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MATRIX ELEMENTS OF IRREDUCIBLE REPRESENTATIONS OF
SU(n+ 1)× SU(n+ 1) AND MULTIVARIABLE MATRIX-VALUED

ORTHOGONAL POLYNOMIALS

ERIK KOELINK, MAARTEN VAN PRUIJSSEN, AND PABLO ROMÁN

Abstract. In Part 1 we study the spherical functions on compact symmetric pairs of ar-

bitrary rank under a suitable multiplicity freeness assumption and additional conditions

on the branching rules. The spherical functions are taking values in the spaces of linear

operators of a finite dimensional representation of the subgroup, so the spherical functions

are matrix-valued. Under these assumptions these functions can be described in terms of

matrix-valued orthogonal polynomials in several variables, where the number of variables is

the rank of the compact symmetric pair. Moreover, these polynomials are uniquely deter-

mined as simultaneous eigenfunctions of a commutative algebra of differential operators.

In Part 2 we verify that the group case SU(n+1) meets all the conditions that we impose

in Part 1. For any k ∈ N0 we obtain families of orthogonal polynomials in n variables with

values in the N × N -matrices, where N =
(
n+k
k

)
. The case k = 0 leads to the classical

Heckman-Opdam polynomials of type An with geometric parameter. For k = 1 we obtain

the most complete results. In this case we give an explicit expression of the matrix weight,

which we show to be irreducible whenever n ≥ 2. We also give explicit expressions of the

spherical functions that determine the matrix weight for k = 1. These expressions are used

to calculate the spherical functions that determine the matrix weight for general k up to

invertible upper-triangular matrices. This generalizes and gives a new proof of a formula

originally obtained by Koornwinder for the case n = 1. The commuting family of differential

operators that have the matrix-valued polynomials as simultaneous eigenfunctions contains

an element of order one. We give explicit formulas for differential operators of order one

and two for (n, k) equal to (2, 1) and (3, 1).
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1. Introduction

1.1. Motivation and history. There is an intimate relationship between special functions

and group theory. It consists of a very fruitful cross-fertilization which has been exploited in

several directions. Typically, matrix coefficients of compact or complex groups are related

to polynomials in various forms. In this paper, we explore this relationship further and we

discuss multivariable matrix-valued orthogonal polynomials related to the representation the-

ory of compact groups. The relation is established by exploiting properties of matrix-valued

spherical functions. Matrix-valued spherical functions extend the notion of zonal spherical

functions on symmetric spaces. They have been studied extensively by Harish-Chandra, see

e.g. [6, 50] for an account, and subsequently by several other authors to understand the

harmonic analysis on real reductive groups, see e.g. [4, 15, 17, 37, 46, 50]. The successful re-

lation between harmonic analysis on compact symmetric spaces and orthogonal polynomials

via the study of spherical functions, of which the spherical harmonics on the sphere are a

prototype, has been described and studied in e.g. [8, 20, 23, 48].

Matrix-valued orthogonal polynomials of a single variable have been introduced in the

1940s by M.G. Krein in the study of operators with higher order deficiency indices. Krein

also studied the corresponding moment problem in the context of spectral theory. The study

of matrix-valued orthogonal polynomials has several applications, see the overview paper

[7] for an introduction and references up to 2008. One of the developments in the study

of matrix-valued orthogonal polynomials is extending classical results for scalar-valued or-

thogonal polynomials to the setting of matrix-valued orthogonal polynomials. This includes

the study of the matrix-valued differential operators having these matrix-valued orthogonal

polynomials as eigenfunctions, which in general leads to a non-commutative algebra of dif-

ferential operators. The construction of interesting examples of matrix-valued orthogonal

polynomials that are simultaneous eigenfunctions of matrix-valued differential operators had

been lagging behind until 2002.

The first paper establishing explicit classes of matrix-valued orthogonal polynomials using

matrix-valued spherical functions and differential operators was the paper [16] by Grünbaum,

Pacharoni, Tirao. In this paper matrix-valued spherical functions for the compact symmetric

pair (SU(3),U(2)) were considered. The approach relies on the reduction of such a matrix-

valued spherical function to a matrix-valued function on the corresponding symmetric space
2



P2(C) = SU(3)/U(2) and heavy usage of matrix-valued differential operators which are

known explicitly for this case. The approach of [16] turns out to be too complicated in

general to generalize to pairs of compact groups where there is less control over the differential

operators.

Motivated by Koornwinder’s paper [31] on vector-valued orthogonal polynomials, we have

developed an approach for matrix-valued orthogonal polynomials for the compact symmet-

ric space (G,K) = (SU(2)× SU(2), diag SU(2)) in which all the main properties are explicit

[26, 27]. These main properties include the orthogonality relations, in particular two ex-

plicit descriptions of the matrix-valued weight, the three-term recurrence relation, explicit

description of the reducibility, two explicit commuting matrix-valued differential operators

having the matrix-valued orthogonal polynomials as eigenfunctions, the explicit relationship

to Tirao’s matrix-valued hypergeometric functions, etc. All results in the papers [26, 27] are

obtained for arbitrary dimensions of the matrix algebras.

The study of this example has led to a general theory for the matrix-valued orthogonal

polynomials in relation to Gelfand pairs of rank one, see [21, 38, 40]. To set up the general

theory we have to impose multiplicity-free restriction in the branching rules for certain

representations of the groups that are involved. Then the group theoretic interpretation gives

a commutative class of matrix-valued differential operators to which these matrix-valued

orthogonal polynomials are eigenfunctions. These differential operators arise naturally from

a suitable subalgebra of the universal enveloping algebra, which includes the Casimir element

[9]. To obtain them we have to perform radial part calculations, see [6], and conjugations

with suitable matrix-valued functions. The general set-up from [21, 38] also applies to the

examples calculated in [16, 47] where matrix-valued orthogonal polynomials are obtained

from studying the differential equations.

1.2. Results. One of the main results in [39] is the existence of families of multivariable

matrix-valued orthogonal polynomials that are simultaneous eigenfunctions of a commuta-

tive algebra of differential operators. The existence is based on examples and an ad hoc

analysis of the involved spectra. In this paper we present a solid theory for the general

construction of the polynomials and the differential operators based on three isolated condi-

tions. These conditions are satisfied by the pairs (SU(n+1)×SU(n+1), diag SU(n+1)) and

the irreducible representations of SU(n + 1) on Sk(Cn+1), the k-th symmetric power of the

standard representation. For this class of examples we are able to provide many explicit ex-

pressions. In particular for k = 1 we give an explicit formula of the weight-matrix and prove

its irreducibility. We also provide explicit expressions of commuting differential operators in

low dimensions. We proceed with a detailed discussion of our results.

In Part 1 of the paper we set up a general theory on the relationship between multivariable

matrix-valued orthogonal polynomials and the representation theory of a compact symmetric
3



space U/K. First we study matrix-valued spherical functions in some detail. Fixing a K-

representation πKµ of highest weight µ in the space V K
µ , we study the space Eµ of matrix-

valued functions Φµ on U taking values in End(V K
µ ) so that

Φµ(k1gk2) = πKµ (k1)Φµ(g)πKµ (k2), ∀ k1, k2 ∈ K, ∀ g ∈ G.

We look for U -representations of highest weight λ so that we can associate a non-trivial

matrix-valued spherical function Φµ
λ, see (2.3), to this representation. These are the irre-

ducible representations of U whose restriction to K contains πKµ . The highest weights of

these representations are collected in the set P+
U (µ). The first condition that we impose is

multiplicity freeness: we fix an irreducible representation πKµ such that [πUλ |K : πKµ ] = 1 for

all λ ∈ P+
U (µ).

For example, take πKµ the trivial representation, i.e. µ = 0. The first condition is satisfied

by the Cartan-Helgason Theorem [25, Thm. 8.49]. By the same theorem, the set P+
U (0) is a

semi-group generated by n elements λ1, . . . , λn, where n is the rank of the symmetric space.

The space E0 of K-biinvariant functions is generated by fundamental zonal spherical func-

tions φ1, . . . , φn, i.e. the spherical functions of type πK0 related to the fundamental spherical

weights λ1, . . . , λn. For the general case we impose the following condition on P+
U (µ), namely

that it is of the form

P+
U (µ) = B(µ) + P+

U (0),

where B(µ) is a finite subset of dominant integral weights. This condition is satisfied for

µ = 0 by taking B(0) = {0}.
The set B(µ) = {ν1, . . . , νN} provides N “minimal spherical functions Φµ

νi
of type πKµ ”.

Our third condition, which is of a technical nature, ensures that we can write an element

Φµ ∈ Eµ as an E0-linear combination of the minimal spherical functions of type πKµ , i.e. there

exist polynomials q(Φµ, i) ∈ C[φ1, . . . , φn] such that

Φµ =
N∑
i=1

q(Φµ, i)(φ1, . . . , φn)Φµ
νi
.

This construction then allows us to define the multivariable matrix-valued orthogonal poly-

nomials by collecting the polynomials in the fundamental zonal spherical functions in a

systematic way.

The matrix-valued orthogonality measure can be given explicitly. The orthogonality mea-

sure involves a matrix part which involves the matrix-valued spherical functions associated

to the set B(µ). We take this information together in a matrix-valued function Ψµ
0 , and

then the matrix part of the orthogonality measure is given by (Ψµ
0)∗T µΨµ

0 , where T µ is a

diagonal matrix whose entries depend on the elements in B(µ). In particular, the size N of

the algebra of N ×N -matrices in which these polynomials take their values equals #B(µ).
4



The orthogonality measure also involves a scalar part and this part requires the knowledge

of the decomposition of the Haar measure with respect to the KAK-decomposition.

In order to obtain the matrix-valued differential operators for the multivariable matrix-

valued orthogonal polynomials we need to perform radial part calculations to find the matrix-

valued differential operators for the matrix-valued spherical functions, following [6]. Next we

need to conjugate these operators with the matrix-valued function Ψµ
0 to come to a result

for the matrix-valued polynomials, and this requires matrix-valued differential equations for

Ψµ
0 of order lower than the order of the initial differential operator. Finally, we need to

switch to coordinates in terms of the fundamental zonal spherical functions and finally to

real coordinates.

In the second part of the paper, we make this program explicit for the case of the symmetric

space (U,K) = (SU(n+ 1)×SU(n+ 1), SU(n+ 1)), where SU(n+ 1) is diagonally embedded

as the fixed point set of the flip. Part 2 extends the case n = 1 studied previously in [26, 27].

We show that the conditions on inverting the branching rules is satisfied in case we take

the SU(n + 1)-representations Sk(Cn+1) of highest weight µ = kω1. The branching rules

are described using the theory of spherical varieties in Section 5 and we show that in these

cases all conditions of the general part are satisfied. The zonal spherical functions generating

K-biinvariant functions are the characters. The explicit orthogonality relations involve the

Dyson integral –a special case of the Selberg integral– as well as the determination of some

explicit constants. We show that the matrix-valued weight is irreducible for n ≥ 2 and

k = 1. It is known that this is not the case for n = 1, see [26, 27]. The orthogonality

measure is described in terms of the matrix-valued spherical functions corresponding to the

representations labeled by the weights in the set B(µ) = B(kω1), which we collect in a

matrix-valued function Φ0. The most elementary case k = 1 of Φ0 gives a (n+ 1)× (n+ 1)-

matrix which can be viewed as a kind of group element ga, parametrized by a ∈ Ac, where Ac
is the compact torus of the U = KAcK-decomposition. We show that for the more general

cases, i.e. for k > 1, the corresponding matrix-valued function Φ0 can be obtained in terms

of a suitable representation evaluated at ga up to constant matrices. This result is inspired

by the remarkable observation of Koornwinder for the case n = 1 in [31, Prop. 3.2]. The

proof that we present is of a different nature, hence we obtain a new proof of Koornwinder’s

result. The generalization of Koornwinder’s result implies that the case k = 1 is fundamental

to understand Φ0 for arbitrary k ∈ N0, which in turn is essential to find the matrix part of

the weight. The scalar part of the orthogonality measure is supported on the interior of a

compact set in Rn after a change of coordinates. For n = 1 it is supported on the interval

[−1, 1], for n = 2 on the interior of Steiner’s hypocycloid and for n = 3 on a 3-dimensional

analog of Steiner’s hypocycloid, see Figure 1.

Using Dixmier [9], we find a commutative subquotient D(µ) of the universal envelop-

ing algebra whose elements act as differential operators having the matrix-valued spherical
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functions as eigenfunctions, see also [10]. In particular, this symmetric space comes natu-

rally with two Casimir operators, one from the first factor of SU(n + 1) × SU(n + 1) and

one form the second. Using radial part calculations [6], this leads to two second order

matrix-valued differential operators for the associated multivariable matrix-valued orthogo-

nal polynomials after conjugation with Φ0 and a change of coordinates. The difference of

these two operators leads to a first(!)-order matrix-valued differential operator having the

matrix-valued orthogonal polynomials as simultaneous eigenfunctions. This is remarkable,

since for scalar-valued orthogonal polynomials this is not possible by Bochner’s Theorem.

For single-variable matrix-valued or multivariable scalar-valued orthogonal polynomials there

is no known example of this phenomenon, see for instance the discussion in [13, p.155] and

references therein. We present some of these operators in explicit low-dimensional cases,

for n = 2, 3 and k = 1. The explicit case in Part 2 in the scalar case for n = 2 reduces

to the 2-variable orthogonal polynomials on (the interior of) Steiner’s hypocycloid, see Fig-

ure 1, introduced by Koornwinder [30] in the 1970s. So for n = 2 we have constructed

2-variable matrix-valued analogues of Koornwinder’s orthogonal polynomials on Steiner’s

hypocycloid. The dimension N of the N × N -matrix-valued orthogonal polynomials is

#B(kω1) = dimC(EndM(Sk(C3))) = dimC(Sk(C3)), which is N = 1
2
(k + 2)(k + 1). Here

M = ZK(Ac), which is a maximal torus in K.

The results are written in terms of polynomials in the zonal spherical functions where

the degree is a multi-index. The Heckman-Opdam polynomials of type A (for the geometric

parameter) are written as symmetric functions in the coordinates on the abelian subgroup Ac
and indexed by partitions. In the scalar case, the correspondence is given by the coordinate

transformation which rewrites a symmetric polynomial as a polynomial in the elementary

symmetric functions. The reason to write it in this way is that the general construction in

Part 1 gives the results naturally in terms of zonal spherical functions times matrix-valued

spherical functions corresponding to minimal representations of B(µ). We obtain symmetric

functions only at a later stage, e.g. after writing down the orthogonality relations explicitly.

1.3. Outlook. It is well-known that Koornwinder’s original 1970s papers have been very

influential in the development of the multivariable Heckman-Opdam polynomials and func-

tions, which in turn play an important role in integrability of systems such as the Calogero-

Moser-Sutherland models, see [20]. A natural question is whether or not there is an extension

of Cherednik’s approach or an application of Dunkl operators available for these multivariable

matrix-valued polynomials, see [12, 35, 36]. The possible application to integrable systems

of the class of polynomials as in this paper remains to be investigated. Also, it might be

possible to extend some of the results of this paper to more general parameters, which has

been done for n = 1 of Part 2 in [28]. Similarly, one may consider the extension to the
6



quantum setting and to obtain quantum analogues of the polynomials of this paper, see [1]

for the quantum analogue of the case n = 1 of Part 2.

One can also consider the spherical functions of fixed K-type on non-compact symmetric

spaces. In this case we expect multivariable matrix-valued special functions that are eigen-

functions to the same algebra of differential operators. However, the set of parameters needs

to be enlarged and requires further study, e.g. because of the possible occurrence of discrete

series representations. Certain properties of the eigenfunctions, such as asymptotic behavior,

were already understood by Harish-Chandra, see e.g. [6] for an account. Some references

that consider these questions are [5, 42].
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Part 1. Generalities on spherical functions in the multiplicity free setting

2. Matrix-valued spherical functions

We recall some of the results of [39] specified to symmetric spaces. The main idea, to

view the space spanned by the spherical functions as a module over the ring of biinvariant

functions, originates from [21, 38] and is based on the classical results in [49]. Let (G,H) be

a complex symmetric pair of rank n, and let (U,K) be the corresponding compact symmetric

pair. We assume that G is connected and semisimple and that H is connected.

We let H ×H act on the regular functions C[G] by the biregular representation given by

(h1, h2)f(g) = f(h−1
1 gh2). Let E0 = C[G]H×H denote the algebra of H-biinvariant regular

functions. Suppose we have chosen a Borel subgroup of H, and that we are given an irre-

ducible representation (πHµ , V
H
µ ) of H, where µ is the highest weight according to the choice

of the Borel subgroup. The (finite dimensional) vector space is also called an H-module of

highest weight µ and we sometimes simply write V or Vµ instead.

The corresponding representation of K in V is unitary for a fixed inner product, which we

assume is anti-linear in the first leg. By Weyl’s unitary trick we identify the representations

of K and H and the representations of U and G.

The group H ×H acts naturally on C[G]⊗End(V ) by the biregular representation in the

first leg of the tensor product and by left multiplication by πHµ (h1) and by right multiplication

by πHµ (h−1
2 ) in the second leg. The space of invariants Eµ = (C[G] ⊗ End(V ))H×H is the
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space of End(V )-valued holomorphic polynomials on G satisfying

(2.1) F (h1gh2) = πHµ (h1)F (g)πHµ (h2), for all h1, h2 ∈ H and g ∈ G.

Note that the trivial representation µ = 0 gives back the space E0 of H-biinvariant holo-

morphic polynomials. Note that the space of invariants Eµ is a E0-module by point-wise

multiplication.

To analyze Eµ we use explicit knowledge of the decomposition of the G-module indGHπ
H
µ .

We collect the highest weights (after having fixed a Borel subgroup BG ⊂ G and a maximal

torus TG ⊂ BG) of the irreducible G-subrepresentations of indGHπ
H
µ in the set

P+
G (µ) = {λ ∈ X+(TG) | [πGλ |H : πHµ ] ≥ 1}.(2.2)

In order to further analyze the space Eµ and to establish a connection with matrix-valued

orthogonal polynomials we impose conditions on the data (G,H, µ). The first condition is

on the set P+
G (µ).

Condition 2.1. (G,H, µ) is a multiplicity free triple, i.e. indGHπ
H
µ decomposes multiplicity

free.

There is an abundance of examples of multiplicity free triples, namely those coming from

the multiplicity free systems, i.e. triples (G,H, P ) with (G,H) as before and with P ⊂ H

a parabolic subgroup such that G/P admits an open orbit of a Borel subgroup of G. Any

positive character µ ∈ X+(TH) that extends to a character µ : P → C× gives rise to a

multiplicity free triple, see [39].

A spherical function of type µ, associated to λ ∈ P+
G (µ) with G-representation πGλ acting

in V G
λ is defined as

Φµ
λ : G→ End(V H

µ ) : g 7→ p ◦ πGλ (g) ◦ j,(2.3)

where j : Vµ → V G
λ is an H-equivariant embedding, unitary for the U and K-invariant inner

products on the respective representation spaces V H
µ and V G

λ . The map p : V G
λ → V H

µ is the

adjoint of j, so p ◦ j = IV Hµ . Assuming Condition 2.1 the spherical functions of type µ form

a basis of Eµ using the algebraic version of the Peter-Weyl Theorem [44, Satz 5.2].

In the following subsections we recall some of the properties of the matrix-valued spherical

functions and the space of invariants Eµ.

2.1. Orthogonality. Note that for the restrictions of F1, F2 ∈ Eµ to the compact form U ,

the map U 3 u 7→ F1(u)∗F2(u) ∈ End(V H
µ ) is left K-invariant. Here the adjoint is taken

with respect to the inner product on V H
µ for which the corresponding K-representation is

unitary. Then the scalar map U 3 u 7→ tr
(
F1(u)∗F2(u)

)
is K-biinvariant.

The space Eµ carries the following Hermitian structure;

(2.4) 〈F1, F2〉µ =

∫
U

tr
(
F1(u)∗F2(u)

)
du, F1, F2 ∈ Eµ,

8



where du is the Haar measure on U normalized by
∫
U
du = 1. By Schur’s orthogonality

relations the spherical functions Φµ
λ satisfy the orthogonality relations

(2.5) 〈Φµ
λ,Φ

µ
λ′〉µ =

dim(V H
µ )2

dim(V G
λ )

δλ,λ′ , λ, λ′ ∈ P+
G (µ).

The integral (2.4) can be reduced using that the symmetric pair (U,K) admits a KAK-

decomposition, see [22, Ch.X, §1, no.5], which is the reference for this subsection. Let

θ : G → G be the involution such that H is the connected component of the group of fixed

points, H = (Gθ)e. We assume θ is the complexification of an involution that we denote

by the same symbol, θ : U → U , for which K = (U θ)e. Let g, h denote the complex Lie

algebras of the groups G, H, and let u, k denote the real Lie algebras of the groups U ,

K. Let u = k ⊕ pc denote the Cartan decomposition of u into the ±-eigenspaces of θ. Let

ac ⊂ pc denote a maximal abelian subspace and let Ac ⊂ K denote the connected torus with

Lie(Ac) = ac. Denote Mc = ZK(ac), mc = Lie(Mc) and let tMc ⊂ mc be a maximal torus.

The complexifications of Mc, Ac, mc, ac, tMc are denoted by M , A, m, a, tM .

Let g0 = k⊕ ipc be the non-compact Cartan dual of u. The tori t0 = tMc ⊕ a0 ⊂ g0, with

a0 = iac, and t = tM ⊕ a ⊂ g are maximal. We denote the corresponding root systems by

∆ = ∆(g, t) and Σ = Σ(g0, a0).

The Weyl groups are denoted by W (∆) and W (Σ). We fix compatible orderings on the duals

of itc, where tc = tMc + ac, and a0 to obtain subsets of positive roots ∆+ ⊂ ∆ and Σ+ ⊂ Σ.

Furthermore, denote P+ = {α ∈ ∆+ | α 6= α ◦ θ} and P− = {α ∈ ∆+ | α = α ◦ θ}. The

compact group U admits the decomposition U = KAcK. Note that the dimension of Ac is

equal to the rank n of the symmetric space. The integral over U can be rewritten as∫
U

f(u) du = c1

∫
K

∫
K

∫
Ac

f(k1ak2) |δ(a)| da dk1 dk2,(2.6)

where δ(exp(H)) =
∏

α∈P+
(eα(H) − e−α(H)). Recall that α takes purely imaginary values on

tc, so that δ is the product of sine functions and a constant. Here, da and dk are the Haar

measures on Ac and K normalized by
∫
Ac
da =

∫
K
dk = 1. The constant c1 is the reciprocal

of
∫
Ac
|δ(a)| da.

The integral in (2.4) can be reduced to integrals over Ac. We now describe how the

integrand restricts to Ac. If F ∈ Eµ, then F |Ac takes values in EndMc(V
H
µ ), which can be

identified with CN , using Schur’s Lemma, since πHµ |M splits multiplicity free, see e.g. [21,

Prop. 2.4]. Indeed, an element in EndM(V H
µ ) is a block-diagonal matrix, a block for each

irreducible M -representation, consisting of a multiple of the identity. Let P+
M = {υ ∈

M̂ | [πHµ |M : πMυ ] = 1}, then the size of the block corresponds to the dimension of πMυ ,

υ ∈ P+
M . The identification is given by sending the block-diagonal matrix to the vector

that contains the corresponding multiple of the identity. The Hermitian inner product on

EndM(V H
µ ) given by (A,B) 7→ tr(A∗B) transfers to the inner product on CN that is given by

9



(ζ, z) 7→ ζ
t
T µz, where T µ is the diagonal matrix whose entries are given by the dimensions

of the corresponding representation spaces V M
υ , υ ∈ P+

M . Let us denote this identification

by i : EndM(V H
µ )→ CN . Using this identification, we define the functions Ψµ

λ : Ac → CN by

a 7→ i(Φµ
λ(a)). We obtain

(2.7) c1

∫
Ac

Ψµ
λ(a)∗T µΨµ

λ′(a) |δ(a)| da =
dim(V H

µ )2

dim(V G
λ )

δλ,λ′ , λ, λ′ ∈ P+
G (µ).

Let Eµ
Ac

= {F |Ac | F ∈ Eµ} and let R(Ac) be the algebra of Laurent polynomials on Ac.

The Weyl group W = W (Σ) acts on Eµ
Ac

. Indeed, W acts on Ac and thereby on functions on

Ac, in particular on R(Ac). The group W also acts on EndMc(V
H
µ ), since W = NK(ac)/Mc.

We obtain an action of W on R(Ac)⊗ EndMc(V
H
µ ) which is given by

(w · F )(a) = πKµ (nw)F (n−1
w anw)πKµ (n−1

w ),

where nw represents w ∈ W . Observe that (wF )(a) = F (a) by (2.1) for F ∈ Eµ
Ac

, hence

Eµ
Ac
⊂
(
R(Ac)⊗ EndMc(V

H
µ )
)W

. This inclusion is strict in general, see Remark 2.3.

2.2. Differential operators. Let U(g)h denote the centralizer of h in U(g). The irreducible

H-representation (πHµ , V
H
µ ) induces an irreducible h-representation (πh

µ, V
H
µ ) and thus a rep-

resentation U(h) → End(V H
µ ). The kernel of this map is denoted by Iµ. The equivalence

classes of irreducible g-representations such that the restriction to h contains πh
µ are in a

one-to-one correspondence with the equivalence classes of the irreducible representations of

the algebra

D(µ) = U(g)h/I(µ), I(µ) = U(g)h ∩ U(g)Iµ,

see e.g. [9, Thm. 9.1.12]. Because of Condition 2.1, the algebra D(µ) is commutative.

Indeed, all the irreducible finite dimensional representations of D(µ) are one-dimensional.

The commutativity also follows from [10, Thm.3].

Given a smooth End(V )-valued function F on G and an element X = X1 · · ·Xp ∈ U(g),

with Xi ∈ g for all i, we define X(F ) : G→ End(V H
µ ) by

X(F )(g) =

(
∂p

∂t1 · · · ∂tp
F (g · exp(t1X1) · · · exp(tpXp))

) ∣∣∣
t1=...=tp=0

,

so that X is a left-invariant differential operator. We can extend this action linearly, so that

U(g) can be viewed as an algebra of G-left-invariant differential operators. Note that for

F ∈ Eµ, the function X(F ) may not be in Eµ. However, if X ∈ U(g)h then X(Eµ) ⊂ Eµ.

The kernel of the representation U(g)h → End(Eµ) contains I(µ), so we obtain an algebra

homomorphism D(µ)→ End(Eµ).

Lemma 2.2. Let F ∈ Eµ be a simultaneous eigenfunction of D(µ). Then F = cΦµ
λ for a

constant c and a unique λ ∈ P+
G (µ).

10



Proof. The trace of a spherical function is called a K-central spherical function. The

spherical functions and their traces are related by

F (u) =

∫
K

tr(F (uk−1))πKµ (k)dk,

see e.g. [38, 3.3.26]. The result follows from the similar statement for K-central spherical

functions, see [50, Thm. 6.1.2.3] or [15, Thm. 1.4.5]. �

The system of differential equations

D(F ) = γµ(D,λ)F, for all D ∈ D(µ)

is called the system of hypergeometric differential equations with spectral parameter λ ∈
P+
G (µ), compare to e.g. [20, Def. 4.1.1, Def. 5.2.1]. In the rank one case, n = 1, one can show

that the differential equation corresponding to the Casimir operator, see (2.8) below, is a so

called matrix-valued hypergeometric differential operator, see e.g. [21, 46] or [41, Rmk. 3.10].

Let Z(g) denote the center of U(g). One can show that Z(g)→ D(µ) is not surjective in

general. In fact, already for the case µ = 0 it need not be surjective, see [23, Prop. 5.32].

However, the algebra D(µ) is finitely generated over Z(g), see e.g. [9, Thm. 9.5.1]. It is in

general difficult to determine the algebra D(µ), see for example [33, Conj. 10.2,3].

Recall that Eµ
Ac
⊂ (R(Ac)⊗ CN)W . The µ-radial part of an element D ∈ D(µ) is defined

to be the operator radµ(D) ∈ End((R(Ac) ⊗ EndMc(V
H
µ ))W ) such that for all F ∈ Eµ,

D(F )|Ac = radµ(D)(F |Ac). It turns out that radµ(D) is again a differential operator, see [6,

§3] or [50, Ch. 9].

The Casimir operator Ω corresponds to an element of the center of U(g), so it gives rise to a

left-invariant operator for which all the matrix-valued spherical functions are eigenfunctions.

In order to describe the Casimir operator, let (ξ1, . . . , ξn) be an orthonormal basis of ac with

respect to the Killing form. The µ-radial part of the Casimir operator Ω is given by

(2.8) radµ(Ω) = Ωµ =
n∑
i=1

∂2
ξi

+ πHµ (ΩM) +
∑
α∈P+

(α, α)
1 + e−2α

1− e−2α
∂α∨ + F µ,

where F µ is an End(EndMc(V
H
µ ))-valued function that can be calculated explicitly and ΩM is

the quadratic Casmir operator of M , see e.g. [50, Prop. 9.1.2.11], [6, p. 881], [20, Not. 5.1.3].

Note that Ωµ : Eµ
Ac
→ Eµ

Ac
. Moreover, the spherical functions restricted to Ac are joint

eigenfunctions of the Casimir operator,

ΩµΦµ
λ|Ac = γµ(Ω, λ)Φµ

λ|Ac .

We view Ωµ acting on EndMc(V
H
µ )-valued Laurent polynomials on Ac. The eigenvalues for

the Casimir operator are independent of µ and γµ(Ω, λ) = |λ + ρ|2 − |ρ|2, where the length

is with respect to the Killing form and ρ = 1
2

∑
α>0 α.

11



Remark 2.3. Note the embedding Eµ
Ac
→
(
R(Ac)⊗ EndMc(V

H
µ )
)W

is not surjective in

general. Indeed, in general F µ is non-constant, so that the constant functions in the space(
R(Ac)⊗ EndMc(V

H
µ )
)W

cannot be eigenfunctions for the µ-radial part Ωµ of the Casimir

operator.

3. Matrix-valued orthogonal polynomials

We want to associate matrix-valued orthogonal polynomials to the matrix-valued spherical

functions by writing a general spherical function as an E0-linear combination of a finite

number of minimal spherical functions. For this we have to impose additional conditions to

Condition 2.1.

Let P+
G (0) be defined as in (2.2) for the trivial representation µ = 0, so for λ ∈ P+

G (0) the

irreducible holomorphic representation πGλ of G contains the trivial H-representation exactly

once upon restriction to H, i.e. [πGλ |H : πH0 ] = 1. We let λ1, . . . , λn be the generators for

P+
G (0), where n is the rank of the compact symmetric space U/K, so P+

G (0) =
⊕n

i=1 N0λi.

The corresponding spherical functions are φi = Φ0
λi

: G → C, so that φi are H-biinvariant

regular functions on G. We then have E0 = C[φ1, · · · , φn], which we abbreviate as E0 = C[φ].

As in Subsections 2.1 and 2.2 it suffices to consider φj as a Laurent polynomial on the compact

torus Ac and then the φj are invariant under the Weyl group W = W (Σ).

Since P+
G (0) =

⊕n
i=1 N0λi, we can write λ ∈ P+

G (0) uniquely as λ =
∑n

i=1 diλi, di ∈ N0.

Define the total degree of λ as |λ| =
∑n

i=1 di.

If λ ∈ P+
G (µ) and λsph ∈ P+

G (0), then λ + λsph ∈ P+
G (µ). Indeed, the Borel-Weil Theorem

realizes the irreducible G-representations in the space of sections of equivariant line bundles

over G/B, [11, Thm. 4.12.5]. The Cartan projection map V G
λ1
⊗V G

λ2
→ V G

λ1+λ2
is G-equivariant

and is given by point-wise multiplication of algebraic functions, hence is non-trivial.

We impose the following additional structure on the set P+
G (µ). To state it we have to fix

a Borel subgroup of M which we choose inside the Borel subgroup of G that we have chosen

to fix a notion of positivity. This can always be arranged if we start with a Borel subgroup

of M and then extend it to a Borel subgroup of G.

Condition 3.1. Assume that there exists a set of weights B(µ) for G so that for each

λ ∈ P+
G (µ) there exist unique elements ν ∈ B(µ) and λsph ∈ P+

G (0) so that λ = ν + λsph.

Moreover, we assume that the restriction to tM induces an isomorphism B(µ)
∼=−→ P+

M =

{υ ∈ P+
M | [πHµ |M : πMυ ] = 1}.

Note that the isomorphism implies #B(µ) = N with N = dimC EndM(V H
µ ) as in Subsec-

tion 2.1. In general we have #B(µ) ≥ N by [39, Thm. 3.1]. We put B(µ) = {ν1, · · · , νN}
and we assume a total order ν1 < ν2 < · · · < νN on B(µ), which is compatible with the

partial order on the weights.
12



Having observed that Eµ is a module over E0 and assuming Condition 3.1, we investigate

how the matrix-valued spherical functions Φµ
νk

, k = 1, · · · , N , and the E0-module structure

of Eµ determine Eµ. Identify Nn
0 → P+

G (0), d = (d1, · · · , dn) 7→ λd =
∑n

i=1 diλi, so that

we can write any element in λ ∈ P+
G (µ) as λ = νk + λd for uniquely determined νk ∈ B(µ)

and d ∈ Nn
0 . Understanding the product φiΦ

µ
λ requires the understanding of the tensor

product V G
λi
⊗ V G

λ having V G
λ+λi

as a constituent. For a finite dimensional holomorphic G-

representation πGλ of highest weight λ, we let P (λ) be the set of weights of V G
λ . We need

the set of weights for the fundamental spherical representations of highest weights λi that

generate P+
G (0). Now we can formulate the last condition.

Condition 3.2. For all weights ν ∈ B(µ) and all generators λi of P+
G (0) and all η ∈ P (λi)

such that ν+η ∈ P+
G (µ) we have by Condition 3.1 a unique ν ′ ∈ B(µ) such that ν+η = ν ′+λ

with λ ∈ P+
G (0). Then |λ| ≤ 1.

Condition 3.2 implies that for ν+λsph ∈ B(µ)+P+
G (0) = P+

G (µ), by Condition 3.1, and for

arbitrary λj and η ∈ P (λj) we have ν+λsph +η = ν ′+λ with λ ∈ P+
G (0) and |λ| ≤ 1+ |λsph|.

Moreover, Condition 3.2 gives control on the matrix-valued spherical functions related to

the tensor product V G
λi
⊗ V G

ν+λsph
, see e.g. [32, Prop. (3.2)]. In particular, Condition 3.2

implies that there exist constants cp,ij,k so that

(3.1) φiΦ
µ
νp+λsph

=
N∑
k=1

n∑
j=1

cp,ij,kΦ
µ
νk+λsph+λj

+ l.o.t., cp,ii,p 6= 0,

where cp,ii,p 6= 0 follows from the Cartan projection V G
λi
⊗ V G

νp+λsph
→ V G

λi+νp+λsph
, see [32].

Here the lower order terms correspond to matrix-valued spherical functions Φµ
νk+λ′ for some

1 ≤ k ≤ N and λ′ ∈ P+
G (0) with |λ′| ≤ |λsph|.

Lemma 3.3. Let λ = νj + λd ∈ P+
G (µ) with λd =

∑n
i=1 diλi, then there exist uniquely

determined polynomials qµνi,νj ;d in n-variables of total degree |d| =
∑n

i=1 di so that

Φµ
νj+λd

=
N∑
i=1

qµνi,νj ;d(φ1, · · · , φn) Φµ
νi
∈ Eµ.

Proof. We invert (3.1), and this gives, with cp,ii,p 6= 0,

cp,ii,pΦ
µ
νp+λd+λi

= φiΦ
µ
νp+λd

−
N∑
k=1

n∑
j=1

(k,j) 6=(p,i)

cp,ij,kΦ
µ
νk+λd+λj

+ l.o.t.,

since the lower order terms are of lesser degree, we can deal with this terms by induction on

the total degree |d|. The non-zero terms on the right hand side arise from the occurrence of

V G
νk+λsph+λj

in the tensor product V G
λi
⊗ V G

νp+λsph
, which are less in the dominance order than
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νp + λsph + λi. Hence, by induction on the dominance order combined with the induction on

the degree, the result follows. �

We define the ordered tuple of spherical functions

(3.2) Φµ
d = (Φµ

ν1+λd
, · · · ,Φµ

νN+λd
), d ∈ Nn

0

which we view as a (CN)∗⊗End(V H
µ ) ∼= Hom(CN ,End(V H

µ ))-valued function on G, viewing

(CN)∗ as row vectors. Hence we have a natural End(CN) action from the right. Moreover,

the recurrence (3.1) gives that there exist elements Add′,i ∈ End(CN), |d′| = |d| + 1, and

Bd
d′,i ∈ End(CN), |d′| ≤ |d|, for which

(3.3) φiΦ
µ
d =

∑
|d′|=|d|+1

Φµ
d′A

d
d′,i +

∑
|d′|≤|d|

Φµ
d′B

d
d′,i, (Add+δj ,i

)k,p = ci,kp,j,

where δj = (0, · · · , 0, 1, 0 · · · , 0) ∈ Nn
0 with the 1 at the j-th place.

Lemma 3.4. Let m ∈ N0 and denote φd = φd11 · · ·φdrr ∈ E0. The right End(CN)-modules

spanned by the functions {Φd | |d| ≤ m} and {φdΦ0 | |d| ≤ m} are isomorphic as End(CN)-

modules.

Proof. It is clear that the space spanned by {φdΦ0 | |d| ≤ m} is contained in the space

spanned by {Φd | |d| ≤ m} by (3.1). To show equality it is sufficient to prove that the vector

spaces spanned by {Φνj+λd | |d| = m, j = 1, · · · , N} and {φdΦλνj
| |d| = m, j = 1, · · · , N}

have the same dimension. The former is of dimension N ·
(
r+m−1
m

)
by the algebraic version

of the Peter-Weyl Theorem [44, Satz 5.2]. The latter space is of the same dimension, since

the columns of Φµ
0 are linearly independent, see e.g. [39, Lemma 6.1]. �

With the notation of Lemma 3.3, we define the matrix-valued polynomials in n variables

of degree d ∈ Nn
0 by

(3.4) Qµ
d(φ) =

(
qµνi,νj ;d(φ)

)N
i,j=1

, φ = (φ1, · · · , φn).

Lemma 3.3 can be rephrased in the notation (3.2) as

(3.5) Φµ
d = Φµ

0Q
µ
d(φ), 0, d ∈ Nn

0 .

For later reference we record the following result, where End(CN)[φ]m are the End(CN)-

valued polynomials in φ = (φ1, · · · , φn) of total degree at most m.

Proposition 3.5. For any m ∈ N0, the polynomials (Qµ
d | |d| ≤ m) form a basis for

End(CN)[φ]m.

Proof. This follows from Lemma 3.4 and the fact that the columns of Φµ
0 are linearly

independent, since Φ0 is invertible on a dense subset of Ac, see [39, Lemma 6.1]. �

Because of (3.5), we see that the polynomials Qµ
d satisfy the same recurrence as the Φµ

d

in (3.3). By Proposition 3.5 we have two bases for End(CN)[φ]1, namely the standard basis

(I, φ1I, · · · , φnI) and (I,Qµ
δ1
, · · · , Qµ

δn
).
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Corollary 3.6. The matrix (A0
δi,j

)1≤i,j≤n ∈ End(CN)n×n is invertible.

Proof. According to (3.3) for the polynomials Qµ
d with d = 0, we see that the transition

between the two bases is given by the invertible matrix
I B0

0,1 · · · B0
0,n

0 A0
δ1,1

· · · A0
δ1,n

...
...

. . .
...

0 A0
δn,1

· · · A0
δn,n

 ∈ End(CN)(n+1)×(n+1)

and hence the lower right hand part is invertible. �

Having polynomials associated to the matrix-valued spherical functions, we can transfer

the properties of the matrix-valued spherical functions of Section 2 to the matrix-valued

polynomials Qµ
d , d ∈ Nn

0 .

3.1. Orthogonality. Using the orthogonality relations (2.5), (2.4) we have the following

relations for the polynomials,

N∑
i,j=1

∫
U

(
Qµ
d(φ(u))

)∗
p,i

tr
(
(Φµ

νi
(u))∗Φµ

νj
(u)
)
Qµ
d′(φ(u))j,q du = δd,d′δp,q

dim(V H
µ )2

dim(V G
νp+λd

)
,

where we use φ(u) to denote (φ1(u), · · · , φn(u)). Reducing to the integral over Ac, since each

term in the integrand is K-biinvariant, we find

c1

N∑
i,j=1

∫
Ac

(
Qµ
d(φ(a))

)∗
p,i

tr
(
(Φµ

νi
(a))∗Φµ

νj
(a)
)
Qµ
d′(φ(a))j,q |δ(a)|da = δd,d′δp,q

dim(V H
µ )2

dim(V G
νp+λd

)
.

Recall that we have Φµ
λ : Ac → EndMc(V

H
µ ), and the identification i : EndMc(V

H
µ )→ CN and

Ψµ
λ = i ◦ Φµ

λ : Ac → CN in Section 2.1. Now define for d ∈ Nn
0

Ψµ
d : Ac → End(CN), a 7→ (Ψµ

λd+ν1
(a), · · · ,Ψµ

λd+νN
(a))

then Ψµ
d(a) = Ψµ

0(a)Qµ
d(φ(a)), where 0 ∈ Nn

0 is a multi-index, as a matrix product. With

the notation of (2.7) we get the matrix-valued orthogonality relations for the matrix-valued

polynomials Qµ
d of degree d ∈ Nn

0 ;

c1

∫
Ac

Qµ
d(φ(a))

)∗
(Ψµ

0(a))∗T µΨµ
0(a)Qµ

d′(φ(a)) |δ(a)|da = δd,d′Hd,(3.6)

(Hd)p,q = δp,q
dim(V H

µ )2

dim(V G
νp+λd

)
.

All the matrices have size N ×N , and the integral is taken entry-wise.

The integrand of (3.6) is Weyl group invariant, so we can view it as the pull-back of a

function on the image of φ : Ac → Cn defined by a 7→ (φ1(a), . . . , φn(a)). In fact, its image

φ(Ac) is contained in a real form Rn ⊂ Cn. To perform the change of variables, we invoke
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the following result from Vretare [49, L. 3.3] which also implies that φ(Ac) ⊂ Rn is compact

with non-empty interior.

Lemma 3.7. The Jacobian of the map φ : Ac → Rn is given by

j(exp(H)) = c2 ·
∏

α∈Σ+\ 1
2

Σ+

(eα(H) − e−α(H)),

i.e. the product is taken over the positive restricted roots α with 2α 6∈ Σ+, for some c2 ∈ C×.

As we have noted above, we can write Ψµ
0(a)∗ T µ Ψµ

0(a) = W µ
pol(φ(a)), where W µ

pol ∈
End(CN)[x]. Lemma 3.7 implies that the scalar weight |c−1

1 δ(a)/j(a)| is W (Σ)-invariant,

hence it is equal to w(φ(a)) for some function w : φ(Ac)→ R. Define W µ(x) = W µ
pol(x)w(x).

A family of matrix-valued orthogonal polynomials with respect to the weight W µ(x) is a

family of matrix-valued polynomials Qd ∈ End(CN) of multi-degree d that are pair-wise

orthogonal with respect to integration against W µ(x) and which satisfy the properties of

Proposition 3.5. Orthogonal means that the matrix norm is an invertible matrix. These

considerations prove Theorem 3.8.

Theorem 3.8. The Qµ
d ∈ End(CN)[x1, · · · , xn], d ∈ Nn

0 , constitute a family of matrix-valued

orthogonal polynomials with respect to the matrix weight W µ on the compact set φ(Ac) ∈ Rn.

The End(CN)-valued squared norm of Qµ
d equals Hd as in (3.6).

The polynomials {Qµ
d | d ∈ Nn

0} satisfy the following recurrence relation,

xjQ
µ
d(x) =

∑
|d′|=|d|+1

Qµ
d′(x)Add′,j +

∑
|d′|=|d|

Qµ
d′(x)Bd

d′,j +
∑

|d′|=|d|−1

Qµ
d′(x)Cd

d′,j

for some coefficients Add′,j, B
d
d′,j, C

d
d′,j contained in End(CN), where x = (x1, · · · , xn). Note

that these coefficients follow from (3.3). We obtain examples of a matrix-valued generaliza-

tion of the multi-variable orthogonal polynomials from [12].

3.2. Differential operators. For a D ∈ D(µ) the µ-radial part radµ(D) ∈ End((R(Ac) ⊗
EndMc(V

H
µ ))W ) can be extended to act on functions on Ac taking values in the space

Hom(CN ,EndMc(V
H
µ )) by acting term-wise. So on Φµ

d |Ac the action is given by

radµ(D)(Φµ
d |Ac) =

(
radµ(D)(Φµ

ν1+λd
|Ac), · · · , radµ(D)(Φµ

νN+λd
|Ac)
)

=
(
γµ(D, ν1 + λd)Φ

µ
ν1+λd

|Ac , · · · , γµ(D, νN + λd)Φ
µ
νN+λd

|Ac
)

for d ∈ Nn
0 . Consider the µ-radial part Ωµ and the radial (for µ = 0) part Ω0, then for a

suitable function Q : Ac → End(CN),

(3.7) Ωµ(Φµ
0Q) = (ΩµΦµ

0)Q+ Φµ
0Ω0(Q) + 2

r∑
i=1

(∂ξiΦ
µ
0)(∂ξiQ).
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This follows since in the scalar differential operator Ω0 we have F 0 = 0, and F µ commutes

with multiplication from the right by End(CN)-valued function. In (3.7) we use Ω0(Q) =(
Ω0Qi,j

)N
i,j=1

entry-wise.

We now proceed to rewrite (3.7) as a differential operator for Q. For this we conjugate

Ωµ by Φµ
0 , which is invertible on a dense subset of Ac, see [39, Lemma 6.1], and for this we

need a first order differential equation for Φµ
0 .

Lemma 3.9. For all k = 1, · · · , n, we have as Hom(CN ,EndMc(V
H
µ ))-valued functions on

Ac

2
n∑
i=1

(∂ξiΦ
µ
0)(∂ξiφk) = Φµ

0(Lk(φ) + Ck),

where Lk is a End(CN)-valued polynomial in φ = (φ1, · · · , φn) of degree 1 without constant

term and Ck ∈ End(CN) is a constant.

Remark 3.10. The function Φ0 is possibly not of full rank in the points where the matrix

(∂ξiφk)i,k is singular. In case n = 1 this is on the end points of the interval [−1, 1], in the

cases n = 2, 3 this is on the boundaries of the regions in Figure 1.

Proof. Note that F 0 = 0 and that the functions φj and Φµ
0 are eigenfunctions of Ω0 and Ωµ

respectively, with eigenvalues γj = γ0(Ω, λj) ∈ C and Γ0 = diag
(
γµ(Ω, ν1), · · · , γµ(Ω, νN)

)
∈

End(CN) respectively. Similarly we define Γδi = diag
(
γµ(Ω, ν1 + λi), · · · , γµ(Ω, νN + λi)

)
∈

End(CN), the diagonal eigenvalue of the Casimir operator for Φµ
δi

. If we plug in Q = φkI in

(3.7) then we obtain

Ωµ(Φµ
0φk) = Φµ

0Γ0φk + Φµ
0γkφk + 2

n∑
i=1

(∂ξiΦ
µ
0)(∂ξiφk).

On the other hand, if we apply Ωµ to (3.3) for d = 0, we can evaluate the left hand side.

This gives

n∑
i=1

Φµ
δi

ΓδiA
0
k,δi

+ Φµ
0Γ0B

0
k,0 = Φµ

0Γ0φk + Φµ
0γkφk + 2

n∑
i=1

(∂ξiΦ
µ
0)(∂ξiφk).

Now use Φµ
δi

= Φµ
0Q

µ
δi

(φ), see (3.5), and collect the terms. �

To conjugate the differential operators it is more convenient to work with the functions Ψµ
0 ,

because their values are square matrices. The chain rule implies 2
∑n

i=1(∂ξiΨ
µ
0)(∂ξiQ(φ)) =

2
∑n

k=1

∑n
i=1(∂ξiΨ

µ
0)(∂ξiφk)∂kQ(φ) and together with Lemma 3.9 we obtain

(m(Ψµ0 )−1 ◦ Ωµ ◦mΨµ0
)(Q)(φ) = Ω0Q(φ) + 2

n∑
k=1

(Lk(φ) + Ck)(∂kQ)(φ) + Γ0Q(φ),

where mΨµ0
denotes multiplication by Ψµ

0 on the right. Note that (Ψµ
0)−1 exists on a dense

subset of Ac, see [39, Lemma 6.1]. The final manipulation is a change of variables x = φ(a)
17



for which we need the following identities,

∂2
ξi

(Q(φ)) =
n∑
k=1

(
n∑
`=1

(∂`∂kQ)(φ)(∂ξiφ`)(∂ξiφk) + (∂kQ)(φ)(∂2
ξi
φk)

)
and ∑

α∈P+

(α, α)
1 + e−2α

1− e−2α
∂α∨(Q(φ)) =

n∑
i=1

(∑
α∈P+

(α, α)
1 + e−2α

1− e−2α
∂α∨φi

)
(∂iQ)(φ).

This yields

Ω0(Q(φ)) =
∑

1≤k,`≤r

(
n∑
i=1

(∂ξiφ`)(∂ξiφk)

)
(∂k∂`Q)(φ) +

n∑
k=1

γk(∂kQ)(φ).

Finally we obtain

(mΦ−1
0
◦ Ωµ ◦mΦ0)(Q)(φ) =(3.8)∑

1≤k,`≤n

(
n∑
i=1

(∂ξiφ`)(∂ξiφk)

)
(∂k∂`Q)(φ) + 2

n∑
k=1

(Lk(φ) + Ck + γk)(∂kQ)(φ) + Γ0Q(φ).

So (3.8) gives a second order differential operator DΩ ∈ End(CN)[x, ∂x] having the polyno-

mials Qµ
d(x), x = (x1, · · · , xn), as eigenfunctions.

For the µ-radial part of the Casimir operator we have an explicit expression. In general

we don’t have such expressions available. However, in principle we can perform the above

construction for any element in D(µ).

Letting the µ-radial part of an element D ∈ D(µ) act on Ψµ
0Q(φ) for a function Q in n

variables, and conjugating by Ψµ
0 and changing to coordinates x, we obtain a differential

operator End(CN)[x, ∂x] having the polynomials Qµ
d (as function of x) as eigenfunctions. We

denote the image of this map Dµ : D(µ)→ End(CN)[x, ∂x] by D(µ), which is a commutative

algebra of matrix-valued differential operators having the polynomials Qµ
d as simultaneous

eigenfunctions.

In fact, by Lemma 2.2 the polynomials Qµ
d are determined as simultaneous eigenfunctions

of the elements in D(µ). The image of the Casimir operator in D(µ) is also symmetric.

Indeed, its eigenvalues are real diagonal matrices and the matrix norms of the polynomials

Qµ
d are also diagonal.

To describe another important property of the elements in D(µ) we need the following

notation. A multi-index α ∈ Nn
0 has total degree |α| = α1 + · · · + αn. Given such a multi-

degree α, we write ∂αx = ∂α1
x1
· · · ∂αnxn .

Proposition 3.11. The differential operators in D(µ) are of the form
∑t

k=0

∑
α:|α|=k Pα(x)∂αx ,

where α ∈ Nn
0 and Pα ∈ End(CN)[x] is of total degree at most |α|.

18



Proof. A differential operator from D(µ) preserves polynomials, since the Qµ
d are eigen-

functions, see Proposition 3.5. Hence the coefficients are polynomials. Since the Qµ
d are

eigenfunctions it also preserves the total degree of these polynomials. This gives the state-

ment on the degree of the polynomials. �

Applying Proposition 3.11 to the image DΩ ∈ D(µ) of the Casimir operator of (3.8) gives

the following corollary.

Corollary 3.12. The expression
∑n

i=1(∂ξiφ`)(∂ξiφk) in (3.8) is a polynomial of total degree

at most two.

Part 2. The case (U,K) = (SU(n+ 1)× SU(n+ 1), diag SU(n+ 1))

In this part we adopt the following notation. The pair (U,K) is equal to (SU(n + 1) ×
SU(n + 1), diag SU(n + 1)) and the pair (G,H), its complexification, is equal to (SL(n +

1,C)× SL(n+ 1,C), diag SL(n+ 1)). Note Ψµ
0 = Φµ

0 , since M = ZK(Ac) is a maximal torus

in K.

4. Structure theory and zonal spherical functions

Both (U,K) and (G,H) are symmetric pairs, where the involutive automorphims are given

by the flip θ(x, y) = (y, x). The Lie algebra g decomposes according to the ±-eigenspace of

the differential of θ, g = h + p, with p isomorphic to h as a C-vector space.

Let T ⊂ SL(n+ 1,C) be the maximal torus consisting of diagonal elements. The maximal

tori of G and H are TG = T ×T and TH = diag(T ). Let A = {(t, t−1) | t ∈ T}. Then the Lie

algebra a of A is a maximal abelian subspace of p, whose centralizer in H is TH . The root

system ∆(sln+1, t) is described in [3, Planche I] and we take the same choices here. The set

of positive roots and simple roots are denoted by ∆+(sln+1, t) and Π(sln+1, t) respectively.

The set of roots for (g, tG) is given by ∆ = {(α, 0) | α ∈ ∆(sln+1, t)} ∪ {(0, α) | α ∈
∆(sln+1, t)}. We fix the set of positive roots ∆+ = {(α, 0) | α ∈ ∆+(sln+1, t)} ∪ {(0,−α) |
α ∈ ∆+(sln+1, t)}. The corresponding set of simple roots is given by Π = {(α, 0) | α ∈
Π(sln+1, t)} ∪ {(0,−α) | α ∈ Π(sln+1, t)}.

The restricted roots are given by the restrictions of the roots in ∆ to the anti-diagonal a

in t ⊕ t. The set of restricted roots is denoted by Σ. Note that (α, 0)|a = (0,−α)|a, which

shows that the root multiplicities are two, i.e. the restricted root spaces are two-dimensional.

The set of positive restricted roots is given by ∆+ = {(α, 0)|a | α ∈ ∆+(sln+1, t)}. The

corresponding Weyl group is W (Σ) = Sn+1. Moreover, since the flip θ does not stabilize any

root, we have P+ = ∆+, where P+ is as in Subsection 3.1.
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Upon the identification G/H → SL(n + 1,C) induced by the map (g1, g2) 7→ g1g
−1
2 the

zonal spherical functions correspond to a multiple of the characters of the irreducible repre-

sentations of SL(n + 1,C), the multiple being the reciprocal of dimension of the represen-

tation, i.e. φ(λ,−λ)(x, y) = (dim(Vλ))
−1χλ(xy

−1) where λ is a dominant integral weight for

SL(n+1,C), Vλ the corresponding finite-dimensional holomorphic representation, and χλ its

character. So in this case P+
G (0) = {(λ,−λ) | λ ∈ P+

SL(n+1,C)} and the fundamental spherical

weights of G are given by λi = (ωi,−ωi) where ωi, i = 1, · · · , n, are the fundamental weights

for SL(n + 1,C), which can deduced from the Cartan-Helgason theorem [25, Thm. 8.49].

Moreover, the trivial representation occurs with multiplicity one in the tensor product de-

composition, so Condition 2.1 is satisfied. This also follows from the fact that (G,H) is a

spherical pair, see the first paragraph of Section 5.

The restriction of the corresponding zonal spherical functions to A are Sn+1-invariant,

so they are classical symmetric functions in n + 1 variables t = (t1, · · · , tn+1) with the

restriction t1 · · · tn+1 = 1. We record the explicit expressions of the fundamental zonal

spherical functions.

Let V = Cn+1, equipped with standard orthonormal basis (e1, · · · , en+1), be the represen-

tation space of the standard representation π
SL(n+1,C)
ω1 . The representation space of π

SL(n+1,C)
ωi

is then given by
∧i V .

Lemma 4.1. The zonal spherical function φi = φλi associated to the fundamental spherical

weight λi = (ωi,−ωi) is given by

φi(t, t
−1) =

(
n+ 1

i

)−1∑
J

t2j1 · · · t
2
ji
,

where the sum is taken over all i-tuples 1 ≤ j1 < · · · < ji ≤ n+ 1 and for any 1 ≤ i ≤ n.

Note that the zonal spherical function φi = φλi are invariant under the action of the

symmetric group W (Σ) and under (t, t−1) 7→ (−t,−t−1) which corresponds to the nontrivial

element of Mc ∩ Ac = {±(I, I)}.
Proof. This follows immediately from φi(t, t

−1) = (dim(Vωi))
−1χωi(t

2) and the explicit

expressions for the dimension and the character using Weyl’s formulas, but we do it more

directly. The representation space of the spherical representation πG(λ,−λ) is given by Vλ ⊗
V ∗λ
∼= End(V λ) and then the G-representation is (x, y) · A = π

SL(n+1,C)
λ (x)Aπ

SL(n+1,C)
λ (y−1).

Then the identity I is a H-fixed vector, and with the inner product given by (A,B) 7→
dim(Vλ)

−1tr(A∗B), the zonal spherical function, as the corresponding matrix entry, is given

by the normalized character. Now take λ = λi = (ωi,−ωi), so that Vλi = End(
∧i V ), with

standard basis elements ej1 ∧ · · · ∧ eji for 1 ≤ j1 < · · · < ji ≤ n+ 1. �

Note that the fundamental spherical functions satisfy φi ◦ θ = φn+1−i for i = 1, · · · , n,

which follows from the more general rule Φµ
λ(θ(g)) = Φµ∗

λ∗(g)∗. This implies φi(t, t
−1) =
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φn+1−i(t, t−1) for (t, t−1) ∈ Ac = A ∩ (SU(n + 1) × SU(n + 1)). Hence the image φ(Ac) is

contained in the real space Rn = {(z1, . . . , zn) ∈ Cn : zi = zn+1−i}.
Let (e1, . . . , en) be the standard basis of Cn. Let F ∈ R[z1, . . . , zn] be a polynomial viewed

as a function on Rn, i.e. where zi(ej) = δi,j. Our aim is to write the integral
∫
U
F (φ(u)) du,

U = SU(n + 1) × SU(n + 1), with du the Haar measure normalized by
∫
U
du = 1, as an

integral of F over φ(Ac). We proceed in four steps.

(1) Using the decomposition of the integral for the U = KAcK-decomposition, see (2.6),

we obtain ∫
U

F (φ(u)) du = c1

∫
Ac

F (φ(a))|δ(a)| da,

where δ(exp(H), exp(−H)) =
∏

α∈∆+(sln+1,t)
(eα(H) − e−α(H))2. In order to calculate c1 we

have to evaluate a Selberg integral

(4.1)

∫
Ac

|δ(a)|s da =
Γ(1 + (n+ 1)s)

Γ(1 + s)n+1
,

for s = 1, see e.g. [14] or [20, Ex.3.5.8]. Hence c1 = ((n+ 1)!)−1.

(2) We identify ac = {(H,−H) | H = i(h1, · · · , hn+1) ∈ iRn+1,
∑n+1

k=1 hk = 0}. By abuse

of notation we use α = (α, 0)|ac ∈ Σ and ωi = (ωi, 0)|ac . Let α∨ ∈ ac be the coroot, i.e. α∨i is

identified with i(ei − ei+1). Then the Haar measure on Ac is the push forward of the form

(2π)−ndω1 ∧ · · · ∧ dωn under the exponential map on f = {
∑n

k=1 skα
∨
k | 0 ≤ sk < 2π} since

ωk(α
∨
l ) = δk,l, i.e.∫

Ac

f(a) da =
1

(2π)n

∫
f

f
(
exp(H),− exp(H)

)
dω1 ∧ · · · ∧ dωn.

Note that f is a fundamental domain for the translations by 2πΛQ∨ , where ΛQ∨ is the coroot

lattice.

(3) Since a 7→ |δ(a)| is Weyl group invariant, the integrand is Weyl group-invariant. Note

that a fundamental domain for the action of W on f mod the action of 2πΛQ∨ is given by the

fundamental alcove b in the Stiefel diagram, see [11, §3.11]. Then b = {
∑n

k=1 bkω
∨
k | bk ≥

0, k = 1, · · · , n,
∑n

k=1 bk ≤ 2π}, where ω∨k ∈ ac is defined by αl(ω
∨
k ) = δk,l, and we obtain

1

(n+ 1)!

∫
Ac

F (φ(a)) |δ(a)| da =

1

(2π)n

∫
b

F
(
φ(exp(H),− exp(H))

)
|δ(exp(H),− exp(H))| dω1 ∧ · · · ∧ dωn.

(4) We observe that δ(a) = P (φ(a)) for some polynomial P , since a 7→ δ(a) is invariant

under the action of W and the action of Mc∩Ac = {±(I, I)}. The Jacobian in Lemma 3.7 is

the square root of |δ(a)| in this case. Up to the constant factor we have proved the following

result.
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Lemma 4.2. With the notation from this section we have

(4.2)
1

(n+ 1)!

∫
Ac

F (φ(a)) |δ(a)| da =
1

(2π)n

(
n∏
k=1

(
n+ 1

k

))∫
φ(exp(b))

F (φ)|P (φ)|
1
2 dφ,

where dφ = dφ1 ∧ · · · ∧ dφn.

Proof. It remains to show that the constant
∏n

k=1

(
n+1
k

)
in (4.2) is correct. Since the coroots

α∨k are dual to the fundamental weights ωl it suffices to take the partial derivatives of the fun-

damental spherical functions with respect to the coroots. Note that φk(exp(H), exp(−H)) =(
n+1
k

)−1
e2ωk(H) + l.o.t, where the lower order terms are with respect to the partial or-

der. So the determinant of
(
∂φk
∂α∨l

)
1≤k,l≤n is of the form 2n

∏n
k=1

(
n+1
k

)−1
e2ρ + l.o.t, with

ρ =
∑n

k=1 ωk = 1
2

∑
α>0 α, as only the diagonal elements in the matrix contribute to the

coefficient of e2ρ. By Lemma 3.7 the coefficient of the leading term e2ρ in j in this case

is c2(2i)n. Taking absolute values and comparing the constants determines the value of

|c2|. Observe that |j(φ)| = |c2||P (φ)| 12 , so that |δ(φ(a))|/|j(φ)| = |c2|−1|P (φ)| 12 , and (4.2)

follows. �

Note that φ(exp(b)) = φ(Ac). We record the following special case of (4.2) in conjuction

with the Selberg integral (4.1),∫
φ(Ac)

|P (φ)|s dφ =
(2π)n∏n
k=1

(
n+1
k

) 1

(n+ 1)!

Γ(1 + (n+ 1)(s+ 1
2
))

Γ(3
2

+ s)n+1
,

which leads to an expression for the volume of φ(Ac),

vol
(
φ(Ac)

)
=

∫
φ(Ac)

dφ =
(2
√
π)n

Γ(1 + n
2
)
∏n

k=1

(
n+1
k

) .
For n = 2 we obtain the area of Steiner’s hypocycloid, which is 4π/9. For n = 3 we

obtain the volume of the 3-dimensional analog of Steiner’s hypocycloid, which equals π/9.

See Figure 1.

Now that we have (4.2) it remains to study the polynomial P and φ(Ac). First note

that δ(a) = P (φ(a)) and φ(Ac) = φ(exp(b)), which shows that P vanishes at the boundary

of φ(Ac) and is non-zero in the interior since H 7→ δ(exp(H), exp(−H)) vanishes at the

boundary of b and is non-zero at its interior.

Lemma 4.3. The barycenter H0 of the fundamental alcove b is mapped to 0 ∈ Cn by φ◦exp.

In particular, 0 is contained in the interior of φ(Ac).

Proof. H0 = π
n+1

∑n
k=1 ω

∨
k = πi

n+1
(1

2
n, 1

2
(n − 2), · · · ,−1

2
n), so that t0 = exp(H0) =

(exp( inπ
2(n+1)

), · · · , exp(− inπ
2(n+1)

)) and
(
n+1
i

)
φi(t0, t

−1
0 ) = ei(t

2
0), where ei is the i-th elementary

symmetric function, see Lemma 4.1. The generating function for the elementary symmetric
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function gives, see also (6.7),

n+1∏
k=1

(z − e
iπ(n−2k)
n+1 ) = zn+1 − e1(t20)zn + e2(t20)zn−1 − · · ·+ (−1)nen(t20) + (−1)n+1en+1(t20)

and en+1(t20) = 1. Since the polynomial zn+1 + (−1)n+1 has the same zeros
{
e
iπ(n−2k)
n+1 | k =

0, . . . , n
}

we see that ek(t
2
0) = 0 for k = 1, . . . , n. �

It follows that the image φ(Ac) is the closure of the connected component of the set

{v ∈ Rn | P (v) 6= 0} that contains 0.

Lemma 4.4. Let pk(t1, . . . , tn+1) = tk1 + · · · + tkn+1 be the symmetric power sum. Then

det(pi+j−2(t2))1≤i,j≤n+1 = δ(t, t−1) = P (φ(t, t−1)) for some polynomial P ∈ R[z1, . . . , zn].

This result can be used to explicitly determine P using the Newton-Girard formulas ex-

pressing the symmetric power sums in the elementary spherical function, see [43, §10.12].

Proof. Observe that δ(t, t−1) =
∏

1≤i<j≤n+1( ti
tj
− tj

ti
)2. Taking the common denominator

out of the product, we have, using that t1t2 · · · tn+1 = 1, δ(t, t−1) =
∏

1≤i<j≤n+1(t2i − t2j)2.

By Vandermonde’s determinant this equals (detA)2 for the (n+ 1)× (n+ 1)-matrix A with

Ai,j = t
2(i−1)
j . Note that (AtA)i,j =

∑n+1
k=1 t

2(i+j−2)
k = pi+j−2(t2), so that δ(t, t−1) = det(AtA)

gives the result. �

We summarize these results in the following theorem.

Theorem 4.5. Let F ∈ R[z1, . . . , zn]. Then∫
U

F (φ(u))du =
1

(2π)n

(
n∏
k=1

(
n+ 1

k

))∫
φ(exp(b))

F (φ)w(φ) dφ,

where w(z) = |P (z)|1/2. Moreover, φ(Ac) is equal to the closure of the connected component

of {v ∈ Rn | P (v) 6= 0} that contains 0.

5. Inverting the branching rule

The aim of this section is to calculate the set P+
G (kω1) for k ∈ N0, i.e. the set of irreducible

G-representations πGλ such that [πGλ |H : πHkω1
] = 1. The pair (G,H) is a spherical pair,

meaning that a Borel subgroup of G has an open orbit on the quotient G/H. The open

orbit corresponds to the open Bruhat cell via the isomorphism G/H ∼= SL(n + 1,C) which

is induced from the map G → SL(n + 1,C) (g1, g2) 7→ g1g
−1
2 . In particular, this shows that

by [45, Thm. 25.1] the trivial representation occurs with multiplicity at most 1 in πGλ |H .

Let P ⊂ H denote the parabolic subgroup that contains the Borel subgroup of H of upper

triangular matrices and whose Levi subgroup has simple roots given by {α2, . . . , αn}. The

fundamental weight ω1 extends to a character of P , and so does kω1. Let L → G/P be a

G-equivariant line bundle. Its space of global sections is a G-module. One can show that all
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Figure 1. The figure on the left corresponds to the orthogonality region for

the case n = 2. This is the area enclosed by Steiner’s hypocycloid, which is

given by an algebraic curve of fourth degree (8.2). The figure on the right is

the three-dimensional region of orthogonality for n = 3 which is determined

by the algebraic equation of degree six (8.3).

such modules decompose multiplicity free into irreducible G-modules if and only if P ⊂ G is

a spherical subgroup, see e.g. [45, Thm. 25.1]. It turns out that for this choice of parabolic

subgroup P ⊂ G the pair (G,P ) is still spherical. The parabolic subgroup associated to

{α1, . . . , αn−1} also has this property, but there are essentially no other parabolic subgroups

for which this holds, see [19, §6].

We explain how to describe the decomposition of the spaces of sections of all such associ-

ated line bundles at once.

Definition 5.1. Let G′ be a connected simply connected reductive group and let G′′ ⊂ G′ be

a spherical subgroup, i.e. the quotient G′/G′′ admits an open orbit for the action of a Borel

subgroup B′ ⊂ G′. Let T ′ ⊂ B′ be a maximal torus. Denote by X+(T ′) the semi-group of

positive characters of T ′ with respect to B′ and by X(G′′) the group of characters of G′′. For

λ ∈ X+(T ′) and µ ∈ X(G′′) put

C[G′]
(B′×G′′)
(λ,µ) = {f : G′ → C | ∀(b, g, h) ∈ B′ ×G′ ×G′′ : f(b−1gh) = λ(b)f(g)µ(h)}

and define

Λ̂+(G′, G′′) = {(λ, µ) ∈ X+(T ′)×X(G′′) | C[G′]
(B′×G′′)
(λ,µ) = C},

which is called the extended weight semi-group of the pair (G′, G′′).

Definition 5.1 follows [2, Def. 1], since we have moreover assumed that (G′, G′′) is a spher-

ical pair, so that the dimension of C[G′]
(B′×G′′)
(λ,µ) is at most 1, see [45, Thm. 25.1]. One can

show that Λ̂+(G′, G′′) is a semi-group and moreover that it is freely generated, the generators

corresponding to the set of B′-stable prime divisors on G′/G′′, see [2, Thm. 2].
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Observe that (λ∗, kω1) ∈ Λ̂+(G,P ) if and only if [πGλ |P : kω1] = 1, see [2, §1.2], and this

happens if and only if [πGλ |H : πHkω1
] = 1. Hence P+

G (kω1) consists of elements λ ∈ P+
G such

that (λ∗, kω1) ∈ Λ̂+(G,P ). We calculate Λ̂+(G,P ) in Lemma 5.2.

In this subsection we use a different choice of positive roots for G, namely the one that

corresponds to the Borel subgroup B×B, where B ⊂ SL(n+1,C) consists of upper triangular

matrices.

This new choice of positivity is related to our earlier choice by applying the longest Weyl

group element of the second factor to the second component. The fundamental weights

are now given by (ωi, 0), (0, ωj) and the fundamental spherical weights are given by ηi =

(ωi, ωn+1−i). Furthermore we employ the convention ω0 = ωn+1 = 0.

Lemma 5.2. The extended weight semi-group Λ̂+(G,P ) is generated by

(5.1) ((ωi, ωn+1−i)
∗, 0), i = 1, . . . , n and ((ωi, ωn+2−i)

∗, ω1), i = 1, . . . , n+ 1.

Proof. The elements ((ωi, ωn+1−i)
∗, 0), i = 1, . . . , n correspond to spherical representations

and are thus contained in Λ̂+(G,P ). To show that the elements ((ωi, ωn+2−i)
∗, ω1), i =

1, . . . , n+1 are contained in Λ̂+(G,P ) we have to show that the irreducible G-representation

V G
(ωi,ωn+2−i)

contains V H
ω1

upon restriction to the diagonal subgroup H. This can be done by

means of the Littlewood-Richardson rule, see e.g. [18, §9.3.5]. Instead of giving this argument

we refer to Corollary 6.13 where we calculate the corresponding embeddings.

The elements in (5.1) are indecomposable and linearly independent. To prove the result

it suffices to show that the rank of Λ̂+(G,P ) is at most 2n+ 1.

Consider the fibration G/P → G/H. On G/H the number of B×B-stable prime divisors

is n, which follows for example from the Bruhat decomposition. The pull-back of each of

these divisors gives a B × B-stable prime divisor on G/P . The other B × B-stable prime

divisors in G/P map dominantly onto G/H. This means that these divisors intersect the

fiber H/P in a BM -stable prime divisor where BM = (B ×B) ∩H ⊂M ∼= (C×)n is a torus

that acts naturally on H/P ∼= Pn(C). There are n+ 1 prime divisors in H/P that are stable

under M , namely the hyperplanes {(z0 : . . . : zn) ∈ Pn(C) | zi = 0} for i = 0, . . . , n. This

shows that there are at most 2n+1 different B-stable prime divisors in G/P , as desired. �

Corollary 5.3. Fix k ∈ N0 and set B(kω1) = {(
∑n+1

i=1 ki(ωi, ωn+2−i) :
∑n+1

i=1 ki = k}. Then

P+
G (kω1) = B(kω1) + P+

G (0).

Proof. Note that λ ∈ P+
G (kω1) if and only if (λ∗, kω1) ∈ Λ̂+(G,P ), which is in turn

equivalent to

λ =
n+1∑
i=1

ki(ωi, ωn+2−i) +
n∑
j=1

dj(ωi, ωn+1−i), with
n+1∑
i=1

ki = k.

This settles the claim. �
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We proceed to check how P+
G (kω1) behaves with respect to the tensor product. Define

βi = (ωi−ωi+1, ωn+2−i−ωn+1−i). Then B(kω1) is contained in the affine plane that is parallel

to span(β1, . . . , βn). Recall that the fundamental spherical weights with respect to the Borel

subgroup B ×B are given by ηi = (ωi, ωn+1−i). A basis of t∗G is given by (β1, . . . , βn, η1, ηn).

Observe that

• (α1, 0) = β1 + η1,

• (αi, 0) = βi + ηi − ηi−1, for i = 2, . . . , n,

• (0, αi) = −βi − ηi + ηi+1, for i = 1, . . . , n− 1,

• (0, α1) = −βn + ηn.

Any weight that occurs in the decomposition of the tensor product V G
λ ⊗ V G

ηi
is of the form

λ+ ηi −
∑

α>0(n(α,0)(α, 0) + n(0,α)(0, α)) for some coefficients n(α,0), n(0,α) ∈ N0 and is hence

of degree ≤ |λ|+ 1.

The dominant weight (ωi, ωn+2−i) corresponds to the dominant weight (ωi,−ωi−1) with

respect to the Borel subgroup B×B−, where B− is opposite to B. Restricting this dominant

weight to tM gives 1
2
(ωi − ωi−1, ωi − ωi−1). This element corresponds to the weight vector

ωi − ωi−1 on t. The map

B(kω1)→ P+
M(kω1) :

n+1∑
i=1

ki(ωi, ωn+2−i) 7→
n+1∑
i=1

ki(ωi − ωi−1)

is surjective, which is a general feature for multiplicity free systems, see e.g. [39, Thm.3.1]. To

see that it is injective, we have to understand the branching πHkω1
|TH . The weight vectors are

just the monomials
∏n+1

i=1 e
ki
i and their weights are

∑n
i=1(ki − ki+1)ωi =

∑n+1
i=1 ki(ωi − ωi−1).

We observe that projection along the spherical directions η1, . . . , ηn provides a bijection

B(kω1)→ P+
M(kω1).

We have shown that Conditions 2.1, 3.1 and 3.2 are satisfied.

Remark 5.4. The Weyl group W (Σ) = Sn+1 acts transitively on P+
M(ω1). Indeed, the

standard basis of V consists of T -weight vectors e1, . . . , en+1 and T acts with the characters

ξi : T → C× : t 7→ ti. We have w(ξi)(t) = ξi(w
−1t) = tw(i) = ξw(i)(t), which shows that the

action of W (Σ) on P+
T (ω1) is basically the same as the action of Sn+1 on the set {1, . . . , n+1}

and is thus transitive.

6. The matrix weight

6.1. Some representations. We discuss some representations of G and H that are needed

to calculate the spherical functions of degree zero. Note that V H
kω1

= Sk(V ), the k-th sym-

metric power V . We identify V = Cn+1 with its standard basis (e1, . . . , en+1). A basis of

Sk(V ) is given by the monomials eτ = eτi1 · · · e
τn+1

n+1 , where τ ∈ Nn+1
0 is a composition of k in

at most n + 1 parts, i.e.
∑n+1

i=1 τi = k. For such a composition we introduce the binomial(
k
τ

)
= k!/(τ1! · · · τn+1!). We identify P+

M(kω1) with the set of compositions τ ∈ Nn+1
0 of k. The
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element in P+
G (kω1) whose projection onto B(µ) along the spherical directions is σ is denoted

by λ(d, σ), where d ∈ Nn
0 is the degree. More precisely λ(σ, d) = σ +

∑n
i=1 dj(ωi, ωn+1−i)

following Corollary 5.3.

Lemma 6.1. The inner product on V H
kω1

= Sk(V ) with ||eσ||2 =
(
k
σ

)−1
is Hc invariant.

Proof. Consider the H-equivariant embedding ι : Sk(V )→ V ⊗k :
(
k
σ

)
eσ 7→

∑
w∈SIσk

ew(1) ⊗
· · · ⊗ ew(n+1), where SIσk denotes the set of unique representatives of smallest length of the

cosets Sτi/(Ssi×· · ·×Ssn+1). The latter has a natural Hc-invariant Hermitian inner product.

We stipulate that ι is isometric, which implies
(
k
σ

)2||eσ||2 =
(
k
σ

)
and the result follows. �

We refer to this inner product on Sk(V ) as the standard inner product. The inner product

on
⊗n+1

i=1 S
τi(V ) that is given by the product of the inner products is also referred to as the

standard inner product. Define

M(τ, ρ) =

{
(s1, . . . , sn+1) ∈

(
Nn+1

0

)n+1

∣∣∣∣∣∀p :
n+1∑
q=1

spq = τp,∀q :
n+1∑
p=1

spq = ρq

}
.

An element of M(τ, ρ) is denoted by (s), it is really an (n+1)× (n+1)-matrix whose entries

of the p-th column and q-th row add up to τp and ρq respectively.

Lemma 6.2. A composition τ gives rise to an isometric H-equivariant embedding

iτ : Sk(V )→
n+1⊗
i=1

Sτi(V ) : eρ 7→
(
k

ρ

)−1 ∑
(s)∈M(τ,ρ)

((
τ1

s1

)
es

1 ⊗ · · · ⊗
(
τn+1

sn+1

)
es
n+1

)
.

Remark 6.3. (i) Note that iτ is easily defined on the highest weight vector. However, we

need to have all the information of the Lemma 6.2 for later purposes.

(ii) For n = 1, Lemma 6.2 provides the Clebsch-Gordan coefficients for the embeddings

H` → H`1 ⊗ H`2 with `1 + `2 = `, see e.g. [31, Prop.2.1]. We have not tried to obtain the

general Clebsch-Gordan coefficients since we do not require the explicit knowledge. Moreover,

in general this seems to be a hard problem.

(iii) The isometry property of iτ gives the generalized Vandermonde summation.

Proof. Let αi be a simple root and consider the root vector Ei ∈ gαi , which acts on Sk(V )

by ei
d

dei+1
by identifying Sk(V ) with the space of homogeneous polynomials of degree k on

V ∗. Given a composition ρ = (ρ1, . . . , ρn+1) of k, let ρ(i) denote the composition

ρ(i) = (ρ1, . . . , ρi + 1, ρi+1 − 1, . . . , ρn+1).

We allow a negative number in the composition, in which case we employ the convention

that the binomial for such a composition is zero. We use the formula ρi+1

(
k
ρ

)
= (ρi + 1)

(
k
ρ(i)

)
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to derive

(6.1) Eiiτ (eρ) =(
k

ρ

)−1 ∑
(s)∈M(τ,ρ)

n+1∑
k=1

((
τ1

s1

)
es

1 ⊗ · · · ⊗ (si + 1)

(
τk
sk(i)

)
eie

sk

ei+1

⊗ · · · ⊗
(
τn+1

sn+1

)
es
n+1

)
.

Observe that we obtain a linear combination of elements of the form eσ
1 ⊗ . . .⊗ eσn+1

with

σ ∈ M(τ, ρ(i)). Let s(i, k) = (s1, . . . , sk(i), . . . , sn+1) and note that every σ ∈ M(τ, ρ(i)) is

of the form s(i, k), for some k ∈ {1, . . . , n + 1} and ski+1 > 0. Indeed, if σ ∈ M(τ, ρ(i)) and

σki 6= 0 then we define s(σ, k) ∈M(τ, ρ) by s(σ, k)` = σ` if ` 6= k and

s(σ, k)k = (σk1 , . . . , σ
k
i − 1, σki+1 + 1, . . . , σkn+1).

One checks that s(σ, k)(i, k) = σ. If σki = 0 for all k = 1, . . . , n+ 1, then
∑

k σ
k
i = 0, but this

sum is also equal to ρi + 1, and this contradicts ρi ∈ N0. We use this observation to rewrite

(6.1),

Eiiτ (eρ) =

(
k

ρ

)−1 ∑
(σ)∈M(τ,ρ(i))

n+1∑
k=1

σki

((
τ1

σ1

)
eσ

1 ⊗ · · · ⊗
(
τn+1

σn+1

)
eσ

n+1

)

=

(
k

ρ

)−1

(ρi + 1)
∑

(σ)∈M(τ,ρ(i))

((
τ1

σ1

)
eσ

1 ⊗ · · · ⊗
(
τn+1

σn+1

)
eσ

n+1

)
= ρi+1iτ (Eieρ),

as desired. We have shown that actions of the root vectors of the simple positive roots are

intertwined by iτ . In a similar fashion one checks that iτ intertwines the action of the root

vectors of negative roots and of the torus. Finally note that ||iτ (ek1)|| = ||eτ11 ⊗. . .⊗e
τn+1

1 || = 1,

which implies that iτ is an isometry. �

6.2. Calculation of Φkω1
0 . Let µ = kω1. Consider the spherical functions {Φµ

λ(0,σ) | σ ∈
P+
M(µ)}. Following the proof of [39, Lem. 6.1], Φµ

a = (Φµ
λ(0,σ)(a) | σ ∈ P+

M(µ)) is a basis

of EndM(V H
µ ) for a ∈ Aµ−reg. By Schur’s Lemma, another basis of EndM(V H

µ ) is given by

F ⊗ E = (fσ ⊗ eσ | σ ∈ P+
M(µ)), where E = (eσ | σ ∈ P+

M(µ)) and F = (fσ | σ ∈ P+
M(µ)) the

basis of (Sk(Cn+1))∗ dual to E . The base change yields the full spherical function of degree

zero,

Φµ
0(a) = [I]Φ

µ
a
F⊗E =

(
〈eσ, a · eσ〉λ(0,τ)

〈eσ, eσ〉λ(0,τ)

)
σ,τ

∈ End(Cn+1).

This matrix is in general hard to compute. However, for the case (SU(2)×SU(2), diag(SU(2)))

there exists a remarkable formula found by Koornwinder, [31, Prop. 3.2]. We found a sim-

ilar formula for the matrix Φµ
0(a), whose formulation and proof occupies the rest of this

subsection.
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Let τ = (τ1, . . . , τn+1) ∈ P+
M(µ) and consider the standard G-representation πGT (τ) on

T (τ) =
⊗n+1

i=1 (V G
λi

)⊗τi . Let Γ = (γτ |τ ∈ P+
M(µ)) be a collection of H-equivariant isometric

embeddings γτ : V H
µ → T (τ) and let γ∗τ : T (τ)→ V H

µ denote their adjoint maps. Define

Γµτ (a) = γ∗τ ◦ πGT (τ)(a) ◦ γτ

and observe that Γµτ (a) =
∑

λ′≤λ(0,τ) cλ′,γτΦ
µ
λ′(a). Moreover, the coefficients cλ′,γτ are non-

negative numbers that add up to one. Define C(Γ) ∈ End(CN) by

C(Γ)σ,τ = cλ(0,σ),γτ .

Consider the map Γµa : EndM(V H
µ )→ EndM(V H

µ ) : fτ ⊗ eτ 7→ Γµτ (a). Its matrix with respect

to the basis F ⊗ E is given by

[Γµa ]F⊗EF⊗E = Φµ
0(a) · C(Γ).(6.2)

We proceed to calculate this matrix for a specific collection Γ.

Definition 6.4. Given a ∈ A, define ga ∈ End(Cn+1) by (ga)ij = 〈a · ei, ei〉λj .

In fact, ga = Φω1
0 (a) ∈ End(Cn+1), since the basis (e1, . . . , en+1) is orthonormal with

respect to the H-invariant inner product on V H
ω1

. Moreover, ga is invertible for a ∈ Aµ−reg.

Lemma 6.5. The matrix of the natural action of ga on Sk(V H
ω1

) is given by

(
[ga]

E
E
)
ρ,τ

=
∑

(s1,...,sn+1)∈M(ρ,τ)

(
n+1∏
i=1

(
τi
si

) n+1∏
j=1

〈a · ej, ej〉
sij
λi

)
.

Proof. Let S(τi) = {s ∈ Nn+1
0 |

∑n+1
j=1 sj = τi}. The calculation

gaeτ = (gae1)τ1 · · · (gaen+1)τn+1 =
n+1∏
i=1

(
n+1∑
j=1

〈a · ej, ej〉λiej

)τi

=

n+1∏
i=1

 ∑
s∈S(τi)

(
τi
s

) n+1∏
j=1

〈a · ej, ej〉
sj
λi
e
sj
j

 =

∑
ρ

 ∑
(s1,...,sn+1)∈M(ρ,τ)

(
n+1∏
i=1

(
τi
si

) n+1∏
j=1

〈a · ej, ej〉
sij
λi

) eρ

implies the claim. �

The coefficient of eρ can be interpreted as follows. According to Lemma 6.2, the compo-

sition τ gives rise to the H-equivariant isometric embedding

Sk(V )→
n+1⊗
i=1

Sτi(V ) : eρ 7→
(
k

ρ

)−1 ∑
(s)∈M(τ,ρ)

((
τ1

s1

)
es

1 ⊗ · · · ⊗
(
τn+1

sn+1

)
es
n+1

)
.
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Each of the tensor factors embedsH-equivariantly isometrically into the corresponding tensor

power,

asτi : Sτi(V )→ V ⊗τi :

(
τi
s

)
es 7→

∑
w∈SIsτi

ew(1) ⊗ · · · ⊗ ew(τi),

where SIsτi is as in the proof of Lemma 6.1. Note that |SIsτi | =
(
τi
s

)
. In turn, the H-equivariant

isometric embedding βω1
λi

: V → V G
λi

induces an H-equivariant embedding of the tensor

powers,

(βω1
λi

)⊗τi : V ⊗τi → (V G
λi

)⊗τi .

Denote cτi = (βω1
λi

)⊗τi ◦ asτi . We obtain the H-equivariant isometric embedding

(6.3) γτ : Sk(V )→
n+1⊗
i=1

(V G
λi

)⊗τi : eρ 7→
(
k

ρ

)−1 ∑
(s)∈M(τ,ρ)

(
cτ1(e

s1)⊗ · · · ⊗ cτn+1(e
sn+1

)
)
.

Lemma 6.6. We have

〈γτ (eρ), a · γτ (eρ)〉 =

(
k

ρ

)−2 ∑
(s)∈M(τ,ρ)

(
n+1∏
i=1

(
τi
si

) n+1∏
j=1

〈ej, a · ej〉
sij
λi

)
.

Proof. The summands of a · γ(τ)(eρ) are weight vectors of M whose weight is determined

by (s) ∈M(τ, ρ). This implies

〈γ(τ)(eρ), a · γ(τ)(eρ)〉 =(
k

ρ

)−2 ∑
(s)∈M(τ,ρ)

〈
cτ1(e

s1)⊗ · · · ⊗ cτn+1(e
sn+1

), a · cτ1(es
1

)⊗ · · · ⊗ a · cτn+1(e
sn+1

)
〉
.

Finally we use

〈cτi(es), a · cτi(es)〉 =

(
τi
s

) n+1∏
j=1

〈ej, a · ej〉
sj
λi
,

which finishes the proof. �

Let Γ = (γτ | τ ∈ P+
M(µ)) where the γτ are given by (6.3). Let En denote the normalized

basis (
(
k
σ

)1/2
eσ | eσ ∈ E).

Theorem 6.7. Let a ∈ Areg and consider ga ∈ GLn+1(C). Let D ∈ End(CN) be the diagonal

matrix with entries Dσ,σ = ||eσ|| =
(
k
σ

)−1/2
. Then

Φµ
0(a) · C(Γ) = D · [ga]EnEn ·D ∈ End(CN).

Proof. Lemma 6.5 and Lemma 6.6 imply that D2 · [ga]EE = [Γµa ]F⊗EF⊗E . Following (6.2) we find

D2 · [ga]EE = Φµ
0(a) · C(Γ). The base change [I]EEn = D implies the result. �

Corollary 6.8. det(C(Γ)) 6= 0.
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Remark 6.9. For n = 1 we know that λ ∈ B(µ) implies λ − α 6∈ B(µ). This implies that

C(Γ) = I. We obtain a new proof of [31, Prop. 3.2].

Remark 6.10. The decomposition of T (τ) into irreducible G-representations seems to be a

challenging problem. But in fact, this decomposition is not enough to give the matrix C(Γ).

Indeed, the matrix C(Γ) describes the embeddings γτ ∈ Γ.

6.3. The element ga. We proceed to calculate the element ga in the general case. To this

end, we need the embeddings V H
ω1
→ V G

λi
and the projections V G

λi
→ V H

ω1
.

Let Ji denote the set of i-tuples 1 ≤ j1 < · · · < ji ≤ n + 1. For κ = 1, . . . , i and J ∈ Ji
we denote by J(κ) the i− 1-tuple that we obtain from J by omitting jκ.

Let (e1, . . . , en+1) denote the standard basis of V . Then (eJ = ej1 ∧ . . . ∧ eji | J ∈ Ji) is

a basis of
∧i V . Let ι :

∧n+1 V → C be the isomorphism defined by ι(e1 ∧ . . . ∧ en+1) = 1.

Given J ∈ Ji, J ′ ∈ Jn+1−i we denote ε(J, J ′) = ι(eJ ∧ eJ ′).

Lemma 6.11. The irreducible SL(n+ 1,C)× SL(n+ 1,C)-representations(
i∧
V

)
⊗

(
n+2−i∧

V

)
, i = 1, . . . , n+ 1,

contain V upon restriction to the diagonal. The embedding is given on the highest weight

vector by e1 7→
∑
ε(J,K(1))eJ ⊗ eK, where we sum over the J ∈ Ji, K ∈ Jn+2−i with

J ∩K = {1}.

Proof. Note that the multiplicity is at most one. We start by finding a basis of the weight

space of
(∧i V

)
⊗
(∧n+2−i V

)
for M = diag(T ) of weight ω1. This space has a basis of weight

vectors for T × T . Certainly it contains the vectors eJ ⊗ eK with J ∈ Ji and K ∈ Jn+2−i

for which J ∩ K = {1}. In fact, these vectors span the weight space under consideration.

Indeed, let eJ ⊗ eK be a weight vector of weight ω1. Then either J or K contains 1, say

1 ∈ K. Then we must have J ∪ (K\{1}) = {1, . . . , n+ 1}, which implies J ∩K = {1}.
Now we show that the root vectors of SL(n+ 1,C) of the positive simple roots annihilate

a non-zero vector of the weight space span{eJ ⊗ eK | J ∈ Ji, K ∈ Jn+2−i, J ∩ K = {1}}.
We have Eαk(eJ ⊗ eK) 6= 0 if and only if k ∈ J, k + 1 ∈ K or k ∈ K, k + 1 ∈ J . Indeed,

Eαk(eJ ⊗ eK) = (EαkeJ)⊗ eK + eJ ⊗ (EαkeK) and this is zero if k and k + 1 are in the same

set J or K. From this we deduce that∑
ε(J,K(1))eJ ⊗ eK ,

where we sum over the J ∈ Ji, K ∈ Jn+2−i with J ∩ K = {1}, is annihilated by the

root vectors Eαk , k = 1, . . . , n. This is clear for k = 1, so we assume k > 1. Whenever

k ∈ J and k + 1 ∈ K, then J ′ = sk,k+1J,K
′ = sk,k+1K has k + 1 ∈ J ′, k ∈ K ′ and

ε(J,K(1)) = −ε(J ′, K ′(1)). However, Eαk(eJ ⊗ eK) = Eαk(eJ ′ ⊗ eK′). This establishes the

claim. �
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Lemma 6.12. The H-equivariant projections pi : V G
(ωi,ωn+2−i)

=
∧i V ⊗

∧n+2−i V → V are

given by

(6.4) eJ ⊗ eK 7→
n+2−i∑
κ=1

(−1)κ−1ι(eJ ∧ eK(κ))ekκ .

Proof. Consider the multi-linear map p̃i : V n+2 → V given by

(vj1 , . . . , vji , wk1 , . . . , wkn+2−i) 7→
n+2−i∑
κ=1

(−1)κ−1ι(vj1 ∧ . . . ∧ vji ∧ . . . ∧ ŵkκ ∧ . . .)wkκ .

This map is alternating in vj1 , . . . , vji and wk1 , . . . , wkn+2−i , hence it factors via the canonical

(H-equivariant) map V n+2 →
∧i V ⊗

∧n+2−i V to a linear map
∧i V ⊗

∧n+2−i V → V . This

map is equal to pi, which is seen on the basis elements, and H-equivariant. Hence pi is a

linear H-equivariant map. Moreover, for (J,K) ∈ Ji × Jn+2−i with J ∩ K = {r} we have

pi(eJ ⊗ eK) = ±er, which shows that pi is surjective. �

Corollary 6.13. The embedding V → V G
(ωi,ωn+2−i)

is determined by e1 7→
∑

J,K ε(J,K(1))eJ⊗
eK, where the sum is taken over the pairs (J,K) ∈ Ji × Jn+2−i such that J ∩K = {1}.

In order to write down the entries of this matrix we have to fix an ordering on the M = T -

types that occur in V which are given as (k1, . . . , kn+1) ∈ Nn+1
0 with

∑n+1
i=1 ki = 1. This

corresponds to the standard basis (e1, . . . , en+1) of V = Cn+1. In this way EndT (V ) ∼= Cn+1.

The element ga ∈ End(Cn+1) is determined by its first row, since the elements in the

columns are all Weyl group translates, see Remark 5.4. The weight of a vector eJ ⊗ eK is of

the form t 7→ tj1 · · · tjitk1 · · · tkn+2−1 , where t1 · · · tn+1 = 1.

Theorem 6.14. The first row of ga is given as follows. The m-th element is the polynomial

(t1, . . . , tn+1) 7→
(

n

m− 1

)−1 ∑
(J,K)∈Jm×Jn+2−m:J∩K={1}

tJ

tK
,

where tJ = tj1 · · · tjm and tK = tk1 · · · tkn+2−m

Proof. Apply (t, t−1) to the vector
∑

(J,K)∈Jm×Jn+2−m:J∩K={1} ε(J,K(1))eJ ⊗ eK and then

project down again by (6.4) to obtain the result. �

Let J (i)
m denote the set of tuples (j1, j2, . . . , jm) ∈ Jm such that jp = i for some p =

1, . . . ,m. We can write

(6.5)

(
n

m− 1

)−1 ∑
(J,K)∈Jm×Jn+2−m:J∩K={i}

tJ

tK
=

ti
t1 · · · tn+1

(
n

m− 1

)−1 ∑
J∈J (i)

m

(
tJ\{i}

)2
.

We shall use this observation to calculate the polynomial factor W ω1
pol of the weight matrix

W ω1 . Recall from the discussion following Lemma 3.7 that

W ω1
pol(φ(t, t−1)) = Φω1

0 (t, t−1)∗Φω1
0 (t, t−1),
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which in this case amounts to the calculation of g∗aga in terms of the fundamental zonal

spherical functions.

Remark 6.15. Let J : Cn+1 → Cn+1 denote the linear mapping ei 7→ en+1−i. For p ∈
R[t±1 , . . . , t

±
n+1] we have p|Ac(t) = p|Ac(t−1). This observation implies Φµ

0(a) = Φµ
0(a)J . It

follows that W ω1
pol(φ) = J (Φω1

0 )t Φω1
0 . Compare to the discussion following the proof of Lemma

4.1.

Theorem 6.16. The entries of W ω1
pol are given by(

n

j − 1

)(
n

k − 1

)(
W ω1

pol(φ)
)
n+2−j,k =

min(n+1−k,j−1)∑
r=0

(k + 1− j + 2r)

(
n+ 1

k + r

)(
n+ 1

j − 1− r

)
φk+rφj−1−r

where φ0 = φn+1 = 1 and where j ≤ k.

Proof. Let J (i)
j = {J ∈ Jj | i ∈ J}. In view of Remark 6.15 it is sufficient to show

(6.6)
n+1∑
i=1

t2i
∑

(J,K)∈J (i)
j ×J

(i)
k

(tJ\{i})2(tK\{i})2 =

min(n+1−k,j−1)∑
r=0

(k + 1− j + 2r)φ̃k+rφ̃j−1−r,

where φ̃m =
(
n+1
m

)
φm is the elementary symmetric function evaluated at (t21, · · · , t2m). This

equality follows from the more general result in Proposition 6.18 that we prove below. The

specialization that yields (6.6) is discussed below the proof of Proposition 6.18. �

To formulate Proposition 6.18 we use the notation of [34, §1.2]

er(t1, · · · , tn+1) =
∑

1≤j1<j2<···jr≤n+1

ti1ti2 · · · tjr , 0 ≤ r ≤ n+ 1

for the elementary symmetric functions, with the convention e0(t1, · · · , tn+1) = 1. The same

notation is used in the proof of Lemma 4.3. For the proof of Proposition 6.18 we do not

need to assume that en+1(t1, · · · , tn+1) = t1 · · · tn+1 equals 1. The generating function for

the elementary symmetric functions is given by

(6.7)
n+1∑
r=0

er(t1, · · · , tn+1)zr =
n+1∏
i=1

(1 + tiz).

To deal with the functions on the right hand side of (6.5) we define

e(i)
p (t1, · · · , tn+1) =

∂

∂ti
ep+1(t1, . . . , tn+1),

n∑
r=0

e(i)
r (t1, · · · , tn+1)zr = z

n+1∏
j=1
j 6=i

(1 + tjz).
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Applying z d
dz

(Euler operator) to (6.7) and comparing the coefficients gives

(6.8) rer =
n+1∑
i=1

tie
(i)
r−1

for r ≥ 1 and for r = 0 we interpret the right hand as zero by the convention that e−k = 0

for k ∈ N \ {0}. We also follow the convention that ek = 0 for k > n+ 1. For 0 ≤ r ≤ N we

have by (6.8)

(N − 2r)eN−rer = (N − r)eN−rer − eN−rrer =
n+1∑
i=1

ti

(
e

(i)
N−r−1er − eN−re

(i)
r−1

)
(6.9)

which we want to rewrite as a telescoping sum.

Lemma 6.17. e
(i)
m−1ek − e

(i)
k−1em = e

(i)
m−1e

(i)
k − e

(i)
k−1e

(i)
m .

Proof. We consider a generating function for the left hand side,

n+1∑
m=1

n+1∑
k=1

(
e

(i)
m−1ek − e

(i)
k−1em

)
zmwk =

z
n+1∏
l=1
l 6=i

(1 + tlz)

(
n+1∏
p=1

(1 + tpw)− 1

)
− w

n+1∏
p=1
p6=i

(1 + tpw)

(
n+1∏
l=1

(1 + tlz)− 1

)
.

Working out the brackets, taking out the common factor in the double products, and sim-

plifying gives products that are generating functions. This then equals

(z − w)
n∑
r=0

e(i)
r z

r

n∑
s=0

e(i)
s w

s −
n∑
r=0

e(i)
r z

r+1 +
n∑
s=0

e(i)
s w

s+1 =

n+1∑
r=1

n∑
s=1

e
(i)
r−1e

(i)
s z

rws −
n∑
r=1

n+1∑
s=1

e(i)
r e

(i)
s−1z

rws

and comparing coefficients shows the result. �

Applying Lemma 6.17 to (6.9) proves the following.

Proposition 6.18. For all N, r ∈ N0 with r ≤ N the following identity holds,

b∑
r=a

(N − 2r)eN−rer =
n+1∑
i=1

ti

(
e

(i)
N−b−1e

(i)
b − e

(i)
N−ae

(i)
a−1

)
.

Now pick a = k, b = k+min(n+1−k, j−1), N = k+j−1, and put r = s+k. Proposition

6.18 yields

min(n+1−k,j−1)∑
s=0

(j − k − 1− 2s)ej−1−rek+s = −
n+1∑
i=1

tie
(i)
j−1e

(i)
k−1
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since k+ j−2− (k+ min(n+ 1−k, j−1)) < 0 the corresponding term vanishes. This yields

(6.6) after taking all arguments squared.

We now switch back to the group situation, and we assume that t1 · · · tn+1 = 1

Proposition 6.19. The function a 7→ det(ga) is alternating in the sense that det(gw(a)) =

det(w) det(ga) and

det(ga) = c
∏
i<j

(t2i − t2j), c =
n∏

m=0

(
n

m− 1

)−1

.

Proof. From (6.5) and t1 · · · tn+1 = 1 we see that the entries ga are regular functions in the

variables t21, . . . , t
2
n+1. The degree of this function in these variables is equal to the number of

reflections in Sn+1 and this function is alternating by definition. Following [24, Prop.3.13(b)]

we conclude that it is a multiple of the Jacobian of the basic invariants. The multiple is

calculated using Theorem 6.14. �

6.4. Irreducibility of the weight. Now we study the irreducibility of the weight W ω1
pol.

We say that the matrix weight W , i.e. a function defined on a set S taking values in the

self-adjoint matrices of size N×N , reduces to weights of smaller size if there exists a constant

matrix M and weights W1, . . . ,Wk of lower size such that MW (x)M∗ is equal to the block

diagonal matrix diag(W1(x), . . . ,Wk(x)) for all x ∈ S. In such a case, the real vector space

AW = {Y ∈ End(CN) | YW (x) = W (x)Y ∗, for all x ∈ S},

is non-trivial. If the subspace Ah of self-adjoint elements in the commutant algebra

AW = {Y ∈ End(CN) | YW (x) = W (x)Y, for all x ∈ S},

is nontrivial, then W is reducible via a unitary matrix M . In [29] we prove that AW is

∗-invariant if and only if AW = (AW )h. We will show that, for N = n + 1 with n > 1, and

S = φ(Ac), the weight W ω1
pol is irreducible by showing that AWω1

pol
is trivial and that AWω1

pol
is

∗-invariant.

Theorem 6.20. For n ≥ 2, the commutant algebra AWω1
pol

is trivial, i.e. it consists of

multiples of the identity matrix. Moreover, the real vector space AWω1
pol

is ∗-invariant.

Proof. For i = 1, . . . , bn+1
2
c, we denote by W(i) the coefficient of φiφn+1−i in W ω1

pol. It follows

from Theorem 6.16 that W(i) is given by

(6.10) W(i) =
n−i∑
k=i

(n+ 1− 2i)

(
n+ 1

i

)(
n+ 1

n+ 1− i

)(
n

n+ 1− k

)−1(
n

k − 1

)−1

Ek,k,

where Ek,j denotes the matrix with a one in the (k, j)-th entry and zero elsewhere. Note

that the first and last i diagonal entries of W(i) are zero.
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First we prove that the commutant algebra is trivial. Let Y ∈ AWω1
pol

. Since the spherical

functions φ1, . . . , φn are algebraically independent, it follows from Theorem 6.16 that YW(i)−
W(i)Y = 0 for all i = 1, . . . , bn+1

2
c. If we set i = 1 in this equation, since (W(1))11 =

(W(1))n+1,n+1 = 0, the first and last rows and columns give

Y1j(W(1))jj = 0, Ynj(W(1))jj = 0, Yj1(W(1))jj = 0, Yjn(W(1))jj = 0, j = 2, . . . , n,

which implies Y1j = Ynj = Yj1 = Yjn = 0 for j = 2, . . . n by (6.10). Repeating this process

for i = 2, . . . , bn+1
2
c we obtain that the only possible non-zero entries of Y are of the form

Ykk and Yk,n+2−k for k = 1, . . . , n+ 1. The coefficient of φ1 in Wpol is the matrix

W(φ1) =
n∑
k=1

n(n+ 1)

(
n

n+ 1− k

)−1(
n

k

)−1

Ek,k+1 + (n+ 1)En+1,1.

The (k, k + 1)-th entry of YW(φ1) −W(φ1)Y = 0 gives

(Ykk − Yk+1,k+1)n(n+ 1)

(
n

n+ 1− k

)−1(
n

k

)−1

= 0,

which implies that Ykk = Yk+1,k+1 for k = 1, . . . , n. The (n+ 1− k, k)-th entries of YW(φ1)−
W(φ1)Y = 0 give that Y is a multiple of the identity. This proves that the commutant algebra

of W is trivial.

Now we prove the ∗-invariance of AWω1
pol

. For Y ∈ AWω1
pol

, we will show that Y ∗ ∈ AWω1
pol

.

The (k, j)-th entry of the equation YW(0) = W(0)Y
∗ gives

(6.11) Yk,j =

(
n

n+ 1− k

)(
n

k − 1

)(
n

n+ 1− j

)−1(
n

j − 1

)−1

Y j,k.

It is immediate from (6.11) that the diagonal elements Yk,k are real and that Yk,n+2−k =

Y n+2−k,k, for k = 1, . . . , n+1. Now it its enough to prove that Yk,j = 0 if k 6= j or k 6= n+2−j.
For this we proceed as for the commutant algebra. Since (W(1))11 = (W(1))n+1,n+1 = 0, the

first and last rows of the equation YW(1) = W(1)Y
∗ give

Y1j(W(1))jj = 0, Ynj(W(1))jj = 0, j = 2, . . . n.

This implies Y1j = Ynj = 0 for j = 2, . . . n, since (W(1))kk 6= 0. The first row and column of

the equation YW(0) = W(0)Y
∗ implies now that Ykn = Yj1 = 0 for j = 2, . . . n. If we proceed

in the same way for the equation YW(i) = W(i)Y
∗ with i > 1 we obtain that Ykj = 0 unless

k = j or k = n+ 2− j. This completes the proof of the theorem. �

Corollary 6.21. The matrix weight W ω1
pol is indecomposable.

Proof. Since the real vector space AWω1
pol

is ∗-invariant, it follows from [29, Corollary 2.5]

that AWω1
pol

is the set of self-adjoint elements in the commutant algebra AWω1
pol

. Since the

commutant algebra is trivial by Theorem 6.20, AWω1
pol

consists on the real multiples of the

identity matrix. Thus W ω1
pol is indecomposable. �

36



7. Differential properties

Let G,H be as above and µ = kω1. Then the center Z(g) ∼= Z(sl(n+1,C))⊗Z(sl(n+1,C))

of U(g) contains the two Casimir operators ΩL = Ω ⊗ 1 and ΩR = 1 ⊗ Ω, where Ω ∈
Z(sl(n+ 1,C)) is the Casimir operator of order two. Let Dµ

L, D
µ
R ∈ Dµ denote their images

in D(µ) under the map Dµ, see Subsection 3.2.

The operators ΩL and ΩR act on V G
(λ1,λ2) by multiplication with the scalars γ(ΩL, λ) =

|λ1 + ρ|2 − |ρ|2 and γ(ΩR, λ) = |λ2 + ρ|2 − |ρ|2 respectively, where γ is the Harish-Chandra

isomorphism. Note that γµ = γ on the image of Z(g)→ D(µ).

We denote the diagonal eigenvalue matrices of ΩL and ΩR on the eigenfunction Φµ
d by ΓµL,d

and ΓµR,d respectively.

The radial part operator radµ respects the degree of differentiation and so does conjugation

with Φµ
0 and changing the variables. Hence the images of ΩL and ΩR under D are differential

operators of order two with matrix-valued polynomials as coefficients. We denote these

images by Dµ
L and Dµ

R respectively.

Lemma 7.1. The differential operator Dµ
L −D

µ
R has order ≤ 1. It has the polynomials Qµ

d

as simultaneous eigenfunctions with eigenvalues ΓµL,d − ΓµR,d.

Proof. Let (H1, . . . , Hn) be an orthonormal basis of t with respect to the Killing form. We

have

Ω =
n∑
i=1

H2
i +

∑
α∈∆(SL(n+1,C),T )

EαE−α,

where Eα is a root vector with (Eα, E−α) = 1. The Killing form on t⊕ t is given by the sum

of the Killing forms on the summands. Hence(
(Hi,−Hi)/

√
2, i = 1, . . . , n

)
∪
(

(Hi, Hi)/
√

2, i = 1, . . . , n
)

is an orthonormal basis of t⊕ t = a⊕ tM . We have

n∑
i=1

((Hi, 0)2 + (0, Hi)
2) =

n∑
i=1

((Hi,−Hi)
2 + (Hi, Hi)

2),

n∑
i=1

((Hi, 0)2 − (0, Hi)
2) = 2

n∑
i=1

(Hi, Hi)(Hi,−Hi).

This shows that

ΩL − ΩR = 2
n∑
i=1

(Hi, Hi)(Hi,−Hi) + other terms,

and hence that Dµ
L −D

µ
R has order one if πHµ |m is not trivial and order zero otherwise. This

proves the statement. �
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To be able to calculate this order one differential operator explicitly we continue our

analysis. Write ξi = (Hi,−Hi)/
√

2. The µ-radial part is of the form

radµ(ΩL − ΩR) =
n∑
i=1

πHµ (Hi)∂ξi +Gµ,

where Gµ is an End(EndMc(V
H
kω1

))-valued function on A. Conjugating with Φµ
0 yields

(7.1) (Dµ
L −D

µ
R)Q(φ)

=
n∑
k=1

(
n∑
i=1

m(Ψµ0 )−1πHµ (Hi)m(Ψµ0 )∂ξiφk

)
(∂kQ)(φ) + (ΓµL,0 − ΓµR,0)Q(φ).

As a consequence of Proposition 3.11 we see that the expression

(7.2) Υµ
` (φ) =

n∑
i=1

m(Ψµ0 )−1πHµ (Hi)m(Ψµ0 )∂ξiφ`,

is matrix-valued polynomial of degree one.

8. Examples

In this section we give explicit expressions for the orthogonality weights and differential

operators developed in the previous sections for small n and for k = 1. The polynomial part

for the weight matrix is given for any n in Theorem 6.16 and the scalar part of the weight

is given in Theorem 4.5. For this section we have complemented the theory of the previous

sections by calculations using computer algebra.

In order to compute the radial part of the Casimir operator Dµ
L+Dµ

R, we use the first order

differential equations in Lemma 3.9. For the first order differential operator Dµ
L−D

µ
R we use

(7.1). Using the explicit expression for Ψ0 given in Theorem 6.14, we compute explicitly its

inverse and after some simplification we obtain the matrices Lk(φ) and Ck in (3.8) and the

matrices Υ` in (7.2).

8.1. The case n = 2, k = 1. This case is the simplest nontrivial example of matrix-valued

orthogonal polynomials in two variables. We drop the weight µ = ω1 in the notation of what

follows.

8.1.1. The orthogonality. By Theorem 6.7, the function Ψ0 is given explicitly by

Ψ0(t, t−1) =

t1 1
2
(t−1

3 t2 + t−1
2 t3) t−1

1

t2
1
2
(t−1

1 t3 + t−1
3 t1) t−1

2

t3
1
2
(t−1

2 t1 + t−1
1 t2) t−1

3

 , t1t2t3 = 1.(8.1)

The zonal spherical functions are

φ1(t, t−1) =
1

3

(
t21 + t22 + t23

)
, φ2(t, t−1) =

1

3

(
t21t

2
2 + t21t

2
3 + t22t

2
3

)
.
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The matrix-valued orthogonality relations for the polynomials Qω1
d of degree d ∈ N0 × N0

follow directly from (3.6) and Theorem 6.16. We have∫
φ(exp(b))

(Qω1
d (φ))∗W (φ)Qω1

d′ (φ) dφ = δd,d′ Hd,

where Hd is a constant matrix and the matrix weight W (φ) = w(φ)Wpol(φ) is given by

(8.2) Wpol(φ) =

 3 3φ1 3φ2

3φ2 (9φ1φ2 + 3)/4 3φ1

3φ1 3φ2 3

 ,

w(φ) =
9

4π2
(−φ2

1φ
2
2 + 4φ3

1 + 4φ3
2 − 18φ1φ2 + 27)

1
2 .

8.1.2. The differential operators. We take the orthogonal basis of t with respect to the Killing

form (H1, H2), where H1 =
√

2
2

diag(1,−1, 0), H2 =
√

6
6

diag(1, 1,−2). The derivatives ∂ξi are

given by

∂ξ1 =

√
2

2
(t1∂t1 − t2∂t2) , ∂ξ2 =

√
6

6
(t1 ∂t1 + t2 ∂t2 − 2 t3 ∂t3) .

The explicit expression of the radial part of the Casimir operator follows from (3.8) and the

explicit expression of Ψ0 given in (8.1). Explicitly we have

(∂ξ1φ1)(∂ξ1φ1) + (∂ξ2φ1)(∂ξ2φ1) =
8

3
(φ2

1 − φ2),

(∂ξ1φ1)(∂ξ1φ2) + (∂ξ2φ1)(∂ξ2φ2) =
4

3
(φ1φ2 − 1) = (∂ξ1φ2)(∂ξ1φ1) + (∂ξ2φ2)(∂ξ2φ1)

(∂ξ1φ2)(∂ξ1φ2) + (∂ξ2φ2)(∂ξ2φ2) =
8

3
(φ2

2 − φ1)

A straightforward computation shows that

L1(φ1, φ2) =

8
3
φ1 −2φ2 0

0 4φ1 0

0 0 4
3
φ1

 , C1 =

 0 0 −4
3

−8
3

0 0

0 −2 0

 ,

L2(φ1, φ2) =

4
3
φ2 0 0

0 4φ2 0

0 −2φ1
8
3
φ2

 , C2 =

 0 −2 0

0 0 −8
3

−4
3

0 0

 .

The coefficient of order zero Γ0 is given by

Γ0 = ΓL,0 + ΓR,0 = diag(
8

3
,
16

3
,
8

3
).
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We recall that Γ0 is also the eigenvalue of the polynomial Q0,0. Moreover, the eigenvalue of

the polynomial Qd1,d2 is given by the diagonal matrix

Γ+
d1,d2

= ΓL,d1,d2 + ΓR,d1,d2 = (
4

3
d2

1 +
4

3
d1d2 +

4

3
d2

2)I + diag

16
3
d1 + 14

3
d2 + 8

3

6d1 + 6d2 + 16
3

14
3
d1 + 16

3
d2 + 8

3

 .

The first order differential operator (7.1) is obtained directly from the expression of Ψ0 . We

get

DL −DR = Υ1(φ) ∂1 + Υ2(φ) ∂2 + (ΓL,0 − ΓR,0),

where

Υ1(φ) = (Ψ0)−1πHω1
(H1)Ψ0 ∂ξ1φ1 + (Ψ0)−1πHω1

(H2)Ψ0 ∂ξ2φ1 =

4
3
φ1 φ2

2
3

−4
3
−2

3
φ1 0

0 −1
3
−2

3
φ1

 ,

Υ2(φ) = (Ψ0)−1πHω1
(H1)Ψ0 ∂ξ1φ2 + (Ψ0)−1πHω1

(H2)Ψ0 ∂ξ2φ2 =

2
3
φ2

1
3

0

0 2
3
φ2

4
3

−2
3
−φ1 −4

3
φ2

 ,

The coefficient of order zero for the first order differential operator is given by

ΓL,0 − ΓR,0 = diag(
8

3
, 0,−8

3
).

Moreover, the eigenvalue of the polynomial Qd1,d2 is given by the diagonal matrix

Γ−d1,d2 = ΓL,d1,d2 − ΓR,d1,d2 = diag

−4
3
d1 + 2

3
d2 + 8

3

−2
3
d1 + 2

3
d2

−2
3
d1 − 4

3
d2 − 8

3

 .

8.2. The case n = 3, k = 1. Here we obtain a 4× 4 matrix weight in three variables. We

drop the weight µ = ω1 in the notation of what follows.

8.2.1. The orthogonality. The function Ψ0 is given by

Ψ0(t, t−1) =


t1

1
3

(
t2
t3t4

+ t3
t2t4

+ t4
t2t3

)
1
3

(
t2t3
t4

+ t2t4
t3

+ t3t4
t2

)
t−1
1

t2
1
3

(
t1
t3t4

+ t3
t1t4

+ t4
t1t3

)
1
3

(
t1t3
t4

+ t1t4
t3

+ t3t4
t1

)
t−1
2

t3
1
3

(
t1
t2t4

+ t2
t1t4

+ t4
t1t2

)
1
3

(
t1t2
t4

+ t1t4
t2

+ t2t4
t1

)
t−1
3

t4
1
3

(
t1
t2t3

+ t2
t1t3

+ t3
t1t2

)
1
3

(
t1t2
t3

+ t1t3
t2

+ t2t3
t1

)
t−1
4

 , t1t2t3t4 = 1.

The zonal spherical functions are

φ1(t, t−1) =
1

4

(
t21 + t22 + t23 + t24

)
, φ2(t, t−1) =

1

6

(
t21t

2
2 + t21t

2
3 + t21t

2
4 + t22t

2
3 + t22t

2
4 + t23t

2
4

)
,

φ3(t, t−1) =
1

4

(
t21t

2
2t

2
3 + t21t

2
2t

2
4 + t21t

2
3t

2
4 + t22t

2
3t

2
4

)
.
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The matrix weight W (φ) = w(φ)Wpol(φ) is given by

Wpol(φ) =


4 4φ1 4φ2 4φ3

4φ3
32
9
φ1φ3 + 1

3
8
3
φ2φ3 − 4

3
φ1 4φ2

4φ2
8
3
φ1φ2 + 4

3
φ3

32
9
φ1φ3 + 1

3
4φ1

4φ1 4φ2 4φ3 4

 ,

(8.3) w(φ) =
12

π3

(
13824φ2

1φ2 − 3072φ1φ3 − 16384φ3
1φ

3
3 − 13824φ2

1φ
3
2 − 1536φ2

1φ
2
3

−13824φ3
2φ

2
3 + 13824φ2φ

2
3 − 6912φ4

1 − 4608φ2
2 + 9216φ2

1φ
2
2φ

2
3 + 27648φ3

1φ2φ3

+27648φ2φ1φ
3
3 − 46080φ1φ

2
2φ3 + 20736φ4

2 − 6912φ4
3 + 256

) 1
2 .

8.2.2. The differential operators. We take the orthogonal basis of t with respect to the

Killing form (H1, H2, H3), where H1 =
√

2
2

diag(1,−1, 0, 0), H2 =
√

6
6

diag(1, 1,−2, 0), H3 =
√

3
6

(1, 1, 1,−3). The derivatives ∂ξi are given by

∂ξ1 =

√
2

2
(t1 ∂t1 − t2 ∂t2) , ∂ξ2 =

√
6

6
(t1 ∂t1 + t2 ∂t2 − 2 t3 ∂t3) ,

∂ξ3 =

√
3

6
(t1 ∂t1 + t2 ∂t2 + t3 ∂t3 − 3 t4 ∂t4) ,

The explicit expression of the radial part of the Casimir operator follows from (3.8) and the

explicit expression of Ψ0 given in (8.1). Explicitly we have

(∂ξ1φ1)(∂ξ1φ1) + (∂ξ2φ1)(∂ξ2φ1) + (∂ξ3φ1)(∂ξ3φ1) = 3(φ2
1 − φ2),

(∂ξ1φ1)(∂ξ1φ2) + (∂ξ2φ1)(∂ξ2φ2) + (∂ξ3φ1)(∂ξ3φ2) = 2(φ1φ2 − φ3),

(∂ξ1φ1)(∂ξ1φ3) + (∂ξ2φ1)(∂ξ2φ3) + (∂ξ3φ1)(∂ξ3φ3) = φ1φ3 − 1,

(∂ξ1φ2)(∂ξ1φ2) + (∂ξ2φ2)(∂ξ2φ2) + (∂ξ3φ2)(∂ξ3φ2) =
4

9
φ2

2 −
32

9
φ1φ3 −

4

9
,

(∂ξ1φ2)(∂ξ1φ3) + (∂ξ2φ2)(∂ξ2φ3) + (∂ξ3φ2)(∂ξ3φ3) = 2(φ2φ3 − φ1),

(∂ξ1φ3)(∂ξ1φ3) + (∂ξ2φ3)(∂ξ2φ3) + (∂ξ3φ3)(∂ξ3φ3) = 3(φ2
3 − φ2).

A straightforward computation shows that

L1(φ1, φ2) =


3φ1 −2φ2 −4

3
φ3 0

0 5φ1 0 0

0 0 3φ1 0

0 0 0 φ1

 , C1 =


0 0 0 −1

−3 0 0 0

0 −3 0 0

0 0 −5
3

0

 ,

L2(φ1, φ2) =


2φ2 −8

3
φ3 0 0

0 4φ2 −8
3
φ3 0

0 −8
3
φ1 4φ2 0

0 0 −8
3
φ1

4
3
φ2

 , C2 =


0 0 −2

3
0

0 0 0 −2

−2 0 0 0

0 −2
3

0 0

 ,
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L3(φ1, φ2) =


φ3 0 0 0

0 3φ3 0 0

0 0 5φ3 0

0 −4
3
φ1 −2φ2 3φ3

 , C3 =


0 5

3
0 0

0 0 −3 0

0 0 0 −3

−1 0 0 0

 .

The coefficient of order zero is given by

Γ0 = diag(
15

4
,
35

4
,
35

4
,
15

4
)

Moreover, the eigenvalue of the polynomial Qd1,d2 is given by

Γ+
d1,d2

= (
3

2
d2

1 + 2d2
2 +

3

2
d2

3 + 2d1d2 + d1d3 + 2d2d3)I + diag


15
2
d1 + 9d2 + 13

2
d3 + 15

4
17
2
d1 + 11d2 + 15

2
d3 + 35

4
15
2
d1 + 11d2 + 17

2
d3 + 35

4
13
2
d1 + 9d2 + 15

2
d3 + 15

4

 .

The first order differential operator (7.1) is obtained directly from the expression of Ψ0 . We

get

DL −DR = Υ1(φ) ∂1 + Υ2(φ) ∂2 + (ΓL,0 − ΓR,0),

where

Υ1(φ) =


3
4
φ1 φ2

2
3
φ3

1
2

−3
2
−1

4
φ1 0 0

0 −1
2
−1

4
φ1 0

0 0 −1
6
−1

4
φ1

 , Υ2(φ) =


φ2

4
9
φ3

1
9

0

0 φ2
4
3
φ3 1

−1 −4
3
φ1 −φ2 0

0 −1
9
−4

9
φ1 −φ2

 ,

Υ3(φ) =


1
4
φ3

1
6
φ3 0 0

0 1
4
φ3

1
2

0

0 φ1
1
4
φ3

3
2

−1
2
−4

6
φ1 −φ2 −3

4
φ3

 , ΓL,0 − ΓR,0 =


15
4

0 0 0

0 5
4

0 0

0 0 −5
4

0

0 0 0 −15
4

 .

Moreover, the eigenvalue of the polynomial Qd1,d2 is given by

Γ−d1,d2 = ΓL,d1,d2 − ΓR,d1,d2 = diag


3
2
d1 + d2 + 1

2
d3 + 15

4

−1
2
d1 + d2 + 1

2
d3 + 5

4

−1
2
d1 − d2 + 1

2
d3 − 5

4

−1
2
d1 − d2 − 3

2
d3 − 15

4

 .
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