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ON WEAK WEIGHTED ESTIMATES OF MARTINGALE
TRANSFORM

FEDOR NAZAROV, ALEXANDER REZNIKOV, VASILY VASYUNIN,
AND ALEXANDER VOLBERG

ABSTRACT. We consider several weak type estimates for singular oper-
ators using the Bellman function approach. We disprove the A; conjec-
ture, which stayed open after Muckenhoupt—Wheeden’s conjecture was
disproved by Reguera—Thiele.

1. END-POINT ESTIMATES. NOTATION AND FACTS.

The end-point estimates play an important part in the theory of singu-
lar integrals (weighted or unweighted). They are usually the most difficult
estimates in the theory, and the most interesting of course. It is a general
principle that one can extrapolate the estimate from the end-point situation
to all other situations. We refer the reader to the book [I] that treats this
subject of extrapolation in depth.

On the other hand, it happens quite often that the singular integral esti-
mates exhibit a certain “blow-up” near the end point. To catch this blow-up
can be a difficult task. We demonstrate this hunt for blow-ups by the ex-
amples of weighted dyadic singular integrals and their behavior in LP(w).
The end-point p will be naturally 1 (and sometimes slightly unnaturally 2)
depending on the martingale singular operator. The singular integrals in
this article are the easiest possible. They are dyadic martingale operators
on o-algebra generated by usual homogeneous dyadic lattice on the real
line. We do not consider any non-homogeneous situation, and this standard
o-algebra generated by a dyadic lattice D will be provided with Lebesgue
measure.

Our goal will be to show how the technique of Bellman function gives
the proof of the blow-up of the weighted estimates of the corresponding
weighted dyadic singular operators. This blow-up will be demonstrated by
certain estimates from below of the Bellman function of a dyadic problem.
Interestingly, one can bootstrap then the correct estimates from below of a
dyadic operators to the estimate from below of such classical operators as
e. g. the Hilbert transform. The same rate of blow-up then persists for the
classical operators. But this bootstrapping argument will be carried out in
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2 F. NAZAROV, A. REZNIKOV, V. VASYUNIN, AND A. VOLBERG

a separate note, here, for simplicity, we work only with dyadic martingale
operators.

As to the Bellman function part of our consideration below, this part will
be reduced to the task to find the lower estimate for the solutions of the
homogeneous Monge—Ampere differential equation.

1.1. End-point estimates for martingale transform. We will work
with a standard dyadic filtration D = UpDy, on R. We consider the martin-
gale transform related to this homogeneous dyadic filtration.

The symbol (f), denotes average value of f over the set I i.e.,

1
0h = /I (1) dt.

We consider martingale differences (recall that the symbol ch(.J) denotes the
dyadic children of J)

AeE 3T X (0~ (9))

Iech(J)

For our case of dyadic lattice on the line we have that |A jg| is constant
on J, and

Ao = 50D, ~ 00, ), ~ X0

We consider the dyadic A; class of weights, but we skip the word dyadic
in what follows, because we consider here only dyadic operators. A positive
function w is called an A; weight if

[w]a, & sup L ), < 0.

Jep inf yw

By Mw we will denote the martingale maximal function of w, that is
Muw(z) = sup{(w),: J € D, J 3 z}. Then w € A; with “norm” @ means
that

Mw<Q@Q-w a.e.,

and @ = [w]4, is the best constant in this inequality.

Recall that the martingale transform is the operator given by Ty =
Y jep€sA,0. It is convenient to use Haar function h, associated with

dyadic interval J,
M%/za z € Jy;
hJ(x) = 1 J
—W, e J_.

Sometimes it is more convenient to use the Haar functions H, normalized
in L*: H, = |J|1/2hJ. In this notations, the martingale transform 1 of a
function ¢ is

Y=Tp= Z’J’ Jzng(‘P’h
JeD JeD
In all our calculations we always think the sum has only unspecified but
finite number of terms, so we may not to worry about the converges of this
series. Nevertheless approximation arguments give us the final estimates for
arbitrary L' function ¢. As to the values of the multiplicator coefficients
we consider the class |e,| <1 or its important subclass €, = +£1.
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We are interested in the weak estimate for the martingale transform T
in the weighted space L!(R,w dz), where w € A;. The end-point exponent
is naturally p = 1, and we wish to understand the order of magnitude of
the constant C'([w]4,) in the weak type inequality for the dyadic martingale
transform:

(1.1) |}|w{t €I Z 5J(907 hJ)hJ(t) > )‘} < C([w]Al) <|(’D)\w>l .
JeD(I)

Here ¢ runs over all functions such that suppp C I and ¢ € L'(I,wdt),
w € Aj. This paper is devoted to the study of the “sharp” order of mag-
nitude of constants C([w]a,) in terms of [w]a, if [w]a4, is large. We are
primarily interested in the estimate of C'(Jw]4,) from below, that is in find-
ing the worst possible A; weight in terms of weak type estimate (of course
this involved also finding the worst test function ¢ as well).

We will prove the following result.

Theorem 1.1. There is a weight w € Ay such that constant C([w]a,) from
(1.1) satisfies
1 )
[w]a, (loglw]a,)*  if [w]a, > 4.

>
In [3] the following estimate from above has been proved:

Theorem 1.2. There is a positive absolute constant ¢ such that for any
weight w € Ay estimate (L.1]) holds with

C([w]a,) = clw]a, logw]a, .

Remark 1.3. The sharp power remains enigmatic.

2. UNWEIGHTED ESTIMATE OF THE MARTINGALE TRANSFORM
In this Section we prove the following unweighted analog of inequal-

ity (L.1)
(lel)

1
(2.1) qlter Y. eslphh, (1) 2 A < 225
JeD(I)

We will work not on the whole R but on a finite interval. The result for
the whole axis can be obtain by enlarging the underlying interval and the
fact that the estimates will not depend on the interval. So, we are working
on I = [0,1]. The symbol D = D(I) means the dyadic lattice of subintervals.
Let ¢ be a dyadic martingale starting at 1 and 1 is its martingale transform,
starting at xo, i.e.,

p=x1+ Z (307h1)hj7 Y =x2+ Z gj((p?hJ)h’J'
JCI, JED JCI, JED

We consider two classes of martingale transforms: 1) the case of +-trans-
forms, i.e. the case when we assume that ¢, = £1; and 2) the case when
the martingale ¢ is differentially subordinate to ¢, i.e. the case when we
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assume that |¢,| < 1. The first class of admissible pairs {p, ¥} we denote
by 2., the second one by ..

The desired estimate we deduce to estimating a certain function of three
variables related to our inequality, which is called the Bellman function of
the problem. In fact the Bellman function related to some inequality is
simply the extremal value of the quantity we need to estimate under several
fixed parameters related to the problem. Describe now the Bellman function
of our problem.

With every pair of functions {p, 1)} on I we associate the so called Bell-
man point b,y = x = (21, z2, x3) with coordinates

z1 = (), z2 = (¥),, z3 = (|l);-
The set of all admissible pairs corresponding to a point x will be denoted

by 204 (z) in the case of ttransform and by 2.(x) in the case of differential
subordination. Our Bellman function is the following one:

(2.2) B(z) = B(z1,x2,x3) := sup %‘{t el: Z W(t) >0}
() ] JCI.JED

If we would like to specify that we speak about +-transform, i.e. supremum
is taken over the set 2l = 2, then the corresponding Bellman function will
be written as By, and we shall write B, if %l = .. This index will be
omitted in any assertion valid in both cases. It is clear, that B. < B.,
but as we will see at the end these two functions coincide. Note that the
function B should not be indexed by I because it is easy to check that this
function does not depend on I.

2.1. Properties of B.

2.1.1. Domain and Range. Formally the definition of B is correct for arbi-
trary = € R3, but there is no sense to consider B at the points where the set
of admissible functions is empty, and therefore the corresponding supremum
is —0o. We would like to consider the function B on the domain Q C R3:
def
Q= {z = (x1,20,23) €R3: 21| < 23}

For any = € Q, the set of test functions 2A(x) is not empty and it is

immediately clear from the definition that

0<B(z)<1.

2.1.2. Symmetry. The function B is invariant under reflection with respect
ZX:

B(—.’L’l, T2, x3) == B<$17 T2, $3) 5
because if b,y = x = (21, x2, 3), then ¢ = —¢, 1 = ¢ is an admissible pair
corresponding to T = (—x1, T2, x3).

2.1.3. Homogeneity.

B(T$1,T$2,T$3):B(.%'l,xg,xg), 7'>0,

because if b,y = © = (21,22,23), then ¢ = 7p, 1 = 77 is an admiisible
pair corresponding to ¥ = (7x1,7x9,7x3) and the functions ¢ and 1 are
positive simultaneously.
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2.1.4. Boundary condition.

1, if z9 >0,
0, if 29 <0,

(2.3) B(0,22,0) = {

because the only admissible pair for the point = = (0, x2,0) is ¢ = 0, ) = x2.

2.1.5. Obstacle condition.
1, if 29 >0,

2.4 B(z1, 22, >
(2.4) (z1, 22, |21]) {07 T

because the pair of constant functions ¢ = x1, ¥ = x3 is an admissible pair
for the point © = (x1, x2, |z1]).

By the way, since B < 1 by the definition, the obstacle condition supplies
us with the function on the half of the boundary, namely, B(z) = 1 if x is
on the boundary and xo > 0. We shall see soon that this is not the whole
part of the boundary where B(z) = 1. However first we derive the main
inequality.

2.2. Main inequality.

Lemma 2.1. Let z& be two points in Q such that

o x5 — a5 | = |z — 27| in the case B = By;

o |z — x| <|x] — x| in the case B = B,
and v = $(z" +27). Then

Jr —
B(z")+B(z7) >0,
5 >

Proof. Fix a* € Q, and let oT, 1 be two pairs of test functions giving the
supremum in B(z1), B(z ™) respectively up to a small number i > 0. Using
the fact that the function B does not depend on the interval where the test

functions are defined, we assume that ¢ ™, ¥ lives on I and ¢, ¥~ lives
on I~, where I* are two halves of the interval I:

+ + + +
o =x] + g a,h,, YT =x5 + E g,a,h; .
JCI+, JeD JCI*, JeD

(2.5) B(z) —

And we assume that for these functions the estimates
1
@Ht € IF: = (t) > 0} > B(z%) —n
hold. Consider the functions

Yy, if telt af+ay 2l —ay
sO(t):—{(p()’l - ST Lho+ > ayh,

o (), if tel 2 2 JCT JeD
and
Yr(@t), if telt of +oy,  xf —x5
¢(t) ::{ _ . _: + hl+ Z 8JCLJhJ.
Y(t), if tel 2 2 JCI, J€D

Under our assumption about relation between |z — 27| and |73 — 25 | we
have {p, ¥} € 2 in the first case and {p,?¥} € 2. in the second one, i.e.
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in each case this is an admissible pair of the test functions corresponding to
the point z. Therefore,

B(z) > ﬁ‘\{t e I: (t) > 0}
— 2|;+| [{teIt:p(t) >0} + 211|\{t €I (t) > 0}

1 1
> §B(az+) + iB(SL'_) —n.

Since this inequality holds for an arbitrarily small 1, we can pass to the limit
n — 0, what gives us the required assertion. O

It will be convenient to change variables ©1 = y1 — y2, T2 = y1 + Y2,

x3 = ys and introduce a function M(y) o B(z) defined in the domain

¢y {y € R3: |y1 — y2| < y3}. Then the main inequality for the function
M. means that it is concave if either y; is fixed, or yo is fixed. For the
function M. the condition is more restrictive: it is concave in any direction
from the cone (y; — v, )(ys —y5 ) < 0, since

(03 —w3)? = (27 —27)* =40 —y1) w3 —w)-
2.3. Supersolution.

Lemma 2.2. Let B a continuous function on € satisfying the main inequal-

ity (2.5) and the obstacle condition (2.4)). Then B(x) < B(x).

Proof. Let us fix a point z € ) and a pair of admissible functions ¢, 1 on I
corresponding to z, i.e., b, = x. Using consequently main inequality for
the function B we can write down the following chain of inequalities

1
B(byy) 2 5 (Bbgyropir) + Blbyjr—yr-))

1 L
Z EB(%U,MJ) = / B(z™(t))dt,
JeD, |J|=2-—n 0
where (™ (t) = byl g, ift € J, [J]=27"

Note that 2™ (t) — (o(t), 1 (t), |¢(t)|) almost everywhere (at any Lebesgue

point t), and therefore, since B is continuous and bounded, we can pass to
the limit in the integral. So, we come to the inequality

1
26) B)> [ Bl v lehd > [ it = |{te fos o) >0}
{t: ¥(t)>0}
where we have used the property B(zi,zo,|z1]) = 1 for 23 > 0. Now,

taking supremum in ([2.6)) over all admissible pairs ¢, 1, we get the required
estimate B(z) > B(z). O

v

Now we explain how we will apply this lemma. For a given sequence
e = {e,}, we denote

def
Ty = Z e; (@ h;)h,(z).
JCI,JeD
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It is a dyadic singular operator (actually, it is a family of operators enumer-
ated by sequences ). To prove that it is of weak type (1,1) is the same as
to prove
B(z) < &%
|2

Indeed, if ¢, 9 is an admissible pair corresponding to the point x, then
Te = 1 — x9. Therefore, for a given ¢ with (p) = x1 and (|p|) = x3 the
best estimate of the value |{t: T > A}| gives us the function B(z) with
x9 = —A. Thus, would we find any function B with the required estimate
and satisfying conditions of Lemma [2.2) we immediately get the needed weak
type (1,1), and in fact, more precise information on the level set of T'p.

2.4. The Bellman function on the boundary. First of all we note that
the boundary 0f) consists of two independent parts

00 def {z = (z1,22,21): 1 > 0, —00 < g < +00} and

o) _ déf {x = (.’L’l,-fUQ, —331): T S 0, -0 < X9 < +OO}

They are independent in the following sense. If we have a pair of test
functions ¢, ¥ whose Bellman point x = b,y is on the boundary (whence
the sign of ¢(t) is constant on the whole interval), then after splitting the
interval we get a pair of Bellman points z® from the same part of the
boundary. So, the main inequality has to be fulfilled separately on
004 and 9Q_. Due to the symmetry condition it is sufficient to find the
function, say, on 024 and further we assume that z; > 0.

So we look for a minimal function on the half-plane {x; > 0} satisfying the
main inequality and the boundary condition . We pass to the variable
y (1 = y1 —y2 and x2 = y1 +y2) and look for a function M in the half-plane
Y2 < y1, which satisfies the main inequality (i. e. is concave in each variable:
in y;1, when ys is fixed, and in yo, when y; is fixed) and with the given values
on the boundary yo =y1: M =1if y; =y > 0and M =0 if y; = y2 <O.

First, we use concavity of M with respect to yo for some fixed y; > 0.
Concave function bounded from below cannot decrease, therefore it has to
be identically 1 on any such ray due to fixed boundary condition. It remains
to find M in the domain s < y; < 0. Here we use concavity along y;. We
know that our function is 0 at y1 = ys and, by what we just said, it is 1 at
y1 = 0, therefore between these two points it is at least the linear function
M=1—-% ie M> M, where

Y2
M.— { Y 1 yl -

_3%’ if y; <O.

To prove the opposite inequality we note that M is concave in each variable
and it satisfies the obstacle condition. Therefore, Lemma [2.2| guarantees the
required inequality M4 < M. To prove that M. < M we need to check a bit
stronger concavity along any direction from the cone (y; —y; ) (y4 —y5 ) < 0.
This will be made below when considering the function in the whole domain.

Returning to variable z, we can write B = —2Z_ in the half-plane z; > 0.

xr1—T2
As a result we have proved the following
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Proposition 2.3.

def 1, if xo > —|xq],
(2.7)  Bai(z1,22,|21]) = Bz, 22, [11]) S { o] )
m, Zf .’IIQS—’.’I,'1|.

2.5. Full Bellman function for the weak type estimate. Now we
present the full Bellman function:

Theorem 2.4. For the function B defined by (2.2) we have the following
analytic expression

1, if x3+x2 >0,
(2.8) B(z)=B(z) = {, (#3+x2)?

1
2 2
Ty — 27

if x3+ 29 <O.

Proof. As above we change variables

. 1 + X2 T2 — T1
T1=Y1—Y2, T2 =Y1+Y2, T3=Y3, Le. Y= 5 2T T
and will be looking for a function M
def
M(y) = B(z),

which is defined in Q % {y = (y1,92,93) : y3 > |y1 — y2|}, concave in

variables (y1,ys3) and (y2,y3), satisfies boundary condition , or in term

of M
1, if y1>00rys >0,

_ max{y1, y2}
min{yi,y2}’
Since the function B is even with respect to x1, as before it is sufficient to

consider the half-space {z1 > 0}, or the half-space {y2 < y1} in y-variable.

But in fact we can restrict ourselves to the cone {z2 < —z1 < 0, z3 > x1}

or {ya <y1 <0, ys >y —ya2}, because for y; > 0 our function is identically

1 by the same reason as before: it is concave and bounded by 1 on every ray

{y1 = const, y» = const, y3 > y1 — y2}.

The boundary function is not smooth because the boundary itself is not
smooth at the line {z; = z3 = 0} and moreover, the boundary condition
on this line has a jump. But inside the domain we can look for a smooth
candidate B. Then it has to satisfy the boundary condition g—ﬁlxlzo =0,
or in terms of M

M(y1,y2,ly1 — y2l) =

1 if y1 <0 and g2 <O0.

(29) oM _ oMy
Oy1 lyi=y2 Oy2 ly1=y»
Our function has to be concave in each plane {y; = const} and in each
plane {yo = const} and we look for a candidate such that its concavity is
degenerate in one of these planes, i.e. in that plane the function M satisfies
the Monge-Ampére equation. Looking on the boundary we see that the
extremals are segments of the lines {yo = const} and therefore it is natural
to look for a solution of the Monge—Ampere equation

2 _
My1y1 My3y3 - My1y3 =0

in this plane. (Section of our domain €2 by this plane is shown on Figure )
Note that the half-lines {y3 + y1 = const: y3 > y1 — y2} are in the domain if
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ys = |y1 — 32|

Y2 Y1
(z1=0)

FIGURE 1. Intersection of the domain §2 with a plane yo = const

const > yo. Moreover, if const > —ys (recall that yo2 < 0), then the boundary
value on this ray (the ray L on Fig. (1)) is 1, and hence it is identically 1 for
ys + y2 +y1 > 0, by the same reason as before: concave function bounded
from below cannot decrease on an infinite interval.

Therefore we need to solve the Monge—Ampere equation only in the tri-
angle with the vertices (0, y2, —y2), (y2,y2,0), and (y2,y2, —2y2):

{y=(y1,92,¥3): y2 = const,y1 > y2,y1 —y2 < y3 < —y1 — Y2}

with the boundary conditions

1
M(y17y27y1—y2):1—y*a M(y1,y2, —y1 — y2) = 1,
My, (Y2,y2,v3) = My, (Y2, y2,Y3) -

Our function is linear on two sides of the triangle, so the minimal concave
function linear on two sides is the linear function it the whole triangle,
however this function does not satisfies the boundary condition on the side
y1 = y2. Therefore, the extremal lines cannot intersect inside the triangle
and the only way to foliate this triangle without singularities inside the
domain is a fan of straight line segments starting from the point (0, y2, —y2),
which we parametrize by the slope k of each extremal line:

(2.10) ys =kyi —y2.

The slope runs over the interval [—1,1]. For k = —1 we get the upper side
of the triangle y; + y2 + y3 = 0 where M = 1, for k = 1 we have the lower
side y3 = y1 —y2 where M =1 — Z—; On all other extremal lines M is linear
in y; as well

M=1 + m(k7y2)y1
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and our task is to find its slope m = m(k,y2) with the prescribed values

at the points k = +1: m(—1,y2) = 0 and m(1,y2) = _y%' We find this

function from the boundary condition on the third side of the triangle.
First we deduce from that k = k(y1,y2,y3) = ygy% and hence

ok k and ok 1
—=—— n —=—.
oy y1 dy2 1
Therefore,
oM _— om 0k om
bl e m—k—
oy "ok oy ok’
oM _ (@ﬁﬂ%) _,,0m  om
dy> u dya Ok Oyo/) Yy Ay Ok~
Thus, the boundary condition (2.9) turns into the following equation
om om
—(k+1)—= =y2—
m—(k+1) o0 Zrm
which has the general solution of the form
k+1
mik,ye) = (k+ 1) (=),
Y2
where ® is an arbitrary function. Since m(1,y2) = —y%, we have ®(t) = —£.
And finally
k+1)° +y2 +y3)° :
M(y)zl—!ylzl—w, i y1+y2+ys <0,
4y2 4y1y2
or
2
B(Z‘)Zl—%, if x94x3<0.
Ty — I

And our function is identically one on the rest of the domain.

Now it is an easy task to check that the found function M satisfies concav-
ity conditions from Lemma Since our candidate is C'-smooth function,
the desired concavity is sufficient to check only on the subdomain, where
our candidate is less than one, i.e., where y; + y2 + y3 < 0. For us there
is important that y; < 0 and yo < 0 on this part of the domain. We shall
check the main inequality (condition in the differential form, namely,
we check that the quadratic form of the Hessian of M is not positive in the
required directions. Direct calculations gives the following expression for
the Hessian matrix:

(ya+y3)? P +ys+ys  yetus

272 Atys 2y1y2
M M M
E2M Mylyl My1y2 My1y3 _ y%+y%+y§ (y1+y3)2 Y1 +ys
dy? Y21 Y2y2 y2y3 | — 4y2y2 B 2y1y3 2y1y2
s Mysyo Mysys 192 2 2
Y2+Yys3 y1+ys 1

2y3ys 29193 2912
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and its quadratic form can be written as follows:

d>M 1 + + 2 + o t+13)?
(S n) = —— (8- 28, 2220 ) L Wntvetys)”
dy 2y1y2 Yo 1" 2212

In our part of the domain we have y; < 0 and y2 < 0, therefore this quadratic
form is negative if A1As < 0. So, due to Lemma we have inequality
B.i(z) < B.(z) < B(x).

To prove the theorem we need to check the converse inequality B(z) >
B(x). For this Bellman function it is very easy due to its following special
property. Note that the function M is linear on the extremal lines not
only in the triangle mentioned above, but also on the continuation of each
extremal line as well (see Fig. . Indeed, all extremal lines in the triangle
under investigation are parametrized by their slope k, —1 < k < 1, and have
the form

A1As.

ys = kyr — yo, Y2 <1 <0,
and the found function on this line is
(k+1)*

4ys

Thus, we see that this function is linear not only on the interval y; € (y2,0),
but for y; < y2 as well. So we can continue this extremal line up to its
second point of intersection with the boundary ys = |y2 — y1|, where this M
coincides with M. In result we have two points where the concave function
M coincides with the linear function M, therefore between these two points
we have M(y) > M (y). Since the described continued extremal line foliate
the whole domain y; + y2 + y3 < 0, we have the desired inequality for
arbitrary point y from Q. O

Remark 2.5. We would like to mention that the function was pub-
lished by A.Osgkowski in [6]. It was found him absolutely independently,
but a bit later than the preliminary version of this paper was accessible in
the web (see [4]). However we would like to emphasize that in [6] not only
this function is presented supplying us with the estimate of the measure
where {¢) > A}, but the more difficult function giving the estimate for the
set {|¢| > A} is found as well.

M(y1,y2, ky1 —y2) =1 — Yt -

2.6. About coincidence of By with B.. In this subsection we would
like to underline that the fact of this coincidence is absolutely not evident.
In many cases as in the famous L? result of Burkholder the estimation for
differentially subordinate martingales is the same as for +-transform. And
the natural reason for this is that any differentially subordinate martingale
is a convex combination of +-transforms. Indeed, if we fix a martingale ¢
being differentially subordinate to ¢, i.e.

def
Tep = ¢ = E EJ(VJahJ)th ’€J| <1,
JeD(I)

then every number ¢, can be represented as a convex combination of £1:

_ —k _
@—ZQ s g,y = =*1.
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Therefore,

oo
T.=Y 27", |
k=1

If we were interested in the estimate of 77 in a Banach space X (say, X = L?,
p > 1), then this representation would show that
sup  |Tt[x = sup |[T:fx.
e e, €[-1,1] ere,e{-1,1}
However, we are interested in the case X = L'>°. Here one can use
Lemma of Stein and Weiss:

Lemma 2.6. Let {g;} be a sequence of non-negative measurable functions,
such that ||gj|p1e < 1 for all j. Let {c;} be a sequence of non-negative
scalars such that Y c; =1 and ) c;log % = K < oo. Then

1 cigill e < 20K +2).
J
See [9] for the proof. From this lemma, we would conclude that

oo
sup || Te||pree < 2(2+10g22k:2_k) sup || T%||p1eo -
e:ey€[-1,1] =1 e:eye{-1,1}

However, Theorem [2.4] gives a better result:

Corollary 2.7.

sup  ||T:||pree =  sup  ||Te|lpreo -
e: ey€[—1,1] e:eye{—1,1}

3. THE BELLMAN FUNCTION OF WEAK WEIGHTED ESTIMATE OF
MARTINGALE TRANSFORM AND ITS PROPERTIES.

Passing to the weighted case we need to investigate a Bellman function of
more variables. Now two additional variables x4 and x5 appear describing
a test weight w. We put

xy = (W), and x5 = ir}fw.

The test weight w will run over the set of all A; weight with [w]4, < @ and
with the prescribed parameters x4 and x5. This, by the way, means that
these parameters must satisfy the following condition: =4 < Q5.

The coordinates x1 and x9 will be the same, but the coordinate z3 we
need to change slightly:

I3 = <|30‘w>1v

because now we fix a wighted norm of the test function ¢ € L!(I,wdz).
A Bellman point = (21,2, 23,74,25) = by is defined by a dyadic
martingale ¢ started at z1, by a subordinated to ¢ martingale 1 started at
9, and by a Ay weight w. The Bellman function at this point is defined as
follows:

(3.1) B(x) o Bg(x) & sup ’zw{t el:y(t) >0},



ON WEAK WEIGHTED ESTIMATES OF MARTINGALE TRANSFORM 13

where the supremum is taken over all admissible triples ¢, ¥, w. We mark

the Bellman function by the index @ to emphasize that it depend on a fixed

parameter ). And in fact we are interested just in the dependence of Bg

on this parameter. However during our calculations we will omit this index.
This Bellman function is defined in the following subdomain of R®:

(3.2) Q:={(z €R®: 23 > |z1]zs, 0 < 25 < 24 < Qu5}.

Note that formally the Bellman function is defined on the whole R®, but in
the domain €2 we include only the points, for which the set of test functions is
not empty and therefore B(z) # —oo (we would like to assume that B > 0).

3.1. The properties of By.

3.1.1. The first property: boundary conditions. On the boundary x4 = x5
the weight is a constant function w = x4 = x5, and therefore

s, if 3+ x0mw5 >0,
B(z1,x9, 23,25, 25) = (% +l‘2)2
e 1'5(1—9:5272), if x3 4 xows < 0.

3.1.2. The second property: the homogeneity. It is clear that if {p, 1, w} is
the set of admissible triples for a point x € €, then the set {s1p, 519, sow}
is admissible for the point

T = (s121, s1%2, $152%3, S2T4, S2L'5)

for an arbitrary pair of positive numbers si, so. Then by the definition of
the Bellman function we have

(3.3) B(Z) = s9B(x).

In what follows we deal mainly with the restriction B of B to the three-
dimensional affine plane
(3.4)

G={xeQ:xo=-1, x5 =1} = {(z1,23,24): |11] < 23, 1 <y < Q},

i.e. the function
B(x1,23,74) = B(x1, —1,23,24,1).

For x9 > 0 we always have B(x) = x4 because for any such point the con-
stant test function ¢ = 9 is admissible, and for x9 < 0 we can reconstruct
B from B due to homogeneity (3.3)): choosing s; = —z Land sy = xgl we

get
(35) B(.’L’) :$5B(—ﬂ7—1,— 7ﬂ71) :$5B(_ﬂ7_ s %

x2 L2T5 Ty Z2 $2$5’ Ts

x3

3.1.3. The third property: special form of concavity. Here we state our main
inequality, the weighted analog of Lemma [2.1

Lemma 3.1. Let 2 be two points in Q2 such that |x5 —z5 | < |v{ —2]| and

let the point x with z; = (zf + ;) for 1 <i <4 and x5 = min{ad, 25}

be in Q0 as well. Then

B(z") +B(z™)
2

(3.6) B(x) — >0.
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Proof. We repeat almost verbatim the proof of Lemma Fix % € Q,
and take two triples of test functions ¢+, 1*, wt giving the supremum in
B(z"), B(27) respectively up to a small number > 0. Using the fact that
the function B does not depend on the interval where the test functions are
defined, we assume that ¢, ", wT live on I and ¢, ¢, w™ live on I,
ie.,

@i:xf—i— Z ah,, wi:xéc+ Z e,ah,, e, | <1.
ICIE, IeD ICIE, IeD
Consider
o(t) = et (t), if tel+:x1++x;+x1+_x;h © Y o
e (), if tel” 2 2 fo e
I1CIy, I€D

V@), if telt af 4z,  wf -,
W(t) ::{ - : = + hy + > ea.h, .
vo(t), if tel 2 2 * Ichlep

t) wt(t), if telt,
w =
w(t), if tel .

Since |z3 — x| < |z — 2| and all |¢,| < 1, 9 is subordinated to ¢.
Moreover, according to hypothesis of the Lemma, the point x is in 2, whence
x4 < Qus, i.e. [w]a, < Q. Therefore the triple ¢, ¥, w is an admissible
triple of the test functions corresponding to the point x, and

1
B(z) > W“’({t € Io: 9(t) > 0})

_ 2‘;J|w+({t €I y(t) > 0}) +

2}0_‘w‘({t € Iy = (1) > 0})

1 1
> 5B(:p+) + §B(x_) —2n.

Since this inequality holds for an arbitrary small n, we can pass to the limit
n — 0, what gives us the required assertion. U

3.1.4. The forth property: B decreases in x5. This is a corollary of the pre-
ceding property, i.e. it follows from the main inequality. Indeed if we put
in the hypotheses of Lemma iL‘j_ =ux; for1 <i<4 and 33; > x5, then
x5 = x5 and inequality turn into

(37) B($17 X2,X3,T4, xg) - B(:Clv X2,X3, T4, 33;) >0 )
just what we need.
3.1.5. The fifth property: function t — %B(azl,t:rg,tu) 1s increasing. This

is in fact the preceding property rewritten in terms of B. Indeed, if we put
x9 = —1 and use (3.5)), then (3.7) with t* = :C% and t~ = ﬁ gives the

5
required monotonicity.

3.1.6. The sixth property: function B is concave. Lemma [3.1] applied to the
case 13 =z, = —1 and 2 = x5 = 1 guarantees the stated concavity.
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3.1.7. The seventh property: the symmetry and monotonicity in xy. It is
easy to see from the definition that B, and hence B as well, is even in its
variable x1.

Concavity of B (in x1) and this symmetry together imply that z; —
B(xy,x3,x4) is increasing on [—z3,0] and decreasing on [0, z3].

3.2. The goal and the idea of the proof. It would be natural now to
solve the corresponding boundary value problem for the Monge-Ampére
equation, to find the function B, as it was done in the unweighted case, and
then to find the constant we are interested in:
zo|B(x
@)= SUP{":B?)()i 13 <0, 23 > |71|25, 25 <24 < Qﬂﬁs}-

However for now this task is too difficult for us. So, we use the listed
properties of B to prove the following estimate from below on function B.

Theorem 3.2. If Q > 4 then

1
(38) Bla, w3, 71) 2 £=QUlog Q).

at some point (r1,x3,74) € G.

Remark 3.3. It is a subtle result and it will take some space below to prove.
Recall that Muckenhoupt conjectured that for the Hilbert transform H and
any weight w € A; the following two estimates hold on a unit interval I:

(3.9) wiwel: |Hfz) >\ < / f|Muwdz |
AJr

(3.10) w{z €I:|Hf(z)]> A} < C[Z’}Al /I | flwdz .

Obviously if holds then is valid as well. It took many years
to disprove (3.9). This was done by Maria Reguera and Christoph Thiele
[7], [8]. The constructions involve a very irregular (almost a sum of delta
measures) weight w, so there was a hope that such an effect cannot appear
when the weight is regular in the sense that w € A;. Theorem [3.2] gives
a counterexample to this hope for the case when the Hilbert transform is
replaced by the martingale transform on a usual homogeneous dyadic fil-
tration. The reader can consult [5] to see that for the Hilbert transform a
counterexample also exists, and so fails as well. The counterexample
for the Hilbert transform is the transference of a counterexample we build
here for the martingale transform. Notice that Theorem implicitly gives
a certain counterexample for the Hilbert transform. We will explain in a
separate note how to make this transference.

Now a couple of words about the idea of the proof of Theorem Ideally
we would like to find the formula for B (and therefore for B because of ([3.5))).
To proceed we rewrite the third property of B (see subsection as a
PDE on B. Then, using the boundary conditions on B on G (the domain G
is defined in (3.4)), we may hope to solve this PDE. Unfortunately there are
many roadblocks on this path, starting with the fact that the third property
of B is not a PDE, it is rather a partial differential inequality in discrete
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form. It the not weighted case we pay no attention to this important fact.
We simply assume the required smoothness of our function to find a smooth
candidate. After such a candidate ws found we have proved that it coincides
with the required Bellman function. Now we cannot find a candidate and we
will work with the abstractly defined Bellman function whose smoothness
is unknown. We will write the inequality in discrete form as a pointwise
partial differential inequality, but for that we will need a subtle result of
Aleksandrov.

3.3. From discrete inequality to differential inequality via Aleksan-
drov’s theorem. As it was mentioned in Subsection 3.1.6] the function B
is concave on its domain of definition G. By the result of Aleksandrov, see
Theorem 6.9 of [2], B has all second derivatives almost everywhere in G.
Second property (homogeneity) of function B (see (3.5))) implies that the
function B has all second derivatives almost everywhere in €.

First, using this fact we rewrite the homogeneity condition (see Subsec-

tion [3.1.2)) in the following differential form:
(3.11) 1Bz, + 2By, + $3Bx3 =0;
(3.12) 3By, + 4B, + 5By, = B.
These equalities we have got by differentiating (3.3]) with respect to s; and
with respect to sy and taking the result for s; = so = 1.
Our second step is to replace the main inequality in discrete form by the

inequality in the form of a pointwise partial differential inequality. Lemma/|3.1
implies that the quadratic form

4
(3.13) D Bua, AiA
ij=1
is non-positive at almost any interior point of €2 and for all vectors A € R4
such that |Aq| < |Aq].

We consider three partial cases of with A1 = Ag, with A1 = —Ao,
and with Ay = 0. Moreover, to reduce our investigation to consideration of
2 x 2 matrices we choose some special relation between As and A4. In the
first case we consider the quadratic form on the vector A with

Ay = Ay =01, Az=x3(01+02), As=x402.
In the second case we put
Ay = —Ay =01, Az =361 +62), Ay=x400.

Then we get two quadratic forms

4 2
Z B, A = Z K605,
4,7=1 2,J=1
where
Boio1 TBo1oy F23Bay 03+ Bay oy F23Bai 03 —23Boya; +03Bagaey
P +Buayry —203Baye; Fo3Bay oy +25Bagey  FUaBayey —2aBagey +2374Bogay

¥13B11137x3]31213+$§]31313 2 2

TEBrara+20304Brqe, 2B 42
3Px3x3 3TdDagry T Dryry
:Fx4lefE47w4B(L‘21}4+m3x4B1314
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These matrices are non-positive and their half sum is the following non-
positive matrix

(3.14)
le zl"l‘BzQ o _2553B12m3+55§BI313 _ISBZQ z3+x§BZ3 13_x4Bz2 z4+x3x4Bz3 T4
_733Bx2 w3+x§Br3w3_$4Brz ;L'4+1'3-T4Bx3;c4 $§Bw3 x3+2x3$4Bx3x4+$ﬁBx4x4

Before proceed further we rewrite this matrix in terms of the function B.
For this aim we have to get rid of the derivatives with respect to xo in this
matrix. We are able to do this by using (3.11)):

_xQBz‘zx:; = Bx3 + xlell‘g + $3Bx3x3 ;
—$2Bx2m4 — xle1:E4 + xSBx3x4 ;
x%szm =221B;, + 223B,, + x%Bxlxl + 2x123Bg 25 + x%BxSxS .

Using these expressions at the point = (z1, —1, x3, x4, 1) we can rewrite

the matrix (3.14]) as follows
(3.15)

2
(1 + ‘Tl)Ble»‘l + 2x183&1 _xle:; - xlx?:Bmxg - $1x48x1x4
2 2 .

_371[3903 - xlx?)Bxlxg - $1$4Bx1r4 $3Bx3:c3 + 21‘358483;31;4 + 3748554964

Now we consider the matrix K©, that appears if we take A; = z167,
Ay =0, Ag = 2309, and A4 = x405 in our quadratic form

4 2
Z BxixjAz‘Aj = Z KZO](SZ(SJ
ig=1 ij=1
In result we get

2
KO — 1By 1123Bg 05 + 2124Bay 2,
= 2 2
2123Bg 25 + 2124Bg 2, 5Bagas + 20324Bgag, + iBaya,

The same matrix at the point = (x1, —1, z3, 24, 1) is

2
(3 16) $18x1m1 ) xl-TSB:ng + 1'13348113%4
51711'38119:3 + :1711'46:131:1:4 -'E3Bx313 + 2x3$48x314 + 1'48904334

Taking the sum of (3.15) and (3.16)) we get the following non-positive
matrix
(3.17)
(14 22%)Byy sy + 2718y, —23B,4 <0
_$3BCE3 2(1"%‘8%313 + 2333$48903904 + $4218364x4) -

Definition 3.4. Consider a subdomain of G,

G = {($1,£L‘3,$4) e G:x3 > 2‘1‘1’, 2<xy < Q}

Fix now x = (z1,x3,74) € G1 and a parameter ¢t € [1/2,1]. Consider
inequality at the point 2! = (21, tas, try).

Let us introduce a new function 5, which is certain averaging of B, namely,
for any xz € G1 we put

1
B(x) Ly B(z') dt.
1/2
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Notice several simple facts. First of all

iBe, (x) = 2/

1/2

1 1

Tl B, (z") dt, 22 Briw; = 2/ (21)2By,z, (x) dt .
1/2

For every function F' on G we introduce the notation,

def
¥ (2) = 5E§Fx3x3 + 2z304F 50, + z?LFI4 )
then
1
(3.18) @ =2 [ RS

Now integrate (3.17)) on the interval ¢ € [1/2,1]. The previous simple ob-
servations allow us now to rewrite our reduced concavity condition in the
form

(319) <(1 + 233%)/8931:1:1 + 2$1/8:1:1 1'35363) <0.
_$3ﬁx3 27,3 -

The reader may wonders why we are so keen to replace by a vir-
tually the same ? The answer is because we can give a very good
pointwise estimate on 7, (x), x € G1. Unfortunately we cannot give any
pointwise estimate on v, (z), z € G.

Our reduced concavity condition ([3.19)) is equivalent to the assertion that
Y < 0 and the determinant of the matrix in (3.19) is non-negative, i.e.,

(3'20) [_’75] ’ [_(1 + 21‘%)5361961 - 21’15351] > x%ﬁ%g .
Let us denote

o B
Rd:fsupzix), x = (r1,23,24) € G.
3

Our goal formulated in (3.8)) is to prove R > cQ(log Q)¢. We are still not
too close, but notice that automatically B(x) < Rzs, x € G.

3.4. Logarithmic blow-up. First we find a pointwise estimate on ~,.

Lemma 3.5. If x = (z1,x3,24) s such that |z1| < ixg and x4 > 4, then
T3
— <8R —).
12(0) < 8R(Jar] + 22)

Proof. Consider the following functions

p(t) € B(t), zeay, and  r(t) ¥ p(1)t — p(t)
on the interval [tg, 1], where tg = max(%, i)

Recall that the function p(t)/t is increasing (see property five of B in
Section 3.1)). Therefore, p(t)/t < p(1), i.e. r(t) > 0. Since r is convex
(because p is concave) and r(1) = 0, r is a decreasing function on [tg, 1], in
particular /(1) < 0. Let us estimate the maximal value of 7 in the following
way:

(3.21) r(to) < p(1)to < Rasty < R(|a1| + %) ,
4
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Under the hypotheses of the Lemma we have tg < %, and therefore

1 1 1
—/1 ,o”(t)dt</ " (t) dt<4/ (t —to)r” (t) dt

/2 1/2 1/2
<4 /1(15 —to)r"(t) dt = 47" (1)(1 — to) — 4r(1) + 4r(to) .

Using estimate (3.21)) and the properties of 7 (r/(1) < 0 and r(1) = 0) we
get
! 1" L3
- [ P ar(n) + 2,
1/2 L4

The equality 7, (zt) = t2p”(t) implies

1

X

—/ (et dt < 4R(ja1| + 22
1/2 Ty

So, by (3.18) this is the stated in the Lemma estimate. O

Now we would like to get an estimate for [3,, from below. For this aim
we construct a pair of test functions ¢, 1 and a test weight w, which supply
us with the following estimate for the function B.

Lemma 3.6. If x = (x1,x3,24) is such that 2xs + 1 > 1, then
204 — 1
B(x) > .
(r) > =
Proof. Let us take the following test functions on the interval [0, 1]

p=x1+a3H + (x5 —x1)H + (x3+x1)H

(0,1)

¢:—1+1'3H

w=1+2(z4 — 1)X(%%> .

0,%) CRK

+(x3s—a1)H |, —(z3+z1)H

(0,1) .5 (3.1 ;

The Bellman point corresponding to this triple is (x1, —1,23,24,1). The

function ¥ on the interval (%, %) has the value 2x3 + x1 — 1, where the
weight w is 2x4 — 1. Therefore, if 223 + 1 > 1, then by the definition

B(xz) > (2xz4 —1)/4. O
Corollary 3.7. If x5+ x1 > 1, then
-2

Proof. If 3+ x1 > 1, then 2txs +x1 > 1 for all t € [%, 1]. And therefore,

! I ~2

Bx)=2 [ B')dt> / (2twq — 1)dt = 22— 2
1/2 2 )12 8
O
Corollary 3.8. If x5+ x1 > 1 and x4 > 2, then
Blz) = =
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Corollary 3.9. If x4 > 2, then

,B($1,17$4) > % .

Proof. Since the function B is even in x1, the functions B and (8 are even
as well. Therefore without loss of generality we cann assume that x; > 0.
Hence for 3 = 1 the condition x3 + 1 > 1 holds, and we have the required
estimate. O

Corollary 3.10. If x4 > 2, then there exists an a = a(z4) € (0, 1] such that
ﬁ(07a7$4) = %

Proof. Since the function [ is continuous, the conditions
T4
6(0707$4) =0 and 6(0711x4) > Z

guarantee the existence of the required a. O

Remark 3.11. The function g is increasing in x3 because it is positive,
concave, and defined on an infinite interval (0,00). Therefore the root a is
unique.

Lemma 3.12. For any x € G we have

(3.22) Bla) > (1-

Proof. Since 8 is even in x1, we can assume x1 > 0. The stated estimate
is immediate consequence of the following two facts, § is non-negative and

concave in ri:
2xq 2x1 ,, T3

Blx) > (1= ==)B(0,z3,24) + Tgﬂ(?

, L3, $4) .
xs3

O

Lemma 3.13. Let a = a(x4) be the function described in Corollary [3.10 If
x = (21,23, 24) 18 such that 4x; < 23 < a, 2 < x4 < Q, then
x4 — 16Rx3 x4
Proof. Since 3 is concave with respect to x3, and (B, > 0 for z3 € (0,a) we
can write
aBes(z) > (@ — 23) By (%) > B(z1,0,74) — B(T1,73,24) -
Assuming that z1 > 0 we can use Lemma [3.12}
21 211\ T4 1
B(xha,m) > (1 - 7)5(0,(1;$4) = (1 - 7)@ > ﬁ$4-
Together with the general estimate 3(z) < Rxs we obtain
T4 — 16RJI3
Pralt) 2 =g,
To get the second inequality we estimate (,(a):
B(x1,1,24) — B(21,0,74)
1—a

513(“) >

> B(x1,1,24) — Bz1, 0, 24) -
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Now we use Corollary together with the property of 8 to decrease with
respect to xq for 21 > 0:

T4

B(-rl’ 1>$4) > and 5(]]1,&, 33’4) < B(Ovaa x4) = § .

T4
4
In result we get the required estimate:

Tq Xq . %
funle) 2 =5 =%

O

Let us denote the function on the right hand side of (3.23)) by m. We can
rewrite it in the following form:

zr4—16Rx3 : (1—2(1)3)4 .
L DNT3 if z3<
_ 16 ’ — 16R
(3.24) m(zr3,re) =<4 07 . (1-2a)z4
@47 if 3 Z 16 R :

All preparations are made and we are ready to prove Theorem

Proof of Theorem [3.2 Now we combine Lemmas [3.5] and [3.13] to deduce
from ( - ) the following inequality
23(Bas )’ gm?

=Yy 8R(|lm|+32)°
that holds under assumptions 4|z1| < 23 < a <1 and 4 > 24 < Q. Dividing
both part of this inequality over /1 + 23:% we can rewrite it in the form

9
(91‘1

—(1+ 255%)/8961961 — 2218z, >

z3m?

R(lz| + £2)v/1 + 222

Integrating this inequality and taking into account that 3 is even in x1 (i.e.
ﬁfﬂl (073:31 x4) = 0) we get

(Vo) >

2,2 T
TEM dt
1+ 222 > 3
1ﬁx1 SR 0 (t—f—mfg) /71_}_2752
x3m2 1 dt :c3m ( x )
= 1
8Rx/1+2a:1 t+ 32 8Rx/1+2x1

Once more we divide over the square root and integrate in x:

x2m? ™ dt
B(0, 3, 24) — B(x1, 23, 24) > =2 / log ( + i )
0

S8R 1+ 2t2
202 T

> :”3’”2/ log (1+2¢) at

8R(1+2x2) Jy 3

3,2

T Y g (14 ) - )

8Rz4(1 + 222) * x3 T)roe \F x3 o x3 o

3,2

> Lsm [(1 + %ml) log (1 + %xl) — %xl] .

9Rxy x3 x3 x3

In the last estimate we use the restriction 4|z1| < x5 < 1, whence 14223 < %.
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Now we use inequality (3.22)) from Lemma and the general inequality
B(r) < Rxs:

2x
B(0,23,24) — B(21, 23, 24) < ?315(0@3,964) <2R.

Combining with the preceding inequality we come to the following estimate
3,2
B (14 Py ) 10g (14 2y ) = Py | <1
18R2z 24 + 3 T1)log {1+ 3 1 3 =t
Recall that this estimate we obtained in the following domain of variables:

0<4ri1<zr3<a and 4<z4<Q.

Let us now choose the values of this variables. Since the function t +
¥log(1 + t) monotonously increases, we get the best possible estimate
when take the maximal possible value of z, i.e. z1 = %.’Egl

2,2
Tera (1) res (14 5) = ] <1
8R2z, I\ T ) os ity 1]=

Since the behaviour of the function a(x4) is unknown, we cannot choose the
best possible value of x4, we take the largest value x4 = Q:

g (0 Des (14 9) -] =<1,

where, of course, a = a(Q) and m = m(x3,Q). To simplify this expression
we use the following elementary estimate:

(1+£)log(1+£)—z>ilogt for t>4.

4 4~ 16
To check this inequality we consider the function
t t
FO) € 16(1+ 2)log (14 ) — 4t — tlogt

4
and check that f(t) > 0 for t > 4.

4

8
f(4) =32log2 — 16—410g4:810g€—2 >0;
t
f'(t) = 4log (1—1—1) —logt —1;

4
f’(4):4log2—log4—lzlogg>0;

4 1 3t—4
" = — — — = f >4'
FO=i31 ey Y for t2

In result we get

z3m?
288R?

Now we need to investigate the function zs — x3m(zs, Q) on the interval
[0,a]. If a > % then this function is increasing and takes its maximal value

at the point x3 = a, and (3.25)) yields
a2Q2
288 R2 - 82

(3.25) logQ <1 for any x3 € [0,a].

logQ <1.
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or

(3.26)

1/6

a 1/2 (log 4) /

R>——+ ( >

96v/2 4-96v/2

We specially make the exponent of logarithm worth (g instead of %), because

we can get only such exponent for other values of the unknown parameter
a.

From now on we assume that a < . In this case the function has a local

13
- 515

1/3

log Q) Q(log Q) Q(log Q)

maximum at the point T3 = 3§R Indeed since aR > (3(0,a,Q) = Q. we
have a > 8% > = R, therefore the point z3 = % is in the domam The

value of the function zgm(xs3, Q) at this the point is 3?1% 355- On the other
hand at the end of the interval for 23 = a we have the value am(a, Q) > @Q.
If a®? < % then we use the first estimate:
Q Q ) 1 Q* 2R
1 P L S ———
( 2ssm2 8@ = gwRt g

log @ > (i)glogQ,

32R  32a 134R
or
b /3
213 4Q(10 2Q)
In the case if a? > 12% 7 We use the second estimate:
a@ 1 Q3 Q \3
1>(7) logQ > — =2 ] >(7)1 ,
25 ) omspe 0892 gongs e = (134p) loe¢
and again
/3
(3.27) —Q(logQ) /

- 134

Therefore, if a < % estimate [3.27| holds.
Comparing the estimates we got for different possible values of the un-
known parameter a, namely, (3 and (| we see that the estimate

1/3
= ﬁ@(bg Q)

is true in all cases. This completes the proof of Theorem [3.2] and therefore
the proof of Theorem
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