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Computat ional Opt imal Transpor t

Just in Solomon

Optimal transport is the mathematical discipline of
matching supply to demand while minimizing ship-
ping costs. This matching problem becomes extremely
challenging as the quantity of supply and demand
points increases; modern applications must cope with
thousands or millions of these at a time. Here, we
introduce the computational optimal transport prob-
lem and summarize recent ideas for achieving new
heights in efficiency and scalability.

1 Introduct ion

The mathematical field of optimal transport (OT) continues to reach new levels
of elegance and sophistication, but the basics are motivated by a practical
problem in economics. The main idea is to find the best way to transport
something from one or more sources to a distribution of targets.

Suppose we are in charge of distribution for a small chain of gas stations.
The company has 4 refineries and 5 gas stations. For convenience, we’ll number
the refineries from 1 to 4 and use the index i to refer to a refinery: i = 1 refers
to the first refinery and i = 4 refers to the fourth. Similarly, we’ll use the index
j to refer to an individual gas station, from j = 1 to j = 5.
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We are given the following information:

• Refinery i can produce si gallons of gasoline per day; si is the supply provided
by refinery i.

• Gas station j sells dj gallons of gasoline per day; dj is the demand needed
by station j.

• It costs Cij dollars to transport a gallon of gas from refinery i to station j.
For example, Cij may be large if refinery i is far away from station j.

For simplicity, we will assume that supply meets demand. That is, we do
not produce extra gas, and the gas stations fill all their customers’ tanks.
Mathematically, this assumption is expressed that by ensuring that the sum of
the si’s over i equals the sum of the dj ’s over j, in formulas

∑
i si =

∑
j dj .

Our goal is to develop a transportation plan that determines how much gas
to ship from each refinery to each station. More specifically, a transportation
plan is a matrix T of values Tij that tells us how much gas we should ship from
refinery i to station j. For example, if T24 = 100, then we will ship 100 gallons
from refinery 2 to gas station 4.

Not all matrices T make sense as transportation plans. At the very least,
the transportation plan T must satisfy the following criteria:

• We cannot ship a negative amount of gas. Hence, Tij ≥ 0 for all refineries i
and stations j.

• The supply si of every refinery i is depleted. That is,∑
j

Tij = si, for all refineries i ∈ {1, 2, 3, 4}.

Therefore, the left-hand side of the equality is the total gas shipped from
refinery i to all stations j. Concretely, the sum of all the elements of the
i-th row of gives si.

• The demand dj of every gas station j is met. That is,∑
i

Tij = dj , for all gas stations j ∈ {1, 2, 3, 4, 5}.

In other words, the j-th column of Tij sums to dj .

Example. The following matrix is an example of a transportation plan:

T =

Station 1 Station 2 Station 3 Station 4 Station 5


Refinery 1 1 3 2 0 0
Refinery 2 5 0 0 0 0
Refinery 3 0 1 0 1.5 1.5
Refinery 4 0 0 0 3 6

.
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Here, the supply vector s = (si) is s := (6, 5, 4, 9) and the demand vector
d = (di) is d := (6, 4, 2, 4.5, 7.5). These vectors prescribe the row and column
sums of the transportation plan, respectively. To link with our previous notation,
T21 = 5 above indicates that refinery 2 sends 5 gallons of gasoline to station 1.
Can you check that the supply is depleted and the demand is met?

There are many ways to develop a transportation plan satisfying these
requirements, called constraints in the mathematical literature. For instance,
each refinery could send out 5 small trucks of gas, evenly splitting the load. But,
this plan likely would not be cost effective! Instead, we should attempt to fulfill
the demand of a station with gasoline from a nearby refinery to reduce costs.
One way to formalize this idea is to seek a transportation plan that minimizes
the total cost to the company, where

Total cost =
∑

ij

[
Cij°

Cost of shipping from i to j

× Tij°
Amount shipped from i to j

]
.

Here the sum is taken over all possible combinations of indices i and j.
Combining this cost function with the constraints above yields an instance

of the classic Monge–Kantorovich optimal transport (OT) problem [11, 13]:

minimize
∑

ij CijTij [Total cost]
subject to Tij ≥ 0 for all refineries i and stations j [Positive mass]∑

j Tij = si for all refineries i [Supply depleted]∑
i Tij = dj for all gas stations j. [Demand met]

In words, OT seeks to minimize the total cost of moving products from suppliers
to purchasers given that all demand is met and all supplies are depleted.
Example. Continuing the previous example, suppose the cost matrix is:

C =

Station 1 Station 2 Station 3 Station 4 Station 5


Refinery 1 7 4 1 2 3
Refinery 2 5 1.2 2.5 7 0.1
Refinery 3 9 6 7 8 6
Refinery 4 2 2 1 5 6.5

.

For example, C25 = 0.1 expresses that it costs $0.10 to ship a gallon of gasoline
from refinery 2 to station 5. The cost of the transport plan in the previous
example is

7×1 + 4×3 + 1×2 + 5×5 + 6×1 + 8×1.5 + 6×1.5 + 5×3 + 6.5×6 = $127.
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The optimal plan can be shown to be

Toptimal =

Station 1 Station 2 Station 3 Station 4 Station 5


Refinery 1 0 0 1.5 4.5 0
Refinery 2 0 0 0 0 5
Refinery 3 0 1.5 0 0 2.5
Refinery 4 6 2.5 0.5 0 0

,

with cost

1×1.5 + 2×4.5 + 0.1×5 + 6×1.5 + 6×2.5 + 2×6 + 2×2.5 + 1×0.5 = $52.50.

This new plan yields a savings of $127.00− $52.50 = $74.50 for our gas station
company over the old plan. In the following sections, we will describe methods
that find an optimal plan for these types of problems.

2 The Optimal Transpor t Problem

Many variations of the basic OT problem could be proposed, expressing many
possible situations that might be encountered by our chain of gas stations. For
instance, we could attempt to maximize profits rather than minimize costs. Or,
we could introduce inequalities to deal with the case when there is an oversupply
of gasoline or when it is impossible to meet the demand with the gasoline we
have in stock. If we are shipping television sets rather than gasoline, we may
add integrality constraints to avoid an optimal solution whereby a television
must be cut in half. Each of these changes throws a wrench into the basic
machinery of OT but can be addressed within the same basic framework.

The problem of optimal transport is as old as commerce itself, and it comes
as no surprise that theoretical and applied mathematicians alike have dedicated
considerable attention to its analysis. A version of the problem in which
every source can ship to only one target was proposed by Gaspard Monge in
1781. Centuries later, Leonid Kantorovich received the 1975 Nobel Prize in
Economics for his study of the more general version of the problem laid out
in the introduction. Since the invention of high-speed computing technology,
transport problems appear in shipping and operations, computational data
analysis, and countless disciplines in between.

In its most basic form, OT can be viewed as a tool for comparing histograms
or distributions. A histogram is simply a list of nonnegative values that sum to
one, such as {0.2, 0.3, 0.3, 0.1, 0.1}. In the gas station example, the problem can
be written in terms of histograms by dealing in percentages of the total amount
of distributed gallons, rather than in gallons themselves.
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The OT problem takes as input two histograms s and d. The transportation
cost of transforming s into d is then defined as

OT(s, d;C) :=


minimum of

∑
ij CijTij [Total cost]

subject to Tij ≥ 0 for all i, j [Positive mass]∑
j Tij = si for all i [Supply depleted]∑
i Tij = dj for all j. [Demand met]

(1)
Here the minimum is taken over all possible transportation plans T . The gas
station example can be notated OT(s, d;C).

Intuitively, OT(s, d;C) measures the dissimilarity between s and d. For
example, if the transportation cost of moving supplies to the gas stations is
small, then relatively few gallons of gas have to travel very far to reach their
final destinations. Contrastingly, if OT(·) is large, then any strategy used to
transport the gasoline from the refineries to the stations is going to cost the
company serious money. This occurs because OT(·) is obtained by minimizing
the cost. If the minimum cost is very high, all other strategies will be even
more expensive.

In some cases, OT(·) truly can be providing us with a notion of distance
between histograms s and d. Rather than thinking of refineries and gas stations,
suppose we run a chain of bookstores. A popular textbook is carried at every
store; store i has supply si of the book on its shelves. At the end of the day,
the chain collects demands dj representing the number of copies of that book
ordered to be picked up at bookstore j. If Cij contains the cost of shipping a
book from bookstore i to bookstore j, then OT(s, d;C) is the minimum cost
to the chain of bookstores to redistribute their books so that every order is
satisfied.

Unlike the gas station–refinery example, here indices i and j both represent
bookstores (as opposed to i representing a gas station and j representing a
refinery); that is, s and d are histograms over the same space. In examples like
these, OT(·) can satisfy the following “distance-like” properties:

Non-negat iv i ty. Let’s assume that shipping books always incurs a cost, so no
shipment is free. Mathematically, this condition is equivalent to assuming
Cij > 0 whenever i 6= j. Furthermore, let’s assume that it is free to leave
a book at the same store, that is, Cii = 0 for all i. Then, OT(s, d;C) ≥ 0
with equality exactly when s = d. In other words, moving books never
earns us money, and any time that supply and demand do not align
exactly, the cost of shipment is strictly positive.

Symmetry. When it costs the same to ship from bookstore i to bookstore j as
it does to ship from bookstore j to bookstore i for all pairs (i, j), we say
that C is a symmetric matrix that satisfies Cij = Cji for all pairs (i, j).
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In this case, for any s, d we know OT(s, d;C) = OT(d, s;C). In words,
after shipping out books from s to d, we can ship back from d to s for the
same cost.

Tr iangle inequal i ty. This final property is somewhat more involved. Suppose
C is a metric matrix, that is, it satisfies the following two properties:
1. The cost of not shipping is zero: Cii = 0 for all i.
2. The entries of C satisfy the triangle inequality for all (i, j, k) triplets:

Cij + Cjk ≥ Cik.

In words, shipping from i to j and then from j to k is never cheaper
than shipping directly from i to k.

Then, OT(·) satisfies the triangle inequality. Formally, for three histograms
s, d, and d′, we have

OT(s, d′;C) + OT(d′, d;C) ≥ OT(s, d;C).

We invite the reader to see [5] for a careful proof of this property. It
expresses the intuitive idea that it is economical to ship directly from
source to target rather than stopping through an intermediate station.

The observation that OT(·) satisfies the properties above lies the tip of a large
mathematical iceberg. Continuing to modify our analogy slightly, suppose
instead of moving books that we are given piles of sand to transport; for
example, maybe we are planning how to move sand from stockpiles onto a
network of highways after a snowstorm. Eventually it might become impractical
to describe the problem in terms of individual grains of sand; instead, we could
seek a continuum theory of transport that describes the motion of sand similarly
to flow of water through a set of pipes. Starting from this new analogy, the
most general language for these problems is given by the mathematical theory
of optimal transport, and the smooth analog of OT(·) is called the Wasserstein
distance. See [18] for details.

3 Modern Appl icat ions

It is not obvious how to solve the OT(·) problem in equation (1) even when
operating with just 4 refineries and 5 gas stations, but with some effort one can
formulate “brute force” algorithms enumerating all reasonable transportation
plans and taking the best. These algorithms, however, are too slow for modern
applications of optimal transport, which might need to match millions of
suppliers and consumers. In this section, we sketch a few of these applications
to motivate the need for fast, practical optimal transport algorithms that scale
to huge data sets.
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Figure 1: Two images might be considered visually similar if they have similar
histograms of colors; optimal transport is used to compute distances
between color histograms.

Supply chain management. Perhaps the most obvious application of optimal
transport is in the world of supply chain management, in which companies seek
to minimize shipping costs while moving products around the world. While road
networks in the 18th century might have been simple enough to allow for solving
transport problems by hand, nowadays advanced computational machinery
is needed to contend with the complexities of modern business logistics. For
instance, as of May 2017, Amazon.com sends products from 383 facilities to
over 54 million Amazon Prime members alone [9, 10]. Carefully optimizing the
cost of shipping products to a huge network of customers – over a network of
millions of roads – can save money and energy while supplying customers with
the products they demand.

Computer vis ion and image processing. Digital images are now essential
to our daily life. Each image we look at contains extremely detailed and complex
information, encoded using millions of pixel colors. Further complicating matters,
websites like Flickr and Google Images must contend with not just a single
image but billions of them. By one estimate, 657 billion photos are uploaded to
the internet every year [8], and this number is likely to increase in the future.
Algorithms must be invented that can quickly navigate databases of photos to
pick out interesting ones or search for matches.

One simple way to work with an image is to treat it as histogram of features,
a compact description of the interesting and salient features it contains. For
instance, in artistic endeavors, images might be reduced to their color palettes.
Color palettes are histograms that count how many pixels in an image are of
each color. For example, a photograph of a leafy tree might have a lot of green
pixels while a photograph of a tomato will have many red ones. As illustrated
in Figure 1, these palettes are easier to compare than the full set of pixel colors.

Optimal transport can then be used to ask how similar two images are based
own how similar their color palettes – or histograms – are. This approach
was pioneered in the early computer vision literature, where optimal transport
comes under the name “earth mover’s distance” [14].
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Shape matching. Modern software for geometry processing provides tools for
understanding and comparing complex shapes. As input, on the consumer’s
end, 3D scanners can quickly obtain the shape of a human in front of a camera.
Similarly, in the medical imaging world, magnetic resonance imaging technology
(also known as MRI) allows us to look inside the human body at the shape
of the brain and other organs. Once we obtain a shape, the task of shape
matching seeks to transfer information from one shape to another. For instance,
in brain imaging we might wish to transfer the painstaking work of labeling the
individual folds on a brain from a previously-labeled patient to a new scan, by
matching the bends and twists of their grey matter surfaces.

Figure 2: Shape interpolation computed using optimal transport.

Figure 2 illustrates one application of shape matching, enabled by modern
algorithms for optimal transport. Here, we take three volumes – a cow, a
duck, and a torus – and match these volumes using optimal transport. Once
this matching is computed, we can interpolate between the geometries of the
different shapes. While the interpolation in this example is somewhat artificial,
machinery for this task can be used in computer graphics to mix and match
geometric objects to model new shapes.

4 Computat ional Opt imal Transpor t

While mathematicians in the 18th century may have been satisfied by solving
transport problems between five or ten facilities, the examples above illustrate
why we need high-speed, accurate algorithms for optimal transport that scale
to the demands of modern “big data.” Recent computer systems can optimize
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matchings between thousands or millions of facilities in a fraction of a second,
enabling new applications never dreamed of in the early days of transport as a
mathematical discipline.

Modern research at the intersection of computer science and mathematics
seeks to design exact and approximate algorithms for optimal transport that
are as fast as possible. Here we outline a few of the big ideas in computational
optimal transport, which enable the applications in §3.

4.1 Linear Programming

The basic Monge–Kantorovich optimal transport problem (1) is an example of a
linear program. That is, it is an optimization problem whose objective is linear
in the unknown variables Tij , with linear inequality and equality constraints.
This is a classic problem in the worlds of optimization and operations research,
for which there exist many solution algorithms. Among these we find, for
example, the famous simplex algorithm developed by Dantzig in the 1940s [6].

A popular approach to the optimal transport linear program is the Hungarian
algorithm, christened in 1955 by Harold Kuhn in honor of work by Hungarian
mathematicians Dénes Kőnig and Jenő Egerváry [12]. This algorithm iteratively
improves an estimate of the transportation matrix Tij , refining the estimate
until it reaches an output that minimizes the objective function and satisfies
the constraints that Tij transports all supply to all demand. For n sources of
supply or demand (e.g. n = 10 would indicate that we match 10 refineries to 10
gas stations), this algorithm takes on the order of n3 steps. This means that
matching even 100 objects to each other using the Hungarian algorithm can
take on the order of 1003, that is one million, steps! Another popular method
called the auction algorithm [3] uses an analogy to bidding to solve for T , but
can suffer from similar scaling issues.

While these are are well-known historical algorithms that can be used to solve
transportation problems, they work best for small or medium sized problems.
They are designed for the most difficult possible case: solving transportation
problems exactly, with no assumptions on the cost Cij .

4.2 Entropic Regular izat ion

Jumping forward several decades, interest in applications of optimal transport
was renewed in the computational community motivated in large part by research
in machine learning [4]. This breakthrough research, inspired by the large-scale
transport applications suggested in §3, proposed solving a regularized version of
optimal transport.

Regularizing a problem means that you modify the problem slightly to make
it easier or more tractable. In the context of optimal transport, the Monge–
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Kantorovich objective function
∑

ij CijTij in equation (1) is replaced with a
new one that contains a second term:∑

ij

[
CijTij

´¹¹¹¹¹¹¸¹¹¹¹¹¶
transport cost

+ γ Tij log Tij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entropic

regularizer

]
. (2)

When γ = 0, we recover the original Monge–Kantorovich problem (1). As γ
increases, however, the optimization objective begins to favor minimizing the
second term, which we recognize as a contribution that equals minus the entropy
of T . Eliminating double negatives, large γ values increase the entropy of T .

In more detail, the entropy of the matrix T is defined as

H(T ) := −
∑

ij

Tij log Tij .

Notice the negative sign, so we can understand the objective function in (2) as
adding −γH(T ) to the transport problem. Entropy is a measure of disorder,
which increases in the matching T as γ is increased. This manifests itself as
increased fuzziness in T , from an extremely sharp matching when T = 0 to a
blurrier one for larger regularizing coefficients γ.

γ = 0 γ = 0.0001 γ = 0.001 γ = 0.01 γ = 0.1

Figure 3: Entropy-regularized transportation plans for different values of γ.
Here, si is plotted on the vertical (y) axis as a function of i, and dj

is plotted on the horizontal (x) axis. The entropy-regularized plan T
for cost Cij = |i− j|2 is colored from white to black in each box.

Figure 3 shows the effect of increasing γ. Here, we solve optimal transport
between two one-dimensional distributions, illustrated as functions on the x
and y axes of a box. The matrix T is shown in black-and-white inside the box.
When γ = 0, the nonzero elements of the matching T occupy a tiny sliver of
the matrix T . As γ increases, the matching preserves some of its structure but
does not give as clear a map. From a broader perspective, as γ gets larger and
larger, T deviates from solving the original problem more and more.
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A question comes natural at this point: Why sacrifice the accuracy of T by
increasing γ from zero? In exchange for the imprecision of solving the “wrong”
problem (2), we gain a theoretical property leading to extremely fast algorithms.
To this end, define

Kij := e−
Cij/γ . (3)

This definition does not make sense when γ = 0, underscoring the need to
regularize our problem. Then, it can be shown, using the technique of La-
grange multipliers, that optimizing the regularized function (2) subject to the
constraints in problem (1) yields the condition

Tij = uiKijvj , (4)

for unknown vectors u and v. This property is critical. While there are a
quadratic number of elements in the unknown matrix {Tij}n

i,j=1, now we have
only a linear number of unknowns {ui, vi}n

i=1. In other words, we now have to
compute 2n values instead of n2, a much smaller problem size!

Next, inserting equation (4) into the constraints of the transport problem (1)
gives the following two relationships:

∑
j Tij = si =⇒ ui

∑
j Kijvj = si =⇒ ui = si∑

j Kijvj∑
i Tij = dj =⇒ vj

∑
i Kijui = dj =⇒ vj = dj∑

i Kijui

These equations show you how to compute u from v and vice versa. The only
remaining issue is that we know neither u nor v!

The key insight used in entropic optimal transport [4], originally proposed
for different applications by Sinkhorn in the 1960s [15], is to use these relation-
ships anyway. The end result, called Sinkhorn’s Algorithm and illustrated in
Algor i thm 1, estimates u and v jointly by first approximating u from v, then v
from u, then u from v, and so on until both u and v converge to a final value.
Given very weak conditions, it can be shown that this algorithm will reach the
correct values for u and v regardless of the initial guess.

Algor i thm 1 is remarkable for a number of reasons. In five lines of code,
it extracts an approximation of the solution to transport problems, which
otherwise must be solved using relatively complex and specialized techniques.
For practical problems, it typically takes relatively few iterations for u and
v to converge; this is particularly true when the regularizing coefficient γ is
large. The elegance and simplicity of this algorithm arguably inspired a much
larger audience of practitioners to experiment with transport in their target
applications.
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function Sinkhorn(s, d;C, γ)
u, v ← 1 // Initialize the unknown vectors u and v
K ← e−C/γ // Kernel matrix
for i = 1, 2, 3, . . . // Loop until u and v converge

u ← s�Kv
v ← d�K>u

return Tij := uiKijvj // Apply equation (4)

Algor i thm 1: Sinkhorn iteration for entropy-regularized transport. The
operation � denotes element-wise division.

4.3 Structured Instances

Entropic regularization makes transport easier by approximating the solution
rather than solving for full precision. While regularization and approximation
lead to fast generic algorithms, an alternative approach to speeding up transport
is to add structure. Rather than developing algorithms for all possible scenarios,
we can develop specialized “optimal transport for X” algorithms, where the
structure of the application “X” reveals context-specific ways to make transport
faster. Concretely, we typically put assumptions on the structure of the cost
matrix C in the transport problem (1). Here, we mention a few such approaches.

Graphs. For transport over a road network, one way to add structure is to
assume that Cij is the shortest path from node i to node j in a network, or
graph. This assumption provides a connection to literature in graph theory,
where the optimal transport problem comes under the name minimum-cost flow
and can be solved using network flow algorithms from graph theory.
Fluid f low. In 2000, Benamou and Brenier published a landmark research
paper connecting optimal transport problems to fluid flow, when the costs Cij

come from distances in space [2]. In their language, if s and d are supported in
space and Cij is the squared distance Cij = ‖xi − xj‖2, then OT(·) equals the
minimum amount of kinetic energy it takes to transform s into d by flowing
them like fluids. This is not only a remarkable theoretical observation but leads
to a totally different class of algorithms for solving transport problems based
on methods for fluid dynamics. Figure 4 illustrates an example of a flow pt from
s to d, transitioning from t = 0 to t = 1.
Semidiscrete transpor t . Another special case of transport appears when
transporting from a continuum to a set of discrete points. For instance, perhaps
we wish to approximate a shaded image with a stippling of black-and-white
points [7]. These problems are known as semidiscrete problems, since the target
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t = 0 (s) t = 1
4 t = 1

2

t = 3
4 t = 1 (d)

Figure 4: At time t = 0 a population is located in the northwest, and at time
t = 1 it is in the southeast. Optimal transport is used to explain how
the population moves diagonally along the map.

of transport is discrete. Algorithms for these problems involve constructions
like power diagrams which divide up a region into pieces which all transport to
the same point; see [1] for an overview.

5 Conclusion

Optimal transport is a unique mathematical discipline for many reasons. For one,
the theory and practice of optimal transport are moving in lockstep: Theoretical
advances in transport are improving the ways we solve transport problems in
practice, while insights from the computational world have proven valuable
in theory. Both abstract and applied instances of this problem remain active
research topics.

Many open problems remain in the world of computational optimal transport.
Some questions that remain to be addressed include:

• What is the best way to solve transport problems in the presence of stochas-
ticity (randomness) or uncertainty?

• What are the best ways to incorporate optimal transport as a piece of larger
algorithms for applications in machine learning and other fields?

• Do current transport algorithms approach theoretically optimal behavior, or
do techniques exist that can enable fast processing of even larger datasets?

Future work aside, computational optimal transport already has proven itself
valuable for countless end users. Enabled by new mathematics, faster algorithms
and developments in computer hardware, transport uniquely benefits from
mathematical and engineering insight while providing a toolbox for geometry,
logistics, and matching.
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