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HOLONOMY GROUPS OF G3-MANIFOLDS

ANNA FINO AND INES KATH

ABSTRACT. We classify the holonomy algebras of manifolds admitting
an indecomposable torsion free G5-structure, i.e. for which the holo-
nomy representation does not leave invariant any proper non-degenerate
subspace. We realize some of these Lie algebras as holonomy algebras
of left-invariant metrics on Lie groups.

1. INTRODUCTION

Holonomy groups are a useful tool in the study of semi-Riemannian mani-
folds. They make it possible to apply algebraic methods to geometric prob-
lems such as the existence of special geometric structures or the decom-
posability of manifolds. So it is natural to ask which Lie groups can be
the holonomy group of a semi-Riemannian manifold. Since we are mainly
interested in connected holonomy groups we may equivalently ask which
Lie subalgebras of so(p,q) are holonomy algebras. For Riemannian man-
ifolds, there is a complete answer to this question. Berger’s list gives a
classification of irreducible Riemannian holonomy algebras of non-locally
symmetric spaces [Be, Br|. Moreover, holonomy algebras of locally sym-
metric Riemannian manifolds can be read off from Cartan’s classification of
Riemannian symmetric spaces. The pseudo-Riemannian situation is much
more complicated. In general, a holonomy representation, i.e., the natural
representation of a holonomy group on the tangent space can have isotropic
invariant subspaces and is not necessarily completely reducible. Therefore
it does not suffice to determine all irreducible holonomy groups. A complete
classification is only known for Lorentzian manifolds, it is due to Leistner
[Le], see also [Ga2] for a survey. For metrics of index greater than one only
partial results are known. For instance, there are results for manifolds with
special geometric structure. Galaev classified holonomy algebras of pseudo-
Kéhlerian manifolds of index 2 [Gal]. Furthermore, holonomy groups of
pseudo-quaternionic-Kéhlerian manifolds of non-zero scalar curvature were
classified by Bezvitnaya [Bz|.

In the present paper, we want to turn to another special geometry, namely
the pseudo-Riemannian analogue of a torsion-free Go-structure, which is
well known from the holonomy theory of Riemannian manifolds since G is
one of the groups on Berger’s list. While torsion-free Ga-structures exist on
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Riemannian 7-manifolds, their pseudo-Riemannian analogues are structures
on manifolds of signature (4,3). They are characterised by the fact that
their holonomy is contained in the non-compact subgroup G5 C SO(4, 3) of
type Ga, which is defined as the stabiliser of a certain generic 3-form. There
are other nice characterisations of this group, e.g., G5 is the stabiliser of a
non-isotropic element of the real spinor representation of Spin(4,3) and it
can also be understood as the stabiliser of a cross product on R*3. Hence a
torsion-free G5-structure on a pseudo-Riemannian manifold M of signature
(4,3) can be understood as a parallel generic 3-form, a parallel non-isotropic
spinor field or a parallel cross-product ‘x’ on M.

Our aim is to classify the holonomy algebras of manifolds admitting a
torsion-free G3-structure, where we want to assume that this G3-structure
is indecomposable, that is, its holonomy representation does not leave in-
variant any proper non-degenerate subspace. By a classification we mean a
classification as subalgebras of g5 C s0(4,3) up to conjugation by elements
of SO(4, 3).

There are already some results in this direction. In [Ka2] indefinite sym-
metric spaces with G3-structure are classified. Their holonomy algebras can
be read off from this classification. It turns out that they are abelian and of
dimension two or three. Furthermore, some results on left-invariant torsion-
free Gj-structures on Lie groups (or, equivalently, G3-structures on Lie al-
gebras) are known. Examples of (decomposable) torsion-free G3-structures
with 1-dimensional and 2-dimensional holonomy have been found by M.
Freibert [Fr] on almost abelian Lie algebras. In [FL] Fino and Lujan stud-
ied torsion-free G3-structures with holonomy G35 on nilpotent Lie algebras,
showing in particular that, up to isomorphism, there exists only one in-
decomposable nilpotent Lie algebra admitting a torsion-free G3—structure
such that the center is definite with respect to the induced inner product.
In [FL] an example of an indecomposable torsion-free Gi-structure with
6-dimensional holonomy on a nilpotent Lie algebra is also given. Other
examples of signature (4,3)-metrics with holonomy group contained in or
equal to G% have been constructed, see for instance [GW, LP, ALN, WiJ.

The first step in the classification of holonomy algebras is to get algebraic
conditions for candidates for holonomy algebras b strictly contained in g3.
These conditions can be derived from the following three facts. Firstly, since
b is a proper subalgebra of g5, the natural representation of h C g5 C s0(4,3)
on R*3 has to leave invariant an isotropic subspace. Secondly, several re-
strictions come from the indecomposability of this representation. Thirdly,
every holonomy algebra is a Berger algebra, i.e., it satisfies Berger’s first cri-
terion, which gives further conditions for . In this paper we give a complete
answer to this algebraic part of the classification problem. That is, we clas-
sify indecomposable Berger algebras strictly contained in g5. The results can
be summarised as follows. Let p1, p2 denote the two 9-dimensional parabolic
subalgebras of g5, which can be characterised by the action of G5 on isotropic
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subspaces of R*3. The action of G% on isotropic lines is transitive and p; is
the Lie algebra of the stabiliser of an isotropic line. Furthermore, the action
of G5 on 2-planes E' = span{by, b2 } satisfying by xby = 0 is transitive and p is
the Lie algebra of the stabiliser of such a 2-plane. We have p; = gl(2,R) x m,
where m is three-step nilpotent and ps = gl(2,R) X n, where n is two-step
nilpotent. Both p; and po are indecomposable Berger algebras. We will
distinguish arbitrary indecomposable Berger algebras h C g5 C s0(4,3) by
the dimension of the socle of their natural representation on R*3. The socle
is the maximal semisimple subrepresentation. By indecomposability, it is
isotropic. We will say that § is of Type I, IT or 111, if the dimension of the
socle is one, two or three. In particular, p; is of Type I, ps is of Type II. We
show that b C p; up to conjugation if b is of Type I or III. If b is of Type II,
then h C p2 up to conjugation. Let a be the projection of h to gl(2,R) C p;
for i = 1, 2, respectively. Then we may assume that a is one of the represen-
tatives of conjugacy classes of subalgebras of gl(2, R). Roughly speaking, for
each of these representatives we classify the subalgebras m C m and n C n
for which a x m and a x n are indecomposable Berger algebras. Finally, for
each type, we get a list of all (conjugacy classes of) indecomposable Berger
algebras (Theorems 2.4, 2.10 and 2.12).

The second part of the classification consists in the realisation of the pos-
sible holonomy algebras by metrics. As we already mentioned above, left-
invariant metrics on 7-dimensional nilpotent and solvable Lie groups may
provide interesting examples of such metrics. In Section 4, we give new
examples of left-invariant metrics with holonomy contained in g5. In partic-
ular, we can provide examples for each of the Types I, IT and III. As for Type
I, we can realise m and, furthermore, a 7-dimensional solvable Lie algebra
and a 6-dimensional nilpotent one as a holonomy algebra. Besides n and
s[(2,R) x n, we give a 3-dimensional abelian example of Type II. Finally,
we can realise a three-dimensional abelian Lie algebra of Type III. Another
special class of pseudo-Riemannian manifolds is that of symmetric spaces.
As already mentioned, symmetric spaces with G3-structure were determined
in [Ka2]. In Section 3, we check how their holonomy algebras fit into the
classification.

ACKNOLEDGEMENT This research was supported through the programme
Research in Pairs by the Mathematisches Forschungsinstitut Oberwolfach
in 2016. We are very thankful for the opportunity to stay two weeks in the
very stimulating atmosphere at MFO, where we finished essential parts of
this paper.

NOTATION If bq,...,b, is a basis of a vector space W, then we denote by
bl, ..., b" its dual basis of W*. Furthermore, b'1-% := b1 A- . - Ablk € /\k WH*,
biy.. iy i=biy Ao~ Ab, € N¥W and b :=b; @ b € W @ W* =2 End(W).
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2. HOLONOMY GROUPS CONTAINED IN G5

2.1. The group G35. Let M be a simply connected manifold of signature
(4,3). Suppose that M admits a G3-structure, given by a generic three-
form w. Then w defines an orientation and a metric g of signature (4, 3) on
M. Here signature (4,3) means that g = diag(—1,—1,—1,—1,1,1,1) with
respect to a suitable basis. Let w be parallel with respect to g. Then the
holonomy group H of (M, g) is contained in G3.

Equivalently, we could have started with a pseudo-Riemannian manifold
(M, g) of signature (4,3) whose holonomy group H is contained in G5 C
SO(4,3). Then G defines a parallel 3-form w on (M, g) and g is induced
by w.

Let h denote the Lie algebra of H. Suppose that the holonomy representation
of h on V :=T,(M) is indecomposable but not irreducible.

A subspace 0 # U C V is called isotropic if g(u,u) = 0 for all u € U.

Let us give explicit formulas. We choose a basis ej,...,er of V such that
the 3-form w equals

Wo = V(17 4 235) _ d p (15— 26 _ (3T)

Then the orientation of V' is defined to be the orientation of ej,...,er and
the induced metric equals (-,-) = 2(e! - e® +e? - eb +e3-€7) — ()2 In
particular, we can identify G5 with the subgroup of GL(7,R) that stabilises
wp. Then G5 C SO(4, 3) with respect to (-,-). The Lie algebra g5 consists
of all matrices of the form

S1+814 —S190  Sg V256 0 —S11  —S12
—58 s1 s2 V289 S11 0 56
s7 53 s1 V2s10 512 —$6 0
\/585 \/587 ﬂSg; 0 \/586 \/559 ﬂslo ’ (1)
0 813 s14 V2s5 —s1—si  sg —s7
—S13 0 —s5  V2s7 510 —Ss1 —83
—S14 S5 0 \/588 —S9 —382 —S54
where s1,...,514 € R.

The 3-form w defines a cross product on V' by
(u X v,w) =w(u,v,w).
This cross product is antisymmetric and satisfies
(uxv,u)y =0, ux(uxv)=—(u,u)v+ (u,v)u,
for all u,v € V.

The group G5 can also be understood as the stabiliser of a non-isotropic
spinor 1y in the real spinor representation A of Spin(V') = Spin(4,3). In-
deed, the two-fold covering map A : Spin(V) — SO(V) induces an iso-
morphism from this stabiliser to G3. This is well known, see e.g. [Kal]
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for details. We give also [Ka2] as a reference here since the above men-
tioned formulas for wy and g5 can be obtained from the description of the
Clifford algebra of V' in [Ka2] in replacing the basis €1, ..., e7 used there by
er, €5, €6, €4, €3, €1, 2. We want to recall the following well-known facts. The
spinor module A admits an inner product (-,-), of signature (4,4) that is
invariant with respect to the Clifford multiplication, i.e.,

<U : 907¢>A + <§0av ¢>A = 07
for all v € V. The Clifford multiplication of the non-isotropic spinor ¥y by
a vector
V—>{1/10}J'CA, ”U>—>’U-w0
is an isomorphism from V to {¢g}*. The spinor vy defining G} is related
to the cross product by

u- v o + (u,v)o = (u X v) - Po. (2)
The map
Aspr—U(p) ={veV]v-p=0}CV
induces a bijection from the set of projective isotropic spinors to the set of
3-dimensional isotropic subspaces of V.

2.2. The type of a holonomy algebra contained in gj. Since the holo-
nomy representation of h is indecomposable but not irreducible there exists
at least one h-invariant isotropic subspace £ C V.

Lemma 2.1. The following statements are true for any indecomposable sub-
algebra b of g5 C s0(4,3). Let E C'V be an h-invariant isotropic subspace.

(1) If dimE = 1, then E(E) == {v € V |VYe € E:vxe =0} is a
three-dimensional isotropic h-invariant subspace of V' containing E.

(2) If dim E = 3, then there exists a uniquely determined one-dimen-
stonal isotropic h-invariant subspace Ey C E such that E = E(EO).

(3) If dim E = 2 and if by x by # 0 for a basis by,be of E, then there
exists a one-dimensional h-invariant subspace Eg C V' not contained
i E such that E & Ey is isotropic.

Proof. (1) Suppose E = R-b, b € V. We want to show that E(E) = U(b-1).
Note first that b L E(E) since 0 = b x (v x b) = (b, b)v — (b,v)b = —(b, v)b
for all v € E(E). Now Eq. (2) shows that E(E) c U(b- ). Equation
(2) also implies ¢g > (u x b) - 1o = {(u,b)tyy for all u € U(b - 1), thus
U(b-1g) C E (E). The subspace U (b-1)y) is three-dimensional and isotropic.
Moreover, it is h-invariant since F is h-invariant and g is annihilated by §.
Hence the same is true for E(E).

(2) Suppose dim F = 3. Then there exists an isotropic spinor ¢( such that
E = U(ypp). Since h(E) C E, we have E - (h- o) = b - (E - o) = 0,
hence E - ¢y C R - ¢g. Assume that (g, v0)a # 0. We define a vector X
by g + X -9 € R-¢g. Then h(X) = 0 because of b - (¢o + X - ¢g) =
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h(X) 9o € (R- o) N1y = 0. On the other hand, X cannot be isotropic
since (g is isotropic, which is a contradiction to indecomposability. Hence
(Yo, 00)a = 0. In particular, we can define b € V by pg = b-1y. Then
E = U(gpy) = E(Ey) for Ey = R-b. As for uniqueness, E(R - b) = E(R - V)
implies U (b - o) = U(V - 1)), thus ' € R - b.

(3) Now assume that E = span{b;, b2} and that by x by =: b # 0. If b were
in E, then b; x by = by without loss of generality. But this would imply
bg = bl X (bl X b2) = —<b1,b1>b2 + <b1,b2>b1 = 0, which contradicts b2 7A 0.
Thus Ey := R - b is not contained in E. Moreover, F @ Ej is isotropic since
b is isotropic and u x v L u for all u,v € V. O
Let S be the socle of the holonomy representation. Then S is isotropic.
Indeed, SN St is h-invariant. Since b acts semisimply on S, there exists an

h-invariant complement of SN.S+ in S. This complement is non-degenerate,
hence trivial. Thus SN S+ = S.

Definition 2.2. The holonomy representation is said to be of Type I, II or
I if the dimension of S equals one, two or three, respectively.
2.3. Berger algebras of Type I. Let § be of Type I .

Lemma 2.3. If by is of type I, then there exists a basis by, ...,b7 of V such
that

.y = 20"+ 205 + 3 07) — (b1)?
w = \/i(blG? + b235) o b4 A (b15 o b26 _ b37>
and b is a subalgebra of

bl = {h(A,v,u,y) | A€ gl(2,R), v ER, u,y € R?},

where
trA —us up V2o 0 —y1 =Y
0 a ax V2w oy 0 v
0 as ay V2uz e —v 0
MAv,uy) =1 0 0 0 0  V2u V2ur V2up
0 0 0 0 —trd 0 0
0 0 0 0 (%) —ai —as
0 0 0 0 —Uul —a9 —Qy

fOT'A = < a1 a2 )7 y= (y17y2>T7 u = (ul?uQ)T'

asz G4

Proof. Let the socle be spanned by the isotropic vector b. Recall that G5
acts transitively on isotropic lines in R*3. Hence we may assume b = e.
Put b; :==¢;, i =1,...,7. Then the assertion follows from (1). O
We define

m = {h(0,v,u,9) | v € R, u,y € R*} C p/
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and identify gl(2,R) with {h(A,0,0,0) | A € gl(2,R)}. Then
bl = gl(2,R) x m.
We define the matrices

o= ) s=(a 1) (

and the following Lie subalgebras of gl(2,R) C b :

0 := {diag(a,d) | a,d € R},
c0(2) = {(Z _ab> ‘a,beR},
by = span{l, N},
sy = span{diag(A\,\—1), N}, A € R,
bo := Lie algebra of upper triangular matrices.

Furthermore, we define vector subspaces of m by m(0,0,0) := 0 and

m(1,0,0) := {h(0,v,0,0)|v e R},
m(0,1,0) := {h(0,0,(u1,0)",0) | u; € R},
m(0,0,1) := {h(0,0,0,(y1,0)") | y1 € R},
m(0,0,2) := {h(0,0,0,y) |y € R?}.

Now we put

m(s, j, k) = m(i,0,0) @ m(0, 7,0) & m(0,0, k)
for i,j € {0,1}, k € {0,1,2}.
Let a be the projection of b to gl(2,R) C h.

Theorem 2.4. If§ is of Type I, then there exists a basis of V' such that we
are in one of the following cases

(1) a € {0,5l(2,R), gl(2,R), co(2), by, by, 0, R-C,, R-S} and h = axm,
(2) a =s) =span{X := diag(\,A — 1), N} and

(a) e R and h=axm,

(b) A=1andh=R-h(X,0,(0,1)7,0) x (R- N x m(1,1,2)),

(¢) A=2 and h = span{X, h( ,0,(0,1)T,0)} x m(4,7,2), where

(i,5) € {(0,0), (1,0), (1, 1)},

(3) a=R-diag(1l,u) and
(a) pe[-1,1] and h =ax m,
(b) u =0 and h = R - h(diag(1,0),0,(0,1)T,0) x m(1,1,2),
a=R-N and

=R-h(N,0,(0,1)",0) x m(1,4,2) for j € {0,1}.



HOLONOMY GROUPS OF G3-MANIFOLDS 8

The remainder of this section is devoted to the proof of Theorem 2.4. Let
us first have a closer look at the structure of h’ = gl(2, R) x m. The element
A € gl(2,R) acts on m by

A-h(0,v,u,y) = h(0,tr(A)v, Au, (A + tr A)y).
Furthermore, the Lie bracket on m is given by
[h(0,v,u,y), h(0,v,u,7)] = h(0,20(u,u),0,3(vu — va)), (3)
where 0(u, @) := uytia — ustiy for u,u € R2.

Similarly to gl(2,R), we identify GL(2,R) with a subgroup of G consisting
of block diagonal matrices:

GL(2,R) 3 g — diag(det g, g, 1, (det )", (g ") ") € G5, (4)
where G3 is considered with respect to the basis in Theorem 2.4. Then
Ad(g)(h(A, v,u,)) = h(gAg™", det(g) - v, gu, det(g) - gy).  (5)

Lemma 2.5. Fither a € {0, sl(2,R), gl(2,R)} or the basis by,..., by in
Lemma 2.3 can be chosen such that a is equal to one of the following Lie
algebras:

(1) R- A, where A is one of the matrices
Ca, S, N, diag(1,n), p € [—1,1];

(2) 0, co(2), 62, 5y, A €ER;

(3) bo.

Proof. We identify GL(2,R) with a subgroup of G5 as described above. The
conjugation of h by an element of GL(2,R) is given by (5). Hence the proof
of the Lemma is just the well-known classification of subalgebras of gl(2,R)
up to conjugation by GL(2,R):

(1) Suppose that a is generated by one matrix A # 0. If A has real eigenval-
ues, then we may assume that one of the eigenvalues equals 1. Otherwise,
we may assume that the imaginary part of the eigenvalues equals £1. Con-
jugating by an element of GL(2,R) we can achieve that A has real Jordan
normal form, which is diag(1, u), Cq, S or N.

(2) Now let a be two-dimensional. If the natural representation of a on R?
is semisimple, then a = d or a = co(2) after conjugation by an element of
GL(2,R). If not, then a = by or a = s, after conjugation depending on
whether a is abelian or not.

(3) If dima = 3 and a # sl(2,R), then a is solvable, thus conjugated to
bs. O
We define

K ={Re N*V*®b |Ve,y,z €V :R(z,y)z+ Ry, 2)x + R(z,z)y = 0}

and
b :=span{R(z,y) | z,y € V, R € K(bh)}.
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Berger’s first criterion implies h = h. Let by,...,b7 be a basis as chosen in
Lemma 2.3. If R € K(h), then

Rij == R(b;,bj) = h(Aij,vij,uij,yij).
Lemma 2.6. If R € K(h), then

(1) Rij =0 for all j #5 and R;; =0 fori,j € {2,3,4},

(2) tr AV =0 if i < j and (i,§) & {(5,6),(5,7)},
(3) Ris = h(0,0,0, (tr A% tr AST)T),

Proof. Let R be in K(h). Since (R;;(bg),b;) = (Rii(b;),b;) and Ry € b,
assertion (1) follows.

We define b(3, j, k) := R;j(br) + Rji(bi) + Rii(b;). From b(7,j,5) = 0 we get
tr A% = 0 for 4,7 # 5. Furthermore, b(1,5,6) = b(1,5,7) = 0 together with
Rig = Ri7 = 0 implies A® =0, u'® =0, 1)15 =0 and (tr A% tr A57)T = ¢!,
Now b(1,4,5) = 0 together with u'® = 0 and v!5 = 0 gives tr A® = 0 for
i=2,3,4. 0

Corollary 2.7. If a contains an element A with tr A # 0, then

y:={y € R | h(0,0,0,y) € b} #0.

Proposition 2.8. The space K(h) can be parametrised by a;, v, r; € R
(i =1,2,3), bk, ck, ,ug,jr € R (k=1,...,4) and v1,vs,t € R, where R =
h(A,v,u,y) € K(h) is given by the data in Table 1.

Proof. Let Rbein K(h). As in the proof of Lemma 2.6, we use (R;;(b), b)) =
(Rii(bi),bj) and Ry € b, which now gives

V2Ra5 = —Ry7, V2R35 = Rus, V2Rer = —Rus

and
R37 = Ri5 — Rog.

Let us consider the equations b(7, j, k) = 0 for i, j, k # 4. These equations
give, in particular,

R i e A
Moreover, they imply the already proven properties of R stated in Lemma
2.6. The system of the remaining linear equations for the coefficients A", v*/,
u” and y" of R;; following from b(4, j, k) = 0 for 4, j, k # 4 decomposes into
five subsystems. Each of these subsystems is a system of equations in the
elements of one of the following sets:
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R(b;, b)) A v U Y
R15 0 0 0 (b1 + b47 C1 + C4)
i) —X1
—Ros = %347 c1—bs (ra,73) (u2, uq)
r3 —XT2
—ay —a2
Ry —T9 (w1, 22) (b1, c1)
—as [25]
—a3 aj
Ro7 . -3 (w2, 23) (b3,c3)
J asz
T T4
B35 = %sze by — c2 (r1,72) (u1,u3)
o —X
—az J2
R r1 (w4, —1) (b2, c2)
aq a9
—T2 T
—Rer = %345 up —usz | (bs —c2,c1 —b3) (v1,v2)
—Tr3 T2
by b .
Rs¢ vy (u1,u2) (j3,1)
bs by
C1 C2 .
Rs7 V2 (u3,usq) (t,ja)
C3 C4

Ris =Ri3=Ryy=Rig=Riy=Roz3=Roy = R34 =0
R37 = Ri5 — Rag

Table 1.

M1 Z:{A267A27,A36,A37},

My ::{ABG7 A57, y26’ y367 y27’ y37, U25, ’1)35, ’Ll,67},
M;s Z:{A25, ASS, U27, U37, U26, u?)ﬁ}7

M, Z:{A67, u25, 'LL35, ,026’ 027’ ,0367 1)37},

.__J..56 57 25 35 67
M5 —{u Yy Yy, }
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The subsystem for M is

—a =0 =0 =0} = -0} =a;, a¥f= a3’
— a3t = —a3% = a3 = a7 =: ay,
—a3 = —a¥" =a¥" =d) = as.
Together with a3” =: ji, a3® =: jo this gives the parametrisation of M

claimed in the proposition.

For My, we have

26 __, 56 __ 36 __.
ay” =y =:by, a3 =yp =: b,

az' = Yl =ic3, a) = y§7 =: ¢4,
vy = aff = o + o = b,
o = o = o —u = by,
ol =g = 4
03 4 ol = 3T = 30 S

Yo o — Uy
and for M3
o = =t = = = P =i
= = =l = =~ =,
u%7 = —a§5 =: x3, u:{’G = a%E’ =: x4.
Moreover,
a€157 — 26— 25— u§5 _ 3T = —a27 —: g,
_ ag? — 36 — u:135 ——
ag7 =¥ = —u%‘E’ =:r3

is the system for My and

35 56 __. 25 _ 56 __.

yl == ul - ul, _yl - U2 . UQ,
35 57 __. 25 57 __.

Yo =uUp =-u3, Yy = Uy =iUg,
67 __ 57 56

v =ul" —uy

that for Ms. This shows that R € K(h) is given as in Table 1. More-
over, the above considered systems of linear equations imply that each
R that is defined as in Table 1 for an arbitrary choice of the parame-
ters a;, 7, i, by, Ck, Uk, Jji, V1, V2, t satisfies b(i,j, k) = 0 for 4,5,k # 4. It
is easy to show by a direct calculation that it also satisfies b(i, j,4) = 0 for

1<i4,7<T. O
Proof of Theorem 2.4. We define
u = {ueR?|weR, yecR?: h0,v,u,y) € b}, (6)

b = {veR|IyeR?: h0,v,0,y) € b} (7)
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Below, we will several times conjugate by elements of G3. In particular, we
will use the following formulas, which can be obtained from (3):

Ad(exp h(0,9,0,0))(h(A,v,u,y)) = h(A,v — tr(A)v, u,y — 3vu), (8)

) =
Ad(exp h(0,0,,0))(h(A,v,u,y)) = (9)
h(A,v —20(u,u) — 0(u, Au),u — Au,y + (3v — 30(u,u) — 0(u, Au))a),
) (

Ad(exp h(0,0,0,9))(h(A,v,u,y)) = h(A,v,u,y — (A+tr A) - ). 10)

(1) If a = 0, then dimu = 2 since otherwise the kernel of h would be at least
two-dimensional. Thus there exist elements vi, va € R, 1, y2 € R? such that

hl = h(07’l)17 (1)O)T7y1)) hQ = h(07v2) (07 1)T7y2) € h

Then also hz := [k, ha] = h(0,2,0,3(va, —v1) "), [h1, h3] = h(0,0,0,(6,0)T)
and [ho, k3] = 1(0,0,0,(0,6)7) are elements of b, hence h = m

Suppose a = s[(2,R). Assume that u = 0. Then for each A € a there exists a
unique element u 4 € R? such that h(A,v,us,y) € b for some v € R,y € R2,
The map A — uy4 is a cocycle with respect to the standard representation
of a on R?. Since H'(a,R?) = 0 by Whitehead’s lemma, it is a coboundary,
ie., us = Ad for some 4 € R?. After conjugation of b by exp h(0,0,,0)
according to (9), the projection of b to {h(0,0,u,0) | u € R?} is trivial. But
then b is of Type III. Hence u # 0. Since u is invariant under a, we obtain
dimu = 2 and as above we conclude m C b.

For a = R - C, we can argue similarly. Indeed, h(Cg,v,u,y) € b for some
v,u,y. Since C, is non-singular, we have u = C, () for some @& € R? and
we can proceed as above.

Now suppose a = R - 5. Since S defines a bijective map we may assume
that (after conjugation) h(S,v,0,y) € b for some v € R and y € R?. Hence
u #£ 0 since otherwise h would be of Type II. Assume that dimu = 1. Then
u=DR-(1,0)" since u is invariant under a. But then h again would be of
Type II. Hence dimu = 2, which implies m C b.

Before we continue with the remaining cases let us make the following re-
mark. Suppose I € a and u = 0. Then, as above, h(A,v,u4,y) € b for a
cocycle A — uy and some v € R,y € R?. Since I € a, we have, in particular,
0 = w4 = I(ua) — A(ur). Hence ug = A(uy) for all A € a. As in the case
of a = sl(2,R), after conjugation of h by exp h(0,0,us,0) the projection of
b to {h(0,0,u,0) | u € R?} is trivial and b is not of Type L.

Suppose a € {gl(2,R), co(2)}. Then u # 0 by the above remark. Since u is
a-invariant we get dimu = 2, thus m C b.

Now let a be one of the Lie algebras bo, bo. Then u # 0. If dmu = 2,
then m C h. Thus we have to discuss the case dimu = 1. Because of the
a-invariance of u we have u = R - (1,0). Since tr7 # 0 and I and I + tr [
act bijectively on R?, we may assume that hy := h(I,0,0,0) is in b (after
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conjugation according to (8) — (10)). Let h(A,v, (0,4/)T,y) be in h. Then
[, h(A, v, (0,4) T, )] = (0,20, (0,4) T, 3y)
is also in b, which implies v’ = 0. But then § would be of Type II.

Finally, we consider the case a = 0. Then again u # 0. If dimu = 2, we
are done. Assume dimu = 1. Because of the invariance of u under a we
have u = R-(1,0)" or u = R-(0,1)". Since tr] # 0 and I and I + tr[
acts bijectively on R?, we may assume that hy := h(I,0,0,0) is in b (after
conjugation). For H = diag(1,—1), there are elements v € R, u € R?,
y € R? such that h(H,v,u,y) € bh. Since

[hl) h(H’ v, U, y)} = h(ou 27}7 u, By) € b;
we get u € u by (6). But then b is of Type II.

(2) Now let a be equal to s). First we want to show that u = 0 implies
A= 2. If u =0 we can define a cocycle A — ug by h(A,v,us,y) € b for
some v, y. Since [X, N| = N we obtain X - uy — N - ux = uy, which yields

A =1Duly =v%k, A=2)u% =0 (11)

for the components uﬁ(, u§( of uyx and ujl\,, u%v of upn. We may assume that
u% = 0. Indeed, if A # 1, then {(0,u2) " | uz € R} is in the image of X, thus
we can find a suitable conjugation of h. If A = 1, then u% = 0 follows from
(11). If A # 2, then (11) gives u3; = 0 and, consequently, the projection of b
to {Rn(0,0,(0,u2)",0) | up € R} vanishes. Hence b is of Type II. Thus u = 0
can hold only if A = 2.

Now take, A € R, A ¢ {1,2}. We have already seen that u # 0. If dimu = 2,
we are done. Assume that dimu = 1. Then u = R-(1,0)" by a-invariance of
u. Since A # 1, we see as above that we may assume that h(X,vx,ux,yx) is
in b for some vy, ux,yx with ux = (v/,0). Hence hx := h(X,vx,0,yx) €
h. Furthermore, hy := h(N,vn,un,yn) € b for some vy, uyn,yy with
uy = (0,u”)". Then

[hx,hn] = h(N, 2\ — 1oy, (A — Dun,y)

for some y € R2. Since A\ # 2, we obtain u” = 0. Hence the projection
of b to {n(0,0,(0,u2)",0) | us € R} vanishes and b is of Type II, which
contradicts our assumption.

Suppose now A = 1. We already know that u # 0. If dimu = 2, then we
are in case (2)(a). Let us consider the case dimu = 1. Then u=R-(1,0)".
Choose vx,ux,yx, VN, un, yn such that hy := h(X,vx,ux,yx) and hy :=
(N,vn,un,yn) are in h. Since tr X # 0 and X + tr X acts bijectively, we
may assume vy = 0 and yx = 0. Then [hx,hy] = h(N,v, Xuny — Nux,y)
for some v,y. Since Xuy and Nuyx are in u, we see that uy € u. Thus we
can choose uy = 0. To summarise, we get

hX = h(X,O, (O’U/)T’O)a th = h(Na vaovyN)7
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where u’ # 0 since otherwise h would not be of Type I. We choose vy, 39 such
that hg := h(0,vg,(1,0)7,40) € b. Then [hx, ho] = h(0,v9 — 20/, (1,0)T,y)
for some y € R%. Since v/ # 0, this implies v # 0. Hence, there exists
9 = (91,72) € R? such that h, := h(0,1,0,9) € h. We have
[hx, ho) = (0, 1,0, (241, 92 + 3u') ).

Hence (91, 3u') € . Since y is a-invariant and u’ # 0 we obtain ) = R2. Con-
sequently, h = R-hx x (R- N xm(1,1,2)). Conjugating by diag(/, (u')~!) €
SL(2,R) C exph! € SO(4,3) we get v/ = 1 and we are in case (2)(b).
Finally, suppose A = 2. Since X = diag(2,1), trX # 0 and X + tr X

acts bijectively, we have X € b after a suitable conjugation. Cor. 2.7 to-
gether with the a-invariance of n implies that n contains R - (1,0)T. In

particular, hy := h(N,vn,un,yn) € b for some vy, uny = (ul,u%)" and
yn = (0,7)". Then
[X, hN] = h(N’ 3UNa (2u11\f7 u?\/’)—r7 (Oa 4y/)T)‘ (12)

Hence (u}y,0) € u, thus we can choose u}, = 0. Let us first consider the case
v # 0. Then hy = h(N,0,(0,4/)7,(0,4')") and h, = h(0,1,0,(0,4")") are
in b for some y” € R, thus also [hy, hy] = R(0,0,0, (y",3u/)T) € b. If now
u' # 0, this shows n = R2. Conjugation by (v/)~!- T € GL(2,R) C SO(4,3)
shows that we may assume v’ = 1. Hence we are in case (2)(c) with i = 1
or h = axm. Ifu =0, then u = R? since b is of Type I and u is a-
invariant. Hence h = a x m. If v = 0, then (12) implies vy = 0. Assume
np=R-(1,0)". Then (12) would imply 3’ = 0. Hence the projection of b
to {h(0,v,0,(0,92)") | v,y2 € R} would be trivial. Thus Prop. 2.8 would
imply ¢y = ... = ¢4 =0 and by = 0. But then X ¢ b, which would mean
that b is not a Berger algebra. Hence y = R?. If v/ = 0, then u = R? since
bh is of Type I and u is a-invariant. But then h = a x m, which contradicts
v = 0. If v # 0 we again may assume v’ = 1. Because of b = 0 we have
uCR-(0,1)T. The a-invariance of u now gives u = 0, thus we are in case
(2)(c) withi =75 =0.

(3) Let a be spanned by diag(1, ). Assume first that © # 0. Then, possibly
after a further conjugation, h(diag(1, ), ®,0,9) € b for some © € R, § € R,
If u # 1, then R-(1,0)" and R - (0,1)" are the only proper a-invariant
subspaces of u. Since b is of Type I, we obtain u = R?, thus h = a x m.
If 4 = 1, then the operators h(0,v,u,y) with v € u do not have a non-
trivial common kernel since b is of Type I. Hence dimu = 2, which implies
h = ax m. Now we consider 4 = 0. Then we may assume that h =
h(diag(1, 1), 0, (0,u/)7,0) € b for some v’ € R. Since b is of Type I, we
have R- (1,0)" c u. If u =R? then h = axm. Ifu=R-(1,0)", then
u’ # 0 since b is of Type I. Thus we may assume v’ = 1. Furthermore, hg :=
(0, vg, (1,0)T,40) € b for some v, 1y9. Since [ﬁ, ho] = h(0,v9—2, (1,0)T, %) for
some y € R?, we see that v # 0. Hence, h = h(diag(1, 1), 0,(0,1)7,0), hg =
(0,0, (1,0)",40), hy := h(0,1,0,y,) are in b for some yo, v, = (¥, y2)" €
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R2. Since [h,h,] = (0,1,0 2yt y2 +3)7), we get R-(0,1)T C vy and
[ho, he] = h(0,0,0,(3,0)T) implies R - (1,0)" C p. Thus y = R? and we are
in case (3)(b).

(4) Finally, we consider a = R- N. If u = R? then h = a x m. Sup-
pose that u # R2. Then u = 0 or u = R-(1,0)". Possibly after con-
jugation, hy := h(N, vy, (0,4)7,(0,4)7) € b for suitable vy,u/,y € R.
Then v’ # 0 since b is of Type I. We may assume v/ = 1. Then, again
after conjugation, vy = 3y = 0. Let us first consider the case v # 0.
Then h, := h(0,1,0,y,) € b for some y, € R2 Because of [hy,h,] =
[R(N,0,(0,1)7,0), hy] = R(0,0,0,(y1,3)") for some y; € R. Since y is a-
invariant, we obtain y = R2. Hence b is as claimed in case (4)(b). Now
suppose v = 0. If hg := h(0,v0, (1,0)T,y0) would be in b for some v, 3o,
then also [hy,ho] = [A(N,0,(0,1)7,0),ho] = h(0,-2,0,) € b for some
§ € R?, which would contradict v = 0. Thus u = v = 0. This implies
that all parameters describing IC(h) are zero except of js, ja, t, see Prop. 2.8.
But then hy = h(N,0,(0,1)T,0) would not be in h, which would contradict
Berger’s first criterion. B O

2.4. Berger algebras of Type III.

Lemma 2.9. If b is of Type III, then there exists a basis by,...,by of V
such that the metric on V equals 20t - 0° + 202 - 6% + 203 - 67 — (04)? with
respect to the dual basis and b is a subalgebra of

b* = {h*(A,v,y) == h(A,v,0,y) | A€ gl(2,R), v € R, y € R*} C h’.

Let a and m(4, j, k) be defined as in Section 2.3.

Theorem 2.10. If b is of Type III, then there exists a basis such that we
are in one of the following cases

(1) a € {sl(2,R), gl(2,R), c0(2),0} and h = a x m(1,0,2)
(2) a € {0, R-diag(1,0)} and h = ax m(1,0,k) for k € {1,2}.

Proof. 1If the socle S is three-dimensional, it defines a one-dimensional in-
variant subspace in a natural way, see Lemma 2.1. Since G3 acts transitively
on isotropic lines we may assume that this space is spanned by e;. Then
S = span{ej,eg, e3}, see Lemma 2.1. Now we take the same basis as in
Lemma 2.3., ie., by = e;, i = 1,...,7. Then h C h’. Since the repre-
sentation of h on S is semisimple, R - b; has an invariant complement S
in S. Hence u = {u € R? | Jv € R, Iy € R? : h(0,v,u,y) € h} = 0.
Since h acts semisimply on S , a 2 GL(2,R) acts semisimply on R?. Thus
a € {0,gl(2,R),sl(2,R)} or a is conjugated to one of the Lie algebras
c0(2),9,R-diag(1, 1) or R-Cy. So we may assume that a is one of these Lie al-
gebras. In the proof of Theorem 2.4, we have seen that if a € {sl(2,R),R-C,}
or if I € a, then u = 0 implies that, after a suitable conjugation, the pro-
jection of h to {h(0,0,u,0) | u € R?} is trivial, which means that h C b®.
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Furthermore, if a = R - diag(1, ), p # 0, then we also have h C bh* after
a suitable conjugation according to (9) since diag(1, u) acts bijectively. If
pw = 0, then h(diag(1, u),vo, (0,u’),y0) € b after conjugation according to
(9) since R-(1,0)7 is in the image of diag(1,0). Since b acts semisimply on
S = span{by, bo, b3}, it follows that «' = 0.

Now we are using Berger’s criterion in order to determine h. Since b C b*,
Prop. 2.8 implies 0 =ri =r9o =r3 =21 = -+ = x4 = u; = --- = uyg and
by = ca, ¢c; = bs for the parameters of K(h). Since b is indecomposable,
we have v # 0 since otherwise the non-isotropic vector by would be in the
kernel of hh. Hence v; # 0 or vy # 0, which implies y # 0. For a €
{gl(1,R),s[(2,R),c0(2)} we get y = R? since there is no one-dimensional
invariant subspace of R?. Thus a C h and hN'm =m(1,0,2). If a C 0, then
the parameters of K(h) satisfy in addition 0 = a; = a2 =az =j1 = jo =0
and by = b3 = by = ¢; = ca = c3 = 0. Hence all parameters appearing in
some A% in Table 1 are zero except of by and c4. For a = ? this immediately
implies § = R2. For a = R - diag(1, ) we obtain u = 0 and by # 0.
Since diag(1,0) + trdiag(1,0) act bijectively on R? we may have a C b after
conjugation according to (10). Furthermore, b; # 0 yields hnm = m(1,0, k)
for k = 1,2, see Table 1. If a = 0, then y = R? or y = R - (1,0)" after
conjugation, which proves the assertion for this case.

It remains to exclude a = R - C,. For a = R - C,, Prop. 2.8 implies the
system

by =by=cy=—c3, —ba=bg=c1 =c4, by =abs, c1 =ac3
of linear equations, which has only the trivial solution. This gives a contra-
diction to h(Cy,,0,0,y0) € b for some yo € R2.
O

2.5. Berger algebras of Type II. Let b be of Type II.
For z = (21,...,24) € R%, we define
—Z4 —2Z3
o(z):= 2 Vi oa , o(2)" = | V22 V2
21 V22 23 s 5
—Z2  —2

a

and, for A = <
as

32 > € gl(2,R) and ¢ € R, we put
4

p(A) = —v2as3 0 —V/2a; , Ule) :=
0 —V2a3 —a1 + as
Lemma 2.11. If § is of type II, then there exists a basis by,...,b7 of V
such that

al — aq —\/5(12 0
()

(") 208 b8 + 0% BT+ b7 - B%) — (bh)?,
w = \/5(—()157 + b236) o b4 A (blﬁ o b27 o b35)
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and by is a subalgebra of
hi1 = {h(A,zc) | A€ gl(2,R), 2R, ceR},

where
A o(z) Ule)
h(A,z,e)= | 0 p(4) o(z)
0 0 —AT

Proof. Let b1, by be a basis of the socle S. Then b; x by = 0 since otherwise
S would be contained in a 3-dimensional isotropic subspace on which b
acts semisimply, see Lemma 2.1 (3). Since G} acts transitively on isotropic
vectors, we may assume b; = e;. Because of by x by = 0, the vector by is in
span{ey, e2, e3}. Furthermore, the subgroup GL(2,R) C G defined by (4)
acts as GL(2,R) on span{es, e3}, thus we may assume by = ey. Moreover,
we put bg = €3, b4 = &4, b5 = ey, b6 = €5, b7 = €. O
Note that w and (-,-) with respect to the chosen basis differ from those
that we considered in the section on Type I. We will also consider another
embedding of gl(2,R) into g5. In this subsection we identify gl(2, R) with

{h(A,0,0) | A€ gl(2,R)} = gl(2,R) (13)
and define a to be the projection of b to gl(2,R) C h'!. We set
n:={h(0,2,¢) | z € R c € R}
and, for 4,7,k € {1,2,3,4}, we define
n(i,j) = {h0,z,¢)|z€RY, zy=0ifl & {i,j}, c € R},
n(i,j,k) = {h(0,z,¢)|z€ R, 5 =0ifl & {i,j,k}, c € R}.

Theorem 2.12. If b is of Type II, then there exists a basis of V' such that
we are in one of the following cases

(1) a € {sl(2,R), gl(2,R)} and h = a x n,
(2) a€{co(2),R-Cp} and h =axn or
h=ax{r(0,(3r,s,13s),¢)|rsceR}
(3) a=10 and h = a X ny, where
n € {n, n(1,3), n(2,3), n(1,2,3), n(1,2,4)},
(4) a =R -diag(l,u), p € [-1,1), and
(a) pe€[-1,1) and h = a x ny, where
n € {n, n(2,3), n(1,2,3), n(1,2,4), n(1,3,4), n(2,3,4)},
(b) p=1/2 and h =R - h(diag(1,1/2),(1,0,0,0),0) x ny,
where ny € {n(2,3),n(2,3,4)},
(¢c) p=0and h=axn(2,4) or
b =R- h(dlag(l, 0)7 (07 1a 05 0)7 O) X ny,
where ny € {n(1,4), n(3,4), n(1,3,4)},
(5) a€ {0, R-I} and h = a x ny, where
n € {n, n(1,3), n(2,3), n(1,3,4), n(2,3,4)},
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or ny is one of the Lie algebras {h(0,z,¢) | z € Z, ¢ € R} for
(a) Z ={(21,0,21,24) | 21,24 € R},
b) Z ={(0, 29, 23, —22) | 21,24 € R},

(b)
(¢c) Z=A{(z1,0z1,0z24,24) | 21,24 € R}, x € [\/3—1 \/§+1],
(d)

V6 V6
d) Z = {(sz1, 22, —az1,—22) | 21,22 € R}, s € (0,1], o € R such

that 302 — (s + 1)a— s =0,
(e) Z ={(z1,22,kz1,24) | 21,22,24 € R}, Kk = £1.

The remainder of this section is concerned with the proof of Theorem 2.12.
Let us first describe the structure of h!f = gl(2,R) x n. The Lie bracket on
n is given by
[7(0, 2, ¢), h(0, 2,6)] = h(0,0,n(2, 2)),
where
17(2, 2) = —2124 + 2421 + 32923 — 32329.

Moreover, h'! = gl(2,R) x n, where A € gl(2,R) acts on n by

A-Rh(0,z,¢) = h(0,A-ztr(A) - ),
where the representation of gl(2,R) on R* is given by the equation

0(A-z)=Ao0c(z) —oa(z)op(A).
In particular, the basis vectors I € gl(2,R) and

a=(o h)x=(00) o =(10)

act by I -z =z, H-2z = (=321, —22,23,324), X - 2 = (0, 21,229,323) and
Y -z = (322,223, 24,0). This representation integrates to a representation
of GLT(2,R). Putting diag(1l,—1) - z = (21, —22, 23, —24), we finally get a
representation of GL(2,R) on R*, which we will consider in the following.
Let P; denote the space of homogeneous polynomials of degree d in x,y.
On Py, we consider the representation of GL(2,R) given by (A - p)(z,y) :=
p((z,y)A). Then
¢p1: RY — P3
z2=1(21,...,24) +— 21y° + 3z0my® + 32322y + 242>

is an isomorphism satisfying

$1(A - 2) = ATH(A) - du(2),
where A1 denotes the automorphism
A1 GL(2,R) — GL(2,R), A+ det(A)A.
In particular, ¢; maps GL(2,R)-orbits in R* to GL(2, R)-orbits in Ps.
The representation of GL(2,R) on R* that we considered above induces
representations of GL(2,R) on A"R?* We consider these representations

for n = 2,3. Let eyq,...,es4 be the standard basis of R*. Let us start with
n = 2. The complementary subspaces Wy := span{wg := ea3 — 3e14} and



HOLONOMY GROUPS OF G3-MANIFOLDS 19

W' := span{ey, e13,w' = €93 + 3€14, €24, €34} of A?R?* are invariant under
GL(2,R). The isomorphism ¢9 : W/ — Py defined by

¢P2: ez 94
e13 — 2y’
w o o— 6;1c2y2
€94 +H—> 2:c3y
e3q4 +H— 1‘4

satisfies
$2(A-u) = Ay (A) - da(u),
where Ay denotes the automorphism

Ao : GL(2,R) — GL(2,R), A+ sgn(det A)\/|det(A)|A.

For n = 3 the situation is even simpler. The representation /\3 R* is equiv-
alent to P3. An equivalence is given by

. 3 2 2 3
D3 : e193 —> Y7, €194 — TY®, €134 — TY, €934 — T°. (14)

Next we determine the orbits of the GL(2, R)-action on the projective spaces
P(Ps) and P(Py). The line spanned by a polynomial p is denoted by [p].

Lemma 2.13. The elements [23], [z%y] and [x(2?+y?)] constitute a complete
system of representatives of the orbit space GL(2,R) \ P(F3).

The following elements constitute a complete system of representatives of
GL(2,R) \ P(Py): [z, [#3y], [v*?], [zy(x® 4+ ray + y?)] for r € [0, 3/V/2],
and [(z% + y*) (2% + sy?)] for s € [0,1].

Proof. The first assertion is well known and easy to prove. Let us check the
second one. We denote by (p) the orbit of [p]. By a zero of p = p(z,y) we
mean a (real) zero of p on RP!. If p has a zero of multiplicity three or four,
then (p) = (z*) or (p) = (23y). If p has two zeroes of multiplicity two, then
(p) = (2%y?). Let us now consider the remaining cases.

(1) Suppose that p has exactly two or four zeroes and all zeroes are simple.
Then

(p) = (xy(z® + bzy + cy®)) = (zy(a® + ray + ky?)), K= =£1,

by rescaling x and y. We want to show that we may assume k = 1. If
k = —1, then 22 + roy + ky? = 22 + roy — y? has two zeroes, hence

2 frey -yt = (e +qy)(z - Ly), gl > 1.
We choose § € R such that ¢ = ¢ + 1 and put = & + ¢4, y = ¢&. Then
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Thus (p) = (zy(z? + ray + y?)), where r > 0 (otherwise replace = by —x)
and r # 2. We distinguish two cases.

(1)(a) If r € [0,2), then p has exactly two zeroes. Polynomials with different
values for r belong to different GL(2,RR)-orbits since any transformation
that maps [zy(2? + roy + y?)] to [zy(z? + oy + y?)] leaves invariant the set
{[1:0], [0:1]} C RP of zeroes.

(1)(b) If r > 2, then p has four different zeroes. Thus (p) = (xy(z + qy)(x +

y/q)], where 0 < ¢ < 1. If ¢ < 1/4/2, then we choose ¢ € (1/v/2,1) such
that ¢> + ¢2 = 1. For x = & + ¢y and y = —q&, we get

[zy(z + qy)(z + y/q)] = [(& + §0)2(& + §9 — ¢°2){]
= [(2 4 49)2(3°% + G9)9) = [29(2 + 49) (& +9/9)] .

Hence (p) = (zy(z + qy)(z + y/q)) for some q € [1/1/2,1). Next we show
that polynomials of the form xy(z + qy)(x + y/q) with different values of
q € [1/v/2,1) belong to different orbits. For A € GL(2,R), the projective
transformation of RP! induced by (A~1)T maps the set of zeroes of p to the
set of zeroes of A - p. Each projective transformation of RP! preserves the
cross-ratio of four points. Hence the set of all cross-ratios of the zeroes of
a polynomial is an invariant of the GL(2, R)-action. That is, if z1,...,24 €
RP! = R U {cc} are the four different zeroes of p € Py, then

R e A R T B
Cl) = { 222 222 g = (.28,

Zj— 2k Zj
is well defined. The zeroes of xy(z + qy)(x +y/q) are 0,00, —q, —1/q. Thus
C((p) ={¢™, (1=, (1 - 1/¢*)*"}.

For ¢ € (1/v/2,1), we have C({p)) N (1/2,1) = ¢* If ¢ = 1/v/2, then
C((p)) N (1/2,1) = @. Thus different values of ¢ € [1/v/2,1) give different
orbits. Since zy(z + qu)(z + y/q) = xy(2? + roy + y?), where r = ¢ + 1/q,
we see that (p) = (wy(2? + ray + y?)) for exactly one r € (2, 3/V/2].

(2) If p has no zero, then (p) = (p1p2), where p1(x,y) = 2°+y* and pa(z,y) =
22 + 2bzy + cy?, b < c. The positive definite quadratic forms p; and po are
simultaneous diagonalisable, thus (p) = (22 +%2)(z% +sy?)). Obviously, we
can choose s € (0, 1].

(3) Suppose that p has a zero of multiplicity two and that all other zeroes
(if further ones exist) are simple.

(3)(a) If p has two further zeroes, then (p) = (zy(az + by)?), a # 0,b # 0.
Rescaling z and y we get (p) = (vy(x+y)?) = (wy(z® +rzy +y?)) for r = 2.
(3)(b) If p has no further zero, then (p) = (z%(2%+bxy+cy?)) = (2 (22 +y?))
by completing the square (with respect to y) and rescaling z afterwards. In
particular, (p) = (2% + y?)(2? + sy?)) for s = 0. O
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R(b;,b;) A z c
Rie 0 (4,3, 02, 1) | L1 +1
Ri7 = %R:M 0 (25,24, 23,22) | ta —t5
Rog = —%345 0 (Y4, 3,92, 1) | t2 —t3
Ro7 0 (Y5, Y4,Y3,42) | te +1
1 Y .
Rse (te,t2, 52, 72) T1
T2 Y2
T2 Y2
Rsr = %Rzlﬁ 5 s (ts5,t1,t3,52) T2
T3 Y3
R = %Ru - (s1,ta,t1,1t2) T3
T4 Y4 .
R37 (41,51, t5,t6) T4
5 Ys
t1+t ta—13
Rer (ra,r3,r2,71) 0
ty —ts tg+t
Rig = Ri3 =Ry = Ri5 = Rog = Ryy = Ry5 =0
R3s5 = Rig — Ry

Table 2.

Let by, ...,b7 be a basis as chosen in Lemma 2.11. If R € K(h), then
Rij = R(bz, bj) = ]’L(Aij, Zij, Cij).

Proposition 2.14. The space K(h) can be parametrised by real numbers
Tlyeeoy X5y Ylyevs Y5y Tlye-osTdy byt ..., L6, S1, 52, J1, J2, where R = h(A, z, c)
€ K(b) is given by the data in Table 2.

Proof. Let R be in K(h). Since (R;;(bi),br) = (Rii(bs),bj) and Ry € b, we
have

R =0, 1<2<j5<5. (15)
The same argument gives

V2Ri7 = R34, V2Rog = —Rus, V2Rs7 = Rus, V2R36 = Rz

and
R35 = Rig — Rar. (16)
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As above, we use the notation b(4, j, k) := R;;(br) + Rjr(b;) + R (b;). From
b(i, j,6) = b(i,5,7) = 0, we conclude AY = 0 for i < j < 5. By (15) and
b(i,4,6) = 0, we get ai = 0 and 0 = aif = ai” = a¥7, where the last identity
follows from b(i,3,7) = 0. Together with (15) and (16) this implies

A16 — A17 — A26 — A27 =0.
Let us consider the equations b(i, j, k) = 0 for 4, j, k € {1,2,3,5,6,7}. These
equations give, in particular,

67 _ .56 37 36

zg' =¢c” =1y, 25 = 27" = 81,
AT =287 =y, 230 = 257 =: s9,
36 = 287 =1 r3, 247 = a3 =: x5,
27 = 3T =1y, 225 = a3 =: ;.

The system of the remaining linear equations for the coefficients A%, 2%, ¢
that follow from b(z, j, k) = 0 for i, 5,k € {1,2,3,5,6,7} decomposes into six
subsystems each of which is a system of equations in the elements of one of
the following sets:

Ml —{CL2 ,2’4 722 7Z3 ) 26}

37 57 17
M —{a3 ,22 250,200 e}

57 16 _26 _27 _35 25
Ms _{al 7a4va2 yR4 3 R3 1”4 1”4 5 C }7

_ 36 37 _56 _57 16 25 .35
M4 {al ,CL4,23 yR4 1”1 »R2 ,C ,C 7, C }

57 57 _16 _17 _26 _27 _35 _15
Ms —{CL2 ,(13 ;1,04 23,24 %22 523 ,23 ,C }a

36 37 37 37 57
Mg _{al ,CL3 y Ay ,01 ,09 ,04 ,03 ,

16 16 _17 _17 _26 _27 _27 _35 _35 13 23
R1 1”2 1”2 1”3 1R 1”1 1”2 1”1 1”2 ,C ,C }

The subsystem for M is

36 56 56 67 57 26 67
2y = 29 _:tQ, Zog — Q9 = Z3 —:t3, cC - =ay .

Similarly, My is parametrised by t4 and 5 as claimed in the proposition.
For Mjs, we have

=0 mm, af =aP =g, 0=
a37 — zf = = —a4 + z 225 = a?6 — aZG,
and for My,
027:a27 =:t+ g, ch—al it +t
236—227:(1?7—@617* z +22 ,

23 _21 =C :Z2 _Z4,
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where we put t; := z§’6. The equations containing elements of M5 are

a§6 = a‘iﬂ =: T9, CL%G = 236 = z32,7 = CLZ7 =:Ys, Z:%G = Z{a
a‘;ﬂ - zf = = —a§6 + z31,6,
a — a7 = Z§5 = a3+ ag6‘
Finally, for Mg, we get

ai’ﬁ = 256 = z?1,7 = ag7 =! T3, agﬁ = aiﬂ =: T4,

= =y, al = =g

216 = 257’ a3t = a§7,

azl”7 — 257 =3 = —a%ﬁ + z%ﬁ, (137 — 237 == —aif’ + 2%67

ad — a3 = 235 = 37 ¢ a§7, 25 = a‘;ﬂ _ af.

This shows that R € K(h) is given as in Table 2. Moreover, the above
considered systems of linear equations imply that each R that is defined as

in Table 2 for an arbitrary choice of the parameters x1, xs, ..., j1, jo satisfies
b(i,j,k) = 0 for 4,5,k € {1,2,3,5,6,7}. It is easy to show by a direct
calculation that it also satisfies b(i,j,4) =0 for 1 <i4,5 < 7. O

The embedding of gl(2,R) into g5 defined by (13) gives us an embedding
of GLT(2,R) into Gj. If we send, moreover, diag(l,—1) € GL(2,R) to
diag(1,—1,-1,1,-1,1,—1) € G}, we obtain an embedding of GL(2,R) into
5, which we want to consider in this section. Note that this embedding is
different from that defined by (4). With this identification we have

Ad(g)(h(A, 2,¢)) = h(gAg™", g- z, det(g)c). (17)

Lemma 2.15. Fither a € {0, sl(2,R), gl(2,R)} or the basis by,...,br in
Lemma 2.11 can be chosen such that a is equal to one of the following Lie
algebras:

(1) R-C,, R-diag(1,pu), pe€[-1,1];
(2) 0, co(2).

Proof. In a similar way as for Berger algebras of Type I we may conjugate
a by elements of GL(2,R), now according to (17). Hence a is one of the Lie
algebras listed in Lemma 2.5. Since h acts semisimply on S, a = gl(2,R)
acts semisimply on R2. This gives the assertion of the Lemma. O

Proof of Theorem 2.12. Below, we will use the conjugation
Ad(exph(0,2,0))(h(A, z,¢)) = h(A,z— A-z,c—n(z,2) — in(z,A-2)) (18)
several times. We define
Z:={zeR'|3ceR: h(0,20c) €h}.
Since b is of Type II, we have Z # 0. Obviously, Z is invariant under a.

Let eq,...,eq be the standard basis of R* and denote by Z(ji,...,jx) C R*,
k=1,2,3, the span of ej,,...,¢;

e
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(1) If a € {sl(2,R), gl(2,R)}, then Z = R*, since the action of s[(2,R) on
P, is irreducible.

(2) Suppose a € {R - Cy,c0(2)}. If a = R -y, then h(C,,0,¢0) € b for
some ¢y € R after a suitable conjugation of h according to (18) since Cj, is
bijective. If a = co(2), then, possibly after conjugation, for all U € co(2),
there is a real number ¢ such that h(U,0,c¢) is in . Indeed, h(I,0,cr) € b
after a suitable conjugation according to (18) since [ is bijective. Since

[A(1,0,c1),h(U, 2v,cv)] = h(0, zu, 2cv),

we have h(U,0,—cy) € bh. The restrictions of the representation of gl(2,R)
on R* to co(2) and R-C,, decomposes into the two irreducible representations

Zl = {(T‘,S, -7, —S) | TS E R}’ ZQ = {(37‘,8,’[‘, 35) | r,s € R}

Indeed, both subspaces are invariant under co(2) and they are irreducible
since C, has eigenvalues a + 37 on Z; and a =7 on Zs. If Z were equal to
Z1, then the non-isotropic vector bs + b5 would be in the kernel of . Hence
Z = 7y or Z = R*, which gives the assertion.

(3) If a =9, then we can again conjugate b according to (18) such that for
all D € 0 there exists a ¢ € R such that h(D,0,c) € h. Indeed, as above
h(I,0,cr) € b after a suitable conjugation. Thus [h(I,0,¢cs), h(D,zp,cp)] =
h(0,zp,2cp) € b and h(D,0,—cp) € b follows. The subspace Z C R? is
invariant under 9 if and only if it is invariant under H. Thus Z is a direct
sum of eigenspaces of H. Since 0 considered as a subspace of gl(2,R) is in-
0 -1
1 0
GL(2,R) € G5. U acts on Z by (z1, 22, 23, 24) > (24, —23,22,—21). Thus
we may assume that Z is one of the subspaces n, Z(1), Z(2), Z(1,2), Z(1, 3),
Z(1,4),2(2,3), 2(1,2,3), Z(1,2,4). For Z = Z(1) and Z = Z(1,4), b is
decomposable since by is in the kernel. Moreover, we can exclude Z = Z(2)
and Z = Z(1,2) since for these Z the Lie algebra h would be of Type III. For
7(2,3),7(1,2,3) and Z(1,2,4) we get immediately n(2,3) C h,n(1,2,3) C h
and n(1,2,4) C b, respectively. Hence these three cases give Lie algebras
that are on the list. For Z = Z(1,3) we have to use Berger’s criterion to
show that h(0,0,1) is in h. The parameters of IC(h) satisfy 1 =--- =25 =
Yy1=--=ys =1t = --- =tg = s1 = so = 0. Hence ry # 0, which implies
h(0,0,1) € h. Thus n(1,3) C b, which gives the remaining Lie algebra in
case (3).

(4) Let a be spanned by diag(1, ). The action of diag(1, 1) on R* equals
the multiplication by the matrix Dy := diag(—1+ 2u, p, 1,2 — u). Since p €
[—1,1), all eigenvalues of Dy are different. Hence every invariant subspace
is spanned by elements of the standard basis of R*.

(4)(a) Suppose first that © ¢ {0,1/2}. Then Dy is invertible. Hence we may
assume that hg := h(diag(1,u),0,c9) € b for some ¢y € R. Consequently,

variant under conjugation by U := > , we may conjugate h by U €
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dim Z > 1 since otherwise h would be decomposable. Furthermore, by inde-
composability, Z cannot be one of the spaces Z(1,2) or Z(1,4). Moreover,
Z # Z(3,4) since b is of Type II. The remaining spaces Z(1,3) and Z(2,4)
can be excluded by Berger’s criterion. Note first that the parameters x; and
y; (i=1,...,5) of K(h) vanish since a is spanned by diag(1, x) with p # 0.
The assumption Z = Z(1,3) of Z = Z(2,4) would imply t; = tg = 0, Thus
ho € b, which is a contradiction.

(4)(b) Now suppose p = 1/2. Then (1,0,0,0) spans the kernel of Dy. Hence
we may assume that h(diag(1, ), (¢,0,0,0),co) € b for certain t,co € R. If Z
contains Z(1), we choose t = 0. If ¢ = 0, then we proceed as in (4)(a). Take
now t # 0. Then we can achieve t = 1 conjugating by a suitable multiple
of I € GL(2,R). Again, Z = Z(2) and Z = Z(4) cannot occur because
of indecomposability. For the remaining possibilities for Z we want to use
Berger’s criterion. In the same way as in (4)(a) we see that x; and y; vanish
fori=1,...,5. Assume that Z C Z(3,4) or Z = Z(2,4). Then t; = tg = 0,
which as above leads to a contradiction.

(4)(c) Finally, take y = 0. The kernel of Dy is spanned by (0, 1,0,0). Hence
we may assume that h(diag(1,0),(0,¢,0,0),c) € b for certain t,cy € R. If
Z contains Z(1), we choose t = 0. Suppose first that ¢ = 0. As in (4)(a),
dimZ > 1 and Z & {Z(1,2), Z(1,4), Z(3,4)}. Moreover, Z = Z(1,3) can
be excluded by Berger’s criterion. However, in contrast to the case u # 0
we cannot rule out Z = Z(2,4). Indeed, if Z = Z(2,4), then b satisfies
Berger’s criterion if and only if h(0,0,1) € h. Now we consider the case
t # 0. We may assume t = 1. If Z were in {Z(1),Z(2)}, then h would be
decomposable. For Z C Z(1,3), h would not satisfy Berger’s criterion, see
Proposition 2.14.

(5) Now let a be either trivial or equal to R-I. Then Z can be an arbitrary
subspace of R*. We may conjugate h by GL(2,R) C G} without changing
a. We want to use that in order to find a certain normal form for Z. Let
(Z) denote the GL(2,R)-orbit of Z.

Let us first consider the case dim Z = 1. By Lemma 2.13, Z is in one of the
orbits ([® (%)), ([®7 (22y)]) or ([@] (x(x2 £4?))]), where for [z] denotes
the line spanned by z € R*. For [®]'(2?®)] = Z(4), the corresponding Lie al-
gebra b is decomposable since by is in the kernel of . For [®] ! (z%y)] = Z(3),
we get a Lie algebra b of Type II1. For [® ! (z(2? + 4?))] = {(0,2/3,0,2) |
z € R}, the corresponding Lie algebra f is decomposable since 3bs F b5 is in
the kernel.

Now we turn to the case dim Z = 2. Let us consider the Pliicker embedding
of the Grassmannian of 2-planes in R?* into P(A? R*). The line spanned by

towo + z12€12 + 213€13 + W' + 220e04 + 231634 € A°R?
is in the image of this embedding if and only if

212234 — 2132724 = 3(t5 — 7). (19)
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Let us denote by Z the image of Z under the Pliicker embedding and by
(Z) the GL(2,R)-orbit of Z. Furthermore, for a € A*R* denote by [a]
the element of P(A*R*) represented by o. Then (Z) = ([®5(p) + towo))
for some polynomial p € Py and some tg € R. By Lemma 2.13 we may
assume that p is one of the polynomials x4, z3y, 2232, zy(2? + roy +y?) for
r €10, 3/v2] or (2% + y?)(2% + sy?) for s € [0,1]. Let us start with p = z%.
Since @gl(x‘l) + towg = ezq4 + towyp is in the image of the Pliicker embedding
if and only if ¢y = 0, we see that Z is in the GL(2,R)-orbit of ess. Since
the Pliicker embedding is GL(2, R)-equivariant, Z is in the GL(2, R)-orbit of
Z(3,4). But then b is of Type III. Now we consider p = z3y. We have <Z> =
([@5 " (2%y) + towo]) = (@5 (yx) + thwo]) = (fers + two]). Since exs +thuo
has to be in the image of the Pliicker imbedding, we get ¢j = 0. Thus Z is
in the GL(2,R)-orbit of Z(1,3). In the same way as in case (3) we can show
that h(0,0,1) is in b using Berger’s Criterion. Hence h = a x n(1,3) up to
conjugation. For p = 22y?, we get (Z) = ([®5 ! (22y?)+towo]) = ([w'+thwo)).
By (19), th = #1. If t), = 1, then (Z) = (w’ + wp) = (ea3). Hence Z is in
the orbit of Z(2,3), which implies h = a x n(2,3). For ¢, = —1 we obtain
(Z) = (' —wp) = (ens). Thus Z is in the orbit of Z(1,4). But then b is
decomposable since by is in the kernel of h. Now take p = zy(z? +rzy +v?),
r € [0, 3/v/2]. Then

(Z) = ([®5(p) + tywo]) = ([Feas + Fu' + gerz + tywo])
= ([eas + 5w + e13 + tow))
= ([e13 + (5 + to)eas + (7 — 3to)e1s + ea4]). (20)

By (19), we have 9t2 = 72 — 3, which is possible only for 7 > v/3. The map

M= {(r,t0) | 98 =72 = 3, r € [V3,3/v2]} — ¥4, L]

(7", to) — Oé(?“, t()) = % + %o
is a bijection. Note that a(r,tg) - (r — 3tg) = 1. Now (20) implies
<Z> = <[€13 + aeos + (1/0&)614 + 624]> = <[Oé€13 + a2€23 +e14 + a€24]>
= ((e1 + ae2) A (aes + e4)])

for a := a(r,tp). Hence Z and {(z1,az1,az4,24) | 21,24 € R} are in the
same orbit. Thus we are in case (5¢) of the theorem. At last, we consider
p = (22 + y?)(2? + sy?), s € [0,1]. Then
(Z) = ([®5(p) + towo]) = ([eaa + Frw’ + ser + towo])
= ([e2s + 5w + e13 + towp))
= ([se1z + 3(5H — to)ers + (55 + to)eas + ez4]). (21)

By (19), we have s = 3 (t% — (ﬂ)2> Thus, for a given parameter s, the

6
s+1

coefficients 5= —to and % +1tp appearing in (21) are exactly the roots a2
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of 3a? — (s 4+ 1)a — s. In particular, ayap = —s/3. Now suppose in addition
that s # 0. Then the latter equation implies 3a; = —s/aq. Consequently,

(Z) = ([se12 — (5/a)e1s + aeas + e34]) = ([scers — se1q + aeas + aesq))
= ([(se1 — aes) A (aez —e4)])
where o € {a1,a2}. Hence, if s # 0, then Z is in the GL(2,R)-orbit of
{(sz1,az2, —az1, —22) | 21,22 € R}, which implies that b is conjugated to
the Lie algebra in (5d). If s = 0, then (21) implies that (Z) = ([e14 4 es4]) =
([(e1 +es) A ea)) or

(2) = ([§(w' +wo) + esa]) = ([=5(w' +wo) — esa]) = (fe3 A (e2 — ea)]).
Thus we are in case (5a) or (5b), respectively.

Finally, we study the case dim Z = 3. Recall that the action of GL(2,R) on
/\3 R* is equivalent to the representation on P3, see (14). By Lemma 2.13,
the image of Z under the Pliicker embedding is in the same GL(2, R)-orbit as
either [31(%)], [®5 L(2%y)] or (&3} (2(2?+4?))]. Because of ®; L(27) = eags,
P31 (2%y) = er34 and [@3 1 (2(z? £ y?))] = [e23s £ e124] = [(e1 £ e3) Aea Aey]
we see that b is conjugated to a x ny, where n; = n(2,3,4) or ny = n(1,3,4)
or b is conjugated to the Lie algebra in item (5e). O

3. HOLONOMY OF SYMMETRIC SPACES ADMITTING A G3-STRUCTURE

Indefinite symmetric spaces of signature (4, 3) with a G3-structure were clas-
sified in [Ka2]. Their holonomy algebras can be easily read off from this clas-
sification. They are abelian and two- or three-dimensional (unfortunately,
there is an obvious mistake in the formulation of Cor. 6.9 in [Ka2]). Let us
check how they fit into the classification of holonomy algebras in Section 2.

Let X = G/G4 be a (pseudo-)Riemannian symmetric space, where G is
the transvection group of X. The reflection at the base point zg := eG4 €
G /G defines an involution 6 on the Lie algebra g of G. Let g4 and g_
denote the eigenspaces of 6 with eigenvalue 1 and —1, respectively. Then g_
can be identified with the tangent space of X at x¢ and g can be identified
with the holonomy algebra (as an abstract Lie algebra). The holonomy
representation is given by the adjoint representation of g4 on g_.

The classification of symmetric spaces with G3-structure is given by the list
in Theorem 6.8 in [Ka2]. Item 1 of this list contains a one-parameter family
of symmetric spaces and each of the items 2 (a) and (b) contains a single
space.

Let us first consider the family in item 1. In the notation of the theorem, the
holonomy algebra g, is spanned by Zp, A1, B and the tangent space g_ by
7, 2o, Z3, A, L1, Lo, L. The adjoint representation of gy on g_ is defined
by the Lie bracket given by Equation (8) in [Ka2]. It is easy to verify that
the holonomy algebra as a subalgebra of s0(4,3) is of Type II and equals
n(1,3) with respect to the basis Zs, Z3, L1, A, Z1, Lo, Ls.
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The space in item 2 (a) has a holonomy algebra g, = spanned by Zp, A1, B.
As a subalgebra of so0(4,3) the holonomy algebra is of Type III and equals
m(1,0,2) with respect to the basis Zs, Zs, Z1, A, L3, Ly, L. For the sym-
metric space in item 1 (b) we get a similar result. Its holonomy algebra is
spanned by Zg, B and using the adjoint representation it can be identified
with m(1,0, 1) with respect to the same basis of g_. In particular, it is also
of Type III.

4. LEFT-INVARIANT METRICS WITH HOLONOMY IN G}

In this section we construct examples of Lie groups GG admitting left-invariant
torsion free G5-structures whose holonomy algebra is one of the list in The-
orems 2.4, 2.10 and 2.12. The G3-structure on G is induced by a three-form
w on the Lie algebra g of G. If we denote by (-, ) the induced inner product,
the Levi-Civita connection V is determined by

2<vuv’w> = ([x,y],z) - <[y7 Z]’I> + <[Z,$],y>, T,Y,z €g.

If by,...,b7 is a basis of g we will denote by A; the endomorphism corre-
sponding to Vb]. and by Ry, the curvature operator R(bg,b;). We compute
the holonomy algebra using the Ambrose-Singer holonomy theorem [AS],
which states that the holonomy algebra is spanned by the curvature opera-
tors Ryy,,y € g, together with their covariant derivatives.

4.1. Examples of Type I. In all examples of this subsection, bq,...,b7
will be a basis of a Lie algebra g such that w equals

\/5(6127 + b356) . 64 A <b15 + 626 . b37)
and the induced inner product on g equals
2(b" - e® b7 b3 eT) — (b2

Example 4.1. (5-dimensional holonomy) Let g be the Lie algebra with
structure equations

db! = —2p15 — 56

db2 — _2b25 _ b35 _ b56,

db3® = —b35,

db4 — b45 _ ﬁbéw,
db® =0,

dbG — _b567

db” = b7 — b,



HOLONOMY GROUPS OF G3-MANIFOLDS 29

Then

A =0
Ap = (b3 —89)
Az = b3 — b5+ 5(b3 — b)),

M= b=+ 50—

As = —2(b} — b3) — 5(b3 — b§) — 5(b3 — bF) — b + b — b3 + ¢F,
Ag = —5(bF — b3) + 5 (b5 + ) — b3 + 1Y,
A7 = —5(bf = b3) — 5 (b3 + b9).

For the holonomy algebra b, we obtain

b = span{Ros, R3s, Ru5, Rs6, R57} = m.

Example 4.2. (6-dimensional holonomy) Let g be the Lie algebra with
structure equations

db! = db°® = db® = 0,
db2 — ﬁ(b% + b35 _ b56 _ b57),

3 _ 7T _ 1 135 46 56 1 157
db® = —db" = —I5b% — b —V/2b + 507,
db* = —b36 4 p57.

Then
A =0
Aoy = *%(bg - b?)v
A= L5 (08 — b3) + B + 16,
Ay =3 — b8,

Ay = 503 — b6 — b} + BT) + V(b5 — 15),
Ro = (8% — ) — b — b — V(b5 — 5 + b5 — b)),

Ay = —V30F — 1) + L0 - 8D,

For the holonomy algebra by, we obtain

b = span{Ras, R35, R36, R56, Re7, Veg Ras} = R- N x m.
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Example 4.3. (7-dimensional holonomy) Let g be the Lie algebra with
structure equations

dbl — _b16 - LbQ 1b36 (1 4 f)b46 b56 o b67,

(§ b3 4 (3 + f)b46 (% —1)b%6 — (% +1)b57,
%bB 1b46 po6 th’)?,
_|_

f)b56 51)677

db? — fb35 1b36 o ib46 o (% + 3\/§)b56 + §b57 4 %b67.

Then

A =0

Ay = —¥2(b5 —19),

Ay = =R (0F = 08) — S8 — b) — §(63 + 1) — 563 — 1Y),

Ay = %(b?’—zﬁ)

Ag = Y2 (=03 + b§ + b — bT) — 25(b] — b8) + b3 — b,

Ao = —b} + b3 — 3(83 — Q) + (b3 — bT) — (03 — B) + (5 + Z5) (63 — b))
+ (2 + 503 = 69) + (1 + V2) (b +b3) + (3 + 25) (b3 + b
+ 5 (b5 +07) + (5 — 103 — b)) — b3 + b]) — (5 + 1) (4§ — b)),

A7 = —ﬁ(bg —b7).

For the holonomy algebra b, we obtain
b = span{Ras, R35, R36, Ras, Rs6, 57, Vi, Rse} = 5172 X m.

4.2. Examples of Type II. In all examples of this subsection, bq,..., by
will be a basis of a Lie algebra g such that w equals

\/§(—b157 + b236) _ A (blﬁ _p27 _ b35)
and the induced inner product on g equals

206105 + 62 b7 4+ 13- %) — (b2,
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Example 4.4. (3-dimensional holonomy) Let g be the Lie algebra with
structure equations
dbl — _b17 4 %b:ﬂ 4 (1 _ \/i)b37 _ b46 _ b57 4 667,
db2 — _b27 + b37 _ b47 _ b67
db® = (1 - \@)667,
db* = —b*7,
5 _ 337 . 1146 | 167
db® = —b°" + ﬁb + b°7,
a’ = %7,
b’ =
Then
A=Ay =0,

As = =03 + b5 + (1 — 75)(0§ — b)),
Ay

I5(0F = b8) + (b3 + €),
As = 25 (b7 — b),

S

Ao = (1= J5)(b3 — bT) — 5 (03 — b5) + b3 — b] — b — bf,
A7 = b3 — b5 — 5 (b7 — b8) — b3 + b] — bf + b — b3 — b]
— (1= 75)(67 — 08) — b5 + b].

For the holonomy algebra b, we obtain
b = span{R37, Rus, Re7} = n(1,3).

Example 4.5. (5-dimensional holonomy) Let g be the Lie algebra with
structure equations

dbt = 2b'° + 4b°6 4 77,

db2 — bl? + bZ5 + \/§b34 _ \/§b46 _ e56 _ b57 _ 667,

db® = b3> — 3p°6

db4 — —\/§b37 _ \/5667’

> = 0,
dbs = 266,
b7 = b7,

Then
A=Ay = A3 =0,
As = V2(b3 — b + b5 — b]),
As = 2(bl —bS) 4 b3 — b + b3 — b2 — 3(b7 — b§) + b — b7,
Ag = A(b7 — ),
A7 = by — b — V2(bi + b + b3 +0§) — b5 + b] — b5 + b].
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For the holonomy algebra by, we obtain
b = span{R37, Rue, R56, Re7, Vo, Re7} = n.

Example 4.6. (8-dimensional holonomy) Let g be the Lie algebra with
structure equations

dbl = —b\7 4 p26 _ 36 _ 3T _ pA6 4 56 _ p5T 67

db?* = 3b16 — p%7 + Bp% 4 4537 — 22610 4 (5v2 + v
f9b56 . %b57 o b67

db3 = 637 — 2/2b%6 — 57 — (/2 — 10)b57,

db* = 2677 + 2/2057,

db5 _ %b?’? _ %\/Qb%v _ §b57 _ (2+ g\/i)b(i?,

dbS = db” = 0.
Then
Ay = —3(5 - b))
Ay =0
Ay = §(63 = bE) — 201 + ) — 508 — 0]) — (5 + 3v2)(8§ — b)),
Ag = =2 (0} = 88) — 303 + b)) — V2(0] — 1§) + (0§ — ¥]),
As = —3 (03 — b)) — V2(b] + 1Y) — b3 + bf + (9 — 5) (6§ — b])

Ao = 1(0} —bF) + 03 — b8 — b3 + b8 + (2 — 3\/2)(b3 — bT) — 2 (b} + b2)
b U V(B b4 0] 87 05— (0 0) — b+
Az = 3(b1 — b§) — 03 + b7 + 5(b§ — b3) + (5 + §V2) (b7 — 85) + (b3 — b])
203 +b8) + (3v2+ 3) (b3 + b7) — (10 — Z5)(bF — b)
—5(b3 — bf) — b8 + by,
For the holonomy algebra b, we obtain

bh = span{Ri7, R3¢, Ra7, Rs6, Rs7, Re7, Vg Re7, Vi, Re7} = s1(2,R) x n

4.3. Example of Type III. In the example of this subsection, bq,...,br
will be a basis of a Lie algebra g such that w equals

V(127 4 b356) _ et A (15 4 526 — T)
and the induced inner product on g equals

20" - e® + b7 b3 eT) — (b2
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Example 4.7. (3-dimensional holonomy) Let g be the Lie algebra with
structure equations

Then

dbl — _b15 _ b45 _ b56
db2 — —%625 o b35 . b36 . \/§b45 . b56 + (\/§ o 1)b57 + b67,
db3 _ _%b35 . b56 + §b57

db = _\51)567
b’ = 0,

1
dbs = — 197,

db” = —b% — 2p°7.

A =Ar=A3=0

Ay

= V2(03 - bY)
= —bi + b5 — (b3 — b§) — 5(bF — bT) — b3 + 0% — b — b} — b3 + b

+ 75(0§ = b5)

= —b + b5 — V2(b7 + b3) — b3 + b9 — (1 — J5) (b3 — b)) + b§ — b3
= (1= J5)(03 — 1) + §(65 — b)),

V2

For the holonomy algebra b, we obtain

[Gal]

[Ga2]

h = span{Rys, Rs6, Rs7} = m(1,0,2).
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