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Profinite groups

Laurent Bartholdi

Profinite objects are mathematical constructions used
to collect, in a uniform manner, facts about infinitely
many finite objects. We shall review recent progress
in the theory of profinite groups, due to Nikolov and
Segal, and its implications for finite groups.

1 Numbers

When children learn to compute, they learn that numbers are finite sequences of
digits among {0, ...,9}, with the usual rules to compute with them. Thus ‘12’
represents twelve, and 12/3 = 4. Quickly, however, they run into calculations
that don’t have an answer in this number system: how should they describe
1/3? The traditional answer is to extend the number system by placing a ¢
and possibly infinitely many subsequent digits on the right, to express tenths,

hundredths, etc.; thus they learn to write
1
3 = 0.3333333333333333.. . . , V41 = 6.40312423743284865 . . . .

A child might come up with an altogether different extension of the number
system, by allowing infinitely many digits on the left: consider the expressions

1
3= 666666666666666667, V41 = ... 145932736758703821. (1)

They seem “obviously wrong”, but only to us adults: multiplying and squaring
the expressions without the dots one gets

1
3- 3= 2000000000000000001, (V/41)? = 11xes0005713107438000000000000000041.



If we had carried these calculations to infinite precision, then the non-zero digits
different from 1 and 41 respectively would be infinitely far away on the left
— this is why they have been represented smaller — so that (in some sense to
be defined below) the expressions in (1) are valid descriptions of & and /41,
respectively.

Both ways of representing numbers made use of infinite expressions; but
we cannot perform infinite calculations in finite time. Already when we wrote
NZVI 6.403..., we meant that there is a sequence of rational numbers
6,6.4,6.40,6.403, ... that approaches v/41, in the sense that the difference
can be made smaller than any € > 0 by going far enough in the sequence;
we never compute with the infinite expansion of v/41, but merely with some
approximation that is “good enough”, depending on how much precision is
required.

Similarly, the sequence of numbers 21,821, 3821, 703821, ... has the property
that their squares 441,674 041, 14 600 041, 495 364 000 041, . . . are congruent to 41
modulo higher and higher powers of 10. We are in effect redefining the notion of
“approaching”, by saying that integers that agree on a large number of rightmost
digits — are congruent modulo a high power of 10 — are close.

Thus the statement that v/41 exists and may be written as ...3821 is a
compact manner of stating that the congruence X2 = 41 (mod 10") is solvable
for all integers n, with a typical solution having the rightmost n digits equal
to ...3821. Note that, in this number system, some numbers do not have
a square root. For example X2 = 3 (mod 10) is not solvable, since the last
decimal digit of a square will always be in {0,1,4,5,6,9}. On the other hand,
if a positive integer s ending in 1 or 9 has an approximate square root x(
with 22 = s (mod 103) then it does have an exact square root in this number
system, obtained by iterating what is called the Newton—Raphson method
Tir1l = %(ml + s/x;) and taking the limit.[I

1.1 Profinite integers

There is no reason to restrict ourselves to base 10 in expressing numbers. Any
other basis may be chosen, or in fact a combination of all bases together: one
may write numbers as

As an example, take s = 89, starting with x¢9 = 33. This is a valid example since
332 = 1089 = 89 (mod 103). To calculate the inverses 1/x¢ in the Newton-Raphson method,
we only consider the last four rightmost digits; hence we look for a number Y, such that
Y 20 =1 (mod 10%). In this case we can calculate 1/xg = 9697, since 9697 - 33 = 320001 = 1
(mod 10%). Then we obtain z1 = 3(33 4 89 - 9697) = 431533 = 1533 (mod 10*%).

Note that only the rightmost ¢ + 4 digits of the quotient s/z; need to be computed.
Calculating the next few xj, and their inverses in Z/10¥t%Z we obtain the sequence
33,1533,26533, 26533, 1026533, 6026533, 156026533, 3656026533, 18656026533, . . ..



a=---ap---asay;, witha; €{0,1}, az € {0,1,2},...,a, €{0,...,n}, ...

representing the number - -+ a, - n! + -+ + ag - 2! + a1 - 1!. Integers are as
usual represented as numbers with only finitely many non-zero digits; thus for
example the notation 321 represents the usual integer (in base 10)

3-31+2-214+1-11=18+4+1=23.

The conditions on the digits 0 < a,, < n ensure that every number has only one
representation. In this new system, called the profinite integers and written Z,
two numbers are close if they agree modulo n! for some large n, or equivalently

modulo m for every m = 1,2,...,n and n large.
It turns out? that the only integers admitting a square root in Z are precisely
the usual squares 0,1,4,9,.... Thus there is a perfect agreement between

computing /s in integers and solving the congruences X2 = s (mod n) for all
n; or, in more mathematical terms, between solving X2 = s in the integers Z or
in all finite rings Z/nZ.

Note that this does not hold for all equations: for example, the equation
3X3 4 4Y3 = 5 admits a solution (mod n) for all n, and thus in Z, but not in
7 itself, as Selmer showed in [9] Selmer’s article is long, and is not an easy
read; a shorter and more specific treatment is in [3].

2 Completions

Let us make the discussion yet more mathematical. We have an object of
interest X, say the integers Z; and a family of quotients X, of X, say the
residue systems Z/nZ, or only the subfamily Z/10"Z. We write p,,: X — X,
for the reduction map. There are also some natural maps between the various X,,,
for example from Z/nZ to Z/mZ when m divides n, or from
Z/10"Z to Z/10™Z when n > m. We assume
that we are given such maps ¢, which satisfy

the condition qn,m O Pp, = Pm, S€E Figure 1. y &
Out of this data, we construct a completed

object X. Itis simply defined as the set of tuples Xn G > Xm
(z1,22,...) with each z; € X;, subject to the
condition that ¢, m(2,) = @y, for all maps g m. Figure 1: ¢nm © Pn = Pm

This is a deep result by Minkowski, known as the “Hasse principle”; see the first four
chapters of [10].

The inexistence of solutions in Z is a variant of Fermat’s Last Theorem (proven by Euler
in degree 3). Intuitively, the cubes are too sparse in Z, but at least a third of the numbers
are cubes (mod n), so that 3X3 4+ 4Y3 =5 (mod n) is underdetermined.



There is a natural map X — )A(, given by x — (p1(x), p2(z),...). Additionally,
there is a notion of proximity in X: two tuples (x1,z2,...) and (y1,y2,...) are
close if they agree in many coordinates. R

If (X,,) is the family of all finite quotients of X, then X is called the profinite
completion of X. The object 7 constructed in the previous section is the
profinite completion of the integers Z. The completion of Z with respect to the
quotients Z/10™Z is written Zjo, the 10-adics.

Note that the object X is constructed purely out of the objects X,, and the
maps ¢y, m; it may be defined independently of the object X, and even if no
such object X preexists.

3 Topology

The notion of proximity given above is nicely expressed as a topology on X. In
a topology on a set X, we are given a collection O of subsets of X called open
subsets, and some axioms that O must satisfy:

e The empty set and X are contained in O.
e Finite intersections of elements in O are again contained in O.
e Arbitrary unions of elements in O are again contained in O.

A subset A C X is called closed if its complement X \ A is open. Note that a
subset A C X can be closed or open, but can also have both or neither property.

The idea behind the terminology is that a set A is open if every element of
A has a small neighborhood around it and entirely contained in A; the closer
two points are, the more open sets contain both or none of these points. Closed
sets get their name from being “closed under taking limits”: A is closed if
whenever a sequence of elements in A approaches an element € X, then z is
also contained in A. Solution sets of equations are typical examples of closed
sets: if a sequence of solutions has a limit, then the limit is also a solution.

Let us define directly what the closed and open sets of our profinite object X
are: for a subset A C X, we say that A is

open if, for every a = (a1,as,...) € A, there are finitely many coordinates
i1 < -+ < 1j such that, if b = (b1, ba,...) € X agrees with a on i1, ..., 14,
then b € A;

closed if, whenever x = (21, x2,...) € X is such that, for all n, some element
of A starts with (z1,...,%n,,*,%,...), then z € A.

For example, Z is neither open nor closed in Z: it is impossible to know, from
finitely many digits of a profinite integer, whether it is an actual integer, so Z is



not open, and as we saw above x = v/41 admits arbitrarily good approximations
(x1,...,2p,0,...) in Z yet x & Z.

The set of odd numbers 2Z1g + 1 is open and closed in Ziy: to determine
whether a number is odd, it suffices to look at its last digit, and the same applies
to the complement set of even numbers. More generally, arithmetic progressions
aZ + b are closed and open in Z. Finite subsets are closed but not open in Z it
suffices to check this for sets containing only one element. No profinite integer
is determined by finitely many of its digits, but conversely a sequence of digits
determines uniquely a profinite integer.

It is easy to see that, in our definition, a set A is open if and only if its
complement X \ A is closed: for example consider A open and z € X. To show
that X \ A is closed, it suffices to show that either € X \ A or that there
exists n such that every element of X \ A differs from z in one of its first n
coordinates. Assuming x € A and A open, there are finitely many coordinates
i1 < -+ < such that ass (%,...,@;, %, ..., % &;,, %, ...) belong to A. One may
then take n = ;.

Intuitively, a set A is closed if solving an equation in A is equivalent to
solving it in the image p,(A) for all n; and a set A is open if “being an element
of A” can be checked by examining finitely many coordinates (though “not
being an element of A” need not be certifiable).

At this point, we cannot resist giving a topological proof of the well-known
fact that there are infinitely many primes, due to Fiirstenberg [4]. Arithmetic
progressions in 7 are closed; so the union of a finite number of arithmetic
progressions is closed. Consider now the set A = Up pZ, where p runs through
the set of primes. The only numbers not in A are {—1, 1}, which is not open,
so A is not closed. Thus A is not a finite union, and there are infinitely many
primes. For more details see [2, p. 5]

Here is some more vocabulary. The closure of a subset A is the smallest
closed set that contains A. A set A is dense if its closure equals X. For example,
Z is dense in Z, and more generally X is dense in X.

4 Groups

We now turn to groups: mathematical structures that capture symmetries of
objects. They are sets endowed with a composition operation, such that left-
and right-composition by an element is invertible. Rather than going into the
formalism, here is a basic example: the group G of invertible self-maps of a
rooted tree 7, displayed in Figure 2, that preserve its root vertex.

For more on groups see Snapshot 5/2016 Symmetry and characters of finite groups by
Eugenio Giannelli and Jay Taylor as well as Snapshot 7/2014 Swallowtail on the shore by
Ragnar-Olaf Buchweitz and Eleonore Faber.


https://www.mfo.de/math-in-public/snapshots/files/symmetry-and-characters-of-finite-groups
https://www.mfo.de/math-in-public/snapshots/swallowtail-on-the-shore

Figure 2: The infinite rooted tree 7.

We can compose two of these invertible self-maps to obtain a new invertible
self-map. An invertible self-map of the tree from Figure 2 may be described as
follows: the root vertex maps to itself. Consider then the two neighbors of the
root; they may be fixed or exchanged. Consider next the vertices at distance
2 from the the root. They come in two blocks of 3; where the blocks map is
already determined, but within each block they may be permuted arbitrarily.
More generally, there are n! vertices at distance n — 1 from the root, and each of
these vertices has n + 1 direct descendants, which can be permuted arbitrarily.

The group G is naturally a profinite group, namely the completion G of a
family (G,,) of finite groups. Indeed, when we describe an invertible self-map
of T, we automatically describe invertible self-maps of finite subtrees, namely
the subtrees obtained by truncating 7 at level n for all values of n € N. The
finite group G,, is the group of self-maps of the finite tree consisting of the first
n levels of T, and is finite because its elements are specified by finitely many
permutations.

In fact, all choices of permutations lead to valid tree self-maps, so every
element of G,, is uniquely determined by one element in &5, the symmetric
group on 2 symbols, two elements in &3 and so on until finally n! elements in
&, 1. It follows that G, has precisely 2!(31)% --- ((n 4+ 1)))™ elements.

The 2-adic integers Zs, namely the completion of Z with respect to its
quotients Z/2"Z, is another example of a group, with the operation being
addition. In fact, it is related to the tree example as follows. Consider on the
one hand the binary rooted tree from Figure 3, and its group G of self-isometries,
as described in the previous paragraphs. On the other hand, consider the set
of all arithmetic progressions {2"Z 4+ a : 0 < a < 2"}, and order them by



Figure 3: The binary rooted tree 7s.

inclusion®. These may be assembled into a tree, by putting an edge between
2"7Z + a and 2"1Z 4 b whenever 2"Z + a C 2" "7 + b, see Figure 4. This tree
is again the binary rooted tree! Given an element x = ...z, ...x129 of Zo,
we can define an invertible self-map of this binary rooted tree by adding x to
arithmetic progressions:

n—1

2"Z+a 2"Z+a+ Y 2Fay.
k=1

One may equivalently consider arithmetic progressions 2"*Zy + a and obtain the same tree.

(8Z+4) (82+2) (82+6) (8Z+1) (8Z+5) (8Z+3) (8Z+7)

AN AN AN AR ARARA

Figure 4: The binary tree of arithmetic progressions.




Since addition preserves arithmetic progressions, the tree structure is preserved
by action of Zs.

A subgroup of a group is simply a subset that is preserved by the group
operation. Our identification of both binary rooted trees lets us view Zs as a
subgroup of the full group G of binary tree invertible self-maps. (It is a closed
subgroup; we leave this as an exercise.)

4.1 More profinite groups

For those readers familiar with the basics of group theory, we provide some
more examples of profinite groups.

Our choice of the group of invertible self-maps of a rooted tree to exemplify
profinite groups is in fact quite generic. Let indeed G be a profinite group, given
by a collection of finite groups (G,) and maps ¢, n; denote by p,: G — G,
the projection maps. Construct the following rooted tree To. The set of
vertices at distance n from the root is G; x --- x G,,. The root is the empty
product, and there is an edge between (g1, ...,9,) and (g1, ..., gn, Gnt1) for all
gi € G;. The group G naturally acts on 7, the action of g sending (g1, ..., 9n)
to (p1(9)g1,---,Pn(g)gn). Thus all profinite groups may be seen as groups of
self-maps of rooted trees.

There are numerous other examples of profinite groups. For example, the
group of invertible n x n matrices with coefficients in Z is a profinite group; the
corresponding finite groups are matrix groups with coefficients in Z/nZ.

Here is another important example of profinite group. Let us call generating
set for a group G a subset S C G such that every element of G may be written
as a composition of elements of S. A group G is called k-generated if it admits
a generating set of size k, and finitely generated if it admits a finite generating
set.

Fix once and for all an integer k, and let (F,) be an enumeration of all
k-generated finite groups, with for each F,, a fixed generating set
Sy ={sn1,...,8nk} of cardinality k. Consider this family of groups, with
maps ¢n,m between them whenever the identification s, ; — s, ; extends by the
rule ¢nm(2Y) = @n,m(%)@n.m(y) to a well-defined map F,, — F,,,. The resulting
profinite group is called the free profinite group on k generators F. Note that,

for all i =1,...,k, the sequence (s, ;)n>1 defines an element §; of 13; and that
the subgroup of F generated by {51,...,8;} is dense. Every statement about

F amounts to a uniform statement about all finite k-generated groups.
If k = 1, the enumeration (F,,) can be taken as (Z/nZ). It follows, in this
case, that F' is isomorphic to Z.



5 Verbal subgroups

We will need one last notion from group theory. Consider a group G and a
subgroup H. For t € G, we denote by Ht the set of products {ht : h € H},
and call it a coset of H. It is easy to see that two cosets are either equal or
disjoint. The index of H is defined as the number of distinct cosets of H, and
H is called a finite-index subgroup if it has finitely many cosets.

The following question has remained open for more than 30 years, before
being finally settled. Let G be a finitely generated profinite group, and let H
be a subgroup of G. If H is open in G, then it has finite index in G 8 Does
the converse hold?

We report in this section on the positive solution to this long-standing
problem, and on byproducts of its solution. For references, see the excellent
texts [5, 6, 7].

Consider a word w(X7,...,X,) in unknowns Xq, ..., X,, and their inverses™
Given a group G, we denote by w{G,...,G} the set of values obtained by
substituting elements of G for the unknowns, and we denote by w(G) the
subgroup of G generated by w{G,...,G}:

w{G,...,G} ={w(g1,...,9n) : g; € G}, w(GQ) = (w{G,...,G}).

For example, take w = X1X2X1_1X2_1. In a group G with ab = ba for all
elements a,b € G, we have w(a,b) = aba='b~! = baa=1b~! = bb~! = 1 and
therefore w(G) = {1}, the trivial group consisting only of the unit element.

A word w is called locally finite if, whenever H is a finitely generated group
satisfying w(H) = 1, the group H must be finite. In progressive order of
difficulty, it can be shown that w = X?, X7, X{ and X? are locally finite
words, but that X9 is not [1]; see [8] for a more modern treatment. This
answers partly the “Burnside problem” from 1902, which asks to determine the
exponents k € N such that every finitely generated group in which ¢* = 1 holds
for all elements g is finite.

6] Indeed, let pn: G — G, be the given maps from G to finite quotients. If H is open then
there exist i1 < -+ < 4 such that pp(H) = Gy, for all n & {i1,...,4+}, and therefore the
index of H is at most |Gy, |-+ |Gy, |-

A word is defined to be a finite sequence of letters from an alphabet, in this case
the set {X1,...,Xn,X; '..., X, '} Examples are X1X; 'X; 'X5X; ", X, 'X2X; and
X1X1X1X1. Here and in similar cases we abbreviate X7X1X71X1 to Xil and consider
XlX;1X§1X3X51 and X1X;1Xgl to be the same.



In the following statements, the group G is a finitely generated profinite
group and w = w(Xy,...,X,) is a word in unknowns Xi,..., X,.

Theorem 1 If w is locally finite, then w(G) is open in G.

Every closed, finite-index subgroup is open (since its complement is the union
of finitely many (also closed) cosets), so Theorem 1 follows from the following,
more quantitative result:

Theorem 2 If w is locally finite and k > 1, then there exists a constant f
depending only on k and w such that, whenever G is a k-generated group, every
element of w(G) is the product of at most f elements of w{G,...,G}.

If w is the “commutator word” X1 X2 X, ' X5, the same conclusion holds.
In fact, more generally, for every k-generated group G and every subgroup
H C G such that gHg~' = H for all g € G, the following holds: Every product
of elements of w{H,G} may be rewritten as a product of length at most f.

In particular, the subgroup generated by w{H,G} is closed as soon as H is
closed.

The statements really are uniform statements about finite groups: for example,
if W is a locally finite word, the assertion is that, in every finite group @, every
element of w(Q) is a product of at most f values of w.

These considerations enable Nikolay Nikolov and Dan Segal to prove the following
statement:

Theorem 3 Let G be a finitely generated profinite group, and let H be a
finite-index subgroup of G. Then H is open in G.

As a consequence, the topology on G (see Section 3) is uniquely determined
by the algebraic structure of G.

It would be presumptuous to give any sketch of a proof of these statements.
One element of the proof brings us back to the first section of this snapshot,
namely an adaptation of the Newton—Raphson method, enabling the authors to
lift approximate solutions w(X1,...,X,) € K for a small subgroup K to exact
solutions w(X7,...,X},) = 1 of equations in groups.

These theorems seem, on the surface, to be quite abstract results about
profinite groups. They are, actually, very concrete uniform statements about
finite groups; indeed every statement about a profinite group G translates to an
infinite family of statements about G’s finite quotients. Considering for G a free
profinite group amounts to considering a statement valid in «ll finite groups
with specified number of generators.

Here is a concrete consequence of the theorems, stated for the word X°
which is known to be locally finite. Consider a finite group G, and in G the
subgroup H which is generated by sixth powers of elements in G, namely
H = {g‘fgg---g? : f>1,01,...,9¢ € G}. The number f of factors can be

10



bounded, at worst by the cardinality of G. What Nikolay Nikolov and Dan
Segal prove is that f can be bounded by a function depending only on the
number of generators of G.

To make this even more concrete, consider the family of finite symmetric
groups: the family of groups &,, of all permutations of {1,...,n}. The group
S, is well-known to be 2-generated, for example by the transposition (1,2)
and the long cycle (1,2,...,n). Theorem 2 implies that every product of sixth
powers in &,, can be rewritten as product of a bounded number (say 1000, but
crucially independent of n) of sixth powers. Can you prove it directly?
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