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FREENESS OF MULTI-REFLECTION ARRANGEMENTS
VIA PRIMITIVE VECTOR FIELDS

TORSTEN HOGE, TOSHIYUKI MANO, GERHARD ROHRLE, AND CHRISTIAN STUMP

ABSTRACT. In 2002, Terao showed that every reflection multi-arrangement of a real
reflection group with constant multiplicity is free by providing a basis of the module
of derivations. We first generalize Terao’s result to multi-arrangements stemming from
well-generated unitary reflection groups, where the multiplicity of a hyperplane depends
on the order of its stabilizer. Here the exponents depend on the exponents of the
dual reflection representation. We then extend our results further to all imprimitive
irreducible unitary reflection groups. In this case the exponents turn out to depend on
the exponents of a certain Galois twist of the dual reflection representation that comes
from a Beynon-Lusztig type semi-palindromicity of the fake degrees.
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1. INTRODUCTION
In his seminal work | |, Ziegler introduced the concept of multi-arrangements gen-
eralizing the notion of hyperplane arrangements. In | |, Terao showed that every
reflection multi-arrangement of a real reflection group with constant multiplicities is free,
see also the approach by Yoshinaga | |- Our aim is to generalize this result from real

reflection groups to unitary reflection groups, see Theorems 1.1 and 1.2.

More precisely, we first extend Yoshinaga’s construction of a basis of the module of
derivations to well-generated unitary reflection groups by using recent developments of
flat systems of invariants in the context of isomonodromic deformations and differential
equations of Okubo type due to Kato, Mano and Sekiguchi | |. We then further
extend the results to the imprimitive reflection groups by use of a permutation of the
irreducible complex representations that is studied in the context of the representation
theory of the Hecke algebra and which induces a semi-palindromic property on the fake
degree polynomial | , , -

Suppose that W is an irreducible unitary reflection group with reflection representa-
tion V = C’. Denote the set of reflections by R = R(W), and the associated reflection

2010 Mathematics Subject Classification. 20F55, 52C35, 14N20, 32525.
Key words and phrases. Multi-arrangement, reflection arrangement, free arrangement, unitary re-
flection group, systems of flat invariants and derivations.
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arrangement in V by o = &/ (W). For H € o/, let ey € N := {0,1,2,...} denote the
order of the pointwise stabilizer of H in W, and consider the multiplicity function

w:d >N, w(H)=ey

for each hyperplane H € /. For m € N let mw and mw + 1 denote the multiplici-
ties defined by mw(H) = mey and mw(H) + 1 = mey + 1 for H € &/, respectively.
Following | |, the Cozeter number of W is given by

1 1
h=hw ;:ZHEZJH:ZQRHym),

generalizing the usual Coxeter number of a real reflection group to irreducible unitary
reflection groups. Let Irr(WW) denote the irreducible complex representations of W up to
isomorphism. For U in Irr(WW) of dimension d, denote by

expy (W) = {n1(U) < ... <ny(U)}

the U-exponents of W given by the d homogeneous degrees in the coinvariant algebra
of W in which U appears. In particular, the exponents of W are

exp(W) == expy (W) = {m (V) < ... <ny(V)}
and the coexponents of W are
coexp(W) := expy.(W) = {ni(V*) < ... < (V) }.
The group W is well-generated if n;(V') +ngp1-;(V*) = h, e.g., see | , , |-

We are now in a position to state our first main result, generalizing Terao’s theorem
from | | to the well-generated case.

Theorem 1.1. Let W be an irreducible, well-generated unitary reflection group with
reflection arrangement o/ (W). Let w : o/ (W) — N given by w(H) = ey, and let m € N.
Then

(i) the reflection multi-arrangement (o (W), mw) is free with exponents
exp(o (W), mw) = {mh, . ,mh},
(i1) the reflection multi-arrangement (o7 (W), mw + 1) is free with exponents
exp(& (W), mw + 1) = {mh 4+ n (V*),...,mh+ ny(V*)}.
Note from above that coexp(W) = expy. (W) = {ni(V*), ..., ne(V*)}.

In the special case when W is a Coxeter group, Theorem 1.1 recovers Terao’s theo-
rem | |, as then w = 2 and coexp(W) = exp(W).

We prove this theorem in Section 3. Indeed, we extend Yoshinaga’s construction | ,
Thm. 1] of a basis of the module of derivations to well-generated groups by using a recent

construction due to Kato, Mano and Sekiguchi | |. See Theorem 3.18 for the precise
formulation, which is our generalization of | , Thm. 7] to the well-generated setting.
In | |, the authors construct flat systems of invariants of well-generated unitary

reflection groups in the context of isomonodromic deformations and differential equations
of Okubo type. For real reflection groups, the notion of flat systems of invariants was
introduced by Saito, Yano and Sekiguchi in | |. The existence of such flat systems
was shown in loc. cit. in all real types except E; and FEg. Saito then gave a uniform

construction in all real types in | |-
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Our second main result extends Theorem 1.1 further to the infinite three-parameter
family W = G(r,p,¢) of imprimitive reflection groups. It turns out that the corre-
sponding multi-arrangements are also free. However, the description of the exponents
is considerably more involved and depends on the representation theory of the Hecke
algebra associated to the group W. To this end, let ¥ denote the permutation on Irr(1)
introduced by Malle in | , Sec. 6C|, having the semi-palindromic property on the
fake degrees of W. This is, for any U in Irr(W) of dimension d, we have

ni(U) + nap1-i(Y(U")) = hy,

where hy = |27| — > . x(r)/x(1) with x being the character of U. A direct calculation
shows that hy, = hy is the Coxeter number of W. Moreover, the permutation ¥ of
Irr(W) is the identity if and only if W is well-generated | , Cor. 4.9].

Theorem 1.2. Let W = G(r, p, () with reflection arrangement o/ (W). Let w : o/ (W) —
N given by w(H) = ey, and let m € N. Then

(i) the reflection multi-arrangement (o (W), mw) is free with exponents
exp(« (W), mw) = {mh, . ,mh},
(ii) the reflection multi-arrangement (& (W), mw + 1) is free with exponents
exp( (W), mw+ 1) = {mh +n (TT(V), . mh 4 (BT (VE)

Note this time that expg—m = {n (T (V*)),...,n(T™(V*))}. We prove a
more general result in Theorem 4 1

Remarks 1.3. (i) The group G(r,p,¥) is well-generated if and only if p € {1,r}. Thus,
Theorem 1.2 extends Theorem 1.1 to the class of imprimitive reflection groups that are
not well-generated.

(ii) While the simple arrangements of the reflection groups G(r,1,¢) and G(r,p,¢) for
1 < p < r coincide, the multi-arrangements above depend on the underlying group, since
the multiplicities of the coordinate hyperplanes differ.

(iii) Theorems 1.1 and 1.2 only leave unresolved the remaining eight irreducible unitary
reflection groups of exceptional type that are not well-generated, namely

gexc = {G77 G117 G127 G137 G157 G197 G227 GBI}'

Computational evidence for each of these remaining groups with small values for the
parameter m € N suggests that Theorem 1.2 also holds with W = G(r, p, {) replaced by
W e gexc-

(iv) The semi-palindromic property of the permutation ¥ of Irr(1W) in Theorem 1.2
is an analogue of a semi-palindromicity of the fake degrees as observed by Beynon and
Lusztig | , Prop. A] and later explained by Opdam | |. The definition of ¥
depends on the representation theory of the corresponding Hecke algebra | , |.
Moreover, it plays a crucial role in the study of rational Cherednik algebras | ,
Thm. 1.6]. The intrinsic appearance of W in the present context of multi-derivations of
reflection groups is rather unexpected.

The paper is organized as follows. In Section 2, we provide all needed background
on hyperplane arrangements and unitary reflection groups. The proof of Theorem 1.1 is
carried out in Section 3, along with its strengthened form, Theorem 3.18. Theorem 1.2

is proved in the final Section 4 as a consequence of Theorem 4.1.
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2. PRELIMINARIES

We first provide some basic material on hyperplane arrangements and multi-arrange-
ments, and their modules of derivations. We then recall the needed background on unitary
reflection groups. For general information about reflection groups and their arrangements,
we refer the reader to | , : , |

2.1. Multi-arrangements and their modules of derivations. Let S = S(V*) de-
note the ring of polynomial functions on V considered as the symmetric algebra of the
dual space V*. If x1,..., 2, is a basis of V*, we identify S with the polynomial ring
Clz1, ..., x]. Letting S, denote the C-subspace of S consisting of the homogeneous poly-
nomials of degree p (along with 0), S is naturally Z-graded by S = ®,ezS,, where we
consider .S, = 0 for p < 0.

Let Derg be the S-module of C-derivations of S. Then 0,,, ..., 0,, is an S-basis of Derg.
We say that 6 € Derg is homogeneous of polynomial degree p provided 6 = > f;0,,, where
fi € Sp for each 1 <7 < £. In this case we write pdeg = p. Let Derg, be the C-subspace
of Derg consisting of all homogeneous derivations of polynomial degree p. Then Derg is
a graded S-module, Derg = ®,czDerg, .

A hyperplane arrangement </ in V is a finite collection of hyperplanes in V. For a
subspace X of V', we have the associated localization of &/ at X given by

oy ={Hed | XCH}C.
Its rank is defined to be the codimension of X in V.
Following Ziegler | |, a multi-arrangement (<7, v) is an arrangement .o/ together
with a multiplicity function v . &/ — N assigning to each hyperplane H € ./ a multiplicity
v(H) € N. If v = 1, then (&, v) is called simple. We only consider central multi-

arrangements (<, v), i.e., 0 € H for every H € <. In this case, we fix ay € V* with
H = ker(ay) for H € o/. The order of (<, v) is given by

| = |(o,v)| = ) v(H),
Heo
and its defining polynomial Q(</,v) € S is
QA ,v) = H alyq(H).

Hed
The module of derivations of (<7, v) is defined by
D(,v) = {0 € Derg | 6(ay) € Sa'n™ for each H € o/ }.

We say that (&7, v) is free if (o7, v) is a free S-module | , Def. 6]. In this case,
D (o, v) admits a basis {6y, ..., 60} of £ homogeneous derivations | , Thm. 8]. While
the 6;’s are not unique, their polynomial degrees pdeg6; are. The multiset of these
polynomial degrees is the set of exponents of the free multi-arrangement, (o, v). It is
denoted by

exp(,v) = {pdeg(@l), o ,pdeg(@;)}.

Next we record Ziegler’s analogue of Saito’s criterion. The Saito matriz of 61, ...,0, €

Derg is given by
Or(x1) -+ Oi(ze)
M(by,...,0,) = : : )

9@(1’1) (94($g)
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see | , Def. 4.11].

Theorem 2.1 (| , Thm. 8|). Let (&7,v) be a multi-arrangement, and let 6., ...,60, €
D(,v). Then the following are equivalent:

(i) {01,...,00} is an S-basis of D (<, v).

(i1) det M (01, ...,60,) = Q(,v).
In particular, if each 0; is homogeneous, then both are moreover equivalent to the following:
(7ii) 6y, ...,00 are linearly independent over S and > pdeg6; = deg Q(,v) = |v|.

In the statement and later on, the sign = denotes, as usual, equality up to a non-zero
complex constant. Terao’s celebrated Addition-Deletion Theorem | | plays a crucial
role in the study of free arrangements, see | , Thm. 4.51|. We next describe its version
for multi-arrangements from | |. Let («7,v) be a non-empty multi-arrangement,
i.e., |v| > 1. Fix Hy in o with v(Hy) > 1. Its deletion with respect to Hy is given by
(7', V'), where v'(Hy) = v(Hy) — 1 and V/(H) = v(H) for all H # H,. If V/(Hy) = 0,
we set &' = of \ {Hp}, and else set &' = of. Tts restriction with respect to Hy is given
by (&7",v*), where &/ ={H N Hy | H € &/ \{Ho} }. The Euler multiplicity v* of <"
is defined as follows. Let Y € &/”. Since the localization % is of rank 2, the multi-
arrangement (2%, vy ) is free where we set vy = v|y to be the restriction of v to <% | ,
Cor. 7]. According to | , Prop. 2.1], the module of derivations ® (2%, vy ) admits a
particular homogeneous basis {0y, ¥y, 0s, ..., 0}, where 6y is identified by the property
that 0y ¢ apDerg and 1y by the property that ¢y € agDerg, where Hy = ker ag. Then
the Euler multiplicity v* is defined on Y as v*(Y) = pdegfy. Crucial for our purpose
is the fact that the value v*(Y) only depends on the S-module ® (2%, vy ). Sometimes,
(o, v), (', V) and (7", V") is referred to as the triple of multi-arrangements with respect
to HQ.

Theorem 2.2 (| , Thm. 0.8]). Suppose that (<7, v) is not empty, fix Hy in </ and
let (o7 ,v), (' V') and (", v*) be the triple with respect to Hy. Then any two of the
following statements imply the third:

(i) (o, v) is free with exp(</,v) = {b1,...,bi—1,be};

(ii) (', V') is free with exp(&/’, V') = {by,...,bi—1,bp — 1};
(7ii) (", v*) is free with exp(</",v*) = {by, ..., be_1}.

We need the following fact in the sequel.

Lemma 2.3 (| , Prop. 4.1(1)]). Let Hy € «. Suppose X € /M0 with ofx =
{Hy, H}. For v a multiplicity on </, we have v*(X) = v(H).

2.2. Unitary Reflection Groups. Let V = C’, and consider a finite subgroup W of
GL(V). Then W is a unitary reflection group if it is generated by its subset R = R(W)
of reflections, that is, the elements » € W for which the fized space

Fix(r) :=ker(l —r)={veV |[rv=v} CV
is a hyperplane. We denote by o/ = &7 (W) the associated reflection arrangement given
by the collection of the reflecting hyperplanes. For H € o7, let Wy = {w € W | Fix(w) 2
H?} be the pointwise stabilizer of H in W and set ey = |Wy|. Indeed, the elements in Wy

except the identity are exactly the reflections » € R such that Fix(r) = H, explaining
the equality

Hed
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Results of Shephard and Todd | | and of Chevalley | | distinguish unitary re-
flection groups as those finite subgroups of GL(V') for which the invariant subalgebra of
the action on the symmetric algebra S = S(V*) = Clzy, . . ., z/] yields again a polynomial
algebra,

sV = S(V*)W = Clfis--s fil-

While the basic invariants fi,..., f; are not unique, they can be chosen to be homo-
geneous, and then their degrees d; < --- < d, are uniquely determined and called the
degrees of W.

The group W is called irreducible if it does not preserve a proper non-trivial subspace
of V. Tt is well-known that such an irreducible reflection group can be generated either
by ¢ or by ¢ + 1 reflections. An important subclass of irreducible unitary reflection
groups are those that are well-generated, i.e., which can be generated by ¢ reflections.
In particular, this subclass contains all (complexifications of) irreducible real reflection
groups and all Shephard groups (symmetry groups of regular complex polytopes | ,
Def. 6.119]).

Let S denote the W-invariants without constant term, and let Coinv(W) := S/SV
be the ring of coinvariants of W. Observe that Coinv(W) is also a graded W-module,
and indeed isomorphic to the regular representation of W, see | , §4.4]. Thus, an
irreducible representation U in Irr(1W) of dimension d occurs d times in Coinv(IV) as a
constituent. The U-exponents of W are then given by the multiset of d homogeneous
degrees in the coinvariant algebra of W in which U appears,

expy(W) = {n1(U) < ... <ny(U)}.

In particular, exp(W) = expy, (W) are the exponents of W and coexp(W) = expy.(W)
are the coerponents of W. Tt is moreover well-known that the degrees of W and the
exponents are related by d; = n;(V') + 1, implying

¢
(2.5) Rl =) ni(V).
i=1
Terao showed in | | that the reflection arrangement o7 of W is free, and that the
exponents of the arrangement coincide with the coexponents of W, cf. | , Thm. 6.60],
exp &/ = coexp(WV).

Consequently, thanks to | , Thm. 4.23], we have

(2.6) ot | = Zni(v*).

The next definition can be found in | ]. The two equalities follow from (2.4), (2.5),
and (2.6).

Definition 2.7. Let W be an irreducible unitary reflection group. The Cozeter num-
ber h = hyy is defined as
¢

Hed =1
6
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Remark 2.8. It was observed by Orlik and Solomon in | , Thm. 5.5] that the
group W is well-generated if and only if the exponents and the coexponents pairwise
sum up to the Coxeter number. This is,

nl(V) + ng+1_i(V*) =h

for all 1 < i < ¢. In this case, the Coxeter number h = dy = ny(V) + 1 > d,_; is the
unique largest degree of a fundamental invariant, see | , §12.6].

The fake degree of U in Irr(W) of dimension d is defined to be the polynomial

d
folg) =) q"" e N[g],
i=1
cf. | , Eq. (6.1)]. In | , Thm. 6.5], Malle showed that there is a permutation ¥ of
Irr(W) so that the fake degree polynomials fi;(q) satisfy the semi-palindromic condition
(2.9) fo(@) = ¢" fow(g7"),
where
(2.10) ho == R| =Y xu(r)/xu(1).
rer

Equivalently, hy is the integer by which the central element ) (1 —r) € C[W] acts
on U. In particular, for any U in Irr(W) of dimension d, we have

nl(U) + nd+1_i(\I/(U*)) = h/U'

The following observations provide, for later reference, the formula in Theorem 1.2(ii) in
a form analogous to the one used in | , Sec. 3.

Lemma 2.11. The parameter hy defined in (2.10) satisfies hy = hy~ and hy = hyu).
In particular, we have, for any 1 <1 </{ and any m € N,

(2.12) mh +n(U""(V*)) = (m + 1)h — ngq_(OH(VH5).

Proof. The equality hy = hy- is a direct consequences of (2.10). The equality hy = hy

follows, for example, from the description of ¥ as the operator ¢, in | , §2.12]

1
ol w

together with the observation in | , §2.8] that hga ) = hy. Plugging in
A

Y=m=1(V*)* for the irreducible representation U in (2.9) and using that hgy-m-1(y«) =

hy = h yields (2.12). O

See also | , Prop. 7.4] and | , § 1.4] for further properties of the permu-

tation U of Irr(W). Note that ¥ is the identity permutation if and only if W is well-
generated | , Cor. 4.9].

We finally define the order multiplicity w of the reflection arrangement o7 = o7 (W) by
w(H) = ey for H € &/. In other words, the multiplicities are chosen so that the defining
polynomial Q(</ (W), w) of the multi-arrangement (o7 (W), w) is the discriminant of W,
cf. | , Def. 6.44],

Qs (W),w) = [] o
)

Hed (W
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3. PROOF OF THEOREM 1.1

In this section, we prove a strengthened version of Theorem 1.1. Our method is based
on the approach by Yoshinaga | |, also relying strongly on recent developments of
flat systems of invariants for well-generated unitary reflection groups in the context of
isomonodromic deformations and differential equations of Okubo type due to Kato, Mano
and Sekiguchi | |. See Theorem 3.18 for the explicit formulation.

Let V : Derg x Derg — Derg be an affine connection. Recall that V is S-linear in the
first parameter and C-linear in the second, satisfying the Leibniz rule

Vs(pd') = d(p)d" +pVs(¢)
for 0,0 € Derg. The connection V is flat if V5(0,,) = 0 for all § € Derg, or, equivalently,

(3.1) Vs(0') = (0pi)on,

7

for 6,0" € Derg with &' = > p;0,,. Alternatively, this can be characterized by
(3.2) Vs(0')(a) = 6(6'(ar))

for all &« € V*. Observe that for V flat and ¢,0" homogeneous, (3.1) implies that the
derivation V(d') is again homogeneous with polynomial degree

(3.3) pdeg (V5(0')) = pdeg(é) + pdeg(d') — 1.
In the sequel, we largely follow the construction of flat systems of invariants as given
in | , Sec. 6] in order to lift the constructions in | | to the well-generated case.

As before, we assume in this section that W is an irreducible well-generated unitary

reflection group. Let Ff ... F be the special homogeneous fundamental invariants in
C|x] with x = (z1,...,x/), as given in | , Thm. 6.1]. Recall that deg (FZ-H) =d; =
ni(V)+1and C[FL, ... Fl]=SW.

Consider indeterminates t = (¢;,...,t;) together with the map t; — FI giving an
isomorphism

R:=C[t] 2 C[F},..., F].

Set moreover C[t'] := Clty, ..., t,_1], its subring generated by t' = (¢1,...,t,—1). In order
to keep track of the information about the degrees of FIi ... Ff following | :
Sec. 6], we define weights of the variables ¢; by

w(t;) == deg(F/h = d;/h = (n;(V) +1)/h.

As usual, set

83;1 8t1/8x1 s atg/al'l
Jogjox = | ¢ | (t,... ) = : : e Cx]™*
a” th/(?a:g s 8@/8374
with inverse matrix Jox/a¢ = ‘]6_1:1/6x = (O, 0)"(x1,...,20). It is well-known that
det Jogjox = [ e i see | , Thm. 6.42].

The primitive vector field

D :=0,, € Derg
8



is given by

o O 9
o1 oz Oy
D =det Joxjae | * . : Dol
o, O 9
Oxy Oxy Oz
implying in particular that D is homogeneous with
(3.4) pdeg(D) = —n(V) = —(h — 1)

when considered inside Y S C(x)0,,. We have seen in Remark 2.8 that h = d; > dy_;. The
primitive vector field D is thus, up to a non-zero complex constant, independent of the
given choice of fundamental invariants.

Consider X := V /W = spec(C|[t]) and let A(t) be the discriminant of W given by
A(F (x),.... Ff(x) = ][ off

Hed
with vanishing locus H := {p € X | A(p) = 0}, cf. | , Def. 6.44]. Let Derg be the
R-module of logarithmic vector fields, and let
Derp(—log A) := {6 € Derg | 0A € RA}

be the module of logarithmic vector fields along H. We have an R-isomorphism between
such logarithmic vector fields and W-invariant S-derivations,

(3.5) Derg(—log A) 2 Dery ,
and Derg(—log A) is a free R-module, cf. | , Cor. 6.58].
Bessis showed in | , Thm. 2.4] that there exists a system of flat homogeneous

derivations {&1,...,&} of Derg(—log A). This means, its Saito matrix

E(ty) -+ &lte)
Me:=M(&,....e)=| + .

&ilt) - &ilte)

decomposes as
(3.6) M, =t + MOt
with MO (t') € C[t']**. As before, we have (&, ...,&)" = M¢(0y,. .., 0;,)". Moreover,

we obtain that A(t) is a monic polynomial in ¢, with coefficients in C[t'], i.e.,
At) =t +ar (O + . 4 a (8t + ao(t).

As observed in | , Lem. 3.12|, such a system of flat homogeneous derivations
is unique. Following | , Egs. (52), (53)], where this flat system is denoted by
(Vi ..., V1), we have

W (S (t:) = 1 —w(t;) +w(t:)
and

51 = Zw(tz)tﬁtl € DerR
is the Fuler vector field mapped to the Fuler derivation

(3.7) E = Zxﬁm € Dery’
under the isomorphism in (3.5). As described in | , Lem. 3.9], one decomposes
(3.8) M =) w(t;)t;BY

9



and defines the weighted homogeneous (¢ x ¢)-matrix C(t) such that

(3.9) BY=0C/ot; and &C = M.

In this case, | , Thm. 6.1] yields that ¢; = Cy; and thus, t is a flat coordinate system
on X associated to the Okubo type differential equation

(3.10) dY = —M; ' dC By Y,

where B, is the diagonal matrix
By, = diag (w(t;) — (h+1)/h) = diag ((d; — h — 1)/h),
and
Y= =B (&, ..., &) (w1, ..., 20) = =B MeJox ot
Define a connection V on Derg by

Oy, 0,
VI | =-MI®)dC) (B +10) | 5|
atg atg

where dC' = 3" B@dt; is the differential of the matrix C(t) as given in (3.9).

Proposition 3.11. The connection V extends to a connection on Derg which is flat,
1.€.,

Or,
V1] :|=0.
O,
Proof. Using the definition of V and the Leibniz rule, we obtain
atl 83&‘1 aﬂcl
VI | =dlogee | @ | +Joxjae V
o) Oy Oy
(3.12) K ‘ ‘
Or,
= _Mgl dC (Boo + ]1() Jax/at
O,

By (3.10), we have
dY = —B' (dM¢ Joxjor + Me dJoxsor)

(3.13) =—M;"dC By, Y

= dC Jax/at,
where all B® and M mutually commute, according to | , Eq. (13)]. Thanks
to | , Eq. (28)], we have

dM¢ = dC + [dC, B
The identity (3.13) then implies

—Me dJoxjor = Boo dC' Joxjoe + (dC + [dC, Bso)) Jox /ot

=dC (Boo -+ ﬂé)Jax/ﬁt'
10
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We finally deduce from (3.12) and (3.14) that

On,y O,
Jax/at \Y% = —<Mgl dC (BOO + ]lg)Jax/gt -+ djax/6t> =0.
O, Or,
Since Jyx s is invertible, the result follows. O

One further main ingredient in the proof of Theorem 1.1 is the following proposition.
Proposition 3.15. We have C[t|-isomorphisms
Vp : Derg(—log A) — Derg
V,! i Derg — Derg(—log A)

given by
O O
Vo | i | =—M (B +1y) | :
(3.16) Ou Ou
Oy, & O,
Vol l i | =B | ) =B M |
O, & O,

Proof. The first equation in (3.16) is a direct consequence of the fact that B¢) = 1, which
follows from (3.8) in light of (3.6). On the other hand, we have

& O
Vp | ]| =Vp | Me| :
& O,
Oy Oy
= aa—]\t/f | +M:Vp
O, O,
O, O,
= : - (Boo + né) :
O, A,
Oy
=B | 1 ],
O,
where we used that 88—]\;[; = 1y, see again (3.6). Recall that {&,...,&} is a basis

of Derg(—logA) and one directly calculates that Vp is C[t']-linear. We thus obtain
that Vp : Derg(—log A) — Derp is a C[t']-isomorphism with inverse

O &
Vo |l | =-Bx |
Ok, &1
This completes the proof of the proposition. O

With Proposition 3.15 in hand, we obtain an explicit formula for computing Vgl as

follows.
11



Corollary 3.17. We have that V' : Derp — Derg(—log A) is given by the linearity
in C[t] and the inductive formula

L
vﬁ(t?aﬂ') - (k+1)i}zl+1fdi (t%fﬂfi - kz [M(O)<tj):|ijv51<tfilatj>)
j=1
or S wil ase case = as gwoen in . . ere = — tg ¢ 1S as
for k € Ny with b k =0 as given in (3.16). Here MO(¢#) = M — t,1, i

Proof. Recall that (&,...,&)" = M¢(0y,, ..., 0,)". The computation
Vp (i) = kty ™ Eprmi + Vi (Eer1i)

L
= kty ! (tgati +) (MO (t’)}ijﬁtj> + =L,
j=1

J4
— (k+1)}2+1_ditlgati 4 k Z [M(O)(tl)] ijtlz—latj

j=1
implies that
¢

150, = gt (Vo(ti€e—a) =k Y [MO®)] t7719,).,

j=1
where we used that (k +1)h+ 1 —d; > 0. Applying V' to both sides and using that it
is C[t']-linear yields the claim. O

The following is our generalization of | , Thm. 7] to the well-generated setting.

Recall the Euler derivation E from (3.7).

Theorem 3.18. Let W be an irreducible, well-generated unitary reflection group with
reflection arrangement <f . Let w : &/ — N given by w(H) = ey, and let m € N. Suppose
that o/ — {0,1} such that ©(<f, ) is free with homogeneous basis 01, ...,0,. Then
D(A,mw + ) is free with basis
V91V5m(E), R V@EVBm(E).
Moreover,
exp (&, mw + p) = {mh + pdeg(6:), ..., mh + pdeg(6,) }.
Armed with Theorem 3.18, we derive our first main theorem.

Proof of Theorem 1.1. One obtains the two statements in the theorem from the special
cases in Theorem 3.18 with 4 = 0 and pu = 1. Freeness in the first case is trivial, and is
due to Terao | | in the second. O

Proof of Theorem 3.18. Let § € Derg and o = ay with H € &/. We first show that, for
any m € N,

(3.19) Vp()a € a™S <<= Jda€a™teHs.

For the reverse implication, suppose that da = a?er for some f € S and k£ € N. We
then obtain from (3.2) that

o .. O dakteny
ox1 o1 oz1
Vp(6)a = D(6a) = det Jox/ot | : :
o ... Otea Qakterf
Oxy Oxy Oz

12



It now follows from the product rule for derivations that Vp ()« is divisible by o*.
For the forward implication, assume that k is maximal such that da = ofT¢# f. We
show that in this case, Vp(d)a ¢ oft1S. We may assume, after a possible change of

basis, that a = x,. Since det Jyx 5y = det in_tzl/ax = (HHle oﬁf—l)fl, we have to show
that the maximal minor

ot Ot

oz oz
(3.20) : :

ot .. Ot

Oz Oxg_1

is not divisible by . This follows from a variant of the argument in the proof of | ,
Lem. 6.41]. Arguing as in loc. cit., the sequence (hy,..., hy) = (t1(x),...,ti—1(x),x¢) is
regular. Because the considered determinant equals

ot O Omy

o0z ox Ox1

ot . 8t27 1 81121 5
Owg_1 Oxg_1 Oz

o .. O 0w

Oxy Oxy Oxy

applying loc. cit. directly shows that this determinant does not belong to the ideal gener-
ated by (t1(x),...,t—1(x),x¢). In particular, the determinant is not divisible by z, = «,
as desired.

Next, observe that (3.19) and Proposition 3.15 immediately imply
Sa€aS —= V' (6acaftng

for 6 € Derg, forcing V5,"(E)a = o™ f for some f € S. Thus, applying V, for
0 € ©(7, i) to both sides and using (3.2) entails

VoV " (E)a = o ((meg + 1)(0) f + a(0(f)).

As fa is divisible by o) and 0 < pu(H) < 1, we obtain that V,V,™(E)a is divisible
by amertiH) implying that

VoV (E) € D(, mw + p).

For 0§ € (<7, ) homogeneous, we obtain from (3.3) and (3.4) that V,V,™(F) is homo-
geneous as well with

pdeg (VoV5™(E)) = mh + pdeg 6.

Let now 6, . .., 6, be the given homogeneous basis of D (7, uu). Then, since ) pdeg(6;) =
||, we immediately get

4
> pdeg (Vo,Vp"(E)) = mhl + || = [mw + pl.
i=1

The statement then follows with Theorem 2.1(iii). O
13



3.1. An example. We finish this section with a detailed example of the computation of
the basis for D (o7 (W), w) with W = G(3,1,2). In this cases, the degrees are

d1 == 3, d2 - h - 6
We refer to | , Rem. 6.2] for a general strategy how to compute a flat system
of invariants from the potential vector field corresponding to the Okubo type differential

equation (3.10) as defined in | , Def 4.2]. Such have been computed in many types
in | |, see also | |

Given such a potential vector field § = (g1(t), ..., ge(t)) and a flat system of invariants
Fi(x),..., F(x), the general strategy is as follows:

(1) Compute B® using [BD];;, = %, as given in the proof of | , Prop. 4.4].
i0lj

2) Compute M = 3" w(t;)t; B?, as given in (3.8).
3
(3) Compute V™ (E) € Derg(—log A), using Proposition 3.15 and Corollary 3.17.

(4) Transfer V,™(E) € Derg(—logA) into V,™(E) € Derd by specializing t; — Ffi(x)
and using

(atl, P ,ate)tr — Jax/@t (axl, e ,8we)tr.

(5) Given a homogeneous basis 01, ..., 60, of D (7, ) for some p : o — {0, 1}, one finally
uses Proposition 3.11 to compute the homogeneous basis of D (<7, mw + ).

Following | . Sec. 5.17] for G(3,1,2), the potential vector field g = (gi1(t), go(t)) is
given by
g1(t) = 5t1 + tita, go(t) = 4t1 + 183
and a flat system of fundamental invariants is given by

Fio) —ab+ad,  F(x) = ot — Salad + La.

First, we obtain from the degrees that
.
From the potential vector field, we compute

1 242
p1) _ |31 §tT p2) _ |10

O wi
o= O
—_

implying

Next, we compute
1 (0 _ %) T2+ 3 3 (0
1 t1 — 1 t1 — |41 2t2 gl t1
Vb <at2) Boo Me (ab) { 3t, Gta| \Os

V' (t20r,) = g(tﬁl — (M) V5 (8,,) + [M(O)]mvz_)l(atz)))
= S(t2(3t104, + t20y,) — 311V (8y))
= 31150, + 250, — 2t (517 + 262)0), + 5t10,,)
= (2t} + %tltg)?z + (845 — Lt1) 0.

and



Therefore, we have
Vo' (E) = V' (5010, + t20,,)
= 1V51(0h) + Vo' (120,)
= 21 (36 + 262)0;, + 250,) — (261 + 2t1t2) 0, + (885 — Lt1) Oy,
= (1] + Rt1t2)0,, + (&11 + £3)0,, € Derg(—log A).

We next compute

_ 321 27— 5afal _
J@t/@x - 31,% —51'?‘@% + xg s det Jat/ax = —18113 + 18I1$2
and
_ _y | —badad +ad S5axlad — 2}
1 1
Jax/at - Jat/ax = det(Jat/ax) |: _13;% 2 13237% 1
to obtain
Vol (E) = (el — Latad)o,, + (Lol — 1a323)d,, € Derl.
We finally obtain
0=zl — Tata3) O(5=ah — Tadad)
01 := Vo, Vp!(E) = —B-L 112209, B2 12y,
1 O0zy VD ( ) o,  + or, 2
= (%ﬂ? xi’xi)@ - xl%amz
Ozl — taixl) O(557h — 1))
6, =V V—IE: 281 12am 282 1281
2 Ozy VD ( ) axQ 1+ an 2
= — 312300, + (325 — 27{23) 00,

One can easily check that {©1,0,} is indeed a homogeneous basis of D (o7, w).

4. PROOF OF THEOREM 1.2

In this section, we prove in Theorem 4.1 a strengthened version of Theorem 1.2 for the
imprimitive groups G(de, e, £) with

r:=de>2 and {>2.

We fix these parameters throughout. This restriction means we exclude the symmetric
groups G(1,1, /) and the cyclic groups G(d, 1,1) from our subsequent considerations. The
first has been treated in | |, the second is trivial.

Recall that the simple reflection arrangements in the considered cases are given by
Qo) = {(371 7Y H1§i<j§£(x; - 33;) ifd > 1,
H1§i<j§£<m;'ﬂ - x;”) if d =1,
see | , Sec. 6.4]. Moreover,
eg =d for H=ker(x;) with 1 <i </,
eg =2 for H =ker(z; — (x;) with 1 <i<j</land (" =1

The following theorem is our more general version of Theorem 1.2.

Theorem 4.1. Let m,my, ..., my, € N such that q := |(m; —1)/r| does not depend on i.
Seta:=({—1)r,m => my;, and ¢ :=ma+ qr+ 1.
15



(i) The multi-arrangement (&7, 1) with defining polynomial
Qe ) =i oy [ (af —af)™
1<i<j<e
s free with exponents
exp(, 1) = {ma +my,...,ma+ mg}.
(7i) The multi-arrangement (&7, u) with defining polynomial
Q) =™ - '$Zn£ H (2} — x;)Qm-ﬁ-l
1<i<j<t

15 free with exponents
exp(, 1) = {c+m’—€(qr+1), c+rc+2r,...,c+ (0 — 1)7“}
= {(m—q)a+m'—€+1,
ma+ (g+ )r+1,ma+ (g+2)r+1,..., ma+ (¢g+{— 1)r+1}.
In (ii), we provide two alternative formulas for later reference. We prove the two parts

of this theorem in Sections 4.1 and 4.2, respectively.

Armed with Theorem 4.1, we can deduce our second main result, Theorem 1.2. We
treat the three cases d = 1, e = 1, and d, e > 2 separately, and observe that the first two
are well-generated while the third is not.

Proof of Theorem 1.2 (i). For d = 1, we have Coxeter number h = (¢ —1)e. Consider the
defining polynomial

Qe mw) =[] (&f —ap)™™

1<i<j<e

This is the case my; = mgy = ... =my = 0 in Theorem 4.1(i). Thus, (&, mw) is free with
exp(, mw) = {m(ﬁ —De,...,m(l — 1)6} = {mh, o ,mh},
as claimed.

For e = 1, we have Coxeter number h = ¢d. Consider the defining polynomial

Qe ymw) =y -ay™ ] (F —ap)*m

1<i<j<t
This is the case m; = my = ... = my = rm in Theorem 4.1(i). Thus, (&, mw) is free
with
exp(e, mw) = {mfr, . ,mfr} = {mh, .. ,mh},
as claimed.

For d, e > 2, we have Coxeter number h = ({—1)r+d. Consider the defining polynomial
Qe ;mw) = af™ - af™ [T (af —ap)*m
1<i<j<t
This is the case m; = my = ... = my = dm in Theorem 4.1(i). Thus, (&, mw) is free
with
exp(,mw) = {m((t = V)r+d),....m(({ = V)r+d)} = {mh,...,mh},

as claimed. O
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Proof of Theorem 1.2 (ii). For d = 1, we have Coxeter number h = (¢ — 1)r, and
{na(V*), ... one(VH)}={(l—=1)r—0+1, Lr+1,2r+1,...,(0—2)r+1}.

Consider the defining polynomial
Qe mw+1)= [ (af —ap)™*"

1<i<j<e

This is the case my = my = ... = my = 0 in Theorem 4.1(ii). We have a = (¢ — 1)r,q =
—1, and m’ =0, and (&, mw + 1) is free with

exp( ;mw + 1)
={m+n-1r—r+1,
m(e—1)r+1,m(e—1)r+r+1,...,m(f—1)r+(£—2)r+1}
= {mh+(€—1)r—€+1, mh+1,mh+r+1,...,mh+(€—2)r+1}
= {mh+n(V*),...,mh+n(V*)},
as claimed.
For e = 1, we have Coxeter number h = ¢d and
{ni(V*),...,ne(V*)} ={1,d+1,2d + 1,..., (¢ = 1)d + 1}.
Consider the defining polynomial

QA ,mw + 1) = gfmtt ... gdm+l H (2 — x?)Zm—i—l.

1<i<j<e

This is the case r = d,m; = mg = ... = my = dm + 1 in Theorem 4.1(ii). We have
a=l—1)d,qg=m, and m' = ldm + ¢, and (&, mw + 1) is free with

exp(«/,mw + 1) = {Edm+€—€+1,
m(z—1)d+(m+1)d+1,...,m(z—1)d+(m+£—1)d+1}
= {mh+1,mh+d+1,...,mh+(€—1)d—|—1}
= {mh+n(V*),...,mh+n,(V*)},
as claimed.

For d,e > 2, we have Coxeter number h = (¢ — 1)de + d, and, as computed in | :
Sec. 3], we have ord(¥) = e with

(4.2) {n(T°(VF)"),....ne(T3(VH))} =
{d(s(g— Do) —1, d(l—1e—s)—1,....d2e—s)—1,d(c —s) — 1}
for 0 < s < e. We consider the defining polynomial

Qe p) = afm o afm T (afe — 2>,

¢ J
1<i<g<e
17



This is the case m; = mg = ... = my = dm + 1 in Theorem 4.1(ii)). We have a =
(¢ — 1)de,q = b with uniquely written m = be + s for 0 < s < e, and m’ = ldm + (.
Consequently, using (2.12) and (4.2), (&, mw + 1) is free and

exp(e/,mw+1) = {(m—b)(ﬁ—l)de+€dm+1,
(m(€—1)+b+1)de+1,...,(m(€—1)+b+(€—1))de+1}
- {(m—l—l)((f—1)de—|—d)—d((e—s—l)(€—1)+€)+1,
(m+1D)(({—Dde+d)—d((l—1)e—(e—1—135))+
(m+1)((£—1)de+d)—d(e—(e—1—3 }
{(m+ D — g (U5 (V)), . (m+ Db — ng(0e 75 (V)7))
{m—l—l —nl(\lf LV, (mA D) b — ng (BT 1(V*)*)}
{mh+n1 ), ..,mh+ng(V*)},

7

as claimed. O

In the remainder of this section, we prove the two parts of Theorem 4.1 separately.

4.1. Proof of Theorem 4.1(i). We begin with the situation in rank 2 and set S = Clz, y]
in this case.

Lemma 4.3. Let r > 2, m > 1 and k > 0. Define (o, ) by
Qo , 1) = a1 (g yryem,
Then (<, ) is free with
exp(, ) = {(m+k)r+1,(m+k)r+1}.

Moreover, there are homogeneous polynomials qi,qs € Z[x,y| of degrees m and m — 1,
respectively, such that

(i) all coefficients of q1,qs are non-zero, and
(ii) the homogeneous derivations

91 — xkr+1q ( r,yr)aw 4 ykr+1 rq ( yr)ay
92 — kr—i—lyrq <yr’ .Z'T)ﬁx + ykr—&-lql(yr’ xr)ay
form a basis of D (A, ).

Proof. We aim to define ¢; and g, such that 6,(z — y) € (z — y)*™S. Let q(z,y) =
S arty™ and go(x,y) = SO0 biaty™ 1 for some a;, b; € Q. Then

m m—1
P(x,y) — 01 (l’ o y) _ Zaix(i—l—k)r—&-ly(m—i)r . Z bix(i—i—l)ry(m—l—i—f—k;)r—i-l.
=0 1=0
Since we require P(x,y) € (z — y)?*™S, the coefficients aq, ..., dm,bo, ..., b,y form a

solution of the following system of linear equations over Q

(R
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The entries of the corresponding matrix are just given by the exponents of x in ¢y, ¢s.
Dividing the j-th equation by j!, the entries of the respective equations become

((Hk}rﬂ) . _((i—;l)r)

for a; with ¢ = 0,...,m, and, respectively, for b; with « = 0,...,m — 1. We may avoid
the minus sign by replacing b; by —b;. The homogeneous system has 2m equations and
2m + 1 unknowns. Thus, we may choose a non-trivial solution with a;,b; € Z for all i.

Now assume that one of the a; or one of the b; is zero, so that we may omit the
corresponding summand in ¢; or ¢;. This corresponds to deleting the coefficients of this
monomial in the given system of equations. But then, the matrix for j =0,...,2m—1isa
(2mx2m)-matrix, which is invertible thanks to the famous Gessel-Viennot lemma | |-
In this case, there is only the trivial solution. This contradicts the fact that we have
already obtained a non-trivial solution in the previous paragraph. Hence, none of the a;
or b; are zero.

Next, we check that 6, € D(&/, u). By construction, 6;(x) € z**1S, 0,(y) € y* 1S
and 0;(z —y) € (x — y)*™S. Then, for ¢ an r-th root of unity, we have

br(z — Cy) = 2" lau (e, y") — T ga (o, y)
= 2" g (2", (Cy)") — (Cy)*" 2" ga (2", (Cy)")
= P(z,(y) € (v — (y)™"S.
Hence 0; € ©(«/, ). Likewise, we also get that 6, € D(<, ). Observe that
det M (6y,605) = 2"y g (a7 y ) qu (y7, a7) — a0y go (y7 2

is non-zero of degree |u|. (The first part is only divisible by 2**! and the second part
is divisible by z®*+1*1) Thus 6, and 6, are independent over S. Since #; and 6, are
homogeneous and pdeg 6, + pdeg 8y = |ul, it follows from Theorem 2.1(iii) that {6,,6,}
is a basis of D (&7, u)). O

Corollary 4.4. Let r > 2, m > 1, k > 0 and my,my > 0 such that (k — 1)r +1 <
my, mg < kr+ 1. Define (<7, ) by

Q) = a™y™ (2" — y")*"
Then (o, ) is free with
exp(, n) = {rm+my,rm + mo}.

Proof. A basis {01,0,} of D (7, 1) is given by
I e L
01/2"  if k>0, O/y" if k>0,
where ¢, and 6, are given as in Lemma 4.3. O
We next use the rank 2 considerations to prove the general rank ¢ case.

Theorem 4.5. Let 0,r > 2, k>0, my,...,my > 0and (k—1)r+1 <mq,...,my < kr+1.
Define (o, ) by
Qe ) = ai -y T G —ap)™
1<i<j<t
Then (<7, 1) is free with

exp(,p) = {c+mq,...,c+my},
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where ¢ = ( — 1)mr.

Proof. We argue by induction on ¢. Thanks to Corollary 4.4, the theorem holds for ¢ = 2.
Now, suppose ¢ > 2. The proof in this case follows from a further induction on »_ m;.
Thanks to Theorem 1.1, the statement of the theorem holds for m; = ... = my, = 0.
Now let > m; # 0. Without loss, we may assume that m, > 0 is maximal among
the m;. We aim to apply Theorem 2.2 with respect to the hyperplane H, = ker x,. If
my = -+ = my = (k— 1)r + 1, then, in order to being able to apply the induction
hypothesis, requiring the lower bounds on the m;, we replace k by k — 1. Observe that
this replacement is valid as, crucially, the exponents do not depend on k.

The defining polynomial of the deletion with respect to H, is given by

Qe )y = a -y [ (] — )P

1<i<j<t
Now, by induction on Y my, (&', 1) is free with exponents
exp(«' 1)y ={c+my,...,c+my1,c+my— 1}
The Euler multiplicity px* on o/ is given by

Qe ) = a2 (e =gyt
1<i<j<e—1

This can be seen as follows. For a hyperplane H,; = ker(x; —z;) (i, j # () the localization
is of size |y,m,;| = 2, hence the Euler multiplicity is 2m, by Lemma 2.3. For a
hyperplane H; = kerz; (i # ¢) the localization is given by

T r>2m

i Ly

with exponents {rm + m;,rm + m,}, by Corollary 4.4. By decreasing my, the second
exponent changes, again according to Corollary 4.4. Hence the Euler multiplicity is
rm -+ m;.

Now, by induction on ¢, we know that ("¢ 1*) is free, and we compute the exponents

as follows. The corresponding constant ¢* from the statement of the theorem is ¢* =
(¢ —1) — 1)mr = ¢ — mr. Hence,

exp(Z )y ={c" +mi+mr,... . +my_1 +mry={c+my,...,c+me_}.
The theorem now follows by Theorem 2.2. O
Note that Theorem 4.1(i) follows from Theorem 4.5.

4.2. Proof of Theorem 4.1(ii). The derivations are constructed in a similar way as in
the previous case. Hence we construct a polynomial whose coefficients are the solution of
a system of linear equations which depend on several indeterminates. The key observation
in the previous case was the regularity of a matrix whose entries consist of certain binomial
coefficients. It turns out that in the present case the entries of the matrix consist of
differences of certain binomial coefficients. The application of the following technical
lemma in the present situation was communicated to us by Christian Krattenthaler.

Lemma 4.6 (| , Lem. 7|). Let X1, Xo, ..., X, Ao, As, ..., Ap, C be indeterminates,
and let po,pi,...,Pm—1 be polynomials in a single variable such that degp; < 2j and
p;(X) =p;(C—=X) for j=0,1,...,m —1. Then,

det ( ﬁ <(Xi — Ap)(X; — Ay — C)) 'le(Xz')>

1<i,j<m
k=j+1
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= ] -X)(C—Xi— X)) []pica(=A0).

1<i<j<m i=1

Comparing the coefficient of A?"~24%™*... A% in the identity in the previous lemma,
we obtain

(4.7) 1;}52771 (pj-1(X3)) = 1<H< (Xi = X;)(C - X; — Xj) 11 i1
<i<j<m i=

where g; is the leading coefficient of p;(X).
Utilizing (4.7), we obain the following consequence.

Corollary 4.8. Let A,B,m € N such that A— B # 0 mod r, and set C' = B:A7
X,=1—1, and

o g (57 - () e

Then the left-hand side of (4.7) specializes to

A+ri B —ri
det . - . )
0<i,j<m—1 27 +1 27 +1

which s not identically zero.
We use this corollary repeatedly in the subsequent lemma.
Lemma 4.9. Let m > 1 and k > 0. Define (<7, ) by
Qat, i) = ahrFlyhr+l(gr — yr)2m+L,
Then (<, 1) is free with
exp(, ) = {(m+k)r+1,(m+k+1)r+1}.

Moreover, there are polynomials q1,qs € Z|x,y| of degree m such that
(i) the coefficients of ™ and y™ in qi, gz are non-zero and
(71) the homogeneous derivations
01 = xkr—‘rlql (xr7 y’/‘)am + ykr+1q1 <y1ﬂ7 xr)ay
92 — xkr+1yrq2(x7" yr>6x + ykT—"—llETQQ(yT,ZUT)ay

form a basis of D (<, ).

Proof. We aim to define ¢; such that 6;(x — y) € (z —y)*"™S. Let ¢ = > 1" az'y™ "
with a; € Q. We require that
P(ZE, y) = 01 (ZL’ o y) — a; (m(i—&-k)r—&-ly(m—i)r o x(m—i)ry(i—‘rk)r—f—l) c (l’ . y)2m+15«.
i=0
Hence, the coefficients aq, ..., a,, form a solution of the following system of linear equa-
tions over Q

(4.10) % ((%)j P) (,2) = 0
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for 7 =0,...,2m. Since P(z,y) = —P(y, x), the identity (4.10) holds for a given even j,
provided it holds for all j* with 0 < j' < j. (In particular, it holds for j = 0.)

Because we have m+1 variables and m equations, the system has a non-trivial solution.
We may choose one such non-trivial solution with coefficients in Z.

Suppose a,, = 0. Then we may remove the last column of the matrix in (4.10). The
determinant of this matrix equals

o (5 - ()

which is not identically zero, thanks to Corollary 4.8 for the parameters A = kr + 1 and
B = mr. Hence, (4.10) only admits the trivial solution, contradicting the above choice
of a non-trivial solution.

Suppose ap = 0. Then we may remove the first column of the matrix in (4.10). Its
determinant equals, after substituting ¢ by ¢ + 1, the determinant

det ((+k+Dr+1\ ((m—i—1)r
0<i,j<m—1 2j 41 2j 41

which is not identically zero, again thanks to Corollary 4.8 for the parameters A =
(k4 1)r+1 and B = (m — 1)r. Hence, we obtain an analogous contradiction as in the
previous case.

Next, we check that 6, € D(&/, u). By construction, 6,(x) € 2**1S, 0,(y) € y* 1S
and 0;(z —y) € (x — y)*" LS. Then, for ¢ an r-th root of unity, we have

61 (J: - Cy> = xkr+IQ1 (‘rrv yr> - Cykr+1Q1 (yra x?")
=" a2, (¢y)") = ()" a((Cy).a")
= P(z,¢y) € (z = ¢y)**'S.
We aim to define ¢, such that fx(x — y) € (@ — y)*™ S, Let go = > " biz'y™ " with
a; € Q. We require that
P(I, y) — 92(1, . y> _ Z bz (x(i—i-k)r—i-ly(m—i-‘rl)r . x(m—i—i—l)ry(k—&-i)r—&-l) c ({E . y)2m+15.
i=0

Hence the coefficients of ¢y are the solutions of the system of equations given by

(4.11) 3—1‘ ((%)jﬁ) (z,2) =0

for j =0,...,2m. As above, since P(z, y) = —P(y, x), we again observe that the equation
holds for a given even j, provided it holds for all j* with 0 < j’ < j.

Because we have m+1 variables and m equations, the system has a non-trivial solution.
We may choose one such non-trivial solution with coefficients in Z.

Suppose b,, = 0. Then we may remove the last column of the matrix in (4.11). The
determinant of this matrix equals

det ((+k)r+1\ ((m—i+Dr
0<igm—1 2j + 1 2j +1

which is not identically zero, thanks to Corollary 4.8 for the parameters A = kr + 1 and
B = (m + 1)r. Hence, (4.11) only admits the trivial solution, contradicting the above

choice of a non-trivial solution.
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Suppose by = 0. Then we may remove the first column of the matrix in (4.11). Its
determinant equals, after substituting ¢ by ¢ + 1, the determinant

det ((+k+Dr+1\  ((m—1dr
0<i,j<m—1 2j 41 2j + 1

which is not identically zero, again thanks to Corollary 4.8 for the parameters A =
(k+1)r+1 and B = mr. Hence, we obtain an analogous contradiction as in the previous
case.

Finally, we check that 6, € D (<, 1). By construction, 0;(z) € 2* 1S, 0y(y) € y* 15
and 0y(z — y) € (x — y)?*™ LS. Then, for ¢ an r-th root of unity, we have

Oo(x — Cy) = " Ty go (2", y") — Y gy, 27
= 2" (Cy) (2, (Cy)") — ()P g2 ((Cy)”, 2")
= P(x,Cy) € (z — Cy)*"*'s.

Hence 0,0, € ©(<7, 11). Observe that
det M(61,62) = gDty bty (@, y")q(y" ") — y DR g, (y" 2")ga (2", y").

This determinant has degree |u|. Since ¢; and ¢y are not divisible by x and y, respectively,
the determinant is non-zero. Thus 6; and 6, are independent over S. Since 6; and 0y are
homogeneous and pdeg 6, + pdeg s = |u|, it follows from Theorem 2.1(iii) that {60y, 62}
is a basis of D (<7, pu)). O

Corollary 4.12. Letm > 1 and k > 0. Let 0 < my,my <1 and set m; := (k—1)r+1+m;
fori=1,2 such that my,ms > 0. Define (7, 1) by

Qo ) = a™y" (" — y" )P
Let ¢ := (k—1+4+m)r+ 1. Then (&, ) is free with
exp(, 1) = {c+my +mg, c+1}.
Proof. A basis {51, 9~2} of D(7, u) is given by 6, = 6, and
 — {Qg/xy if k=0,
Or/z"y"  if k>0,
where 0, and 6y are given as in Lemma 4.9. ]

Theorem 4.13. Let k,m >0 and 0 < my,...,my <r. Set m; :== (k— 1)r + 1+ m; for
ie{l,...,¢} such that m; >0, and set ¢c:= (({ —1)m+k— 1)r + 1.
Define (o, 1) by

Qe ) =™ - _mzne H (a} — $;>2m+1.
1<i<j<t
Then (<, ) is free with

¢
exp(%,,u):{cjtzmi, c+r, c+2r ..., c+(€—1)r}.

i=1
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Proof. We argue by induction on ¢. By Corollary 4.12, the theorem holds for ¢ = 2.
Suppose ¢ > 2. The proof in this case follows from a further induction on Y m;.

Thanks to Theorem 1.1, the theorem holds for m; = --- = my, = 0. Now let > m; # 0.
Without loss, we may assume that m, > 0 is maximal among the m,;. We aim to apply
Theorem 2.2 with respect to the hyperplane H, = kerzy. Ilf my =--- =my = (k—1)r+1,

then, in order to being able to apply the induction hypothesis, requiring the lower bounds
on the m;, we replace k by k — 1, and, simultaneously, replace m; = 0 by m; = r for
all 7. Observe that this replacement is valid as it does not change the arrangement and,
crucially, the exponents also coincide in both cases.

The defining polynomial of the deletion with respect to Hy is given by
QU ) =™ M [T (] — )
1<i<j<t

Now, by induction on Y m;, the deletion (7', i) is free with exponents

¢
exp(o’, 1) = {c—1+2mi, c+r, c+2r ..., c+(€—1)r}.

i=1
The Euler multiplicity x* on </ is given by

* k+m)r+1 k+m)r+1 r \2m
Q(W/Heaﬂ):xg ) xé 1 ) H (z; _ffj)Q .

1<i<j<t—1

This can be seen as follows.

For a hyperplane H;; = ker(z; — ;) (4,7 # £) the localization is of size |y,nm,,| = 2,
hence the Euler multiplicity is 2m+1 by Lemma 2.3. For a hyperplane H; = ker z; (i # ()
the localization is given by

e (a] — 2!
with exponents (¢ + m; + my, (k+m)r + 1), by Corollary 4.12, and by decreasing my, the
first exponent changes, again according to Corollary 4.12. Hence the Euler multiplicity
is (k 4+ m)r + 1.

Now, by induction on /£, we know that (/¢ ;*) is free, and we compute the exponents
as follows. The corresponding constant c¢* from the statement of the theorem is ¢* =

(=2m+k+m)r+1=((l—1)m+k—1)r+r+1=c+r. Hence,
exp( y*)y={c", ¢ +r, ..., F+U=2r}={ctr, c+2r ..., c+({—1)r}.
The theorem now follows by Theorem 2.2. O
Note that Theorem 4.1(ii) follows from Theorem 4.13.
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