
  
 

 
 
Oberwolfach 
Preprints 

Mathematisches Forschungsinstitut Oberwolfach gGmbH 
Oberwolfach Preprints (OWP)   ISSN 1864-7596 

OWP 2017 - 10 
TORSTEN HOGE, TOSHIYUKI MANO, GERHARD RÖHRLE 
AND CHRISTIAN STUMP 
 
Freeness of Multi-Reflection Arrangements via 
Primitive Vector Fields   
 



Oberwolfach Preprints (OWP) 
 
Starting in 2007, the MFO publishes a preprint series which mainly contains research results 
related to a longer stay in Oberwolfach. In particular, this concerns the Research in Pairs-
Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an 
Oberwolfach Lecture, for example.  
 
A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as 
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard 
copies (DIN A4, black and white copy) by surface mail.  
 
Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its 
website www.mfo.de as a documentation of the research work done at the MFO, which you are 
accepting by sending us your file.  
 
In case of interest, please send a pdf file of your preprint by email to                  or                   , 
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at 
the MFO.  

ri

 
There are no requirements for the format of the preprint, except that the introduction should 
contain a short appreciation and that the paper size (respectively format) should be DIN A4, 
"letter" or "article".  
 
On the front page of the hard copies, which contains the logo of the MFO, title and authors, we 
shall add a running number (20XX - XX).  
 
We cordially invite the researchers within the RiP or OWLF programme to make use of this offer 
and would like to thank you in advance for your cooperation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Imprint:  
 
Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)  
Schwarzwaldstrasse 9-11  
77709 Oberwolfach-Walke  
Germany  
 
Tel  +49 7834 979 50  
Fax  +49 7834 979 55  
Email   
URL  www.mfo.de 
 
The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.  
Copyright of the content is held by the authors.  

p@mfo.de lf@mfo.de ow

admin@mfo.de



FREENESS OF MULTI-REFLECTION ARRANGEMENTS

VIA PRIMITIVE VECTOR FIELDS

TORSTEN HOGE, TOSHIYUKI MANO, GERHARD RÖHRLE, AND CHRISTIAN STUMP

Abstract. In 2002, Terao showed that every re�ection multi-arrangement of a real
re�ection group with constant multiplicity is free by providing a basis of the module
of derivations. We �rst generalize Terao's result to multi-arrangements stemming from
well-generated unitary re�ection groups, where the multiplicity of a hyperplane depends
on the order of its stabilizer. Here the exponents depend on the exponents of the
dual re�ection representation. We then extend our results further to all imprimitive
irreducible unitary re�ection groups. In this case the exponents turn out to depend on
the exponents of a certain Galois twist of the dual re�ection representation that comes
from a Beynon-Lusztig type semi-palindromicity of the fake degrees.
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1. Introduction

In his seminal work [Zie89], Ziegler introduced the concept of multi-arrangements gen-
eralizing the notion of hyperplane arrangements. In [Ter02], Terao showed that every
re�ection multi-arrangement of a real re�ection group with constant multiplicities is free,
see also the approach by Yoshinaga [Yos02]. Our aim is to generalize this result from real
re�ection groups to unitary re�ection groups, see Theorems 1.1 and 1.2.
More precisely, we �rst extend Yoshinaga's construction of a basis of the module of

derivations to well-generated unitary re�ection groups by using recent developments of
�at systems of invariants in the context of isomonodromic deformations and di�erential
equations of Okubo type due to Kato, Mano and Sekiguchi [KMS16]. We then further
extend the results to the imprimitive re�ection groups by use of a permutation of the
irreducible complex representations that is studied in the context of the representation
theory of the Hecke algebra and which induces a semi-palindromic property on the fake
degree polynomial [Mal99, Opd00, GG12].

Suppose that W is an irreducible unitary re�ection group with re�ection representa-
tion V ∼= C`. Denote the set of re�ections by R = R(W ), and the associated re�ection

2010 Mathematics Subject Classi�cation. 20F55, 52C35, 14N20, 32S25.
Key words and phrases. Multi-arrangement, re�ection arrangement, free arrangement, unitary re-

�ection group, systems of �at invariants and derivations.
1



arrangement in V by A = A (W ). For H ∈ A , let eH ∈ N := {0, 1, 2, . . .} denote the
order of the pointwise stabilizer of H in W , and consider the multiplicity function

ω : A → N, ω(H) = eH

for each hyperplane H ∈ A . For m ∈ N let mω and mω + 1 denote the multiplici-
ties de�ned by mω(H) = meH and mω(H) + 1 = meH + 1 for H ∈ A , respectively.
Following [GG12], the Coxeter number of W is given by

h = hW :=
1

`

∑
H∈A

eH =
1

`

(
|R|+ |A |

)
,

generalizing the usual Coxeter number of a real re�ection group to irreducible unitary
re�ection groups. Let Irr(W ) denote the irreducible complex representations of W up to
isomorphism. For U in Irr(W ) of dimension d, denote by

expU(W ) :=
{
n1(U) ≤ . . . ≤ nd(U)

}
the U-exponents of W given by the d homogeneous degrees in the coinvariant algebra
of W in which U appears. In particular, the exponents of W are

exp(W ) := expV (W ) =
{
n1(V ) ≤ . . . ≤ n`(V )

}
and the coexponents of W are

coexp(W ) := expV ∗(W ) =
{
n1(V ∗) ≤ . . . ≤ n`(V

∗)
}
.

The group W is well-generated if ni(V ) +n`+1−i(V
∗) = h, e.g., see [OS80, Mal99, Bes15].

We are now in a position to state our �rst main result, generalizing Terao's theorem
from [Ter02] to the well-generated case.

Theorem 1.1. Let W be an irreducible, well-generated unitary re�ection group with
re�ection arrangement A (W ). Let ω : A (W )→ N given by ω(H) = eH , and let m ∈ N.
Then

(i) the re�ection multi-arrangement (A (W ),mω) is free with exponents

exp(A (W ),mω) =
{
mh, . . . ,mh

}
,

(ii) the re�ection multi-arrangement (A (W ),mω + 1) is free with exponents

exp(A (W ),mω + 1) =
{
mh+ n1(V ∗), . . . ,mh+ n`(V

∗)
}
.

Note from above that coexp(W ) = expV ∗(W ) =
{
n1(V ∗), . . . , n`(V

∗)
}
.

In the special case when W is a Coxeter group, Theorem 1.1 recovers Terao's theo-
rem [Ter02], as then ω ≡ 2 and coexp(W ) = exp(W ).
We prove this theorem in Section 3. Indeed, we extend Yoshinaga's construction [Yos02,

Thm. 1] of a basis of the module of derivations to well-generated groups by using a recent
construction due to Kato, Mano and Sekiguchi [KMS16]. See Theorem 3.18 for the precise
formulation, which is our generalization of [Yos02, Thm. 7] to the well-generated setting.

In [KMS16], the authors construct �at systems of invariants of well-generated unitary
re�ection groups in the context of isomonodromic deformations and di�erential equations
of Okubo type. For real re�ection groups, the notion of �at systems of invariants was
introduced by Saito, Yano and Sekiguchi in [SYS80]. The existence of such �at systems
was shown in loc. cit. in all real types except E7 and E8. Saito then gave a uniform
construction in all real types in [Sai93].
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Our second main result extends Theorem 1.1 further to the in�nite three-parameter
family W = G(r, p, `) of imprimitive re�ection groups. It turns out that the corre-
sponding multi-arrangements are also free. However, the description of the exponents
is considerably more involved and depends on the representation theory of the Hecke
algebra associated to the group W . To this end, let Ψ denote the permutation on Irr(W )
introduced by Malle in [Mal99, Sec. 6C], having the semi-palindromic property on the
fake degrees of W . This is, for any U in Irr(W ) of dimension d, we have

ni(U) + nd+1−i(Ψ(U∗)) = hU ,

where hU = |A | −
∑

r∈R χ(r)/χ(1) with χ being the character of U . A direct calculation
shows that hV = hW is the Coxeter number of W . Moreover, the permutation Ψ of
Irr(W ) is the identity if and only if W is well-generated [Mal99, Cor. 4.9].

Theorem 1.2. Let W = G(r, p, `) with re�ection arrangement A (W ). Let ω : A (W )→
N given by ω(H) = eH , and let m ∈ N. Then
(i) the re�ection multi-arrangement (A (W ),mω) is free with exponents

exp(A (W ),mω) =
{
mh, . . . ,mh

}
,

(ii) the re�ection multi-arrangement (A (W ),mω + 1) is free with exponents

exp(A (W ),mω + 1) =
{
mh+ n1(Ψ−m(V ∗)), . . . ,mh+ n`(Ψ

−m(V ∗))
}
.

Note this time that expΨ−m(V ∗)(W ) =
{
n1(Ψ−m(V ∗)), . . . , n`(Ψ

−m(V ∗))
}
. We prove a

more general result in Theorem 4.1.

Remarks 1.3. (i) The group G(r, p, `) is well-generated if and only if p ∈ {1, r}. Thus,
Theorem 1.2 extends Theorem 1.1 to the class of imprimitive re�ection groups that are
not well-generated.
(ii) While the simple arrangements of the re�ection groups G(r, 1, `) and G(r, p, `) for

1 < p < r coincide, the multi-arrangements above depend on the underlying group, since
the multiplicities of the coordinate hyperplanes di�er.
(iii) Theorems 1.1 and 1.2 only leave unresolved the remaining eight irreducible unitary

re�ection groups of exceptional type that are not well-generated, namely

Gexc =
{
G7, G11, G12, G13, G15, G19, G22, G31

}
.

Computational evidence for each of these remaining groups with small values for the
parameter m ∈ N suggests that Theorem 1.2 also holds with W = G(r, p, `) replaced by
W ∈ Gexc.
(iv) The semi-palindromic property of the permutation Ψ of Irr(W ) in Theorem 1.2

is an analogue of a semi-palindromicity of the fake degrees as observed by Beynon and
Lusztig [BL78, Prop. A] and later explained by Opdam [Opd95]. The de�nition of Ψ
depends on the representation theory of the corresponding Hecke algebra [Mal99, Opd00].
Moreover, it plays a crucial role in the study of rational Cherednik algebras [GG12,
Thm. 1.6]. The intrinsic appearance of Ψ in the present context of multi-derivations of
re�ection groups is rather unexpected.

The paper is organized as follows. In Section 2, we provide all needed background
on hyperplane arrangements and unitary re�ection groups. The proof of Theorem 1.1 is
carried out in Section 3, along with its strengthened form, Theorem 3.18. Theorem 1.2
is proved in the �nal Section 4 as a consequence of Theorem 4.1.
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2. Preliminaries

We �rst provide some basic material on hyperplane arrangements and multi-arrange-
ments, and their modules of derivations. We then recall the needed background on unitary
re�ection groups. For general information about re�ection groups and their arrangements,
we refer the reader to [Bou68, OS82, Zie89, OT92].

2.1. Multi-arrangements and their modules of derivations. Let S = S(V ∗) de-
note the ring of polynomial functions on V considered as the symmetric algebra of the
dual space V ∗. If x1, . . . , x` is a basis of V ∗, we identify S with the polynomial ring
C[x1, . . . , x`]. Letting Sp denote the C-subspace of S consisting of the homogeneous poly-
nomials of degree p (along with 0), S is naturally Z-graded by S = ⊕p∈ZSp, where we
consider Sp = 0 for p < 0.
Let DerS be the S-module of C-derivations of S. Then ∂x1 , . . . , ∂x` is an S-basis of DerS.

We say that θ ∈ DerS is homogeneous of polynomial degree p provided θ =
∑
fi∂xi , where

fi ∈ Sp for each 1 ≤ i ≤ `. In this case we write pdeg θ = p. Let DerSp be the C-subspace
of DerS consisting of all homogeneous derivations of polynomial degree p. Then DerS is
a graded S-module, DerS = ⊕p∈ZDerSp .

A hyperplane arrangement A in V is a �nite collection of hyperplanes in V . For a
subspace X of V , we have the associated localization of A at X given by

AX := {H ∈ A | X ⊆ H} ⊆ A .

Its rank is de�ned to be the codimension of X in V .

Following Ziegler [Zie89], a multi-arrangement (A , ν) is an arrangement A together
with amultiplicity function ν : A → N assigning to each hyperplaneH ∈ A a multiplicity
ν(H) ∈ N. If ν ≡ 1, then (A , ν) is called simple. We only consider central multi-
arrangements (A , ν), i.e., 0 ∈ H for every H ∈ A . In this case, we �x αH ∈ V ∗ with
H = ker(αH) for H ∈ A . The order of (A , ν) is given by

|ν| := |(A , ν)| :=
∑
H∈A

ν(H),

and its de�ning polynomial Q(A , ν) ∈ S is

Q(A , ν) :=
∏
H∈A

α
ν(H)
H .

The module of derivations of (A , ν) is de�ned by

D(A , ν) :=
{
θ ∈ DerS | θ(αH) ∈ Sαν(H)

H for each H ∈ A
}
.

We say that (A , ν) is free if D(A , ν) is a free S-module [Zie89, Def. 6]. In this case,
D(A , ν) admits a basis {θ1, . . . , θ`} of ` homogeneous derivations [Zie89, Thm. 8]. While
the θi's are not unique, their polynomial degrees pdeg θi are. The multiset of these
polynomial degrees is the set of exponents of the free multi-arrangement (A , ν). It is
denoted by

exp(A , ν) :=
{

pdeg(θ1), . . . , pdeg(θ`)
}
.

Next we record Ziegler's analogue of Saito's criterion. The Saito matrix of θ1, . . . , θ` ∈
DerS is given by

M(θ1, . . . , θ`) :=

θ1(x1) · · · θ1(x`)
...

. . .
...

θ`(x1) · · · θ`(x`)

 ,
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see [OT92, Def. 4.11].

Theorem 2.1 ([Zie89, Thm. 8]). Let (A , ν) be a multi-arrangement, and let θ1, . . . , θ` ∈
D(A , ν). Then the following are equivalent:

(i) {θ1, . . . , θ`} is an S-basis of D(A , ν).
(ii) detM(θ1, . . . , θ`)

.
= Q(A , ν).

In particular, if each θi is homogeneous, then both are moreover equivalent to the following:

(iii) θ1, . . . , θ` are linearly independent over S and
∑

pdeg θi = degQ(A , ν) = |ν|.

In the statement and later on, the sign
.
= denotes, as usual, equality up to a non-zero

complex constant. Terao's celebrated Addition-Deletion Theorem [Ter80a] plays a crucial
role in the study of free arrangements, see [OT92, Thm. 4.51]. We next describe its version
for multi-arrangements from [ATW08]. Let (A , ν) be a non-empty multi-arrangement,
i.e., |ν| ≥ 1. Fix H0 in A with ν(H0) ≥ 1. Its deletion with respect to H0 is given by
(A ′, ν ′), where ν ′(H0) = ν(H0) − 1 and ν ′(H) = ν(H) for all H 6= H0. If ν ′(H0) = 0,
we set A ′ = A \ {H0}, and else set A ′ = A . Its restriction with respect to H0 is given
by (A ′′, ν∗), where A ′′ = {H ∩H0 | H ∈ A \ {H0} }. The Euler multiplicity ν∗ of A ′′

is de�ned as follows. Let Y ∈ A ′′. Since the localization AY is of rank 2, the multi-
arrangement (AY , νY ) is free where we set νY = ν|Y to be the restriction of ν to AY [Zie89,
Cor. 7]. According to [ATW08, Prop. 2.1], the module of derivations D(AY , νY ) admits a
particular homogeneous basis {θY , ψY , ∂3, . . . , ∂`}, where θY is identi�ed by the property
that θY /∈ α0DerS and ψY by the property that ψY ∈ α0DerS, where H0 = kerα0. Then
the Euler multiplicity ν∗ is de�ned on Y as ν∗(Y ) = pdeg θY . Crucial for our purpose
is the fact that the value ν∗(Y ) only depends on the S-module D(AY , νY ). Sometimes,
(A , ν), (A ′, ν ′) and (A ′′, ν∗) is referred to as the triple of multi-arrangements with respect
to H0.

Theorem 2.2 ([ATW08, Thm. 0.8]). Suppose that (A , ν) is not empty, �x H0 in A and
let (A , ν), (A ′, ν ′) and (A ′′, ν∗) be the triple with respect to H0. Then any two of the
following statements imply the third:

(i) (A , ν) is free with exp(A , ν) = {b1, . . . , b`−1, b`};
(ii) (A ′, ν ′) is free with exp(A ′, ν ′) = {b1, . . . , b`−1, b` − 1};
(iii) (A ′′, ν∗) is free with exp(A ′′, ν∗) = {b1, . . . , b`−1}.

We need the following fact in the sequel.

Lemma 2.3 ([ATW08, Prop. 4.1(1)]). Let H0 ∈ A . Suppose X ∈ A H0 with AX =
{H0, H}. For ν a multiplicity on A , we have ν∗(X) = ν(H).

2.2. Unitary Re�ection Groups. Let V ∼= C`, and consider a �nite subgroup W of
GL(V ). Then W is a unitary re�ection group if it is generated by its subset R = R(W )
of re�ections, that is, the elements r ∈ W for which the �xed space

Fix(r) := ker(11− r) = {v ∈ V | rv = v} ⊆ V

is a hyperplane. We denote by A = A (W ) the associated re�ection arrangement given
by the collection of the re�ecting hyperplanes. For H ∈ A , letWH = {w ∈ W | Fix(w) ⊇
H} be the pointwise stabilizer of H inW and set eH = |WH |. Indeed, the elements inWH

except the identity are exactly the re�ections r ∈ R such that Fix(r) = H, explaining
the equality

(2.4) |R|+ |A | =
∑
H∈A

eH .
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Results of Shephard and Todd [ST54] and of Chevalley [Che55] distinguish unitary re-
�ection groups as those �nite subgroups of GL(V ) for which the invariant subalgebra of
the action on the symmetric algebra S = S(V ∗) ∼= C[x1, . . . , x`] yields again a polynomial
algebra,

SW = S(V ∗)W ∼= C[f1, . . . , f`].

While the basic invariants f1, . . . , f` are not unique, they can be chosen to be homo-
geneous, and then their degrees d1 ≤ · · · ≤ d` are uniquely determined and called the
degrees of W .

The group W is called irreducible if it does not preserve a proper non-trivial subspace
of V . It is well-known that such an irreducible re�ection group can be generated either
by ` or by ` + 1 re�ections. An important subclass of irreducible unitary re�ection
groups are those that are well-generated, i.e., which can be generated by ` re�ections.
In particular, this subclass contains all (complexi�cations of) irreducible real re�ection
groups and all Shephard groups (symmetry groups of regular complex polytopes [OT92,
Def. 6.119]).

Let SW+ denote the W -invariants without constant term, and let Coinv(W ) := S/SW+
be the ring of coinvariants of W . Observe that Coinv(W ) is also a graded W -module,
and indeed isomorphic to the regular representation of W , see [LT09, �4.4]. Thus, an
irreducible representation U in Irr(W ) of dimension d occurs d times in Coinv(W ) as a
constituent. The U-exponents of W are then given by the multiset of d homogeneous
degrees in the coinvariant algebra of W in which U appears,

expU(W ) = {n1(U) ≤ . . . ≤ nd(U)}.

In particular, exp(W ) = expV (W ) are the exponents of W and coexp(W ) = expV ∗(W )
are the coexponents of W . It is moreover well-known that the degrees of W and the
exponents are related by di = ni(V ) + 1, implying

(2.5) |R| =
∑̀
i=1

ni(V ).

Terao showed in [Ter80b] that the re�ection arrangement A of W is free, and that the
exponents of the arrangement coincide with the coexponents ofW , cf. [OT92, Thm. 6.60],

exp A = coexp(W ).

Consequently, thanks to [OT92, Thm. 4.23], we have

(2.6) |A | =
∑̀
i=1

ni(V
∗).

The next de�nition can be found in [GG12]. The two equalities follow from (2.4), (2.5),
and (2.6).

De�nition 2.7. Let W be an irreducible unitary re�ection group. The Coxeter num-
ber h = hW is de�ned as

h := hW :=
1

`

∑
H∈A

eH =
1

`

(
|R|+ |A |

)
=

1

`

∑̀
i=1

(
ni(V ) + ni(V

∗)
)
.
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Remark 2.8. It was observed by Orlik and Solomon in [OS80, Thm. 5.5] that the
group W is well-generated if and only if the exponents and the coexponents pairwise
sum up to the Coxeter number. This is,

ni(V ) + n`+1−i(V
∗) = h

for all 1 ≤ i ≤ `. In this case, the Coxeter number h = d` = n`(V ) + 1 > d`−1 is the
unique largest degree of a fundamental invariant, see [LT09, �12.6].

The fake degree of U in Irr(W ) of dimension d is de�ned to be the polynomial

fU(q) :=
d∑
i=1

qni(U) ∈ N[q],

cf. [Mal99, Eq. (6.1)]. In [Mal99, Thm. 6.5], Malle showed that there is a permutation Ψ of
Irr(W ) so that the fake degree polynomials fU(q) satisfy the semi-palindromic condition

(2.9) fU(q) = qhUfΨ(U∗)(q
−1),

where

hU := |R| −
∑
r∈R

χU(r)/χU(1).(2.10)

Equivalently, hU is the integer by which the central element
∑

r∈R(11 − r) ∈ C[W ] acts
on U . In particular, for any U in Irr(W ) of dimension d, we have

ni(U) + nd+1−i(Ψ(U∗)) = hU .

The following observations provide, for later reference, the formula in Theorem 1.2(ii) in
a form analogous to the one used in [GG12, Sec. 3].

Lemma 2.11. The parameter hU de�ned in (2.10) satis�es hU = hU∗ and hU = hΨ(U).
In particular, we have, for any 1 ≤ i ≤ ` and any m ∈ N,

mh+ ni(Ψ
−m(V ∗)) = (m+ 1)h− n`+1−i(Ψ

−m−1(V ∗)∗).(2.12)

Proof. The equality hU = hU∗ is a direct consequences of (2.10). The equality hU = hΨ(U)

follows, for example, from the description of Ψ as the operator φid− 1
h
,−1− 1

h

in [GG12, �2.12]

together with the observation in [GG12, �2.8] that hφid
− 1
h
,−1− 1

h

(U) = hU . Plugging in

Ψ−m−1(V ∗)∗ for the irreducible representation U in (2.9) and using that hΨ−m−1(V ∗)∗ =
hV = h yields (2.12). �

See also [Opd00, Prop. 7.4] and [GG12, � 1.4] for further properties of the permu-
tation Ψ of Irr(W ). Note that Ψ is the identity permutation if and only if W is well-
generated [Mal99, Cor. 4.9].

We �nally de�ne the order multiplicity ω of the re�ection arrangement A = A (W ) by
ω(H) = eH for H ∈ A . In other words, the multiplicities are chosen so that the de�ning
polynomial Q(A (W ), ω) of the multi-arrangement (A (W ), ω) is the discriminant of W ,
cf. [OT92, Def. 6.44],

Q(A (W ), ω) =
∏

H∈A (W )

αeHH .
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3. Proof of Theorem 1.1

In this section, we prove a strengthened version of Theorem 1.1. Our method is based
on the approach by Yoshinaga [Yos02], also relying strongly on recent developments of
�at systems of invariants for well-generated unitary re�ection groups in the context of
isomonodromic deformations and di�erential equations of Okubo type due to Kato, Mano
and Sekiguchi [KMS16]. See Theorem 3.18 for the explicit formulation.

Let ∇ : DerS ×DerS → DerS be an a�ne connection. Recall that ∇ is S-linear in the
�rst parameter and C-linear in the second, satisfying the Leibniz rule

∇δ(pδ
′) = δ(p)δ′ + p∇δ(δ

′)

for δ, δ′ ∈ DerS. The connection ∇ is �at if ∇δ(∂xi) = 0 for all δ ∈ DerS, or, equivalently,

(3.1) ∇δ(δ
′) =

∑
i

(δpi)∂xi

for δ, δ′ ∈ DerS with δ′ =
∑
pi∂xi . Alternatively, this can be characterized by

∇δ(δ
′)(α) = δ(δ′(α))(3.2)

for all α ∈ V ∗. Observe that for ∇ �at and δ, δ′ homogeneous, (3.1) implies that the
derivation ∇δ(δ

′) is again homogeneous with polynomial degree

(3.3) pdeg
(
∇δ(δ

′)
)

= pdeg(δ) + pdeg(δ′)− 1.

In the sequel, we largely follow the construction of �at systems of invariants as given
in [KMS16, Sec. 6] in order to lift the constructions in [Yos02] to the well-generated case.

As before, we assume in this section that W is an irreducible well-generated unitary
re�ection group. Let F fl

1 , . . . , F
fl
` be the special homogeneous fundamental invariants in

C[x] with x = (x1, . . . , x`), as given in [KMS16, Thm. 6.1]. Recall that deg
(
F fl
i

)
= di =

ni(V ) + 1 and C[F fl
1 , . . . , F

fl
` ] ∼= SW .

Consider indeterminates t = (t1, . . . , t`) together with the map ti 7→ F fl
i giving an

isomorphism

R := C[t] ∼= C[F fl
1 , . . . , F

fl
` ].

Set moreover C[t′] := C[t1, . . . , t`−1], its subring generated by t′ = (t1, . . . , t`−1). In order
to keep track of the information about the degrees of F fl

1 , . . . , F
fl
` , following [KMS16,

Sec. 6], we de�ne weights of the variables ti by

w(ti) := deg(F fl
i )/h = di/h = (ni(V ) + 1)/h.

As usual, set

J∂t/∂x :=

∂x1...
∂x`

 (t1, . . . , t`) =

∂t1/∂x1 · · · ∂t`/∂x1
...

. . .
...

∂t1/∂x` · · · ∂t`/∂x`

 ∈ C[x]`×`

with inverse matrix J∂x/∂t := J−1
∂t/∂x = (∂t1 , . . . , ∂t`)

tr(x1, . . . , x`). It is well-known that

det J∂t/∂x
.
=
∏

H∈A αeH−1
H , see [OT92, Thm. 6.42].

The primitive vector �eld

D := ∂t` ∈ DerR
8



is given by

D = det J∂x/∂t

∣∣∣∣∣∣∣
∂t1
∂x1

· · · ∂t`−1

∂x1
∂
∂x1

...
. . .

...
...

∂t1
∂x`

· · · ∂t`−1

∂x`

∂
∂x`

∣∣∣∣∣∣∣ ,
implying in particular that D is homogeneous with

(3.4) pdeg(D) = −n`(V ) = −(h− 1)

when considered inside
∑

C(x)∂xi . We have seen in Remark 2.8 that h = d` > d`−1. The
primitive vector �eld D is thus, up to a non-zero complex constant, independent of the
given choice of fundamental invariants.

Consider X := V
/
W = spec(C[t]) and let ∆(t) be the discriminant of W given by

∆
(
F fl

1 (x), . . . , F fl
` (x)

)
=
∏
H∈A

αeHH

with vanishing locus H := {p ∈ X | ∆(p) = 0}, cf. [OT92, Def. 6.44]. Let DerR be the
R-module of logarithmic vector �elds, and let

DerR(− log ∆) :=
{
θ ∈ DerR | θ∆ ∈ R∆

}
be the module of logarithmic vector �elds along H. We have an R-isomorphism between
such logarithmic vector �elds and W -invariant S-derivations,

(3.5) DerR(− log ∆) ∼= DerWS ,

and DerR(− log ∆) is a free R-module, cf. [OT92, Cor. 6.58].

Bessis showed in [Bes15, Thm. 2.4] that there exists a system of �at homogeneous
derivations {ξ1, . . . , ξ`} of DerR(− log ∆). This means, its Saito matrix

Mξ := M(ξ`, . . . , ξ1) =

ξ`(t1) · · · ξ`(t`)
...

. . .
...

ξ1(t1) · · · ξ1(t`)


decomposes as

Mξ = t`11` +M (0)(t′)(3.6)

with M (0)(t′) ∈ C[t′]`×`. As before, we have (ξ`, . . . , ξ1)tr = Mξ(∂t1 , . . . , ∂t`)
tr. Moreover,

we obtain that ∆(t) is a monic polynomial in t` with coe�cients in C[t′], i.e.,

∆(t) = t`` + a`−1(t′)t`−1
` + . . .+ a1(t′)t` + a0(t′).

As observed in [KMS16, Lem. 3.12], such a system of �at homogeneous derivations
is unique. Following [KMS16, Eqs. (52), (53)], where this �at system is denoted by
(V`, . . . , V1), we have

w
(
ξ`+1−j(ti)

)
= 1− w(tj) + w(ti)

and
ξ1 =

∑
w(ti)ti∂ti ∈ DerR

is the Euler vector �eld mapped to the Euler derivation

(3.7) E :=
∑

xi∂xi ∈ DerWS

under the isomorphism in (3.5). As described in [KMS16, Lem. 3.9], one decomposes

(3.8) Mξ =
∑

w(ti)tiB̃
(i)

9



and de�nes the weighted homogeneous (`× `)-matrix C(t) such that

(3.9) B̃(i) = ∂C
/
∂ti and ξ1C = Mξ.

In this case, [KMS16, Thm. 6.1] yields that ti = C`,i and thus, t is a �at coordinate system
on X associated to the Okubo type di�erential equation

(3.10) dY = −M−1
ξ dC B∞ Y,

where B∞ is the diagonal matrix

B∞ := diag
(
w(ti)− (h+ 1)/h

)
= diag

(
(di − h− 1)/h

)
,

and

Y := −B−1
∞ (ξ`, . . . , ξ1)tr(x1, . . . , x`) = −B−1

∞ MξJ∂x/∂t.

De�ne a connection ∇ on DerR by

∇

∂t1...
∂t`

 = −M−1
ξ (t)dC(t)(B∞ + 11`)

∂t1...
∂t`

 ,

where dC =
∑
B̃(i)dti is the di�erential of the matrix C(t) as given in (3.9).

Proposition 3.11. The connection ∇ extends to a connection on DerS which is �at,
i.e.,

∇

∂x1...
∂x`

 = 0.

Proof. Using the de�nition of ∇ and the Leibniz rule, we obtain

(3.12)

∇

∂t1...
∂t`

 = dJ∂x/∂t

∂x1...
∂x`

+ J∂x/∂t ∇

∂x1...
∂x`


= −M−1

ξ dC (B∞ + 11`) J∂x/∂t

∂x1...
∂x`

 .

By (3.10), we have

(3.13)

dY = −B−1
∞
(
dMξ J∂x/∂t +Mξ dJ∂x/∂t

)
= −M−1

ξ dC B∞ Y

= dC J∂x/∂t,

where all B̃(i) and Mξ mutually commute, according to [KMS16, Eq. (13)]. Thanks
to [KMS16, Eq. (28)], we have

dMξ = dC + [dC,B∞].

The identity (3.13) then implies

(3.14)
−Mξ dJ∂x/∂t = B∞ dC J∂x/∂t +

(
dC + [dC,B∞]

)
J∂x/∂t

= dC (B∞ + 11`)J∂x/∂t.
10



We �nally deduce from (3.12) and (3.14) that

J∂x/∂t ∇

∂x1...
∂x`

 = −
(
M−1

ξ dC (B∞ + 11`)J∂x/∂t + dJ∂x/∂t

)∂x1...
∂x`

 = 0.

Since J∂x/∂t is invertible, the result follows. �

One further main ingredient in the proof of Theorem 1.1 is the following proposition.

Proposition 3.15. We have C[t′]-isomorphisms

∇D : DerR(− log ∆) −→ DerR

∇−1
D : DerR −→ DerR(− log ∆)

given by

(3.16)

∇D

∂t1...
∂t`

 = −M−1
ξ (B∞ + 11`)

∂t1...
∂t`


∇−1
D

∂t1...
∂t`

 = −B−1
∞

ξ`...
ξ1

 = −B−1
∞ Mξ

∂t1...
∂t`

 .

Proof. The �rst equation in (3.16) is a direct consequence of the fact that B̃(`) = 11` which
follows from (3.8) in light of (3.6). On the other hand, we have

∇D

ξ`...
ξ1

 = ∇D

Mξ

∂t1...
∂t`


=
∂Mξ

∂t`

∂t1...
∂t`

+Mξ∇D

∂t1...
∂t`


=

∂t1...
∂t`

− (B∞ + 11`)

∂t1...
∂t`


= −B∞

∂t1...
∂t`

 ,

where we used that
∂Mξ

∂t`
= 11`, see again (3.6). Recall that {ξ1, . . . , ξ`} is a basis

of DerR(− log ∆) and one directly calculates that ∇D is C[t′]-linear. We thus obtain
that ∇D : DerR(− log ∆) −→ DerR is a C[t′]-isomorphism with inverse

∇−1
D

∂t1...
∂t`

 = −B−1
∞

ξ`...
ξ1

 .

This completes the proof of the proposition. �

With Proposition 3.15 in hand, we obtain an explicit formula for computing ∇−1
D as

follows.
11



Corollary 3.17. We have that ∇−1
D : DerR −→ DerR(− log ∆) is given by the linearity

in C[t′] and the inductive formula

∇−1
D (tk`∂ti) = h

(k+1)h+1−di

(
tk` ξ`+1−i − k

∑̀
j=1

[
M (0)(t′)

]
ij
∇−1
D (tk−1

` ∂tj)
)

for k ∈ N+ with base case k = 0 as given in (3.16). Here M (0)(t′) = Mξ − t`11` is as
in (3.6).

Proof. Recall that (ξ`, . . . , ξ1)tr = Mξ(∂t1 , . . . , ∂t`)
tr. The computation

∇D(tk` ξ`+1−i) = ktk−1
` ξ`+1−i + tk`∇D(ξ`+1−i)

= ktk−1
`

(
t`∂ti +

∑̀
j=1

[
M (0)(t′)

]
ij
∂tj

)
+ h+1−di

h
tk`∂ti

= (k+1)h+1−di
h

tk`∂ti + k
∑̀
j=1

[
M (0)(t′)

]
ij
tk−1
` ∂tj

implies that

tk`∂ti = h
(k+1)h+1−di

(
∇D(tk` ξ`+1−i)− k

∑̀
j=1

[
M (0)(t′)

]
ij
tk−1
` ∂tj

)
,

where we used that (k + 1)h+ 1− di > 0. Applying ∇−1
D to both sides and using that it

is C[t′]-linear yields the claim. �

The following is our generalization of [Yos02, Thm. 7] to the well-generated setting.
Recall the Euler derivation E from (3.7).

Theorem 3.18. Let W be an irreducible, well-generated unitary re�ection group with
re�ection arrangement A . Let ω : A → N given by ω(H) = eH , and let m ∈ N. Suppose
that µ : A → {0, 1} such that D(A , µ) is free with homogeneous basis θ1, . . . , θ`. Then
D(A ,mω + µ) is free with basis

∇θ1∇−mD (E), . . . ,∇θ`∇−mD (E).

Moreover,
exp

(
A ,mω + µ

)
=
{
mh+ pdeg(θ1), . . . ,mh+ pdeg(θ`)

}
.

Armed with Theorem 3.18, we derive our �rst main theorem.

Proof of Theorem 1.1. One obtains the two statements in the theorem from the special
cases in Theorem 3.18 with µ ≡ 0 and µ ≡ 1. Freeness in the �rst case is trivial, and is
due to Terao [Ter80b] in the second. �

Proof of Theorem 3.18. Let δ ∈ DerS and α = αH with H ∈ A . We �rst show that, for
any m ∈ N,
(3.19) ∇D(δ)α ∈ αmS ⇐⇒ δα ∈ αm+eHS.

For the reverse implication, suppose that δα = αk+eH
H f for some f ∈ S and k ∈ N. We

then obtain from (3.2) that

∇D(δ)α = D(δα)
.
= det J∂x/∂t

∣∣∣∣∣∣∣
∂t1
∂x1

· · · ∂t`−1

∂x1

∂αk+eH f
∂x1

...
. . .

...
...

∂t1
∂x`

· · · ∂t`−1

∂x`

∂αk+eH f
∂x`

∣∣∣∣∣∣∣ .
12



It now follows from the product rule for derivations that ∇D(δ)α is divisible by αk.
For the forward implication, assume that k is maximal such that δα = αk+eHf . We

show that in this case, ∇D(δ)α /∈ αk+1S. We may assume, after a possible change of

basis, that α = x`. Since det J∂x/∂t = det J−1
∂t/∂x =

(∏
H∈A αeH−1

H

)−1
, we have to show

that the maximal minor

(3.20)

∣∣∣∣∣∣∣
∂t1
∂x1

· · · ∂t`−1

∂x1
...

. . .
...

∂t1
∂x`−1

· · · ∂t`−1

∂x`−1

∣∣∣∣∣∣∣
is not divisible by α. This follows from a variant of the argument in the proof of [OT92,
Lem. 6.41]. Arguing as in loc. cit., the sequence (h1, . . . , h`) = (t1(x), . . . , t`−1(x), x`) is
regular. Because the considered determinant equals∣∣∣∣∣∣∣∣∣∣∣

∂t1
∂x1

· · · ∂t`−1

∂x1

∂x`
∂x1

...
. . .

...
...

∂t1
∂x`−1

· · · ∂t`−1

∂x`−1

∂x`
∂x`−1

∂t1
∂x`

· · · ∂t`−1

∂x`

∂x`
∂x`

∣∣∣∣∣∣∣∣∣∣∣
,

applying loc. cit. directly shows that this determinant does not belong to the ideal gener-
ated by (t1(x), . . . , t`−1(x), x`). In particular, the determinant is not divisible by x` = α,
as desired.

Next, observe that (3.19) and Proposition 3.15 immediately imply

δα ∈ αkS ⇐⇒ ∇−1
D (δ)α ∈ αk+eHS

for δ ∈ DerR, forcing ∇−mD (E)α = αmeH+1f for some f ∈ S. Thus, applying ∇θ for
θ ∈ D(A , µ) to both sides and using (3.2) entails

∇θ∇−mD (E)α = αmeH
(
(meH + 1)(θα)f + α(θ(f)

)
.

As θα is divisible by αµ(H) and 0 ≤ µ(H) ≤ 1, we obtain that ∇θ∇−mD (E)α is divisible
by αmeH+µ(H), implying that

∇θ∇−mD (E) ∈ D(A ,mω + µ).

For θ ∈ D(A , µ) homogeneous, we obtain from (3.3) and (3.4) that ∇θ∇−mD (E) is homo-
geneous as well with

pdeg
(
∇θ∇−mD (E)

)
= mh+ pdeg θ.

Let now θ1, . . . , θ` be the given homogeneous basis of D(A , µ). Then, since
∑

pdeg(θi) =
|µ|, we immediately get

∑̀
i=1

pdeg
(
∇θi∇−mD (E)

)
= mh`+ |µ| = |mω + µ|.

The statement then follows with Theorem 2.1(iii). �
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3.1. An example. We �nish this section with a detailed example of the computation of
the basis for D(A (W ), ω) with W = G(3, 1, 2). In this cases, the degrees are

d1 = 3, d2 = h = 6.

We refer to [KMS16, Rem. 6.2] for a general strategy how to compute a �at system
of invariants from the potential vector �eld corresponding to the Okubo type di�erential
equation (3.10) as de�ned in [KMS16, Def 4.2]. Such have been computed in many types
in [AL16], see also [KMS15].

Given such a potential vector �eld ~g = (g1(t), . . . , g`(t)) and a �at system of invariants
F fl

1 (x), . . . , F fl
` (x), the general strategy is as follows:

(1) Compute B̃(i) using [B̃(i)]jk = ∂2gk
∂ti∂tj

, as given in the proof of [KMS16, Prop. 4.4].

(2) Compute Mξ =
∑

w(ti)tiB̃
(i), as given in (3.8).

(3) Compute ∇−mD (E) ∈ DerR(− log ∆), using Proposition 3.15 and Corollary 3.17.

(4) Transfer ∇−mD (E) ∈ DerR(− log ∆) into ∇−mD (E) ∈ DerWS by specializing ti 7→ F fl
i (x)

and using
(∂t1 , . . . , ∂t`)

tr = J∂x/∂t (∂x1 , . . . , ∂x`)
tr.

(5) Given a homogeneous basis θ1, . . . , θ` of D(A , µ) for some µ : A → {0, 1}, one �nally
uses Proposition 3.11 to compute the homogeneous basis of D(A ,mω + µ).

Following [AL16, Sec. 5.17] for G(3, 1, 2), the potential vector �eld ~g =
(
g1(t), g2(t)

)
is

given by
g1(t) = 1

18
t31 + t1t2, g2(t) = 1

54
t41 + 1

2
t22

and a �at system of fundamental invariants is given by

F fl
1 (x) = x3

1 + x3
2, F fl

2 (x) = 1
6
x6

1 − 5
3
x3

1x
3
2 + 1

6
x6

2.

First, we obtain from the degrees that

−B∞ =

[
2
3

0
0 1

6

]
.

From the potential vector �eld, we compute

B̃(1) =

[
1
3
t1

2
9
t21

1 0

]
, B̃(2) =

[
1 0
0 1

]
implying

Mξ = 1
2
t1B̃

(1) + t2B̃
(2) =

[
1
6
t21 + t2

1
9
t31

1
2
t1 t2.

]
Next, we compute

∇−1
D

(
∂t1
∂t2

)
= −B−1

∞ Mξ

(
∂t1
∂t2

)
=

[
1
4
t21 + 3

2
t2

1
6
t31

3t1 6t2

](
∂t1
∂t2

)
and

∇−1
D (t2∂t2) = 6

7

(
t2ξ1 −

(
[M (0)]21∇−1

D (∂t1) + [M (0)]22∇−1
D (∂t2)

))
= 6

7

(
t2(1

2
t1∂t1 + t2∂t2)− 1

2
t1∇−1

D (∂t1)
)

= 3
7
t1t2∂t1 + 6

7
t22∂t2 − 3

7
t1
(
(1

4
t21 + 3

2
t2)∂t1 + 1

6
t31∂t2

)
= −

(
3
28
t31 + 3

14
t1t2
)
∂t1 +

(
6
7
t22 − 1

14
t41
)
∂t2 .
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Therefore, we have

∇−1
D (E) = ∇−1

D (1
2
t1∂t1 + t2∂t2)

= 1
2
t1∇−1

D (∂t1) +∇−1
D (t2∂t2)

= 1
2
t1
(
(1

4
t21 + 3

2
t2)∂t1 + 1

6
t31∂t2

)
−
(

3
28
t31 + 3

14
t1t2
)
∂t1 +

(
6
7
t22 − 1

14
t41
)
∂t2

= ( 1
56
t31 + 15

28
t1t2)∂t1 + ( 1

84
t41 + 6

7
t22)∂t2 ∈ DerR(− log ∆).

We next compute

J∂t/∂x =

[
3x2

1 x5
1 − 5x2

1x
3
2

3x2
2 −5x3

1x
2
2 + x5

2

]
, det J∂t/∂x = −18x5

1x
2
2 + 18x2

1x
5
2

and

J∂x/∂t = J−1
∂t/∂x = det(J∂t/∂x)−1

[
−5x3

1x
2
2 + x5

2 5x2
1x

3
2 − x5

1

−3x2
2 3x2

1

]
to obtain

∇−1
D (E) = ( 1

28
x7

1 − 1
4
x4

1x
3
2)∂x1 + ( 1

28
x7

2 − 1
4
x3

1x
4
2)∂x2 ∈ DerWS .

We �nally obtain

Θ1 := ∇∂x1
∇−1
D (E) =

∂( 1
28
x7

1 − 1
4
x4

1x
3
2)

∂x1

∂x1 +
∂( 1

28
x7

2 − 1
4
x3

1x
4
2)

∂x1

∂x2

= (1
4
x6

1 − x3
1x

3
2)∂x1 − 3

4
x2

1x
4
2∂x2

Θ2 := ∇∂x2
∇−1
D (E) =

∂( 1
28
x7

1 − 1
4
x4

1x
3
2)

∂x2

∂x1 +
∂( 1

28
x7

2 − 1
4
x3

1x
4
2)

∂x2

∂x2

= −3
4
x4

1x
2
2∂x1 + (1

4
x6

2 − x3
1x

3
2)∂x2 .

One can easily check that {Θ1,Θ2} is indeed a homogeneous basis of D(A , ω).

4. Proof of Theorem 1.2

In this section, we prove in Theorem 4.1 a strengthened version of Theorem 1.2 for the
imprimitive groups G(de, e, `) with

r := de ≥ 2 and ` ≥ 2.

We �x these parameters throughout. This restriction means we exclude the symmetric
groups G(1, 1, `) and the cyclic groups G(d, 1, 1) from our subsequent considerations. The
�rst has been treated in [Ter02], the second is trivial.

Recall that the simple re�ection arrangements in the considered cases are given by

Q(A ) =

{
(x1 · · ·x`)

∏
1≤i<j≤`(x

r
i − xrj) if d > 1,∏

1≤i<j≤`(x
r
i − xrj) if d = 1,

see [OT92, Sec. 6.4]. Moreover,

eH = d for H = ker(xi) with 1 ≤ i ≤ `,

eH = 2 for H = ker(xi − ζxj) with 1 ≤ i < j ≤ ` and ζr = 1.

The following theorem is our more general version of Theorem 1.2.

Theorem 4.1. Let m,m1, . . . ,m`,∈ N such that q := b(mi− 1)/rc does not depend on i.
Set a := (`− 1)r,m′ :=

∑
mi, and c := ma+ qr + 1.
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(i) The multi-arrangement (A , µ) with de�ning polynomial

Q(A , µ) = xm1
1 · · ·x

m`
`

∏
1≤i<j≤`

(xri − xrj)2m

is free with exponents

exp(A , µ) =
{
ma+m1, . . . ,ma+m`

}
.

(ii) The multi-arrangement (A , µ) with de�ning polynomial

Q(A , µ) = xm1
1 · · ·x

m`
`

∏
1≤i<j≤`

(xri − xrj)2m+1

is free with exponents

exp(A , µ) =
{
c+m′ − `(qr + 1), c+ r, c+ 2r, . . . , c+ (`− 1)r

}
=
{

(m− q)a+m′ − `+ 1,

ma+ (q + 1)r + 1,ma+ (q + 2)r + 1, . . . ,ma+ (q + `− 1)r + 1
}
.

In (ii), we provide two alternative formulas for later reference. We prove the two parts
of this theorem in Sections 4.1 and 4.2, respectively.

Armed with Theorem 4.1, we can deduce our second main result, Theorem 1.2. We
treat the three cases d = 1, e = 1, and d, e ≥ 2 separately, and observe that the �rst two
are well-generated while the third is not.

Proof of Theorem 1.2 (i). For d = 1, we have Coxeter number h = (`−1)e. Consider the
de�ning polynomial

Q(A ,mω) =
∏

1≤i<j≤`

(xri − xrj)2m.

This is the case m1 = m2 = . . . = m` = 0 in Theorem 4.1(i). Thus, (A ,mω) is free with

exp(A ,mω) =
{
m(`− 1)e, . . . ,m(`− 1)e

}
=
{
mh, . . . ,mh

}
,

as claimed.

For e = 1, we have Coxeter number h = `d. Consider the de�ning polynomial

Q(A ,mω) = xrm1 · · ·xrm`
∏

1≤i<j≤`

(xri − xrj)2m.

This is the case m1 = m2 = . . . = m` = rm in Theorem 4.1(i). Thus, (A ,mω) is free
with

exp(A ,mω) =
{
m`r, . . . ,m`r

}
=
{
mh, . . . ,mh

}
,

as claimed.

For d, e ≥ 2, we have Coxeter number h = (`−1)r+d. Consider the de�ning polynomial

Q(A ,mω) = xdm1 · · ·xdm`
∏

1≤i<j≤`

(xri − xrj)2m.

This is the case m1 = m2 = . . . = m` = dm in Theorem 4.1(i). Thus, (A ,mω) is free
with

exp(A ,mω) =
{
m((`− 1)r + d), . . . ,m((`− 1)r + d)

}
=
{
mh, . . . ,mh

}
,

as claimed. �
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Proof of Theorem 1.2 (ii). For d = 1, we have Coxeter number h = (`− 1)r, and{
n1(V ∗), . . . , n`(V

∗)
}

=
{

(`− 1)r − `+ 1, 1, r + 1, 2r + 1, . . . , (`− 2)r + 1
}
.

Consider the de�ning polynomial

Q(A ,mω + 1) =
∏

1≤i<j≤`

(xri − xrj)2m+1.

This is the case m1 = m2 = . . . = m` = 0 in Theorem 4.1(ii). We have a = (`− 1)r, q =
−1, and m′ = 0, and (A ,mω + 1) is free with

exp(A ,mω + 1)

=
{

(m+ 1)(`− 1)r − `+ 1,

m(`− 1)r + 1,m(`− 1)r + r + 1, . . . ,m(`− 1)r + (`− 2)r + 1
}

=
{
mh+ (`− 1)r − `+ 1, mh+ 1,mh+ r + 1, . . . ,mh+ (`− 2)r + 1

}
=
{
mh+ n1(V ∗), . . . ,mh+ n`(V

∗)
}
,

as claimed.

For e = 1, we have Coxeter number h = `d and{
n1(V ∗), . . . , n`(V

∗)
}

=
{

1, d+ 1, 2d+ 1, . . . , (`− 1)d+ 1
}
.

Consider the de�ning polynomial

Q(A ,mω + 1) = xdm+1
1 · · ·xdm+1

`

∏
1≤i<j≤`

(xdi − xdj )2m+1.

This is the case r = d,m1 = m2 = . . . = m` = dm + 1 in Theorem 4.1(ii). We have
a = (`− 1)d, q = m, and m′ = `dm+ `, and (A ,mω + 1) is free with

exp(A ,mω + 1) =
{
`dm+ `− `+ 1,

m(`− 1)d+ (m+ 1)d+ 1, . . . ,m(`− 1)d+ (m+ `− 1)d+ 1
}

=
{
mh+ 1,mh+ d+ 1, . . . ,mh+ (`− 1)d+ 1

}
=
{
mh+ n1(V ∗), . . . ,mh+ n`(V

∗)
}
,

as claimed.

For d, e ≥ 2, we have Coxeter number h = (`− 1)de+ d, and, as computed in [GG12,
Sec. 3], we have ord(Ψ) = e with

(4.2)
{
n1(Ψs(V ∗)∗), . . . , n`(Ψ

s(V ∗)∗)
}

={
d(s(`− 1) + `)− 1, d((`− 1)e− s)− 1, . . . , d(2e− s)− 1, d(e− s)− 1

}
for 0 ≤ s < e. We consider the de�ning polynomial

Q(A , µ) = xdm+1
1 · · ·xdm+1

`

∏
1≤i<j≤`

(xdei − xdej )2m+1.
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This is the case m1 = m2 = . . . = m` = dm + 1 in Theorem 4.1(ii). We have a =
(` − 1)de, q = b with uniquely written m = be + s for 0 ≤ s < e, and m′ = `dm + `.
Consequently, using (2.12) and (4.2), (A ,mω + 1) is free and

exp(A ,mω + 1) =
{

(m− b)(`− 1)de+ `dm+ 1,

(m(`− 1) + b+ 1)de+ 1, . . . , (m(`− 1) + b+ (`− 1))de+ 1
}

=
{

(m+ 1)((`− 1)de+ d)− d((e− s− 1)(`− 1) + `) + 1,

(m+ 1)((`− 1)de+ d)− d((`− 1)e− (e− 1− s)) + 1, . . . ,

(m+ 1)((`− 1)de+ d)− d(e− (e− 1− s)) + 1
}

=
{

(m+ 1)h− n1(Ψe−1−s(V ∗)∗), . . . , (m+ 1)h− n`(Ψe−1−s(V ∗)∗)
}

=
{

(m+ 1)h− n1(Ψ−m−1(V ∗)∗), . . . , (m+ 1)h− n`(Ψ−m−1(V ∗)∗)
}

=
{
mh+ n1(V ∗), . . . ,mh+ n`(V

∗)
}
,

as claimed. �

In the remainder of this section, we prove the two parts of Theorem 4.1 separately.

4.1. Proof of Theorem 4.1(i). We begin with the situation in rank 2 and set S = C[x, y]
in this case.

Lemma 4.3. Let r ≥ 2, m ≥ 1 and k ≥ 0. De�ne (A , µ) by

Q(A , µ) = xkr+1ykr+1(xr − yr)2m.

Then (A , µ) is free with

exp(A , µ) =
{

(m+ k)r + 1, (m+ k)r + 1
}
.

Moreover, there are homogeneous polynomials q1, q2 ∈ Z[x, y] of degrees m and m − 1,
respectively, such that

(i) all coe�cients of q1, q2 are non-zero, and
(ii) the homogeneous derivations

θ1 := xkr+1q1(xr, yr)∂x + ykr+1xrq2(xr, yr)∂y

θ2 := xkr+1yrq2(yr, xr)∂x + ykr+1q1(yr, xr)∂y

form a basis of D(A , µ).

Proof. We aim to de�ne q1 and q2 such that θ1(x − y) ∈ (x − y)2mS. Let q1(x, y) =∑m
i=0 aix

iym−i and q2(x, y) =
∑m−1

i=0 bix
iym−1−i for some ai, bi ∈ Q. Then

P (x, y) := θ1(x− y) =
m∑
i=0

aix
(i+k)r+1y(m−i)r −

m−1∑
i=0

bix
(i+1)ry(m−1−i+k)r+1.

Since we require P (x, y) ∈ (x − y)2mS, the coe�cients a0, . . . , am, b0, . . . , bm−1 form a
solution of the following system of linear equations over Q((

d

dx

)j
P

)
(x, x) = 0

for j = 0, . . . , 2m− 1.
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The entries of the corresponding matrix are just given by the exponents of x in q1, q2.
Dividing the j-th equation by j!, the entries of the respective equations become(

(i+ k)r + 1

j

)
and −

(
(i+ 1)r

j

)
for ai with i = 0, . . . ,m, and, respectively, for bi with i = 0, . . . ,m − 1. We may avoid
the minus sign by replacing bi by −bi. The homogeneous system has 2m equations and
2m+ 1 unknowns. Thus, we may choose a non-trivial solution with ai, bi ∈ Z for all i.
Now assume that one of the ai or one of the bi is zero, so that we may omit the

corresponding summand in q1 or q2. This corresponds to deleting the coe�cients of this
monomial in the given system of equations. But then, the matrix for j = 0, . . . , 2m−1 is a
(2m×2m)-matrix, which is invertible thanks to the famous Gessel-Viennot lemma [GV85].
In this case, there is only the trivial solution. This contradicts the fact that we have
already obtained a non-trivial solution in the previous paragraph. Hence, none of the ai
or bi are zero.
Next, we check that θ1 ∈ D(A , µ). By construction, θ1(x) ∈ xkr+1S, θ1(y) ∈ ykr+1S

and θ1(x− y) ∈ (x− y)2mS. Then, for ζ an r-th root of unity, we have

θ1(x− ζy) = xkr+1q1(xr, yr)− ζykr+1xrq2(xr, yr)

= xkr+1q1(xr, (ζy)r)− (ζy)kr+1xrq2(xr, (ζy)r)

= P (x, ζy) ∈ (x− ζy)2mS.

Hence θ1 ∈ D(A , µ). Likewise, we also get that θ2 ∈ D(A , µ). Observe that

detM(θ1, θ2) = xkr+1ykr+1q1(xr, yr)q1(yr, xr)− x(k+1)r+1y(k+1)r+1q2(xr, yr)q2(yr, xr)

is non-zero of degree |µ|. (The �rst part is only divisible by xkr+1 and the second part
is divisible by x(k+1)r+1.) Thus θ1 and θ2 are independent over S. Since θ1 and θ2 are
homogeneous and pdeg θ1 + pdeg θ2 = |µ|, it follows from Theorem 2.1(iii) that {θ1, θ2}
is a basis of D(A , µ)). �

Corollary 4.4. Let r ≥ 2, m ≥ 1, k ≥ 0 and m1,m2 ≥ 0 such that (k − 1)r + 1 ≤
m1,m2 ≤ kr + 1. De�ne (A , µ) by

Q(A , µ) = xm1ym2(xr − yr)2m.

Then (A , µ) is free with

exp(A , µ) = {rm+m1, rm+m2}.

Proof. A basis {θ̃1, θ̃2} of D(A , µ) is given by

θ̃1 =

{
θ1/x if k = 0,

θ1/x
r if k > 0,

and θ̃2 =

{
θ2/y if k = 0,

θ2/y
r if k > 0,

where θ1 and θ2 are given as in Lemma 4.3. �

We next use the rank 2 considerations to prove the general rank ` case.

Theorem 4.5. Let `, r ≥ 2, k ≥ 0, m1, . . . ,m` ≥ 0 and (k−1)r+1 ≤ m1, . . . ,m` ≤ kr+1.
De�ne (A , µ) by

Q(A , µ) = xm1
1 · · ·x

m`
`

∏
1≤i<j≤`

(xri − xrj)2m.

Then D(A , µ) is free with

exp(A , µ) = {c+m1, . . . , c+m`},
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where c = (`− 1)mr.

Proof. We argue by induction on `. Thanks to Corollary 4.4, the theorem holds for ` = 2.
Now, suppose ` > 2. The proof in this case follows from a further induction on

∑
mi.

Thanks to Theorem 1.1, the statement of the theorem holds for m1 = . . . = m` = 0.
Now let

∑
mi 6= 0. Without loss, we may assume that m` > 0 is maximal among

the mi. We aim to apply Theorem 2.2 with respect to the hyperplane H` = ker x`. If
m1 = · · · = m` = (k − 1)r + 1, then, in order to being able to apply the induction
hypothesis, requiring the lower bounds on the mi, we replace k by k − 1. Observe that
this replacement is valid as, crucially, the exponents do not depend on k.
The de�ning polynomial of the deletion with respect to H` is given by

Q(A ′, µ′) = xm1
1 · · ·x

m`−1

`−1 xm`−1
`

∏
1≤i<j≤`

(xri − xrj)2m.

Now, by induction on
∑
mi, (A ′, µ′) is free with exponents

exp(A ′, µ′) = {c+m1, . . . , c+m`−1, c+m` − 1}.
The Euler multiplicity µ∗ on A H` is given by

Q(A H` , µ∗) = xm1+rm
1 · · ·xm`−1+rm

`−1

∏
1≤i<j≤`−1

(xri − xrj)2m.

This can be seen as follows. For a hyperplane Hij = ker(xi−xj) (i, j 6= `) the localization
is of size |AH`∩Hij | = 2, hence the Euler multiplicity is 2m, by Lemma 2.3. For a
hyperplane Hi = ker xi (i 6= `) the localization is given by

xmii xm`` (xri − xr`)2m

with exponents {rm + mi, rm + m`}, by Corollary 4.4. By decreasing m`, the second
exponent changes, again according to Corollary 4.4. Hence the Euler multiplicity is
rm+mi.
Now, by induction on `, we know that (A H` , µ∗) is free, and we compute the exponents

as follows. The corresponding constant c∗ from the statement of the theorem is c∗ =
((`− 1)− 1)mr = c−mr. Hence,

exp(A H` , µ∗) = {c∗ +m1 +mr, . . . , c∗ +m`−1 +mr} = {c+m1, . . . , c+m`−1}.
The theorem now follows by Theorem 2.2. �

Note that Theorem 4.1(i) follows from Theorem 4.5.

4.2. Proof of Theorem 4.1(ii). The derivations are constructed in a similar way as in
the previous case. Hence we construct a polynomial whose coe�cients are the solution of
a system of linear equations which depend on several indeterminates. The key observation
in the previous case was the regularity of a matrix whose entries consist of certain binomial
coe�cients. It turns out that in the present case the entries of the matrix consist of
di�erences of certain binomial coe�cients. The application of the following technical
lemma in the present situation was communicated to us by Christian Krattenthaler.

Lemma 4.6 ([Kra99, Lem. 7]). Let X1, X2, . . . , Xm, A2, A3, . . . , Am, C be indeterminates,
and let p0, p1, . . . , pm−1 be polynomials in a single variable such that deg pj ≤ 2j and
pj(X) = pj(C −X) for j = 0, 1, . . . ,m− 1. Then,

det
1≤i,j≤m

(
m∏

k=j+1

(
(Xi − Ak)(Xi − Ak − C)

)
· pj−1(Xi)

)
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=
∏

1≤i<j≤m

(Xj −Xi)(C −Xi −Xj)
m∏
i=1

pi−1(−Ai).

Comparing the coe�cient of A2m−2
m A2m−4

m−1 · · ·A0
1 in the identity in the previous lemma,

we obtain

(4.7) det
1≤i,j≤m

(
pj−1(Xi)

)
=

∏
1≤i<j≤m

(Xi −Xj)(C −Xi −Xj)
m∏
i=1

qi−1

where qj is the leading coe�cient of pj(X).
Utilizing (4.7), we obain the following consequence.

Corollary 4.8. Let A,B,m ∈ N such that A − B 6≡ 0 mod r, and set C = B−A
r

,
Xi = i− 1, and

pj(X) =
1

A−B + 2rX

((
A+ rX

2j + 1

)
−
(
B − rX
2j + 1

))
∈ Q[X].

Then the left-hand side of (4.7) specializes to

det
0≤i,j≤m−1

((
A+ ri

2j + 1

)
−
(
B − ri
2j + 1

))
,

which is not identically zero.

We use this corollary repeatedly in the subsequent lemma.

Lemma 4.9. Let m ≥ 1 and k ≥ 0. De�ne (A , µ) by

Q(A , µ) = xkr+1ykr+1(xr − yr)2m+1.

Then (A , µ) is free with

exp(A , µ) =
{

(m+ k)r + 1, (m+ k + 1)r + 1
}
.

Moreover, there are polynomials q1, q2 ∈ Z[x, y] of degree m such that

(i) the coe�cients of xm and ym in q1, q2 are non-zero and
(ii) the homogeneous derivations

θ1 := xkr+1q1(xr, yr)∂x + ykr+1q1(yr, xr)∂y

θ2 := xkr+1yrq2(xr, yr)∂x + ykr+1xrq2(yr, xr)∂y

form a basis of D(A , µ).

Proof. We aim to de�ne q1 such that θ1(x− y) ∈ (x− y)2m+1S. Let q1 =
∑m

i=0 aix
iym−i

with ai ∈ Q. We require that

P (x, y) := θ1(x− y) =
m∑
i=0

ai
(
x(i+k)r+1y(m−i)r − x(m−i)ry(i+k)r+1

)
∈ (x− y)2m+1S.

Hence, the coe�cients a0, . . . , am form a solution of the following system of linear equa-
tions over Q

(4.10)
1

j!

((
d

dx

)j
P

)
(x, x) = 0
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for j = 0, . . . , 2m. Since P (x, y) = −P (y, x), the identity (4.10) holds for a given even j,
provided it holds for all j′ with 0 ≤ j′ < j. (In particular, it holds for j = 0.)
Because we havem+1 variables andm equations, the system has a non-trivial solution.

We may choose one such non-trivial solution with coe�cients in Z.
Suppose am = 0. Then we may remove the last column of the matrix in (4.10). The

determinant of this matrix equals

det
0≤i,j≤m−1

((
(i+ k)r + 1

2j + 1

)
−
(

(m− i)r
2j + 1

))
which is not identically zero, thanks to Corollary 4.8 for the parameters A = kr + 1 and
B = mr. Hence, (4.10) only admits the trivial solution, contradicting the above choice
of a non-trivial solution.

Suppose a0 = 0. Then we may remove the �rst column of the matrix in (4.10). Its
determinant equals, after substituting i by i+ 1, the determinant

det
0≤i,j≤m−1

((
(i+ k + 1)r + 1

2j + 1

)
−
(

(m− i− 1)r

2j + 1

))
which is not identically zero, again thanks to Corollary 4.8 for the parameters A =
(k + 1)r + 1 and B = (m − 1)r. Hence, we obtain an analogous contradiction as in the
previous case.

Next, we check that θ1 ∈ D(A , µ). By construction, θ1(x) ∈ xkr+1S, θ1(y) ∈ ykr+1S
and θ1(x− y) ∈ (x− y)2m+1S. Then, for ζ an r-th root of unity, we have

θ1(x− ζy) = xkr+1q1(xr, yr)− ζykr+1q1(yr, xr)

= xkr+1q1(xr, (ζy)r)− (ζy)kr+1q1((ζy)r, xr)

= P (x, ζy) ∈ (x− ζy)2m+1S.

We aim to de�ne q2 such that θ2(x− y) ∈ (x− y)2m+1S. Let q2 =
∑m

i=0 bix
iym−i with

ai ∈ Q. We require that

P̃ (x, y) := θ2(x− y) =
m∑
i=0

bi
(
x(i+k)r+1y(m−i+1)r − x(m−i+1)ry(k+i)r+1

)
∈ (x− y)2m+1S.

Hence the coe�cients of q2 are the solutions of the system of equations given by

(4.11)
1

j!

((
d

dx

)j
P̃

)
(x, x) = 0

for j = 0, . . . , 2m. As above, since P̃ (x, y) = −P̃ (y, x), we again observe that the equation
holds for a given even j, provided it holds for all j′ with 0 ≤ j′ < j.
Because we havem+1 variables andm equations, the system has a non-trivial solution.

We may choose one such non-trivial solution with coe�cients in Z.
Suppose bm = 0. Then we may remove the last column of the matrix in (4.11). The

determinant of this matrix equals

det
0≤i,j≤m−1

((
(i+ k)r + 1

2j + 1

)
−
(

(m− i+ 1)r

2j + 1

))
which is not identically zero, thanks to Corollary 4.8 for the parameters A = kr + 1 and
B = (m + 1)r. Hence, (4.11) only admits the trivial solution, contradicting the above
choice of a non-trivial solution.
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Suppose b0 = 0. Then we may remove the �rst column of the matrix in (4.11). Its
determinant equals, after substituting i by i+ 1, the determinant

det
0≤i,j≤m−1

((
(i+ k + 1)r + 1

2j + 1

)
−
(

(m− i)r
2j + 1

))
which is not identically zero, again thanks to Corollary 4.8 for the parameters A =
(k+1)r+1 and B = mr. Hence, we obtain an analogous contradiction as in the previous
case.

Finally, we check that θ2 ∈ D(A , µ). By construction, θ2(x) ∈ xkr+1S, θ2(y) ∈ ykr+1S
and θ2(x− y) ∈ (x− y)2m+1S. Then, for ζ an r-th root of unity, we have

θ2(x− ζy) = xkr+1yrq2(xr, yr)− ζykr+1xrq2(yr, xr)

= xkr+1(ζy)rq2(xr, (ζy)r)− (ζy)kr+1xrq2((ζy)r, xr)

= P̃ (x, ζy) ∈ (x− ζy)2m+1S.

Hence θ1, θ2 ∈ D(A , µ). Observe that

detM(θ1, θ2) = x(k+1)r+1ykr+1q1(xr, yr)q2(yr, xr)− y(k+1)r+1xkr+1q1(yr, xr)q2(xr, yr).

This determinant has degree |µ|. Since q1 and q2 are not divisible by x and y, respectively,
the determinant is non-zero. Thus θ1 and θ2 are independent over S. Since θ1 and θ2 are
homogeneous and pdeg θ1 + pdeg θ2 = |µ|, it follows from Theorem 2.1(iii) that {θ1, θ2}
is a basis of D(A , µ)). �

Corollary 4.12. Let m ≥ 1 and k ≥ 0. Let 0 ≤ m̃1, m̃2 ≤ r and set mi := (k−1)r+1+m̃i

for i = 1, 2 such that m1,m2 ≥ 0. De�ne (A , µ) by

Q(A , µ) = xm1ym2(xr − yr)2m+1.

Let c := (k − 1 +m)r + 1. Then (A , µ) is free with

exp(A , µ) = {c+ m̃1 + m̃2, c+ r}.

Proof. A basis {θ̃1, θ̃2} of D(A , µ) is given by θ̃1 = θ1 and

θ̃2 =

{
θ2/xy if k = 0,

θ2/x
ryr if k > 0,

where θ1 and θ2 are given as in Lemma 4.9. �

Theorem 4.13. Let k,m ≥ 0 and 0 ≤ m̃1, . . . , m̃` ≤ r. Set mi := (k − 1)r + 1 + m̃i for
i ∈ {1, . . . , `} such that mi ≥ 0, and set c := ((`− 1)m+ k − 1)r + 1.
De�ne (A , µ) by

Q(A , µ) = xm1
1 · · ·x

m`
`

∏
1≤i<j≤`

(xri − xrj)2m+1.

Then (A , µ) is free with

exp(A , µ) =
{
c+

∑̀
i=1

m̃i, c+ r, c+ 2r, . . . , c+ (`− 1)r
}
.
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Proof. We argue by induction on `. By Corollary 4.12, the theorem holds for ` = 2.
Suppose ` > 2. The proof in this case follows from a further induction on

∑
mi.

Thanks to Theorem 1.1, the theorem holds for m1 = · · · = m` = 0. Now let
∑
mi 6= 0.

Without loss, we may assume that m` > 0 is maximal among the mi. We aim to apply
Theorem 2.2 with respect to the hyperplane H` = ker x`. If m1 = · · · = m` = (k−1)r+1,
then, in order to being able to apply the induction hypothesis, requiring the lower bounds
on the mi, we replace k by k − 1, and, simultaneously, replace m̃i = 0 by m̃i = r for
all i. Observe that this replacement is valid as it does not change the arrangement and,
crucially, the exponents also coincide in both cases.

The de�ning polynomial of the deletion with respect to H` is given by

Q(A ′, µ′) = xm1
1 · · ·x

m`−1

`−1 xm`−1
`

∏
1≤i<j≤`

(xri − xrj)2m+1.

Now, by induction on
∑
mi, the deletion (A ′, µ′) is free with exponents

exp(A ′, µ′) =
{
c− 1 +

∑̀
i=1

m̃i, c+ r, c+ 2r, . . . , c+ (`− 1)r
}
.

The Euler multiplicity µ∗ on A H` is given by

Q(A H` , µ∗) = x
(k+m)r+1
1 · · ·x(k+m)r+1

`−1

∏
1≤i<j≤`−1

(xri − xrj)2m+1.

This can be seen as follows.
For a hyperplane Hij = ker(xi − xj) (i, j 6= `) the localization is of size |AH`∩Hij | = 2,

hence the Euler multiplicity is 2m+1 by Lemma 2.3. For a hyperplane Hi = ker xi (i 6= `)
the localization is given by

xmii xm`` (xri − xr`)2m+1

with exponents (c̃+ m̃i + m̃`, (k+m)r+ 1), by Corollary 4.12, and by decreasing m`, the
�rst exponent changes, again according to Corollary 4.12. Hence the Euler multiplicity
is (k +m)r + 1.
Now, by induction on `, we know that (A H` , µ∗) is free, and we compute the exponents

as follows. The corresponding constant c∗ from the statement of the theorem is c∗ =
((l − 2)m+ k +m)r + 1 = ((l − 1)m+ k − 1)r + r + 1 = c+ r. Hence,

exp(A H` , µ∗) = {c∗, c∗ + r, . . . , c∗ + (`− 2)r} = {c+ r, c+ 2r, . . . , c+ (`− 1)r}.
The theorem now follows by Theorem 2.2. �

Note that Theorem 4.1(ii) follows from Theorem 4.13.
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