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Prony’s method: an old tr ick for
new problems

Tomas Sauer

In 1795, French mathematician Gaspard de Prony in-
vented an ingenious trick to solve a recovery problem,
aiming at reconstructing functions from their values
at given points, which arose from a specific appli-
cation in physical chemistry. His technique became
later useful in many different areas, such as signal
processing, and it relates to the concept of sparsity
that gained a lot of well-deserved attention recently.
Prony’s contribution, therefore, has developed into a
very modern mathematical concept.

1 Recovery

1.1 Recovery problems

The type of problem that we will consider here is nowadays called a recovery
problem. The task is to reconstruct a function f from measurements or samples
fn := f(xn), where xn ∈ X and X is a finite set of points where the value of
the function is known. In this overly general form, the problem has potentially
infinitely many solutions. For example, given two points x1 and x2 in R2, we
can fix values f(x1) and f(x2) and try to draw all possible curves with those
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values at x1 and x2 – it may take a while. 1

Therefore, in order to get a unique, or at least “well-defined” (reasonable),
solution, one must make some assumptions on the function f . 2 The simplest
assumption one can make is that f can be written as a linear combination 3 of
several known basis functions fj , which reads

f =
n∑
j=1

aj fj , aj ∈ R, (1)

and then one only has to compute the coefficients aj . The basis functions fj
are known functions that generally have certain properties. For example, any
real polynomial f(x) can be decomposed as f(x) =

∑
n an x

n for appropriate
coefficients an, where n ≥ 0. Here, the polynomials xn play the role of the basis
functions fn.

Recovery on linear spaces has a long history and already Newton (1642–
1726/27) gave recipes for how to compute such a representation (1) for polyno-
mials from values at given points [5, Liber III, Lemma V]. 4 is turned into a
system of linear equations

f(x1) = a1f1(x1) + · · ·+ anfn(x1)
...

...
...

. . .
...

f(xm) = a1f1(xm) + · · ·+ anfn(xm),
(2)

whose solvability depends on properties of the following matrix

M =

 f1(x1) · · · fn(x1)
...

. . .
...

f1(xm) · · · fn(xm)

 , (3)

also defined in a compact form by Mjk := fj(xk). Given the existence of a
natural matrix associated to the linear recovery problem, it is natural to relay
the problem to linear algebra. Of course, all this is well-known and is standard
material in any course of numerical analysis, see [10].

1 Footnote added In fact, there are infinitely many curves that pass through two points in a
plane.
2 By well-defined solution we mean a solution that can be computed easily from the given
set of data.
3 Footnote added This snapshot relies on linear algebra in the more detailed explanations.
If you have not studied much linear algebra yet, you may find it easier to skip the details.
4 “Linear” because we recover a linear combination of the basis functions f1, . . . , fn.
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1.2 Recovery problems: change of approach

Now, we change the perspective and consider a different class of functions,
namely, in the notation of Prony, functions of the form

z = f(x) =
n∑
j=1

µj ρ
x
j , (4)

depending on the coefficients µ1, . . . , µn ∈ R and the positive real numbers 5

ρ1, . . . , ρn ∈ R+. The aim is to recover the values of these parameters from
sample values zk := f(xk) of f . This problem was originally considered 1795
by Gaspard Clair François Marie Riche de Prony, see [6]. Compared to linear
recovery this different approach has the new quality that it also requires to find
those ρj , or equivalently the correct basis functions fj(x) = ρxj that explain the
measurements zk = f(xk).

Let us consider an example. A musical tone, which could be a combination of
oscillations of a violin string, is usually written as a combination of the periodic
functions sine or cosine as a function of the time t, of a basic frequency ω and
its multiples. Formally, one has

f(t) =
n∑
j=1

aj cos(jω t), t ∈ R, (5)

see [4]. The amplitude parameters aj determine the sound of the instrument
and allow us to distinguish between, say, a violin and a clarinet. Now assume
that two instruments play two different tones at the same time, but we neither
know the pitches nor the instruments. Can we do the same as the human ear
and recognize the instruments and their pitches from a digital record, say, a
wav file? The answer is “yes” as soon as we know how many instruments are
playing and how many partial tones each of them has. 6 By using the complex
representation cosx = 1

2 (eix + e−ix) of the cosine function, our musical problem
can indeed be cast in the form (4), where we have ρj = e±iω. Prony himself was
interested in a problem of vaporization of liquids, see [6]. In his model µj was
the amount of the ingredient, ρj a material constant and x the temperature.

5 Negative numbers are generally unpleasant, but can be handled easily in the complex
version of the formalism. The case ρj = 0 would give trivial contributions and is therefore
irrelevant.
6 A partial tone is one of the summands in (5).
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In the end, it does not matter to the mathematician which particular physical
problem is really modelled by employing (4). The more interesting questions
are

i) Under which assumptions can one recover the µj and the ρj from finitely
many measurements?

ii) What is the minimum number of samples zk that we need to take?
iii) Should the samples have any particular “structure”?

1.3 Recovery problems: approaches to solut ions

As a matter of fact, we take the simplest possible sampling method of f here,
namely equidistant sampling 7 with distance h > 0:

zk = f(hk) =
n∑
j=1

µj ρ
hk
j =

n∑
j=1

µj ρ̂
k
j , ρ̂j := ρhj . (6)

We note that the sampling distance h does not affect the “structure” of the
problem, but just the effective values ρj that these parameters take (that is, if
we choose a different h, we will have a different amount of ρj constants with in
general different values. This change is “quantitative” – the amount of terms
– but not “qualitative” – the sampling technique itself). However, once h is
known, this is a simple and well-defined 1-to-1 relationship and we can easily
compute one from the other.

Our ability to recover f from the measurements, on the other hand, will rely
on the fact that the problem (4) is sparse. This means that the number n of
terms in f is relatively small compared to the number of measurements zk. To
avoid counting unnecessary terms, we will always assume that µj 6= 0 in the
future. We therefore say that the function f has a “simple explanation” with
only a few parameters.

Sparsity has become an important concept in applied mathematics in recent
years. To some extent, it seems to be arguably the only way to deal with
the continuously growing amount of data that we collect about all phenomena
around us when we try to give simple explanations to each phenomenon, given
an overwhelming amount of observations available. The new discipline called
compressive sensing was born to try to provide concepts for, and tools to deal
with, the mathematical aspects of such questions. For an introduction to the
topic see [3].

7 Accidentally, the core mechanisms behind this method are the same as those that occur in
sampling audio signals as well. For example, a wav file just records amplitude values with a
certain rate, for example 44000 times per second for CD-quality resolution.
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2 An old tr ick

We now move on to describe a different way to tackle the problem at hand.
Given an undetermined number of measurements or sampling points z0, z1, . . .,

Prony first computed numbers p0, . . . , pn by requesting that 8

0 = z0 p0 + · · ·+ zn pn (7)
0 = z1 p0 + · · ·+ zn+1 pn

...
...

0 = zk p0 + · · ·+ zk+n pn, k = 0, 1, 2, . . .

This is a condition on the correlation between the sequence of the measurements
and the sequence p. It is a correlation because there are measurements zk that
appear in more than one line. We indicate the correlation between the elements
of the system by z ? p, which can be formally expressed through its elements
(z ? p)k. These are

(z ? p)k :=
n∑
j=0

zk+j pj , k = 0, 1, 2, . . . . (8)

Therefore, the shorthand for Prony’s requirement (7) is z ? p = 0 and our aim
is to solve this equation for the pjs. The beauty of this approach is that the pjs
indeed encode the numbers ρ̂j . To see this, we substitute the definition (4) of
the function into (8) and get

0 =
n∑
j=0

zk+j pj =
n∑
j=0

pj

n∑
`=0

µ`ρ̂
k+j
` =

n∑
`=0

µ`ρ̂
k
`

n∑
j=0

pj ρ̂
j
` =

n∑
`=0

µ`ρ̂
k
` p(ρ̂`), (9)

with the polynomial p(x) defined by

p(x) :=
n∑
j=0

pj x
j . (10)

In the language of signal processing, our condition z ? p = 0 corresponds to
finding a filter p with n taps that annihilates the measurement z. 9 Also in
this language, the polynomial p(x) would be called the generating function, or
symbol, or z-transform of the magic filter p.

8 This tableau can be found with slightly different notation in the original [6, p. 30], and
Prony gives some explicit way to find the numbers p0, . . . , pn.
9 We note that, strictly speaking, a filter is usually defined as a convolution which would
correspond to reversing the order of p, but note that we are glossing over some details here.
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Equation (9) is also a one-line proof of the following fundamental fact: the
coefficients of the polynomial

p(x) = (x− ρ̂1) · · · (x− ρ̂n) (11)

are a solution of (8), and any annihilating filter, that is, any solution of (8) is
the coefficient vector of a multiple of the polynomial p from (11). 10 Hence, if
we find the shortest (with the smallest possible n) filter p such that z ? p = 0,
then the zeros of the associated polynomial are exactly the values ρ̂j .

In an algorithmic sense, what we have to do is to solve the linear system (8)
for p and then find the zeros 11 of the polynomial p(x) to obtain the numbers
ρ̂j . There are, fortunately, various methods to find the zeros of a polynomial
although this is in general not a well-conditioned problem. Furthermore, this
is one of the “bad” kind of problems that triggered a rigorous mathematical
analysis of the effects of roundoff errors, see the highly recommendable paper
[13]. Once the zeros are known, we are left with a linear interpolation problem
which is yet another system of linear equations.

The interpolation problem is the linear system obtained to determine the
factors µj . We can just write (6) as a linear system where k denotes the index of
the respective equation. The system is uniquely solvable since the ρ̂kj give rise to
a uniquely solvable polynomial interpolation problem (back to Newton’s ideas).
The matrix of such a linear system is then called a “Vandermonde matrix”.

A careful inspection of the linear system (8) shows that only the equations
with indices k = 0, . . . , n have to be considered, which means that only the 2n+1
measurements z0, . . . , z2n are really needed. 12 This appears quite efficient as
we need only one measurement more than the number of parameters that need
to be fixed. It turns out, however, that the computations become much more
reliable and numerically stable if the data is oversampled, that is, if we can use
more than 2n+ 1 samples. In other words, the “sparser” the problem is relative
to the number of samples, the better the numerical behavior becomes.

10 Can you see why this is the case?
11 Prony only says “solve p(x) = 0”. The zeros of a polynomial are those numbers xj such
that p(xj) = 0. Can you see why (11) says that the zeroes of p(x) are given by the numbers
ρ̂j?
12 Can you see this? Equation (9) shows that

∑n

`=0 µ`ρ̂
k
` p(ρ̂`) = 0 for all k ≥ 0. This can

be viewed as a system of linear equations for µ`ρ̂
k
` with coefficients p(ρ̂l). Since µ` 6= 0, it

follows that µ`ρ̂
k
` are linearly independent and we have that p(ρ̂l) = 0.
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3 More sparsi ty

So far, we have not really made use of sparsity, and neither did Prony. But,
in those times, the application he was interested in automatically restricted
him to n ≤ 3. By using one of the most important techniques in mathematics,
namely “adding zero” (which does not change the quantity it is added to), we
can trivially rewrite (4) for any N > n as

f(x) =
N∑
j=1

µj ρ
x
j , µn+1 = · · · = µN = 0, (12)

where ρn+1, . . . , ρN can be just any positive numbers different from the original
ρ1, . . . , ρn. Therefore, the “good” representation in (4) is the one where all
terms are really necessary, which means that µj 6= 0, for all j = 1, . . . , n. On
the other hand, if µ` = 0 for some ` then (9) shows that the zero of p at the
respective ρ` would simply be irrelevant, so a shorter (smaller n) filter p would
do as well. Of course, if all µj 6= 0, then there is no shorter filter p and no
“simpler” explanation of the measurements (that is, all of the numbers µj 6= 0
will constitute the filter).

This observation on sparsity can be used to formulate the recovery problem
as an optimization problem, see for example [2]. To that end we consider,
for some number N , all possible explanations (µ, ρ), where µ = (µ1, . . . , µN ),
ρ = (ρ1, . . . , ρn), ρj > 0, and grade them with respect to their sparsity by
counting the number of nonzero coefficients µj :

‖µ‖0 := #{j : µj 6= 0}. (13)

We say that equation (13) is a measure of the sparsity of the explanation (µ, ρ).
Following the motto “sparser is better”, we then can formulate the following

optimization problem with the measurements z0, . . . , zM , M > 0, as side
conditions:

min ‖µ‖0 subject to zk = f(xk) =
N∑
j=1

µj ρ
xk
j , k = 0, . . . ,M. (14)

In plain words this means “find the simplest explanation of the form (4) for the
measurements” (that is, smallest ‖µ‖0) and the unique solution of this problem
is exactly the recovery with nonzero µj as long as N is chosen sufficiently large,
N ≥ n.

Unfortunately, there is just a little difficulty: the problem (14) is an NP hard
combinatorial optimization problem, which means that for nontrivial values of
N the time a computer algorithm needs to find a solution is simply unacceptable
(scales exponentially with the number N , see [12]).
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This is a typical dilemma in compressive sensing: the sparsest solution, or
the simplest explanation, is a really great thing, but impossible to compute
practically. Due to that, the problem (14) is relaxed by choosing a different,
simpler “norm” or measure, such as

‖µ‖1 =
N∑
j=1
|µj |. (15)

Surprisingly, it can be shown, and this is the essence of compressive sensing,
that under certain circumstances the solution of

min ‖µ‖1 subject to zk = f(xk) =
N∑
j=1

µj ρ
xk
j , k = 0, . . . ,M, (16)

is indeed the simplest explanation in the sense that it is also a solution of the
minimization problem (14), with the main difference that the solution of the
relaxed problem can be computed much more efficiently (or faster, see [4])!

4 Appl icat ions, old and new

Prony developed the method we have described not for its own sake, but for a
concrete application in physical chemistry. 13 Later, Prony’s method was used
in “multisource radar signal processing”, leading to algorithmic realizations
with nice names like MUSIC [9] and ESPRIT [7] which have been developed
further ever since with a focus on numerical stability and efficiency.

More recently Prony’s problem, extended to functions of two variables x
and y, became popular in the context of superresolution [1]. For example, in
microscopy, an image often consists of few localized spots whose brightness
values can be visualized as spikes over the plane of the image, as shown in the
left image in Figure 1. The optical system (which is typically the system of
lenses and mirrors in a telescope or microscope, so really the hardware used
for taking the picture), on the other hand, usually acts as a low pass filter 14

and turns these spikes or points on the image plane into so-called point spread
functions. A still well-localized example can be seen in the middle image of
Figure 1, but more often the system is really retaining only quite low frequencies,
resulting in a recorded image like the one on the right hand side of Figure 1.
We would appreciate is you could please provide larger version of the figures
with better resolution.

13 Therefore resulting in the only math paper I am aware of with alcohol in it.
14 Briefly, a low-pass filter is a filter that passes signals with a frequency lower than a certain
cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency.
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(a) (b) (c)

Figure 1: Spikes (a) and point spread functions with low pass (b) and very low
pass (c) filtering.

The task is simple: reconstruct the spikes in Figure 1(a) from the blurred
low pass filtered Figure 1(c).

We now discuss how this can be done. The plane of the image is part of
R2. Suppose that the spikes are at positions X ⊂ R2, with amplitude ax,
where again X is a sparse set of locations with small size. Then, the Fourier
transform 15 of the spikes gives a doubly-labeled sequence

zα := zα1,α2 =
∑
x∈X

axe
α1x1+α2x2 , α = (α1, α2) ∈ Z2, (17)

where the variables α1, α2 take values on all of Z2. 16

The low pass filter cuts the amount of involved pairs α1, α2 down to the
finitely many measurements

zα =
∑
x∈X

axρ
α
x , |α1|, |α2| ≤ n, (18)

where ραx = ρα1
x,1 ρ

α2
x,2 and ρx,j = eixj , j = 1, 2, so that (18) is exactly the

two-dimensional version of Prony’s problem (4). The special flavour in the
superresolution approach is that the low pass structure of the optical system
determines the number n of measurements.

If the points in X are well separated, then a relaxed optimization approach
gives a sparsest solution in the sense of (14) and therefore recovers the spikes
and their intensity, but nevertheless the case with two variables discussed here is
significantly more complex than the one with one variable discussed in Section
2.

15 See Snapshot 3/2014 The ternary Goldbach problem by Harald Helfgott
16 That is, a set with point labeled by two integers.

9

https://publications.mfo.de/handle/mfo/429


On the one hand, as shown in 17 [8], Prony’s method can be extended to
several variables. However, the idea needs to be generalized: in these cases one
does not need one filter and thus one polynomial, but instead one requires several
filters p, and the ideal generated by the associated polynomials 18 . Also the
sampling set is not completely arbitrary and a matter of counting evaluations,
it must be related to the geometry of the ρx. Indeed: despite the fact that we
have 4n2 measurements in (18), the number of spikes that can be reconstructed
ranges between n when all the spikes lie on a straight line to n2 when the
spikes are on a rectangular grid, while the separation distances are actually
quite comparable. In other words: the sparsity factor now also depends on the
(unknown) geometry of the location of the spikes. On the other hand, once the
underlying concepts are understood in this more abstract sense, any number of
variables is possible and Prony’s method works surprisingly well, especially in
high dimensions, see [8].
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