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Abstract

In this paper we study the relativistic Boltzmann equation in a spatially flat FLRW space-
time. We consider Israel particles, which are the relativistic counterpart of the Maxwellian
particles, and obtain global-in-time existence and the asymptotic behaviour of solutions. The
main argument of the paper is to use the energy method of Guo, and we observe that the
method can be applied to study small solutions in a cosmological case. It is the first result
of this type where a physically well-motivated scattering kernel is considered for the general
relativistic Boltzmann equation.

1 Introduction

The Einstein-Boltzmann system is a system of equations which can describe the time evolution
of a collection of particles, where the particles interact with each other via gravitation and col-
lisions. In this paper the equations will be studied in the cosmological context, and a spatially
flat Friedman-Lemaitre-Robertson-Walker(FLRW) spacetime with a positive cosmological con-
stant will be considered. The main interest of the present paper is to understand the late-time
behaviour of matter distribution, rather than the evolution of spacetime itself, and we refer to
[3, 4, 17] for general relativity or relativistic kinetic theories.

There are not so many results concerning solutions to the Einstein-Boltzmann system. Local
existence of solutions was shown in [1, 2], but it was not until much later that global problems were
studied by Noutchegueme and his collaborators. For instance, a global existence result for spatially
flat FLRW spacetimes with the cosmological constant was obtained in [16], where it was also shown
that there cannot exist global solutions with a negative cosmological constant. This result was
generalised to the Bianchi I LRS case in [15]. On the other hand, the asymptotic behaviour of
solutions to the Boltzmann equation was recently obtained in [12] with FLRW symmetry. This
result has been extended to the general Bianchi I case in [13, 14] for particles with and without
mass.

The feature of the present paper is twofold. First, we do not impose any artificial restrictions
on the scattering kernel. In the results mentioned above certain artificial restrictions were imposed
for technical reasons, which are not physically motivated, for instance boundedness or restrictions
on the angular variable. In this paper we obtain global existence of solutions and the asymptotic
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behaviour in the case of a positive cosmological constant. In particular we focus now on Israel
particles [10] which are the relativistic counterpart of the Maxwellian particles. Second, we use
a new representation of post-collision momenta to obtain classical solutions. For the relativistic
Boltzmann equation it was observed in [9] that two different representations for post-collision
momenta must be considered to obtain classical solutions, and this was applied to the Bianchi
I case in [13]. In this paper we derive a new representation and obtain classical solutions with
this single representation. More precisely, we will observe that partial derivatives of post-collision
momenta in the new representation do not have singularities, but are uniformly bounded in p. As
a consequence we obtain global existence and an estimate of the distribution function. The main
results are contained in Theorem 1 and Remark 2.

2 FLRW spacetimes

The FLRW spacetimes are the homogeneous and isotropic cosmological models, and we will assume
that the metric is given by

Wy =—di> +g, g=R%*»®p, n=diag(1,1,1),

where R = R(t) is the scale factor. Note that later n,g will be used to denote the Minkowski
metric n,pg = diag(—1, 1,1, 1). Denoting by a dot the derivative with respect to time, the governing
equations in a FLRW spacetime with the cosmological constant A are given as follows:

R 8mp+A
SRS (1)
3R

where p and P are the energy density and the pressure, respectively. In order to show the existence
of solutions of the Boltzmann equation we will need the following lemma.

Lemma 1. Consider an initially expanding FLRW spacetime with a positive cosmological constant
A, which satisfies the weak and the dominant energy conditions. Then, the scale factor grows
exponentially with time and A.

Proof. We multiply (1) by R? and derive with respect to time to obtain

.. 87p 8 A
ORR = %RQ + %231{. (3)

If we substitute R with (2), then we obtain

A .
8mp + 2R

2 . )
gR(—47T(p +3P)+A)R = &TTpRQ + 3 R, (4)
which can be simplified to
3R
)= —— P). )
p=—"7(p+P) (5)

For any matter which satisfies the weak energy condition we have p > 0. In the presence of a
positive cosmological constant this implies that R? > 0. We are interested in spacetimes that are
initially expanding, i.e., we will assume

R(0) >0, R(0)=1, (6)

where the second equality can always be obtained by rescaling if necessary. Due to continuity this
implies that our universe expands forever, and we ignore from now on the negative root of (1)



which corresponds to initially contracting spacetimes. For matter which satisfies the dominant
energy condition we have also that the pressure is bounded by the energy density, which means
that the energy density is non-increasing due to (5).

In fact from what has been said we have the following bounds

52
A < R < 8mp(0) + A

“T3=m=sT 3

= C, (7)

which implies that
eV < R(t) < eV, (8)

where the equalities hold in case of vacuum, which are the well-known de Sitter spacetimes. We
see thus that for any matter which satisfies the usual energy conditions the scale factor grows
exponentially. O

In this paper we will assume that an initially expanding FLRW spacetime with A > 0 is given
and will study the late-time behaviour of the Boltzmann equation. One may consider a coupled
system such as the Einstein-Boltzmann system. In this case, the equations (1)—(2) are coupled to
the Boltzmann equation (9) through the energy-momentum tensor, and this will be discussed in
Section 7.

2.1 Notations

We use the following notation for partial derivatives: for a multi-index I = (4,7, k) with 4, 7,
and k non-negative integers, 9y = (9')%(9%)7(9%)*, where 9% = 9/0p, is the partial derivative
with respect to p, for each a = 1,2,3. Note that 9% = g“ﬂag = R720, in the FLRW case,
where 9, = 0/0p®. Greek letters run from 0 to 3, while Latin letters from 1 to 3, and as usual
we assume the Einstein summation convention. Momentum variables without indices will denote
three dimensional vectors.

The orthonormal frame approach will be frequently used to simplify calculations. For instance,
we have the relation p* = p,/R, where the hat denotes that the momentum is written in an
orthonormal frame. In an orthonormal frame the Minkowski metric will apply, i.e., o = Napp’,
and the quantities like ¢ and 7 will be understood in a similar way. For partial derivatives in
an orthonormal frame, we use hat as Dy = 0/0p® and have 9% = R719, for each a = 1,2,3.
For a multi-index I = (4,4, k), the operator d; will be understood as d; = (('A)l)l(é'g)J(@Ag)’c For
simplicity, we use the following notations:

3 3 3

‘p*|2 = Z(pi)27 |p‘2 = Z(pi)Z’ ‘ZA)|2 = Z(ﬁz)z

i=1 i=1 i=1

12 # g"papy and |p|? # gapp®p®. With these notations we define

(p«) = V1+[psl?,
and note that (p.) # p’ = /1 + R~2|p,.|%.

Note that |p|? = n.p*p", but |p.
the weight function:

3 The Boltzmann equation in a spatially flat FLRW space-
time
In a spatially flat FLRW spacetime the Boltzmann equation is written as

atf :Q(faf)v

where the distribution function f = f(¢,p.) is understood as a function of time ¢ and covariant
variables p, = (p1, p2, p3). To determine the collision operator @, let us consider an orthonormal



frame {e,}, and obtain @) with the representation of (34) and the post-collision momentum (35).
To revert to a coordinate frame, we write e, = ef0d/0z® and p® = p'ef;. Since eﬁefgag = Nuws
we have ptn,, = ﬁ“egefga,g = p®elgap = pae and p* = paein*”. Then, the quantities in (35)
b _

av

can be written in terms of covariant variables. For instance, n - w = nabﬁ“wb = NapNaon™w
naeg‘wb. In a spatially flat FLRW case, we can introduce an explicit form of an orthonormal frame
as follows: ej = 1, e2 = R, and e? = 0 otherwise. Then, we have 7 - w = neefw’ = naw®/R
and observe that p° = —pg = p° and p® = p,/R for each a = 1,2,3. The Boltzmann equation is
now written as

of =5 [ [ onon0) (K6 = ) (0) ) duda. Q

where vy is the Mgller velocity defined by

hy/s

 4pOg0’

onr h=vPa — )P —¢*), s=—(pa+q.)P*+3q%),

where h and s are called the relative momentum and the total energy, respectively. The post-
collision momentum p/, is now given by

o +2< _qonaw“ N Nawnpq” ) New*
PO _ N Vs(nY +/s) ) R?\/s (10)
Dl 49 0 MaW® n - Naw®npq® —_— New’ny ’
_ W Wy 4 —e Tk
P T T T A+ Ve )\ T R0+ V)

and ¢/, = pa + qo — P, where n® denotes p® + ¢* for simplicity, and w = (w!,w?,w?) € S? serves

as a parameter. For more details we refer to the appendix.

3.1 Israel particles

In this paper we are interested in the Israel particles [10], i.e., the scattering kernel is given by

4

o(h,0) = mao(a),

where o¢ is an arbitrary function of the scattering angle  (see (5.101) of [3] for more details).
This corresponds to the Maxwellian particles in the non-relativistic limit, and for simplicity we
assume that

oo(8) = 1.

Hence, the scattering kernel of our interest is written as o(h,6) = 4(hs)~!.

4 Preliminaries

In this part we collect basic estimates.

Lemma 2. The following estimates hold:

p—4q

/pOgd ~
Proof. These estimates follow easily from the definitions and assumptions. We refer to [9, 13] for
the proofs. O

s=4+h? h<lp—dl, s<4p°’, |p|=R"[p.|<p"

Lemma 3. For any integer m, we have

[ e ap. < om,
R3

where the constant C' does not depend on t.



Proof. This is a simple calculation given by
[0y et ap. = [ (14 mp e VI,
R3 R3
= R3/ (14 |2)?)F e V42 < CR,
R3

and this completes the proof. O

Lemma 4. Suppose that p, and ., are represented by (10) for given p. and q.. Then, we have

(pe) < C(PL)(GL),

where the constant C' does not depend on t.

Proof. In an orthonormal frame we have

1+ [p.|? 1+ R2|p|? o L+ RpP

L+ L)@+ 1a?) — A+ RpP) A+ R2¢?) — 1+ R2(p' 2+ 1012

and will show that this quantity is bounded uniformly in time. In the first case, (i) |p| > 4, we
have Lemma 2.2 of [7], which shows that max{|p’|,|{’|} > |p|/4. Hence, we have
2|5(2 2|5(2
L+ RpP o 1R
L+ R2(|p'P +1q'[?) — 1+ R?[p|*/16

In the second case, (ii) [p| <4 and |G| > 4, we use the energy conservation:

VIHPR+VI+]GR = V1452 + 1+ 14

This shows that 4 < |§| < /1 + [§]2 < /1 +[§'|2+ /1 +|¢'|?, which implies

max{y/T + |2, 1+ ¢} > 2,
and equivalently we have max{|p’|?,|¢’|?} > 3. Hence, we have

1+ R?|p|? 1+ 16R?
L+ R (PP +13P) ~ 143K

16
< —.
-3
In the last case, (iii) |p| < 4 and |§| < 4, we use the representation (33) such that
ﬁ/ =p-— ((ﬁa - Cja)Qa)Qv Cj/ =q+ ((ﬁoc - (ja)Qa)Q
For simplicity let us write U* = p* — ¢*. Then, we have

~ ~ ~ ~ 2 ~ ~ ~ ~
|ﬁ/|2 + |(j/|2 — ’p;q + (p 5 q o (Uaﬂa)g)‘ 4 p;_q . <p 5 q o (UaQa)Q>

p+41? | |U—2(Ua2)Q
- 7 2 '

2

Since 2,0% =1 and U, U® = h?, we have

h? = U U = (U, — 2(UsQP)Q0) (U — 2(Us0%)0%)
= —(U° = 2(Us0%)0%)2 + |U — 2(Us0%)Q)? < |U — 2(UsQP)Q)2.

Hence, we obtain

A . A+A2 h2
|p/|2+|q/|2 > |p 2q| _’_?.



We now apply Lemma 2 to estimate the right side as follows:

5 A2 2 S A2 |h_ al2 5 A2 1 |h a2 512 1 (52
p+a”  p7 W+ W= lp+dF+p—dl” PP
2 2~ 2 2p0q0 — 2p0q0° - 17
and this shows that |p'|?> +|¢'|? > (|p|* + |4|?)/17. Hence, we have
2|52 2|5(2
L RApE L+ R
L+ R2(|p'P +1q'1) — 14 R2[p[*/17

and this completes the proof of the lemma. O

Lemma 5. For a multi-index I, there exists a polynomial P such that
1 1 Dx
o [po] - R"'(po)”lP(Rpo)’

Proof. We prove this lemma in an orthonormal frame, and then use the relation 9% = R719, to
conclude the lemma. We claim that for a multi-index I, there exists a polynomial P such that

03] - e (2)

The proof is given by an induction. Note that (11) holds trivially for |I| = 0, and then suppose
that (11) holds for some I such that [I| =n > 0. We now prove (11) for I’ such that |I'| = n + 1.

We first notice that
é o_ﬁa é Pa _1 _ﬁaﬁb _1P P 12)
aP—F> bp*o—]ﬁnab FF —Elﬁ’ (
for some polynomial P;. This shows that for any polynomial P,
()] = 5(5) w
p p p
for some polynomial Py. Since dp = 9,8; for some a and |I| = n, we have
~ |1 0 1 P
a rl— = — 7P —_
' U aﬁ“[(p")”“ (p)]
—(1 + n) ﬁa ﬁ 1 0 ﬁ
(p0)r 2 po = \ po + (p0)n+1 gpe 0
1 p 1 p
- (po)”+2P3<po> - (po)""“P3<pO>’

where P; denotes another polynomial. This proves (11), and the relations 9% = R719, and
ps« = Rp derive the desired result. O

where p, = (p1,P2,P3)-

Lemma 6. For a multi-index I, there exist polynomials P; such that

1 1 1] qoi 1 |I|—i e G
81[\/5} B R"\/§§<S) <po> Pi(Rpo’RqO)’

where p, = (p1,P2,P3)-




Proof. We first show that in an orthonormal frame there exist some polynomials P; such that

R Co1 o M ) R

which holds trivially for |I| = 0. Suppose that it holds for some I such that |[I| = n > 0. By a
direct calculation, with s = 2 4 2p°¢° — 214,p*¢®, we have

A A . P g
a5 = 2(0ap”)d° — 240 = ¢° P1 <po’ qo), (15)
where we used (12) and P; denotes a polynomial. Then, we obtain

Al 1] éasil q° Aqoi qoéasi q02
| ga) = an = () A5 =T = (5)

where P, and P3 are some polynomials having p/p® and G/q° as variables. These calculations,
together with the previous lemma and the estimate (13), show that (14) holds for I’ satisfying
|[I'| = n+ 1. Applying to (14) the relations 9* = R™19,, p. = Rp, and ¢, = Rq, we obtain the
desired result. O

Lemma 7. For a multi-index I # 0, there exist polynomials P; such that

17

sl LNh @OV e 111
0 V5] TR & 0+ s\ R R 05

where p. = (p1, P2, P3)-

Proof. In this lemma we consider a multi-index I such that |I| > 1. As in the previous lemmas,
we prove the lemma in an orthonormal frame:

1] 0y|1] PN
A 1 1 1 1
ol s @) (P g 11 , (16)
nd + /s — (n0 + /s)itt
Below, P; will denote some polynomials of p/p°, ¢/q°, 1/p°, 1/¢°, and 1//s. To get an induction
we first consider 97 = 9, to obtain

A [ 1 ] —(0ap® + 0a/5)  Pi+ Py q°

] I Y B C VO LR LRV

where we used (12) and (14), and observe that (16) holds for |I| = 1. The representations (11),
(12), and (14) show that for any polynomial P,

. g 11 1 oo (P 4 1 1 1
Oy | P 0 0 0’ 0 ~— =q P, 0 0’ 0 o ~— |
b[ (po ¢° p° ¢ \/Eﬂ T s
for some polynomial Py. It is now easy to see that (16) holds for any |I| = n. The lemma is now

obtained by applying the relations 9% = R‘léa, p« = Rp, and ¢, = Rq. O

Lemma 8. Consider post-collision momenta p!, and ¢, in (10) for given p. and q.. Then, high
order derivatives of them are estimated as follows: for a multi-index I # 0,

0Dl | + 1014.| < CRl—\T\(qO>\I|+4,

where the constant C' does not depend on p.



Proof. By the relations 8; = R, and p, = Rp, we have d;p. = R"M1d;p'. Hence, we
will obtain an estimate for d;p’, and will conclude the lemma by applying these relations. The
representation (10) can be written in an orthonormal frame as in (33) with Q%:

P =P +2(327)0%, Q= ((ﬁ ) ﬁ((igﬁ%),

which shows that it is enough to consider the derivatives of (7 - w)/y/s and 2/(n® + /s). Below,
the following estimate of 1//s will be frequently used: if |p| > max{2|g|, 1}, then
1

1 /2000 9. /p0q0 0
— << YL VP oy [T (17)
Vs T h T |p—g| i p
and if |p| < max{2|q|,1}, then 1/y/s < C by Lemma 2.

We first estimate the quantity 9r((7 - w)/+/s). For |I| =0, we have

. [(ﬁ-w)” 17| Cq°, if |p] < max{2|g|, 1},
(9[ S = S 1 1
Vs Ve T L e@?)2(¢%)?, if [p| > max{2|g|,1},

(18)

where we used |2| < [p| + |G| < C¢® in the first estimate, and |7 < |p| + |G| < Cp® in the second
estimate with (17). High order derivatives of (7 - w)/+/s are written as follows:

A (W)l a5 - 15 [ L

8[|: \/g —Za[l [n-w}ﬁlz % 5 (19)
which is a finite sum for some multi-indices I; and I». Note that the quantity 511 (A -w) is bounded
by a constant C or by || for |I;] > 1 or |I;| = 0, respectively, and that the representation (14)
shows that

(¢°)!%! |Iz]

Gl S () () e @

for any |Iz| > 0. If |I3] > 1, then the above estimate is improved by

w0 ) ) e

w

We now consider (19) for [I| > 1. If [I;| > 1, then the quantity dy, (7-w) is bounded by a constant,
and we apply (20) to O, (1/+/s). If |I;| = 0, hence |I5| > 1, then the quantity 9y, (7 -w) is bounded
by |7, and we apply (21) to 91,(1/+/s). We obtain an estimate:

5 [ (- w) (¢*)"! 1l I7l
or | —=— C 1+ —+ =],
' I{ Vs Ut T
which is further estimated as follows: If |[p| < max{2|g|,1}, then || < Cq¢°, and we obtain

1+ n|/s + |n|/p° < C¢°. If |p| > max{2|g]|,1}, then |A| < Cp°, and we apply (17) to obtain the
same estimate, i.e., 1 + |n|/s + |f|/p® < Cq°. Therefore, we conclude that for || > 1,

IN

1 1 I+ if |p| < max{2|g
éf{(n-w)”SC(qO)m g{ C(@MH, i |p) < max{2|q|, 1}, )

Vs Vs CH*)"E(@)IHE, i |p] > max{2/q], 1},

where we used (17).



The quantity d;(7/(n° + 1/3)) is estimated in a similar way. It is easy to see that for |I| = 0,
5 0
A 7l n
0 < <
’[n0+\/§} Y

For |I| > 1, we write ;(2/(n° 4+ v/5)) as a finite sum of (8;,7)dy, (1/(n° + /5)) for some multi-
indices I; and I satisfying Iy + Iy = I. If |I5| = 0, then |I;] > 1, hence |07, 71| < C, and in this
case we have

C. (23)

. . 1 C
. < .
(020, {n(’ + \/5} R LEEVE
If |I3] > 1, then we apply the representation (16) to obtain
R R 1 02l (g ]
(Br.7)00, L Onld) ™ Cd) 7
e | ey e

where we used the fact that |é11ﬁ| < CnP for any |I;| > 0. We combine these estimates to conclude
that for |I| > 1,

(0AY P4
@) _
Sy

Cp®) ("), (24)

A n
0
' [no +s ]
where we simply used n® > p°.
We now collect the estimates (18), (22), (23), and (24) to obtain

Cc):g, if |I|=0,
10,9%| < C(g)H, if |11 > 1, |p| < max{2|g|,1}, (25)
CY)TE@)ITE, i 11> 1, [p| > max{2/g],1}.

Hence, we observe from the representation of p’ that high order derivatives of p’ are estimated as
follows:

Cp(¢°)?, if |1 =0,
08| < § COMEEHE, i (1 =1 [Pl < max{2/d], 1},
C(¢")1H, i (1] =1, |p| > max{2|g|, 1}.
Since p® < Cq° in the second case, we conclude that for |[I| > 1,

|010| < C(g%)1T1*, (26)
and consequently the relation d;p/, = R*~ |51ﬁ’ derives the desired result. The estimate of 9;q.,
is the same, and this completes the proof. O
5 Energy estimate

In this part we study the energy estimate for the Boltzmann equation. We write the Boltzmann
equation as follows:

6tf:Q(f7f):Q+(f7f)_Q7(f7f)7

where the gain term @4 and the loss term ()_ are written by

. 1
Qu(f.f) =R / / T {CATCATETS

Q- (1.0 = R [ [ S o) 0 ..



Define the norm as follows: for £k > 0 and N > 0,

0
lg@I7n = 1959t Hg(t)lliZ/ (p)?*e? Dlg(t, p.)|2dp.,
1BI<N RS

where N and k will be determined later.

Lemma 9. Let f be a solution of the Boltzmann equation. Then, f satisfies the following estimate:

IFOIE < 1F O +C sup 1£ ()13,

where k is a non-negative integer.

Proof. Multiplying f to the Boltzmann equation, 9;(f?)/2 = fQ(f, f), and integrating the equa-
tion on [0,¢] at a fixed p., we have

Ptp.) = £(0,p.) +2 /0 F(5:p)QUf 1) (s, p2)ds.

We consider p° = p®(t) as a function of ¢, and multiply ¢ to the above to obtain

'O f2(t,p,) = " f2(0,p,) + 2 / t e O £(5,p)QS, ) (s, p.)ds

0

t
0 1 0
= e” W f2(0,p.) +2 /O R0 (5”’*)// e VP f (s ) dudg.ds

- 2/0 @) [f o7 O F ) (0. .

Note that since R is increasing, p° is decreasing in ¢ for each p,, hence we have

e D2t p,) < e O £2(0, p,)
t
1 0
42 / R3(s)f (s, - / / ") f(s,p.) f (5, ¢/ ) dwdquds,
R @) [[ e fe o)

where we ignored the loss term. By the energy conservation at time s, i.e.,

p0(s) +¢°(s) = p°(s) + ¢°(s),

we have
O f2(t,p.) < O £2(0,p.)
+ 2/t R_S(S)eépo(s)f(&;v*) // ! e_%qo(s)e%p/o(s)f(s,p;)e%q/o(s)f(s,q;)dwdq*ds.
0 p°q°/s

We now multiply the weight function (p.) to the above. By Lemma 4 with k > 0 we have

(0]
(pa) e’ @ £2(1,p,) < (p.) e © £2(0,p,.)

t
+C/0 R3(s)(pa)*er?"®) f(s,p.)

1 1.7 ’
“Jf st T W RO £l ) g R (s, o yduodg.ds.

10



Integrate the above inequality with respect to p, to obtain ||f(¢)||7 and [|f(0)||7 from the left
side and the first quantlty on the right side, respectively. To estimate the last quantity we write
F(s,p«) = (p« )kezp (s) f(s,p,) for simplicity, and consider for each s,

[rw [] poq%ﬁe*%Q°<S>F<p;>F<q;>dwdq*dp*
< C(///F2(p*)€_q0(s)dwdq*dp*) (// iFQ ®.) F2(q*)dwdq*dp*>2
< c||F<s>||L2( [0 ) ( [ F2<q*>dwdq*dp*)%

< CR2(s)|[ F ()3,

where we used (p%q°)~ldp.dg. = (p'°¢"°)~tdpldq. and Lemma 3. To summarize, we have

IF @I < [1F (0115 +C/O R™3(s)|| F(s)][32ds,

and, since R~2 is integrable and ||[F(s)||2 = || f(s)||x, we obtain the desired result. O

Lemma 10. Let f be a solution of the Boltzmann equation. Then, f satisfies the following
estimate: for B # 0,
10 FO1E < 1195 £(O)IE +C sup [ f(s)IIF, 5,

s€[0,t]
where k is a non-negative integer.

Proof. For a multi-index 3 # 0, we take dg to the Boltzmann equation,
0051 = B [ [ 00| 550 [500)] 05 [ )
0 poqo\/g 1 * 2 *
_ 1
- R 32// 98, {W]aﬁlf(p*)f(q*)dw@*,

where the summations are finite and taken for some (g, 81, and Bo satisfying By + 51 + B2 = 5 or
Bo + f1 = 5. Multiply 205 f and take integration on [0, ¢] to obtain

(@95 (t.p) = (0520.p.)
w2 [ 800000 Y [ ooz on 100 [ 1060 .

~2 [ 000000 Y [[ 0] iz om0 0 s

As in the previous lemma, we multiply (p*>2kep (*) to the above equation, and use the decreasing
property of pY(t) and Lemma 4 as follows:

()25 (95 1)2 (1, ps) < (pe)? e (85 £)2(0,p.)
+CZ/ () (p) e |9 £ (5, p.)|

I o a)

e
O [ R A 05

S ow s

70
e 3% 62” (s)

Op [ 10| ()b

98, {f (qi)} ‘dwdq*ds

1,0 s
e300 (pVre3P’ (|95 £(p.)](g.) e ) £(q.)dwdg.ds. (27)
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To estimate the right hand side of (27), we first consider the partial derivatives. Since p./(Rp°),
q+/(Rq"), 1/s, and 1/p" are bounded quantities, we obtain by Lemma 5 and 6 for a multi-index I,

C(¢O)M! C’ 0y

<
- [ (p )|11|+1 0RUz|f pOq0

g

where we simply ignored R and /s. To estimate 9, [f(p})], we apply Faa di Bruno’s formula as
in [5, 9]. Applying the main theorem of [5] to our case, we obtain for a multi-index I # 0,

01 [£(61)] = Y00 D OAI - 0,21

which is a finite sum for multi-indices Iy, J;, and K; such that 1 < |I;] < |I|, |J;] > 1, |K;| > 1,
and [I| = 37, |J;||K;|, and [9,,p.]%" is understood as (07,p})%1(9,,p5)k2(8,,p4)%= for K; =
(K1, ki2, ki3). Applying Lemma 8, we have

S K1,
[0, - [0, 000" (Rl’”i'(qo)"’”“)l <oy,
=1
where we used |J;| > 1 and |I| = Y_;_, |J;||K;|. Hence, we obtain
or[100)] | < C@P S 10 D@, (29)

where the summation is over 1 < |I;] < |I|, and the same estimate for 9r[f(¢,)]. Note that the
estimate (29) still holds for I = 0, in which case we understand I; = 0.

We are now ready to estimate (27). Applying (28) and (29) to the integrands in the second
and the third terms of (27), we obtain

. 0 (0]
(P e” D(Dp 1) (t,ps) < <p*>2kep ©(931)*(0,p.)
£OX [ R0 O 0ass.p0)
5\5\ 1,00
e (e b0y, ) e O s

+CZ/ R Vres?’ () |9 £ (s, pa)|

'ﬁ(" —14%(s) P°(s) k14" (s)
// ) O [0,, F(p) (g )Fe} 0O f(q,)dwdg,ds, (30)

where the summation of the second term is over some I; and Iy satisfying |I1] + [I2] < |3]. The
estimate is now almost the same with that of Lemma 9. Integrating the above inequality with
respect to p,, we obtain [|05f(¢)||7 and ||0f(0)||2 from the left side and the first term on the right

side, respectively. To estimate the second term, we write Fg(s, p.) = (p*>ke%po(s)|8,3f(s,p*)|, and
consider for each s,

05181 R / )
/F p* // 2 Fll(p*)Flz(Q*)dwdq*dp*

: . :
<C<// 3 (p)(a")!"e” )dwdq*dp*> (/// MFi(p’*)Fi(qi)dwdq*dp*)
YRS ) !
<0|Fﬁ<s>||m( / (¢°)10181 " >dq*) ( i MF?1<p*>F?2<q*>dwdq*dp*)

< CRE (s)||F5(s) |21 Fr, () 2| Fra (5) | 2,

12



where we used (p°q°)~tdp.dq. = (p'°¢’°)~1dp.dq. and Lemma 3. This shows that the second term
of (30) is estimated as

3
3 / Fs() 122 |1 F ()]l 52 1 Fra ()| pods < € sup ( 3 |Fﬁ1<s>||m) ,
€0\ 5,118

since R=% is integrable. In a similar way we estimate the loss term and obtain the same upper
bound as in the gain term. We skip the estimate of the loss term, and conclude that f satisfies

105 (D% < 1950} +C sup 1 ()17,

se|0,

and this completes the proof. O

Remark 1. Lemma 9 and 10 show that if f is a local-in-time solution of the Boltzmann equation,
then it satisfies for any N >0 and k > 0,

IF@OIE v < IFO)IE ~ +C sup ()R n (31)

s€[0,t]

on a (short) time interval. This proves that the solution is extended to a global-in-time solution,
if initial data is given such that ||f(0)\|iN is sufficiently small.

6 Main result

6.1 Global-in-time existence for the Boltzmann equation

Local-in-time existence is proved by a standard iteration method. Let us consider the following
iteration:

o =R [ oo 8) (£ ) = 1 08 0 )

with 710, p.) = f(0,ps) and fO(¢,ps) = £(0, p«), and obtain a sequence {f"}°° ;. As in Lemma
9 and 10, we take a partial derivative dg for 8 > 0 and multiply 205 f"*! to the above equation.

To the equation obtained, we first take integration on [0, ¢], and then multiply (p*>2ke”0(t) and use
the decreasing property of pY(t) to obtain the following inequality:

<p*>2kep0(t) (85f"+1)2(t,p*) < <p*>2kep0(0) (35f)2(0,p*)

t
+CZ/ R™3(s)(ps)*e2? )95 " (5,p4)]
0

bzl

+CY / 3?9 £ (s, p. )|

<[ o Lw]

Integrate the above inequality to obtain |0 f"*1(¢)||7 and |05 f(0)||? from the left side and the
first quantity on the right side, respectively. Following the proofs of Lemma 9 and 10 and summing
over |3] < N, we obtain the following estimate:

Lf @117
<|[If(0 )Hk,N+O sup [[f" () kv 1" ()7 +C sup (|77 ()]
s€[0,t] s€[0,¢]

< IFO)En +C sup [IF" ()i .y +C sup, LF NN (s)
se|0,

s€0,t]

B ) heB00, [ 17 00)] (6 €205, [ £7(0L)] | dwd.ds

30 (p, Vhe 3?9 |9, 174 (p,)|(qu)Fe2 ) £ (g,) dwdg. ds.

()l
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where we used a simple inequality ab?> < a?b 4 b3 for positive a and b. Suppose now that there
exists a positive M such that [|f(0)[7 y < M/2 and [[f*(t)[[} y < M on a time interval [0, T].
Then, we have

n ) n
£ Ol < M2+ OM3 + OVAT sup 1776l
sg|0,

which shows that if M is sufficiently small, then ||f**!(¢)|[Z y < M on [0,T], and we conclude
that f™ is bounded uniformly on n. Taking limit n — oo, we have a local-in-time solution such
that || f(¢)||Z ; < M on [0,T], and the inequality (31) now proves that if || f(0)||Z 5 is sufficiently
small, then the solution exists globally in time. Non-negativity of solutions is guyaranteed by the
iteration, and uniqueness is easily proved as in [8]. For more details, we refer to [8, 9].

Theorem 1. Consider a spatially flat FLRW spacetime where the scale factor R = R(t) is given
by an increasing function with an exponential rate. Let f(0) = f(0,ps) be an initial data of the
Boltzmann equation (9) such that || f(0)|7 y is bounded with k >0 and N > 3. Then, there exists
an € > 0 such that if ||f(0)HiN < g, then the corresponding solution exists globally in time such
that

sup || f(#)[I7.n < Ce,
0<t<o0

for some constant C > 0.

Remark 2. The Boltzmann equation is written as in an orthonormal frame,
of — (Bp/R) - Vi f = Q(F. ), (32)

where f = f(t,ﬁ) denotes that the distribution function is written in an orthonormal frame to have
variables t and p = R~ p.. Let f be a solution of the Boltzmann equation (9) constructed in the
previous theorem. Since N >3, f is of C1 in p., hence the equations (9) and (32) are equivalent,
and f(t,ﬁ) = f(t,p«) solves the equation (32). Since f(t,ps) < C’E(p*>_ke_%p0(t), we now have
the asymptotic behaviour as follows:

0

f(tvﬁ) < C€(1 + Rz(t)‘ﬁp)*%efép ,

where p° = /1 + |p|? is independent of t in an orthonormal frame.

7 Summary and outlook

The result of an accelerated expansion has been obtained for a given distribution function in Section
2. The existence of classical solutions to the Boltzmann equation has been shown in Section 6 and
presents the core of this paper. One may now consider the coupled Einstein-Boltzmann system,
where the equations (1)—(2) are coupled to the Boltzmann equation (9) through the energy density
and the pressure, which are given by

p= R_?’/ f(t,p)p’dp.,
R3

P=r [ st 2L,
R3 3p0 ’
where the distribution function again is understood as a function of time ¢ and covariant momenta
px = (p1,p2,p3). Since we have considered particles of unit rest mass, which are future pointing,
ie., papggo‘ﬁ = —1 and p° > 0, and the distribution function is non-negative, it is easy to see that
the matter, described by the Boltzmann equation, satisfies the weak and the dominant energy
conditions. In this sense, Lemma 1 applies to the coupled system as well, and in the present paper
we only remark that a standard iteration method will give us the same results.
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Using a new representation for the collision operator and the post-collision momentum we
have obtained future global existence of classical solutions for Israel particles and shown that they
have an asymptotic behaviour in a spatially flat FLRW spacetime with a positive cosmological
constant. There are not so many results concerning solutions to the Einstein-Boltzmann system,
and moreover most of them impose artificial restrictions on the scattering kernel for technical
reasons. We have been able to obtain our results without any artificial restrictions. The results
have been achieved however only for small solutions in the presence of a positive cosmological
constant, which has been used in a crucial way. In any case the results obtained open the possibility
to explore in more detail scattering kernels which are physically relevant. It is clear that the
Universe is not exactly isotropic, so it will be of interest to consider more general models such as
the homogeneous, but anisotropic Bianchi I spacetime. Further it should be possible to consider
forever expanding Bianchi spacetimes as was done for the Vlasov case in [11]. Finally, we remark
that on the basis of the monograph [17] (cf. in particular p. 154-156 and Appendix F) it is of
interest to consider stability in the general case.

Appendix

In this part we derive the representation of the collision operator that we used in this paper.
The main idea is to use a Lorentz transform as in [18], and calculation is slightly modified. Let
us consider the Minkowski case, i.e., gog = 71ag, and suppose that p® and ¢ are pre-collision
momenta satisfying the mass shell condition. Let A be a Lorentz transform satisfying

Agnﬂ = (\/57 0,0, 0)7 AaAgna"/ =136

Where n® = p* + ¢¢. For simplicity, we use tildes to denote transformed quantities, for instance
Aapﬁ ' Agp'ﬁ , and so on. Since A is a Lorentz transform, the mass shell condition still
holds for pre- and post-collision momenta, i.e., pop* = §o4* = pLP'* = ¢,4’* = —1, which derive

=V 5= VP

and similar representations for ¢° and ¢’°. Since 7° = /s and 7* = 0, we have p° = ¢° = \/5/2
and |p| = |g| = h/2. The collision operator is written as

dp'dq’dq
// W(p,q.9',d)G(p,q.p',q )p/oq/Op 00"

where G denotes f(p')f(¢") — f(p)f(q). The transition rate W is given by
s
W(p.q.p'd) = 5o (h, 000 (p* + ¢ —p' — ¢,

where 64 is the four-dimensional Dirac delta function. For given p and ¢, let us consider

dp'dq’
I=/ W(p,q,p’,q')G(p,q7p’7q’)W

so dp'dq
= // 75(4) (P* +q% = p'* —¢d*)G(- - )W-
Since (p™)~tdp’ and (¢"°)~'dq’ are Lorentz invariant, we have
5 dﬁldd/
I—// 2750 (5 + ¢ pa—qla)G("')W-
Since p* + ¢* = 0, the quantity 6@ (p* + & — p’* — §’%) derives ¢* = —p’*, and the mass shell
condition shows that ' = §°. Since we already have p° = ¢", the quantity I reduces to

1= [ o 26t i = [ a6 60 ) i
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To compute the quantity §(p"° — 5°), we take the translation p’* = §'* — p* for k = 1,2, 3, and use
the mass shell conditions to have

50— 50— 72— 1> _ ' +p) - —p) _ (0 +2p) P

]3/0 + 130 25/0 + ]50 - 15/0 + ]30

We write p' = |p’|w for w € S? to obtain

g0 oy _ s PP +25-w)\ _ (B +5°) (5 o
o0 - ) = o(MELE 2 ) _ WP (33 + 65+ 25-),

where we used Lemma 1.3.1 of [6]. Hence, we have

[ P+ (o o ' 2d|p | dw
If/ 7 T (300 + 0001+ 25 ) G i

(50 () Lo |P'[*d|p|dw

- / T a0+ 25 w6 LS

where §(|p’|) vanishes by the quantity |p’|>. Note that 5’0 = p°, when |p’'| = —2p - w, and therefore
we have

~0 = 2 N .
r= [F e e [,

420pw] (7°)? b

Since p = —q and p° = \/s/2, we obtain

I:/2\/§|d-w|a(h,6)G(-~-)dw.

Note that ¢ is a transformed variable, and we consider the inverse of the Lorentz transform. By
introducing a four-dimensional vector w® = (0,w), we have the following representation:

g -w= naﬁqawﬁ = naﬁAﬁqug(A_l)iW“ = nwéq’y(A_l)iwu = ¢ 2%,

where we defined Q% = (A’l)gwﬁ . The post-collision momentum is given by 5"° = p° and p' = |p|w
for w € S2. Since p' = p' —p and |p'| = —2p - w = 2§ - w, we have ' = p+ 2(§- w)w. Then, we can
write p'® = p* 4 2(G - w)w®. Taking the inverse of the Lorentz transform, we have

P =p* 4+ 2(gsQP)N, ¢ = g™ — 2(¢p07)Q". (33)
Note also that 2% is a unit spacelike vector and n,Q% = f-w = 0, which shows that it is orthogonal
to p® +¢“, hence we may write the post-collision momentum as p'® = p® + ((gs —ps)Q2”)Q%. Then,
we have p'* — ¢'“ = p® — ¢* +2((gp — pB)Qﬂ)QO‘ and multiply p, — ¢, to obtain
h? cost = (o — 4a) (" = d'*) = h* = 2((ps — 45)2")?,

and therefore ((po — qa)Q%)? = h2(1 — cos0)/2 = h?sin?(0/2). Since 2|G - w| = |(Pa — ¢a)Q°|, we
have the following representation for I:

I= /hﬁsin(9/2)a(h,9)G(~--)dw.

By abuse of notation we may redefine the scattering kernel as 4sin(6/2)o(h, ) and introduce the
Mgller velocity var = hv/s/(4p°q%) to obtain the following representation of Q:

= [ | [ oo un)(s6)16) - 1)1 ) deda. (34)
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For the Lorentz transform, we use the boost matrix as in [18]:

(nﬁw) (n-wn )

(1w =0 =
Then, the post-collision momentum is given by

0 e (n~w0)(q-7”;) (n-:)
Ol ST )

Vs(n® +/s) Vs(n® +/s)

and a similar representation for ¢’ is obtained. The representations (34) and (35) are generalized
to the FLRW case as in (9) and (10).
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