as an element of the convolution algebra of smooth sections of the rescaled bundle
C∞c (Gad, S̃). The final calculation of the coefficient in the asymptotic expansion is then
performed using the Lichnerowicz theorem applied to the fibers of the Lie groupoid
and, by G-invariance, to the Lie manifold.

1.2. The main theorem. We will prove the following result:

Theorem 1.1. Let (M,A,V) be an n-dimensional non-degenerate Lie manifold, S →
M a spin structure, Cl(A)→M the bundle of Clifford algebras and W ∈ Cl(A)−mod
a Clifford module. Given a compatible Riemannian metric g = gA fix an admissible
connection ∇W and the corresponding Dirac operator D = DW ∈ Diff1

V(M ;W ). Then
we have the formula for the renormalized super trace

lim
t→∞

VTrs(e
−tD2

) =
V∫− VA ∧ expFW/S dµ+ Vη(D) (1)

where FW/S is the twisting curvature and VA = h(R), for the curvature tensor R
obtained from the compatible metric, denotes the n-form given by the formal power
series

h(R) =

(
− i

2π

)n
2

det

(
1
2R

sinh(1
2R)

) 1
2

.

The function Vη is the renormalized η-invariant which is given by the integrated trace
defect

Vη(D) :=
1

2

∫ ∞
0

VTrs([D,De
−tD2

]) dt.

The left hand side of (1) has been shown to converge to the Fredholm index in special
cases (cf. [30], Section 7.8) and the trace defect Vη on the right hand side can be
calculated in terms of restrictions to the boundary strata (cf. [30], Section 5.5), though
this calculation is rather complicated in general. We refer to [20], [21] and [30] for the
discussion in the case of b-manifolds. A local index formula in the special case of cusp
vector fields has been obtained in [24] and for the case of a fibered cusp Lie structure in
[25] as well as in [22] by using the method of deformation of the metrics of b-, cusp and
fibered cusp type. We also refer to [31] for a K-theoretic index theorem on manifolds
with fibered cusp structure.
The paper is organized as follows. In the second section we give the definition of the
geometric Dirac operators for Lie groupoids and Lie manifolds. We also prove the
Lichnerowicz theorem for the generalized Laplacian on a Lie manifold defined with
respect to an admissible connection. In the third section we study the groupoid heat
kernel and its approximation. We introduce a class of rapidly decaying functions on a
Lie groupoid and show that under suitable conditions the heat kernel is contained in this
class. In Section four we define a functional calculus for the convolution algebra over
the adiabatic groupoid. The fifth section contains the definition of the renormalized
super trace on Lie manifolds as well as the class of rapidly decaying functions on Lie
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manifolds. Finally, in section six we introduce the rescaling and give the proof of the
main theorem.

2. Dirac operators on Lie manifolds

Geometric Dirac operators on Lie manifolds are given as vector representations of op-
erators on Lie groupoids integrating the Lie structure. In this section we will outline
some details of their construction, following [1], and state the corresponding Lich-
nerowicz theorem. To this end we will assume that the given Lie manifold carries a
spin structure, which we will keep fixed, and an admissible connection.
Let (M,A,V) be an n-dimensional Lie manifold. Denote by PSO(A)→ M the bundle
of oriented orthonormal frames. This is a principal SO(n)-bundle. According to [2], a
spin structure over M is a tuple (PSpin(A), α), where PSpin(A) is a principal Spin(n)-
bundle and α : PSpin(A) → PSO(A) is a fiber map over the identity of M , compatible
with the double covering θ : Spin(n) → SO(n) and the corresponding group actions,
i.e., the following diagram commutes

Spin(n)× PSpin(A)

θ×α

��

// PSpin(A)

α

��

$$

M,

SO(n)× PSO(A) // PSO(A)

::

where the horizontal arrows are induced by the group actions.
The spinor bundle is defined as S := PSpin(A)×σn Σn, where σn : Spin(n)→ SU(Σn) is
the complex spinor representation (e.g. the restriction of an odd complex irreducible
representations of the Clifford algebra on n-dimensional space). Here Σn denotes an
irreducible spin-representation of Cln(A) ⊗ C. If n is odd there are two distinct ir-
reducible representations. For n even, there is one irreducible representation which
splits into two non equivalent sub-representations. See also Lawson and Michelsohn[27,
Section II.3].
A Clifford module W →M is a complex vector bundle together with a positive definite
inner product 〈·, ·〉, anti-linear in the second component, anA∗-valued connection∇W ∈
DiffV(M,W,W ⊗A∗) and a linear bundle map A⊗W →W, c : X ⊗ ϕ 7→ X · ϕ called
Clifford multiplication, such that the following holds.

(1) (X · Y + Y ·X + 2g(X,Y )) · ϕ = 0 for each X,Y ∈ Γ(A), ϕ ∈ Γ(W ).
(2) ∇W is metric

∂X〈ψ,ϕ〉 = 〈∇WX ψ,ϕ〉+ 〈ψ,∇WX ϕ〉, X ∈ Γ(A), ϕ, ψ ∈ Γ(W ).

(3) Clifford multiplication with vectors is skew-symmetric, i.e.,

〈X · ψ,ϕ〉 = 〈ψ,Xϕ〉, ϕ, ψ ∈ Γ(W ), X ∈ Γ(A).

(4) The connection is admissible, i.e.

∇WX (Y · ϕ) = (∇XY ) · ϕ+ Y (∇WX ϕ), X, Y ∈ Γ(A), ϕ ∈ Γ(W ).

Here ∇ is the Levi-Civita connection with respect to the compatible metric.
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Definition 2.1. Let W → M be a Clifford bundle and g a compatible metric. Then
the geometric Dirac operator DW is defined by the composition DW = c◦(id⊗])◦∇W ,
acting on Γ(W ),

Γ(W )
∇W // Γ(W ⊗A∗)

id⊗]
// Γ(W ⊗A)

c // Γ(W ),

where c denotes Clifford multiplication and ] is the conjugate-linear isomorphism A ∼=
A∗ induced by the metric g.

Following [26], we next outline the construction of a geometric Dirac operator /D on G
as a G-invariant family of operators on the s-fibers (Gx)x∈M of a given Lie groupoid
G ⇒ M integrating the Lie structure, i.e. A(G) ∼= AV . Fix the spinor bundle S → M
as above, the bundle Cl(A)→ M of Clifford algebras and a Clifford module W → M .
The Clifford multiplication defines a map c : Cl(A)→ End(W ).

The Levi-Civita connection on G is obtained as follows. Let X ∈ Γ(A) and let X̃ denote
a lift to a G-invariant s-vertical vector field (i.e. a smooth section of TsG := ker ds). For
x ∈M let gx be the metric on Gx induced by the fixed compatible Riemannian metric g.
Denote by ∇x : Γ(TsGx)→ Γ(TxGx⊗T ∗s Gx) the Levi-Civita connection associated to gx.
We obtain a smooth and G-invariant family of differential operators ∇x

X̃
: Γ(TsGx) →

Γ(TsGx) that descends to ∇X ∈ Diff(G,A).
According to [26, Proposition 6.1], we find a G-invariant connection ∇/ W on G satisfying
the following condition of admissibility,

∇/ W
X (c(Y )ξ) = c(∇XY )ξ + c(Y )∇/ W

X (ξ), ξ ∈ Γ(r∗W ), X, Y ∈ Γ(r∗A). (2)

Definition 2.2. Let W → M be a Clifford module and G ⇒ M a Lie groupoid. The

geometric Dirac operator /D
W

is defined by /D
W

:= c◦ (id⊗ ])◦∇W where ] denotes the
conjugation isomorphism induced by the fixed compatible metric g, c ∈ Hom(W ⊗A∗)
Clifford multiplication and ∇W ∈ Diff(G; r∗W, r∗W ⊗A∗) an admissible connection.

It is shown in [26] that, with the above definition, the Dirac operator on the Lie manifold
M is the vector respresentation of the Dirac operator on the Lie groupoids. We now
state the Lichnerowicz theorem for the generalized Laplacian D2 of a Dirac operator
D on a Lie manifold. The proof is similar as in [7], but we provide the details to make
the paper more self-contained.

Theorem 2.3 (Lichnerowicz formula). Let (M,V,A) be a Lie manifold, S → M a
spin structure and g = gA a compatible Riemannian metric. Denote by Cl(A) → M
the Clifford bundle and let W ∈ Cl(A) − mod be a Clifford module. Let ∇W be an
admissible connection and D the corresponding Dirac operator. Then we have the
formula

D2 = ∆W + c(FW/S) +
κ

4

where κ is scalar curvature, FW/S ∈ Λ2(EndCl(A)W ) is the twisting curvature.

Proof. Let R be the Riemannian curvature tensor induced by the fixed compatible
metric g. We give the construction of the twisting curvature in the proof of the following
assertion.
Claim: The curvature R∇

W ∈ Λ2(End(W )) decomposes under the isomorphism

End(W ) ∼= Cl(A∗))⊗ EndCl(A∗)(W )
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as RW +FW/S , where RW is the action of the Riemannian curvature R on W given by

RW (ei, ej) =
1

4

n∑
k,l=1

g(R(ei, ej)ek, el)c(e
k)c(el), (3)

for an arbitrary orthonormal frame {e1, · · · , en} of A and the dual frame {e1, · · · , en}.
Proof of the claim: Note that RW ∈ Λ2(Cl(A)). We set FW/S := R∇

W − RW and

show that FW/S ∈ Λ2(EndCl(A∗)W ). To this end we will prove that the exterior mul-

tiplication ε(FW/S) acting on Γ(W ) commutes with Clifford multiplication c(a) by an
element a ∈ A∗.
Since ∇W is admissible we have [∇W , c(a)] = c(∇a) where ∇ is the connection obtained
from the fixed compatible metric g. Hence we get

[R∇
W
, c(a)] = [∇W , [∇W , c(a)]] = [∇W , c(∇a)] = c(∇2a) = c(Ra).

We need to show that RW also satisfies the commutator property [RW , c(a)] = c(Ra).
For then

[FW/S , c(a)] = [R∇
W
, c(a)]− [RW , c(a)] = 0

and hence FW/S is an element of Λ2(EndCl(A∗)W ).

We identify A ∼= A∗ via g and write a =
∑n

l=1 e
k(a)ek. Then

R(ei, ej)a =
n∑
l=1

g(R(ei, ej)a, el)e
l =

n∑
k,l=1

g(R(ei, ej)ek, el)e
k(a)el. (4)

It is sufficient to check the commutator property for a = es, s = 1, . . . , n. We first
recall the identity

c(ei)c(ej)c(ek)

=
1

3!

∑
σ∈S3

sgn(σ)c(eσ(i))c(eσ(j))c(eσ(k))− δijc(ek)− δjkc(ei) + δkic(ej). (5)

According to (3) we then obtain

RW (ei, ej)c(e
s)− c(es)RW (ei, ej) =

1

4

n∑
k=1

g(R(ei, ej)ek, es)c(e
k)c(es)c(es)

− c(es)1

4

n∑
k=1

g(R(ei, ej)ek, es)c(e
k)c(es) +

1

4

n∑
l=1

g(R(ei, ej)es, el)c(e
s)c(el)c(es)

+ c(es)
1

4

n∑
l=1

g(R(ei, ej)es, el)c(e
s)c(el).

By Clifford multiplication all four terms take the form 1
4

∑n
l=1 g(R(ei, ej)es, el)c(e

l).

Together with (4) we find that [RW (ei, ej), c(e
k)] = c(Rek), and this proves the claim.

If c denotes the quantization map Λ → Cl, then FW/S ∈ Λ2(EndCl(A∗)(W )) has the
image under c

c(FW/S) =
∑
i<j

FW/S(ei, ej)c(e
i)c(ej).

The scalar curvature κ is given by

κ =
∑
ik

Rikik, Rijkl := g(R(ei, ej)ek, ej).
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Write D =
∑

i c(e
i)∇Wi for ∇Wi the covariant derivative in direction ei. This gives

D2 =
1

2

∑
i,j

[c(ei), c(ej)]∇Wi ∇Wj +
∑
i,j

c(ei)[∇Wi , c(ej)]

+
1

2

∑
i,j

c(ei)c(ej)[∇Wi ,∇Wj ].

By Clifford multiplication we have [c(ei), c(ej)] = −2gij , hence the first formula be-
comes −

∑
i,j g

ij∇Wi ∇Wj . Secondly, by admissibility of ∇W it follows [∇Wi , c(ej)] =

c(∇iej). Write ∇iej = −
∑

k Γjike
k in terms of Christoffel symbols. Then [∇Wi , c(ej)] =

−
∑

k Γjikc(e
k). Using the symmetry of Γjik in i and k rewrite the second term∑

ij

c(ei)[∇Wi , c(ej)]∇Wj =
1

2

∑
i,k

[c(ei), c(ek)]
∑
k

Γjik∇
W
j

= −
∑
i,k

gik
∑
k

Γjik∇
W
j .

For the third term consider the curvature tensor R∇
W

and use [ei, ej ] = 0, i 6= j to
obtain

[∇Wi ,∇Wj ] = R∇
W

(ei, ej).

Putting everything together D2 is rewritten as

D2 = −
∑
i,j

gij(∇Wi ∇Wj −
∑
k

Γkij∇Wk ) +
1

2

∑
i,j

c(ei)c(ej)R∇
W

(ei, ej).

Notice that the first term on the right is ∆W . By the claim, the second term is rewritten

1

2

∑
i,j

c(ei)c(ej)R∇
W

(ei, ej) = −1

8

∑
ijkl

Rijklc(e
i)c(ej)c(ek)c(el) + c(FW/S).

Rewrite c(ei)c(ej)c(ek) as in (5), recall the Bianchi identity Rijkl + Rkijl + Rjkil = 0
and apply it together with (5) to obtain∑
ijkl

Rijklc(e
i)c(ej)c(ek)c(el) = −

∑
ijkl

Rijkl(−δijc(ek)− δjkc(ei) + δkic(ej))c(el)

= −
∑
ilk

Riiklc(e
k)c(el)−

∑
ikl

Rikklc(e
i)c(el) +

∑
jkl

Rkjklc(e
j)c(el).

Since R is antisymmetric in the first two entries, the first term on the right hand side
vanishes. Renaming indices we obtain∑

ijkl

Rijklc(e
i)c(ej)c(ek)c(el) = 2

∑
ijk

Rjkikc(e
j)c(ei).

Since
∑

ij Rjkikc(e
j)c(ei) = −

∑
iRikik we obtain the result. �

3. Heat kernel approximation for Lie groupoids

The heat kernel of a groupoid Laplacian is a convolution kernel which has the prop-
erties expected of the heat kernel. We recall the approximation of the heat kernel on
Riemannian manifolds from Berline, Getzler and Vergne, [7] and the corresponding
approximation on Lie groupoids. Note that if G ⇒M is a Lie groupoid over a Lie man-
ifold (M,A,V) such that A(G) ∼= A, then an admissible metric g yields a C∞-family of
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Riemannian metrics (gx)x∈M on the s-fibers (Gx)x∈M . We fix such a g and note that,
by the definition of submersions on manifolds with corners, the s-fibers are smooth
manifolds without corners, cf. [26]. Additionally, (Gx, gx) is a Riemannian manifold
with uniformly bounded geometry and we refer to [46] for a proof of this.
The class of Lie manifolds (M,A,V) we consider in this section will be non-degenerate
Lie structures whose integrating groupoid is Hausdorff.
We will give examples of such Lie structures below.
Let us fix for the moment a Lie groupoid G ⇒ M and a Haar system {µx}x∈M on G
such that there is a length function, i.e. a function ϕ : G → R+ which has the following
properties:
i) ϕ(γ1γ2) ≤ ϕ(γ1) + ϕ(γ2) for (γ1, γ2) ∈ G(2).
ii) ϕ(γ−1) = ϕ(γ)−1, γ ∈ G.
iii) ϕ is proper.
In [23] the authors require in addition:
iv) ϕ is of polynomial growth, i.e. there is a C > 0 and N ∈ N such that for each
r ∈ R+ we have µx(ϕ−1([0, r])) ≤ C(rN + 1).
Condition iv) guarantees that for k sufficiently large the integral

∫
Gx

1
(1+ϕ(γ))k

dµx(γ)

remains uniformly bounded. We will recall below some of the consequences of this
additional property. Though we remark at the outset that the Schwartz spaces we will
consider do not need this assumption.
A vector field v in Γ(A(G)) = V can be regarded as a G-invariant first order differential
operator on G (by lifting v to the s-vertical tangent bundle of the groupoid). We
denote by (v1, · · · , vl) 7→ ωv,i the distributional action ωv,i(f) = v1 · · · vifvi+1 · · · vl for
f ∈ C0(G). Define

Sk,0ϕ (G) := {f ∈ C0(G) : sup
γ∈G
|P(ϕ(γ))f(γ)| <∞, P ∈ R[X], degP = k}.

Also define the spaces

Sk,lϕ (G) := {f ∈ C0(G) : ‖f‖P,l <∞, P ∈ R[X], deg(P) = k}.

Here we denote by ‖ · ‖P,l for l ∈ N and a given polynomial P ∈ R[X] of degree k, the
seminorms

‖f‖P,l := sup
1≤i≤l

sup
‖vj‖≤1, v=(v1,··· ,vl)∈V

sup
γ∈G
|P(ϕ(γ))ωv,i(f)|.

Proposition 3.1. The spaces {Sk,lϕ (G)}k,l∈N form a dense projective system of Banach
spaces.

Proof. We have the semi-norm system ‖ · ‖P,l given by

f 7→ sup
1≤i≤l

sup
‖vj‖≤1, v=(v1,··· ,vl)∈V

sup
γ∈G
|P(ϕ(γ))ωv,i(f)|

and parametrized by P ∈ R[X] and l ∈ N. We also have the system {‖ · ‖k,l}k,l∈N where

f 7→ ‖f‖k,l := sup
1≤i≤l

sup
‖vj‖≤1, v=(v1,··· ,vl)

sup
γ∈G

(1 + ϕ(γ))k|ωv,i(f)|.

It is easy to check that the two systems are equivalent.
For the projectivity we observe that if l is fixed and k1 ≥ k2 then ‖ · ‖k1,l ≤ ‖ · ‖k2,l.
Secondly, if k is fixed and l1 ≥ l2 then ‖ ·‖k,l1 ≤ ‖·‖k,l2 . The density of the inclusions is

immediate. We obtain that {Sl,kϕ (G)}(l,k)∈N2 forms a dense projective system of Banach
spaces. �
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Definition 3.2. Let G ⇒M be a Lie groupoid with length function ϕ : G → R+. Then
define the space of rapidly decaying distributions as the dense projective limit

Sϕ(G) := lim←−
k,l∈N

Sk,lϕ (G).

If the length function is of polynomial growth the class is closed under holomorphic
functional calculus, see [23, Theorem 7.5].

Proposition 3.3. Let G ⇒ M be a Lie groupoid with polynomial length function ϕ.
Then Sϕ(G) is a ∗-subalgebra of C∗r (G), stable with regard to holomorphic functional
calculus.

In fact, it is shown in [23, Lemma 7.8] that Sk,lϕ (G) is closed under holomorphic func-
tional calculus in C∗r (G) for large k, hence so is Sϕ(G).

Example 3.4. i) Let M be a compact manifold with embedded corners and {ρi}Ni=1
a set of boundary defining functions. The boundary of M is stratified by the closed,
codimension one hyperfaces Fi = {ρi = 0}:

∂M =
⋃

1≤i≤N
Fi.

We consider the Lie structure Vb := {V ∈ Γ∞(TM) : V tangent to Fi, 1 ≤ i ≤ N}.
The Lie algebroid A → M is the b-tangent bundle such that Γ(A) ∼= Vb. Following
Monthubert [34], we find a Lie groupoid Gb(M) integrating A which is s-connected,
Hausdorff and amenable: We start with the set

Γb(M) = {(x, y, λ) ∈M ×M × (R+)N : ρi(x) = λiρi(y), 1 ≤ i ≤ N}

endowed with the structure (x, y, λ)◦(y, z, µ) = (x, z, λ·µ), (x, y, λ)−1 = (y, x, λ−1) and
r(x, y, λ) = x, s(x, y, λ) = y, u(x) = (x, x, 1). Here multiplication λ · µ and inversion
λ−1 are componentwise.
We then define the b-groupoid Gb(M) as the s-connected component (the union of
the connected components of the s-fibers of Γb(M)), i.e. Gb(M) := CsΓb(M). The
b-groupoid has the polynomial length function ϕ(x, y, λ) = | ln(λ)|, cf. [23].
ii) Let M be a compact manifold with corners as in the previous example. Fix the Lie
structure Vcn of generalized cusp vector fields for n ≥ 2 given by the local generators in
a tubular neighborhood of a boundary hyperface: {xn1∂x1 , ∂x2 , · · · , ∂xn}. Let us recall
the construction of the associated Lie groupoid Gn(M), the so-called cusp groupoid,
given in [23] for the benefit of the reader. We set

Γn(M) := {(x, y, µ) ∈M ×M × (R+)N : µρi(x)nρi(y)n = ρi(x)n − ρi(y)n}

with structure r(x, y, λ) = x, s(x, y, λ) = y, u(x) = (x, x, 0) and (x, y, λ)(y, z, µ) =
(x, z, λ + µ). We then define Gn(M) as the s-connected component of Γn(M). There
exists a homeomorphism Θn : Gb(M)→ Gn(M) given by (x, y, λ) 7→ (u, v, µ) as follows.
Assume first that M has only one boundary hyperface, i.e. M is a manifold with
boundary. The generalization to arbitrarily many hyperfaces is easy. We then partition
M into M = U ∪ (M \ U) where U is a tubular neighborhood of the boundary. Then

u =

{
x, x ∈M \ U
π−1 ◦ τn ◦ π(x), x ∈ U
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and

v =

{
y, y ∈M \ U
π−1 ◦ τn ◦ π(y), y ∈ U

Here τn : R+ → R+ is the continuous and strictly increasing function given by

t 7→


1
e (− ln(t))−

1
n , t ∈

(
0, 1

e

)
,

0, t = 0,

t, t ≥ 1
e

.

Set µ = log(λ) and check with the above that µρ(u)nρ(v)n = ρ(u)n − ρ(v)n. This
transformation in a tubular neighborhood of the boundary motivates the definition
of the cusp groupoid. The polynomial length function on the cusp groupoid is then
obtained by ϕn := ϕ ◦ Θ−1

n where ϕ denotes the polynomial length function of the b-
groupoid and Θn is the homeomorphism constructed above. We obtain that ϕ(x, y, µ) =
|µ|.
iii) The following example of the fibered cusp calculus is from Mazzeo and Melrose [28]
and we use the formulation and notation for manifolds with fibered corners as given
in [15]. We briefly recall the definition of the associated groupoid and refer to loc.
cit. for the details. See also [18] for the precise geometric construction of the fibered
cusp groupoid and the associated polynomial length function in this case. Let M be
a manifold with embedded and fibered corners. We denote by {Fi}Ni=1 the boundary
hyperfaces of M with boundary defining functions ρi and write π = (π1, · · · , πN ), where
πi : Fi → Bi are fibrations; Bi is the base, which is a compact manifold with corners.
Define the Lie structure

Vπ := {V ∈ Vb : V|Fi tangent to the fibers πi : Fi → Bi, V ρi ∈ ρ2
iC
∞(M)}.

Then Vπ is a finitely generated C∞(M)-module and a Lie sub-algebra of Γ∞(TM).
The corresponding groupoid is amenable [15, Lemma 4.6]; as a set it is defined as

Gπ(M) := (M0 ×M0) ∪

(
N⋃
i=1

(Fi ×πi T πBi ×πi Fi)× R

)
,

where T πBi denotes the algebroid of Bi.

Reduced metric distance. In view of the right invariance of the action of G on itself
we consider the family of metrics (gx)x∈M on the s-fibers of the groupoid. We denote
the family of induced metric distances by (dx)x∈M and note that this is a G-invariant
family as well, i.e.,

ds(γ)(γ1γ, γ2γ) = dr(γ)(γ1, γ2).

Given γ, η ∈ Gs(γ) we see from this that ds(γ)(γ, η) = dr(γ)(idr(γ), ηγ
−1). Hence we can

define a reduced metric distance by ψ(γ) := ds(γ)(ids(γ), γ).

Lemma 3.5. The reduced metric distance ψ(γ) = ds(γ)(ids(γ), γ) is a length function,

i.e. if (γ, η) ∈ G(2) then ψ(γη) ≤ ψ(γ) + ψ(η) and for each γ ∈ G we have ψ(γ−1) =
ψ(γ).
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Proof. First apply the triangle inequality, the G-invariance and the fact that r(η) = s(γ)
by composability to obtain

ψ(γη) = ds(γη)(ids(γη), γη)

≤ ds(γη)(ids(γη), η) + ds(γη)(η, γη)

= ds(η)(ids(η), η) + ds(γ)(ids(γ), γ).

Secondly, by right invariance

ψ(γ−1) = ds(γ−1)(ids(γ−1), γ
−1) = dr(γ−1)(γ, idr(γ−1))

= ds(γ)(γ, ids(γ)) = ψ(γ).

�

Definition 3.6. Given a Hausdorff Lie groupoid G ⇒ G(0), we write S(G) := Sψ(G),
where ψ is the reduced metric distance of G.

On the Lie groupoid G ⇒ G(0) = M we introduce the heat kernel for the generalized

(twisted) Laplacian /D
2

depending on the admissible connection ∇/ W (see Section 2 for
the definitions and notation). If g = gA is a compatible metric induced on (M,A,V),
then (M, g) is also a manifold with bounded geometry, see [2]. Let us fix an invari-
ant connection ∇ on G which is obtained from the G-invariant family of connections
(∇x)x∈G(0) associated to the G-invariant family of metric (gx)x∈G(0) . Hence by varying

x ∈ G(0) we obtain from the family of exponential mappings expx : TGx → Gx an expo-
nential mapping exp∇ : A → G, see [38, p. 128f]. Let r0 > 0 be the bounded injectivity
radius. Then the induced exponential mapping exp∇ maps (A)r0 := {v ∈ A : ‖v‖g <
r0} diffeomorphically onto its image Br0 := {γ ∈ G : ds(γ)(γ, s(γ)) < r0}. We fix polar

coordinates (p, θ) on Ax such that d(exp∇(p, θ), x) = p. Define the radial vector field
∂R := d(γ, s(γ))d exp∇(∂p), s(γ) = x, and set J := det(d exp∇) ◦ exp∇)−1.
Consider the pullbacks r∗W → G and s∗W → G of the Clifford module W → M .
The parallel transport for γ = exp∇ v ∈ Br0 , w ∈ Ws(γ), v ∈ As(γ) is given by

τ(γ)(w) ∈ r∗Wγ of w to γ along exp∇(tv), t ∈ [0, 1]. Hence we have defined a map

τ : {(γ,w) : γ ∈ Br0 , w ∈Ws(γ)} → r∗W|Br0

The inverse is given by τ−1 : r∗W|Gx∩Br →Wx.
Denote by r∗W ⊗ s∗W ∗ × (0,∞) the pullback of the vector bundle r∗W ⊗ s∗W ∗ → G
along the projection G × (0,∞)→ G.
The groupoid heat kernel is a C0-section Q ∈ Γ0(r∗W ⊗ s∗W ∗ × (0,∞)) such that for
Qt = Q(t, ·)
i) the heat equation (∂t + /D

2
)Qt(γ) = 0 and

ii) the initial condition limt→0Qt ∗ u = u hold for each u ∈ Γ∞c (r∗W ⊗ s∗W ∗).
Since the generalized Laplacian /D

2
on G comes from an equivariant family (compare

the remarks in Section 2) the map Gx × Gx 3 (γ, η) 7→ Qt(γη
−1) defines a heat kernel

for /D
2
x on Gx for each x ∈M . Since Gx has bounded geometry the heat kernel of /D

2
x is

unique (cf. [7]). Hence, by G-invariance, Q must be unique as well.
We repeat the formal heat kernel approximation from [7, Section 2.5] and more specif-
ically from [45].
Let q : Br0 × (0,∞)→ R denote the Gaussian

q(γ, t) := (4πt)−
n
2 e−

d(γ,s(γ))2

4t .
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According to [7] and [46] there is a formal power series

Φ(γ, t) =

∞∑
i=0

tiΦi(γ), Φi ∈ Γ∞(r∗W ⊗ s∗W ∗) (6)

such that q(γ, t)Φ(γ, t) ∈ Γ∞(r∗W ⊗ s∗W ∗ × (0,∞)) and

(∂t + /D
2
)q(γ, t)Φ(γ, t) = q(γ, t)

(
∂t + /D

2
+ r∗∇E∂R +

L∂RJ
2tJ

)
Φ(γ, t). (7)

Moreover, we have the recursive relations

Φ0(expV ) = J−
1
2 τ(expV ),

Φi(expV ) = −J−
1
2 τ

∫ 1

0
J

1
2 τ−1((∂t + /D

2
)Φi−1(exp(tV ))ti−1 dt.

Theorem 3.7. Let G ⇒ G(0) be a Hausdorff Lie groupoid and let /D be a geometric Dirac

operator adapted to an admissible connection. Then for t > 0 we have e−t /D
2

∈ S(G).

Proof. We use the heat kernel approximation and the bounded geometry of the groupoid
fibers. First note that the groupoid heat kernel is smooth by the results of [45].
Secondly, we recall from [46, Proposition 4.12] the following off-diagnoal estimate of
the heat kernel.
Claim: Let ε > 0 be given. If t > 0 is fixed we have the estimate:

∀λ>0 ∃C>0 |e−t /D
2

(γ)| ≤ Ce−λψ(γ), γ ∈ G, ψ(γ) > 2ε. (8)

We make use of this fact to estimate the heat groupoid kernel Qt in the semi-norms of
S(G). By the formal solution, the heat kernel Qt takes the form Qt(γ) = q(γ, t)Φ(γ, t).
Then we obtain that

‖Qt‖k,l = sup
1≤i≤l

sup
v=(v1,··· ,vl)∈Vl,‖vj‖≤1

sup
γ∈G

(1 + ψ(γ))k|ωv,i(Qt)|

= (4πt)−
n
2 sup

1≤i≤l
sup
‖vj‖≤1

sup
γ∈G

(1 + ds(γ)(s(γ), γ))k|v1 · · · vie−
d(s(γ),γ)2

4t Φ(γ, t)vi+1 · · · vl|.

Using the recursive definition of Φi and the bounded geometry we obtain that the uni-
form norm over Φ(γ, t) is bounded by (8). See also [46], Prop. 4.12. The boundedness

of e−
d(γ,s(γ))2

4t and all its derivatives follows also by the uniformly bounded geometry of
the s-fibers of the groupoid. Secondly, we can estimate the exponential by noting that
it decays faster than any polynomial in the length function ψ(γ). The vector fields vj
are G-invariant differential operators of first order and the action of these vector fields
leaves Qt(γ) bounded by the previous remarks. It is an elementary computation to
check that after application of the action of the vector fields we obtain a term of the

form polynomial in ψ(γ) and e−ψ(γ)2
. Hence by (8) the heat kernel is bounded in the

semi-norms defining the Schwartz class and the assertion follows. �

4. Adiabatic deformation and functional calculus

Given a Lie groupoid G ⇒ M over a smooth manifold M with corners we define the
adiabatic groupoid Gad ⇒ M × I where I is either the closed interval [0, 1] or the real
numbers R. We also write I∗ := I \ {0}. Formally, the groupoid Gad is defined as
Gad = G × I∗ ∪ A(G) ∪ {0}. The groupoid structure is defined over t 6= 0 to be the
structure of G and I∗, where the latter is simply viewed as the trivial set groupoid



14 KARSTEN BOHLEN, ELMAR SCHROHE

with units I∗. Over t = 0 the structure is given by that of A(G), where we view
A(G) =

⋃
x∈M Tu(x)Gx as a bundle with fiberwise defined Lie group structure.

Note right away the most important special case of this definition: If M is a smooth
manifold without boundary or corners, and M ×M ⇒ M is the pair groupoid, we
recover with (M ×M)ad the tangent groupoid due to A. Connes, [10]. In the more
general situation we are in, where M may have a boundary or corners, we need an
integrating groupoid G which is more general, in particular longitudinally smooth.
Most importantly for us is the smooth structure defined on Gad, which we will need
later. In the special case of the tangent groupoid we fix a Riemannian metric on M
with Levi-Civita connection and define the topology of (M ×M)ad via a glueing using
the exponential mapping exp: TM → M , cf. [10] for the tangent groupoid. In the
more general case of the adiabatic groupoid at hand we need the so-called generalized
exponential Exp: A(G) → G from [19]. This definition together with the groupoid
parametrization defined in the same paper will be most convenient for the calculation
of the Lichnerowicz formula on the fibers of the adiabatic groupoid in the final section
of this article.

Definition 4.1. Write T sG := ker ds ⊆ TG and let π : TG → G be the canonical
projection. The right generalized exponential map ExpR : A(G)→ G is defined by

ExpR(V ) := πker ds→G(V (1))

where V (t) is the solution to the flow equation V ′(t) = lV (t)V (t), V (0) = V ∈ A(G)
(provided it is defined in t = 1) and lW : TπWG → TWT

sG is the so-called adapted
horizontal lift, which will be defined below.

Note that a left exponential map can be defined analogously with ker dr in place of
ker ds in the above statement.
We start with the following observation:

Lemma 4.2. We have an isomorphism ker ds ∼= r∗A(G) implemented by the right
multiplication dRγ applied fiberwise.

Proof. By definition (r∗A(G))γ =
(⋃

x∈G(0) Tu(x)Gx
)
γ

= Tu(r(γ)Gr(γ). The application of

the right multiplication Rγ : Gr(γ) → Gs(γ) yields

Tu(r(γ))Gr(γ)

dRγ

��

A(G)r(γ)

��

Tu(s(γ))Gs(γ) A(G)s(γ)

This yields a well-defined map dRγ : (r∗A(G))γ → (ker ds)γ for each γ ∈ G since ds ◦
dRγ = d(s ◦Rγ) = d(s(γ)) = 0. The inverse is given by (dRγ)−1 = dR−1

γ = dRγ−1 . �

Given a smooth manifold B and a vector bundle π : E → B with connection ∇E , we
obtain a splitting TE = T vertE ⊕ T horE of TE with T vertE = ker dπ. Associated with
the decomposition we have a lift of vectors: for b ∈ B and e ∈ Eb we have a lift

lEe : TbB → T hore E

via parallel transport. We can also lift a curve γ : [0, 1] → B. Let γ(0) = b0 and
v0 ∈ Eb0 . Then we obtain the lift Γ = lEv0

(γ) of γ by solving the initial value problem

Γ̇(t) = lEΓ(t)(γ̇(t)), Γ(0) = v0.
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In order to define the adapted horizontal lift, we recall that A(G) is the restriction of
ker ds to the units or the image under the pullback of the unit map, i.e. A(G) = u∗T sG.

Hence the connection ∇ on A(G) can be lifted to a connection ∇̃ on r∗A(G) ∼= T sG.

Applied to our setting, we denote by l
A(G)
• the horizontal lift to the bundle A(G)→ G(0).

The adapted horizontal lift l of a tangent vector V = dγ(t)
dt |t=0

in TγG to W ∈ T sγG is

defined by

lW (V ) =
d

dt

[
dRγ(t)−1 l

A(G)
dRγ(W )(s(γ(t)))

]
t=0

.

Here, lA(G) lifts the curve t 7→ s(γ(t)). This defines a map lW : TγG → TW (ker ds),
where γ(t) is a geodesic in G with V = γ̇(0) and γ(0) = γ defined via parallel transport

V 7→ V (t) using the connection ∇̃ such that V̇ (t) = lV (t)V (t) holds.

Lemma 4.3. The following diagram commutes

A(G)

π
""

ExpR
// G

s
��

G(0)

i.e. s(ExpR(V )) = π(V ) holds.

Proof. Fix a geodesic γV (t) in G. By definition we have s(γV (0)) = π(V ) and dsγV (t)
dt =

ds(V (t)) = 0. �

Finally, we recall the tubular neighborhood theorem of the generalized exponential from
[19]. We refer to loc. cit. for the proof. There is an open neighborhood G(0) ⊂ V ⊂
A(G) of the zero section in A(G) and an associated open neighborhood G(0) ⊂ W ⊂ G
of the unit space in G such that ExpR(x) = x for each x ∈ G(0) and ExpR induces a
diffeomorphism of V and W .
¿From now on we simply write Exp := ExpR, where it is understood that all our
constructions are right invariant. We are in a position to define the smooth structure
of the adiabatic groupoid Gad ⇒ G(0) × I.
It is defined by the glueing

A(G)× {0} ⊃ O 3 (x, v, t) 7→

{
(x, v), t = 0

(Exp(−tv), t), t > 0

where O denotes an open neighborhood of A(G)× {0} in Gad.

Let (M, g) denote a complete Riemannian manifold and S →M the bundle of spinors.
The next goal is to define the functional calculus from a suitable class of rapidly decaying
functions into the groupoid convolution algebra. Note that for complete Riemannian
manifolds there is a spectral theorem for such operators, see also [9], [35].
Given a Dirac operator D acting on smooth sections of S, we define for a given f ∈ S(R)

the operator f(D) = 1
2π

∫
f̂(t)eitD dt in the weak sense, i.e. there is an f(D) acting on

L2(S) such that for each s, s̃ ∈ L2 we have

〈f(D)s, s̃〉 =
1

2π

∫
f̂(t)〈eitDs, s̃〉 dt, s, s̃ ∈ L2(S).

Another notion we need to recall here is that of finite propagation speed.
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If D is an operator of first order on M and σ1 its principal symbol, we denote by

c(x) := sup{‖σ1(x, ξ)‖ : ‖ξ‖ = 1}
the propagation speed of D.

Definition 4.4. A first order differential operator D has finite propagation speed if
there is a constant C > 0 such that we have the uniform bound c(x) ≤ C.

We recall the following theorem due to Chernoff from [9].

Theorem 4.5 (P. R. Chernoff, 1973). Let D : Γ(E)→ Γ(E) be a first order differential
operator over a non-compact complete manifold and assume that D is formally self-
adjoint and has finite propagation speed. Then Dk is essentially self-adjoint for k ∈ N0.

Proposition 4.6. Let D be a Dirac operator acting on L2-sections of the spinor bundle
S →M.
i) The wave equation ∂ts = iDs with initial data s0 ∈ Γ∞c (S) has a unique solution
which preserves the L2-norm.
ii) The operator f(D) is well-defined and bounded on L2(S).
iii) The assignment S(R) → L(L2(S)) is a ring-homomorphism such that ‖f(D)‖ ≤
‖f‖∞.

iv) If f̂ has compact support, then f(D) is a smoothing operator with finite propagation
speed, and f(D) is essentially self-adjoint.

Proof. i): See Proposition 7.4 of [41].
ii)-iii): Use the fact that the Fourier transform maps isomorphically S(R) into itself and
the Cauchy-Schwarz inequality. The homomorphism property follows from the linearity
of the Fourier transform, that pointwise multiplication is converted into convolution as
well as the identity eitD = eisDei(t−s)D which follows by uniqueness of solutions of the
wave equation. The inequality follows by a reduction to the case of compact manifolds.
We refer to the proof of Proposition 9.20 in [41].
iv): For the finite propagation speed property we refer to [9] as well as [41], p. 104 for
the proof. See also [42]. The essential self-adjointness follows from the quoted theorem
of Chernoff, Theorem 4.5. �

The following theorem is the generalization of the theorem for the tangent groupoid
given by Siegel [43], Corollary 2 and Roe [41], Proposition 5.30, 5.31.
Denote by P the set of functions in the Schwartz class S(R) which have compactly
supported Fourier transform.

Theorem 4.7. Let (M,A,V) be a Lie manifold with spin structure S →M and G ⇒M
a Lie groupoid such that A(G) ∼= A. Denote by D := ( /Dx,t)(x,t)∈M×I an equivariant

family of Dirac operators on Gad. Then there exists a ring homomorphism ΨD : P →
C∞c (Gad,Hom(S)) such that the regular representation πx,t : C

∞
c (Gad,Hom(S))→ L(L2(Gad(x,t)))

fulfills the identity
πx,t(ΨD(f)) = f( /Dx,t), f ∈ P.

Proof. Applying Proposition 4.6(i) we fix the solution operator eiτ /Dx,t to the wave
equation for /Dx,t. For given f ∈ P we use the functional calculus to define f( /Dx,t) =
1

2π

∫
f̂(τ)eiτ /Dx,t dτ . By the part iv) of Proposition 4.6, f( /Dx,t) is a smoothing operator

with finite propagation speed. The equivariant family (f( /Dx,t)) has a reduced kernel
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which we denote by kf , obtained from the equivariant family of Schwarz kernels kfx,t
defined on the fibers and smooth with regard to (x, t). By the finite propagation speed
property kf is a compactly supported distribution. We therefore define ΨD(f) via the

assignment γ 7→ kfs(γ) in C∞c (Gad). This is a continuous ring homomorphism by part

Proposition 4.6(iii). The equation for the regular representation follows because kf is
the reduced kernel of the operator f(D) on Gad.
Recall the definition of the representation πx,t : C

∞
c (Gad,Hom(S))→ L(L2(Gadx,t)) given

by

πx,t(f)(ξ)(γ, t) =

∫
Gadx,t

f(η, t)ξ(γη−1, t) dµ(x,t)(η), ξ ∈ L2(Gad).

This yields by definition of ΨD the L2-action

f( /Dx,t)g(γ) = πx,t(ΨD(f))g(γ) = (ΨD(f) ∗ g)(γ)

and hence the last identity is proven. �

5. Renormalized Super Trace

We fix in the following a Lie manifold (M,A,V).
First we define a class of rapidly decaying distributions on the Lie manifold. This will
be the class which contains the heat kernel and on which we define the renormalized
super trace.
Let g be any compatible metric on M , i.e. a bilinear form on A. Denote by the d = dg
the metric distance induced by g. Note that the interior M0 of M with the metric g
restricted to it is a complete Riemannian manifold, cf. [2]. Fix an arbitrary point o ∈M0

and set p(x) := d(o, x). We define the spaces
V
Sk,l(M) := {f ∈ C∞(M) : ‖f‖k,l <∞},

where the semi-norm system ‖ · ‖k,l is defined for k, l ∈ N by

‖f‖k,l := sup
1≤i≤l

sup
v=(v1,··· ,vl)∈Vl, ‖vi‖≤1

sup
x∈M
|(1 + p(x))kωv,i(f)(x)|.

We note that if v := (v1, · · · , vl) ∈ V l then each vi can be regarded as a differential
operator of first order in Diff1

V(M). Secondly, we define ωv,i(f) := v1 · · · vifvi+1 · · · vl.
In the same way as the proof of Proposition 3.1 we show that if k1 ≥ k2, l is fixed we
have ‖f‖k1,l ≤ ‖f‖k2,l and if l1 ≥ l2 with k fixed we have ‖f‖k,l1 ≤ ‖f‖k,l2 . Hence the

spaces
(
V
Sk,l(M)

)
(k,l)∈N2

form a dense projective system of Banach spaces.

Definition 5.1. The Schwartz space of rapidly decaying functions on the Lie manifold
(M,A,V) is defined as the space VS(M) given by the projective limit

VS(M) := lim←−
k,l∈N

V
Sk,l(M).

In the definition of a generalized trace class for the given Lie structure we face the
problem that the density from the Lie structure is not integrable as we approach the
boundary. See e.g. [20] for the b-case and the example below. The remedy is a
regularization procedure. Similarly, one could define the canonical (KV) trace, the
Wodzicki residue trace and the V-determinant, but this is outside the scope of the
present work.

Introduce the following notation: Ċ∞(M, VΩ
1
) is the space of smooth functions van-

ishing to all orders at the boundary. For F ∈ F1(M) let ρF be a boundary defining
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function. Given a weight system w : F1(M)→ N0 we write ρw =
∏
F∈F1(M) ρ

w(F )
F and

let
Ψm,−w
V (M) := ρ−wΨm

V (M)

for the weighted pseudodifferential calculus, see [1].
In order to regularize the density defined on the Lie algebroid A via g we note that by
definition V ⊂ Vb. On an arbitrary boundary face F ∈ F1(M) fix the local coordinates
{x1, · · · , xn} in a small tubular neighborhood [0, ε) × F . Then {x1∂x1 , ∂x2 , · · · , ∂xn}
is a local basis of Vb. Consider the boundary defining function ρF : M → R+ and let

ν : (−ε, ε)× F ∼−→ U ⊂M be the isomorphism from the tubular neighborhood theorem
such that

(ρF ◦ ν)(x1, x
′) = x1, (x1, x

′) ∈ [0, ε)× F.
Consider the local generators of vector fields {V1, · · · , Vn} such that

V|U = spanC∞(U){V1, · · · , Vn}.

Also assume that V1 is chosen so that V1 = xk1∂x1 and such k is the highest power of
degeneracy among the Vi. Note that the degeneracy index k = kF is in fact invariantly
defined.
We intend to extend the integral∫

M
: Ċ∞(M, VΩ

1
)→ C

to the space ρwC∞(M, VΩ
1
). Let f ∈ ρwC∞(M, VΩ

1
) and set G(f) : z 7→

∫
M ρzf which

yields a function holomorphic in

{z ∈ CF1(M) : <zF + w(F ) > kF − 1, F ∈ F1(M)}.
Following Lauter and Moroianu [24, Section 4] ,[25] we obtain a meromorphic extension

G(f) : CF1(M) → C with at most simple poles in zF = k − 1 − w(F ) − j for j ∈ N0.
Hence we can define

V∫
f : regularized value at zF = 0 of G(f).

This yields the desired extension

V∫
: ρwC∞(M, VΩ

1
)→ C

which does, however, depend on the choice of boundary defining function for w(F ) ≤ 1.
Let ωV be a fixed degenerate symplectic form on A∗.

Definition 5.2. Define the V-trace for m < −n as the functional

VTr: Ψm,−w
V (M)→ C, A 7→ V∫−κA|∆V

where κA denotes the Schwartz kernel ofA which restricts to an element of ρwC∞(M, VΩ
1
).

We can alternatively write
VTr(A) =

V∫−A∗aωnV .
Here a ∈ Smcl (A∗) such that F−1

f a = κA near ∆V with the fiberwise Fourier transform
Ff defined in [44, Chapter 1.5]. The correspondence∫

−
M
↔
∫
−
A∗
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is obtained via the Fourier transform identity

f(0) =

∫
Rn
F(f)(ζ) dζ

which is being applied fiberwise.
The finite part integral

∫
−A∗ is defined as in [24], i.e. we have two interpretations

• Using growth conditions at infinity.
• Via radial compactification of A∗ (i.e. compactify A to a manifold with corners

Â →M which is fibered over M such that Âx is a closed ball of dimension n).

Example 5.3. Consider the case of the b vector fields V = Vb and a manifold M0

with cylindrical end (−∞, 0]s × Y , see also [20] for further details on this special case.

We set M̂0 = M for the compactification which is a manifold with boundary. The
correspondence is obtained via the Kondratiev transform x = es such that for s→ −∞
we obtain x→ 0. This yields close to the boundary the density ds = dx

x with ∂s = x∂x.
The singular structure is encoded in a Riemannian metric g (a compatible metric on
the b-tangent bundle Ab →M) which is product type close to the boundary

g = ds2 + h =

(
dx

x

)2

+ h.

Notice that dx
x is not integrable over [0, 1]x and therefore the heat kernel e−t∆g is not

of trace class. We use therefore the regularization by observing that for <z > 0 the
function xz is integrable with regard to dx

x over [0, 1]x. Hence xze−t∆g is trace class
and by setting

G(f)(z) =

∫
M
xzf dg, f ∈ C∞(M), <(z) > 0

we define the b-trace as the regularized value of G(f)(z) in z = 0.

We will show later that the heat kernel of a generalized Laplacian on a Lie manifold
is actually contained in the class VS(M). By the above example this does however not
imply that the heat kernel is of trace class. Nevertheless, we readily see that VS(M) ⊂
VL1(M) for

VL1(M) denoting the class of operators with bounded renormalized trace,
i.e. the renormalized trace class. Hence the renormalized trace extends to a well-defined
function on the VTr: Ψ−w,mV (M) + VS(M)→ C.
We recall next the definition of the supertrace functional, which in our case acts on the
homomorphism bundle hom(S) → M . Hence assume that the Lie manifold (M,V,A)
is spin with given spin structure S →M . Decompose the spinor bundle S = S+ ⊕ S−
into elements of even and odd degree. Assume the Dirac operator is odd graded with
regard to this decomposition. According to [7] 1.3., the bundle is realized as a super-
bundle (a bundle consisting of super spaces, i.e. Z2 graded spaces). The super bundle
hom(S) decomposes as

hom(S) =

(
hom(S+, S+) hom(S+, S−)
hom(S−, S+) hom(S−, S−)

)
.

Likewise, each element T ∈ hom(S) decomposes

T =

(
T++ T+−

T−+ T−−

)
.

We note that hom(S)x = hom(Sx, Sx) ∼= Cl(Ax ⊗ C), hence hom(S) can be viewed as
a bundle of superalgebras. Given a super algebra A denote by [·, ·]s : A × A → A the
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supercommutator given by [a, b]s := ab− (−1)|a||b|ba. Here by |a| we denote the parity,
i.e. 0 for even degree and 1 for odd degree. A supertrace by definition is a linear form
trs : A → R such that trs[a, b]s = 0. In our context we define trs : hom(S) → R by
trs(T ) := tr(T++)− tr(T−−). This yields a supertrace by Proposition 1.31 of [7].
Denote by Cl0 ⊆ Cl1 ⊆ · · · ⊆ Cl(A⊗ C) the Clifford filtration by degree. The we have
the following Lemma from Roe [41], Prop. 11.4 which we need later for the construction
of a suitable rescaling.

Lemma 5.4. We have trs|Cln−1
= 0 and trs(e1, · · · , en) = 2

n
2 (−1)

n
2 for any oriented

orthonormal frame {ei}ni=1 of A.

Proof. Any odd element T odd has the form

(
0 T+−

T−+ 0

)
and hence trs(T

odd) = 0.

The even elements of hom(S) are generated by T ev = ei1 ∧ · · · ∧ ei2k with i1 < i2 <
· · · < i2k, 2k < n. For m ∈ {1, · · · , n}\{i1, · · · , i2k} we notice that em is an involution,
i.e. c(em)2 = 1. If c(em) denotes the endomorphism by Clifford multiplication then

T ev =

(
T++ 0

0 c(em)T++c(em)

)
. Hence trs(T

ev) = 0 follows by conjugation invariance.

Finally we check the value of trs on the volume element ω = e1 ∧ · · · ∧ en. ¿From
trs(c) = trV (i

n
2 ωc) where V is the spin representation and with ω2 = (−1)

n
2 we obtain

trs(ω) = trV ((−i)
n
2 ) = (−i)

n
2 dim(V ) = (−2i)

n
2 . �

As a final remark we give the definition of the renormalized super trace of an operator
defined on a spin Lie manifold acting on a Clifford module. Let (M,V,A) be a spin
Lie manifold with spin structure S → M and W → M be a Cl(A)-module. By
the previous discussion we define the renormalized super-trace to be the functional
VTrs : VS(M) ⊗ Hom(W,W ⊗ A∗) → C given by VTrs(T ) =

V∫− trs(kT ) dµ for T ∈
VS(M)⊗Hom(W,W ⊗A∗).

6. Rescaling

In this section we finish the proof of the index formula given in Theorem 1.1. We write
the deformed Dirac operator on the adiabatic groupoid using the parametrization of Lie

groupoids as defined in [19]. The Lichnerowicz theorem yields an expression for /D
2
x,t in

normal coordinates. Then we calculate the renormalized super-trace and extract the
right coefficient using the rescaling as defined previously.
We first establish the following representation theorem:

Theorem 6.1. Let (M,A,V) be a non-degenerate Lie manifold. If G ⇒ M is an
integrating Hausdorff Lie groupoid, then there is a canonical isomorphism VS(M) ∼=
S(G) implemented by the vector representation %.

Proof. The surjectivity of % follows by an argument completely analogous to the proof
of Theorem 3.2. in [1] (considering the action of the isotropy group Γ := Gxx on the
family of spaces (S(Gx))x∈M and a diagram chase).
We prove the injectivity using the Hausdorff condition on the groupoid, see also [37]. Let
z0 ∈ M0 be fixed and denote by ez : S(G) → S(Gz) the evaluation T = (Tx)x∈M 7→ Tz.
To see the injectivity of ez let Tz = 0. We need to prove that Tw = 0 for each w ∈M ,
i.e. T = 0. Since G|M0

∼= M0 ×M0 and by G-invariance of the family T it follows
that Tw = 0 for each w ∈ M0. Let w ∈ M be arbitrary, then 〈T, ψ〉 = 0 for each
ψ ∈ C∞(Gw). In order to see this let ϕ ∈ C∞(G) be such that ϕw = ψ, which is
possible since Gw ⊂ G is closed in the locally compact Hausdorff space G. We choose a
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Haar system, then by the smoothness of the Haar system and the Hausdorff property
of G, the function w 7→ ‖〈Tw, ϕw〉‖ is continuous and on w ∈M0 the function vanishes.
By density of M0 in M it follows Twϕw = 0 for each w ∈M . Hence ez is injective. The
bijection j : S(Gz)→ VS(M) is obtained using the canonical diffeomorphism Gz ∼= M0.
Since % equals by definition j ◦ ez, it is injective. �

From Theorem 3.7 we then obtain:

Corollary 6.2. Let (M,A,V) be a non-degenerate Lie manifold with spin structure
S → M and Clifford module W over Cl(A) such that D denotes the Dirac operator
induced by an admissible connection ∇W . Then the heat kernel of the generalized

Laplacian e−tD
2

is for t > 0 contained in VS(M)⊗Hom(W,W ⊗A∗).

Remark 6.3. Given a Lie manifold (M,A,V) assume that the Lie groupoid G ⇒ M
such that A(G) ∼= A is Hausdorff and in addition has a length function of polynomial
growth. Then by Theorem 6.1 together with Proposition 3.3 we obtain that the Lie
calculus Ψm

V (M)+VS(M), with the smoothing ideal given by the Schwartz class VS(M),
is closed under holomorphic functional calculus. This is therefore in particular true for
the examples given in Example 3.4.

We introduce the rescaling bundle and the method of extracting the right coefficient
in the asymptotic expansion Ansatz for the heat kernel. As usual /D denotes the Dirac
operator on the groupoid G and D its vector representation, the Dirac operator on the
Lie manifold (M,A,V). Recall first the following notions. An equivariant bundle E→ G
over a Lie groupoid G is a vector bundle such that Rγ : Gr(γ) → Gs(γ) induces a vector
bundle isomorphism R∗γ : EGr(γ)

→ EGs(γ)
. Given a vector bundle E → M we define

Hom(E) to be the pullback bundle s∗(E∗) ⊗ r∗(E∗) obtaining a bundle Hom(E) → G
over G.
In the following we describe the structure of the rescaling approach to the local index
theorem as given by Siegel in [43]. Assume we are given a non-degenerate Lie manifold
with spin structure S → M and let G ⇒ M be an integrating Lie groupoid which
is Hausdorff. We obtain from the above a bundle Hom(S) → Gad as a lifting. Let
j : A(G) ↪→ Gad be the natural embedding as a submanifold. Denote by hom(S)→ M
the bundle with fibers hom(S)x = hom(Sx, Sx) ∼= Cl(Ax ⊗ C), x ∈ M . Since on A(G)
source equals range we have

Hom(S)|A ∼= j∗ hom(S) ∼= Cl(A⊗ C).

The basic idea for the definition of the rescaling bundle S̃ → Gad is to extend a Clifford
filtration by degree to a neighbhorhood of A inside the adiabatic groupoid. More
precisely, note the following.

• The rescaling will be adapted to the Clifford filtration Cl0 ⊆ Cl1 ⊆ · · · ⊆
Cl(A⊗ C) = Hom(S)|A filtered by degree.
• The bundle Hom(S) is endowed with a connection via pullback:

Gad s // M × I
pr1 // M.

So that (pr1 ◦ s)∗∇ is a connection on Hom(S), where ∇ is the Levi-Civita
connection on M from a fixed compatible metric on M .
• Extend the filtration {Clk} to a filtration {C̃lk} on a neighborhood of A.
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We define the rescaled sections

VD :=

u ∈ C∞c (Gad,Hom(S)) : u =

n∑
j=0

tn−juj + tn+1u′ near A


with uj ∈ C∞c (Gad, C̃lj) and u′ ∈ C∞c (Gad,Hom(S)).

By the Serre-Swan theorem there is a bundle S̃ → Gad such that C∞c (Gad, S̃) = i∗ClD,

where iCl : S̃ → Hom(S) is a bundle map and an isomorphism over Gad|(0,1], see also Prop.

8.4 in [30]. We refer to S̃ as the rescaled bundle.
An alternative description of VD can be obtained by Taylor expansion and is given by

VD = {u ∈ C∞c (Gad,Hom(S)) : ∇padu|A ∈ C
∞
c (A,Clk−p), 0 ≤ p ≤ n}.

Here ∇ad denotes the connection obtained from parallel transport along the vector
fields ∂t.
Finally, we want to extend the supertrace functional to the rescaled bundle S̃. Note
first the following Lemma.

Lemma 6.4. We have the canonical isomorphism of Clifford algebra S̃|A ∼= ΛA∗.

Proof. Note first that the filtration of the Clifford algebra Cl(A ⊗ C) by degree has
associated to it a graded algebra which identifies with the exterior algebra ΛA∗, cf.
[7]. The rescaled bundle S̃ associated to the filtration {Clk} by Clifford degree restricts
to the graded bundle associated to {Clk}. By combining these two facts the assertion
follows. �

The more direct proof would rely on the intuition that S̃ is just the bundle obtained
from Hom(S) by replacing over t 6= 0 the spinor bundle S (lifted to G) with the spinor
bundle St which is a G-invariant bundle such that over each fiber Gx it is the spinor
bundle Stx constructed from the Riemannian metric tgx(·).
By an application of Lemma 5.4 and the definition of the rescaling we obtain the
following Lemma.

Lemma 6.5. Let G∆ := {γ ∈ Gad : s(γ) = r(γ)} ⊂ Gad, then for t 6= 0 the supertrace

functional maps trs : C∞c (G∆, S̃|G∆
)→ tnC∞c (G,hom(S)).

Proof. By the Lemma 5.4 the supertrace functional maps Cl0 to Cln and by our rescaling
this yields the assertion. �

The previous lemma ensures that the right coefficient is extracted when we apply the
supertrace functional to the vector representation of the groupoid heat kernel.
Consider the Lie groupoid G ⇒ G(0). We fix x0 ∈ G(0). Then a parametrization of G at
x0 is given by a tuple (ϕ,ψ) where ϕ : U → G(0) and ψ : U×V → G are homeomorphisms
where U is a 0-neighborhood in Rn and V is a 0-neighborhood in Rm. The following
conditions should hold:
i) ψ(0, 0) = x0,
ii) r(ψ(u, v)) = ϕ(u),

iii) ψ(U × {0}) = ψ(U × V ) ∩ G(0).
Note that r is a submersion at x0. Condition i) and ii) imply ϕ(u) = ψ(u, 0).
This induces a parametrization of A(G), more precisely of the neighborhood A(G)ϕ(U)

of the fiber Ax0(G), which is given by θ : U ×Rm → A(G), θ(u, v) =
(
ϕ(u), ∂ψ∂v (u, 0)v

)
.
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Using these parametrizations we can formulate a local diffeomorphism theorem. Then
using the generalized exponential functions we can describe a geodesic coordinate sys-
tem. This will be needed in the proof of the main theorem.
For each x0 ∈ G(0) there is a neighborhood ψ(U × V ) of x0 in G such that α = ψ ◦ θ−1

implements a diffeomorphism of the neighborhood of (x0, 0) given by θ(U × V ) with
ψ(U × V ). Additionally, α(Ax(G)) ⊂ Gx holds for each x ∈ ϕ(U).
The induced parametrization and the local diffeomorphism property can be improved
if we make use of the generalized exponential map Exp: A(G)→ G, cf. Section 4. Let
α = Exp|V , then α(Ax(G) ∩ V ) = Gx ∩W , α′x(0) = idAx(G) where αx = α|αx(G)∩W .
We are now in a position to give a proof of the main theorem.

Proof of Theorem 1.1. For the proof we apply the previously constructed functional
calculus ΨD adapted to a G-invariant family of Dirac operators ( /Dx,t)(x,t)∈M×I . Here

we consider the family given by /Dx,t = t /Dx and set D := (t /Dx)(x,t)∈M×I . For f ∈ P,

ΨD(f) ∈ C∞c (Gad, S̃) by the construction of the functional calculus. Here S̃ → Gad is
the rescaled bundle introduced above. Recall the action of the functional calculus

f( /Dx,t)g(γ) = πx,t(ΨD(f))g(γ) = (ΨD(f) ∗ g)(γ), g ∈ L2(Gadx,t).
In our case this yields

f(t /D)g(γ) =

∫
Gs(γ)

ΨD(f)(γη−1)g(η)t−n dµs(γ)(η).

Hence roughly speaking the function f(x) = e−x
2

yields ΨD(f) = tnkt2 . Technically,
we have to first convolve f with a rapidly decaying function whose Fourier transform
has large compact support, since the Fourier transform of f does not have compact
support. Nevertheless we loosely identify ΨD(f) with tnkt2 .

Let G∆ = {γ ∈ Gad : s(γ) = r(γ)} denote the diagonal in Gad. Define lt := ΨD(e−x
2
)|G∆

,
then lt(γ) = tnkt2(γ) for t 6= 0 and γ ∈ G∆t . We have now on the Lie manifold for
D = %( /D) that

VTrs(e
−tD2

) =
V∫− trs(κt(x, x)) dµ(x)

where µ = µg is the density defined by the fixed compatible metric g and κt denotes

the heat kernel of e−tD
2
. By the representation Theorem 6.1 and Theorem 3.7 we

obtain that κt ∈ VS(M) and the definition is therefore G-invariant. Denote by l̃t the
vector representation of lt. The equation above makes sense for t 6= 0. We have that
κt2|∆ identifies with t−ntrs(l̃t). Since t−ntrs(l̃t) extends smoothly to t = 0, we have

t−ntrs(l̃t) = trs(l̃0) + o(t). From ΨD(e−x
2
)|t6=0 = tnkt2 and ΨD(e−x

2
)|t=0 = ku|u=1 we

obtain
VTrs(e

−tD2
) =

V∫− t−n2 trs(l̃
t

1
2
) dµ

=
V∫− trs(l̃0) dµ+ o(t

1
2 ).

Hence we have reduced the task to calculating trs(l̃0). We calculate the kernel l0 on
the groupoid using the Lichnerowicz theorem applied to the fibers of the integrating
groupoid.
Denote by ϕ : U → G(0), ψ : U × V → G a parametrization of G around a fixed x0 ∈M
such that for α = Exp|V we have α(Ax(G) ∩ V ) = Gx ∩ Ṽ for some open subset Ṽ and

x ∈ ϕ(U).
Let αx = α|Ax(G)∩V which is by definition induced by the exponential map expx on the
fiber Gx. Let αx(γ) = (a1, · · · , am) =: a be the corresponding geodesic coordinates.
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Consider the induced parametrization of Gad given by Φ: Uad × V → Rn × Rm × R,
where Uad = U×R. Restrict this map to the chart V ×{x}×{t} and call the restriction
Φx,t. An elementary calculation yields Φx,t(η) = 1

t (αx(η)− a). Then the Lichnerowicz
theorem on the complete manifold (Gx, gx) yields for b = Φx,t(η)

/D
2
x,tf(η) = /D

2
x,tf(Φ−1

x,t(b1, · · · , bm))

= t2 /D
2
xf(α−1

x ((tb1, · · · , tbm) + a))

= −t2
∑
i

1

t
∂xi +

1

4

∑
j

1

t

(
Rxij(aj + tbj)

)2

f(η)

+

∑
i<j

FWx/S(ei, ej)(aj + tbj)(aj + tbj) +
t2

4
κ

 f(η)

= −
∑
i

∂xi +
1

4

∑
j

Rxij(aj + tbj)

2

f(η)

+

∑
i<j

FWx/S(ei, ej)(aj + tbj)(aj + tbj) +
t2

4
κ

 f(η).

The right hand side depends smoothly on t up to and including t = 0. In the limit as
t→ 0 we obtain

/D
2
x,0 = −

∑
i

∂xi +
1

4

∑
j

Rxijaj

2

+
∑
i<j

FWx/S(ei, ej)(aj)(aj).

The remainder of the argument consists in the solution of the differential equation of

the heat kernel of /D
2
x,0, which one recognizes as the equation for the harmonic oscillator

with twisting. We can therefore use the analysis in [7] to obtain the solution in terms
of a formal power series in the scalar curvature Rxij and the exponential of the twisting

bundle expFWx/S . By the G-invariance of the curvature tensor as well as the twisting
curvature and the Lichnerowicz theorem for Lie manifolds given in Theorem 2.3, it
follows from [7], p. 164 and [41], Proposition 12.25, 12.26 that we obtain the integrand
VA ∧ expFS/W in the trace formula.
Thus we have shown that

lim
t→0+

VTrs(e
−tD2

) =
V∫− VA ∧ expFW/S dµ.

To obtain the limit t→∞ consider

lim
t→∞

VTrs(e
−tD2

)− lim
t→0+

VTrs(e
−tD2

) =

∫ ∞
0

∂t
VTrs(e

−tD2
) dt.

We have ∂t
VTrs(e

−tD2
) = VTrs(∂te

−tD2
). The latter equals −1

2
VTrs([D,De

−tD2
]s) since

by the odd grading of D we have D2e−tD
2

= 1
2 [D,De−tD

2
]s, where [·, ·]s denotes the

super commutator. Setting Vη(D) := 1
2

∫∞
0
VTrs([D,De

−tD2
]s) dt this finishes the proof

of the index theorem. �
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