Snapshots of modern mathematics Ne 11/2017
from Oberwolfach

Mathematics plays a key role
in scientific computing

Chi-Wang Shu

I attended a very interesting workshop at the research
center MFO in Oberwolfach on “Recent Develop-
ments in the Numerics of Nonlinear Hyperbolic Con-
servation Laws”. The title sounds a bit technical,
but in plain language we could say: The theme is
to survey recent research concerning how mathemat-
ics is used to study numerical algorithms involving
a special class of equations. These equations arise
from computer simulations to solve application prob-
lems including those in aerospace engineering, auto-
mobile design, and electromagnetic waves in commu-
nications as examples. This topic belongs to the gen-
eral research area called “scientific computing”.

1 Introduction

Scientific computing is a research field which deals with applying mathematical
tools to design efficient algorithms that are used in computer simulations.
As such, it is closely related to computers and the very subject would not
exist without the appearance of modern computers. However, the emphasis of
scientific computing is very different from that of computer science. Scientific
computing emphasizes the role of mathematics to ensure accuracy, stability, and
efficiency of numerical algorithms. Computations by computers are, by their

nature, limited by the physical resources of the computer (memory, processing
power), and so many times they are approximations of the real systems and
so contain approximation errors. The goal is to design algorithms which
approximate the system as closely as possible in an efficient way.

The efficiency of an algorithm is measured as the amount of operations
required depending on the size of the input: the cost of the computation. An
exact amount is not always an easily-presented function of the input and will
also depend on the implementation of an algorithm, the configuration of the
input data, the desired level of accuracy, and many other factors. Instead,
we will describe the efficiency of a computation in terms of the order of cost.
Assume we measure the size of the input to be some number n, and f(n) is
some function of n. We will write that the order of the cost for the algorithm is
O(f(n)) if the amount of operations required by the algorithm for an input of
size n is less than f(n) multiplied by some constant which is independent of n.

The role of scientific computing is demonstrated in the following three
examples. To fully describe these mathematical methods requires preparation
well beyond the scope of this text, so many details will be ignored and only the
main idea will be presented. More details can be found in the bibliography.

2 Fast Fourier Transform

One very well-developed and useful mathematical tool is Fourier analysis.
This is a method (or, rather, a collection of methods) to represent a function of
time (a signal) as a combination of periodic functions such as sine and cosine.
This presentation is called the Fourier transform of the original function. The
Fourier transform is now a function of frequencies: it measures the amplitude
and phase (as periodic trigonometric functions) of each frequency contributing
to the original function. The original function can be reconstructed by a reverse
operation.

Besides the obvious property of allowing insight into the periodic components
of a function, Fourier analysis simplifies computations in many cases, especially
those involving derivatives and integrals. Therefore, Fourier analysis has wide-
ranging applications: the analysis and manipulation of sound, images, seismic
waves, radio waves, stock-price fluctuation, differential equations, encryption,
and many more.

To illustrate this procedure, let us use an example. Assume we want to
digitally record sound for a duration of one second. We use a digital mi-
crophone which samples the input sound N times a second, to attain the

Fourier analysis is named after the French mathematician Joseph Fourier (1768-1830)
who introduced this method in his work on heat transfer.

Figure 1: A function of amplitude over time (left face) transformed into a
function of amplitude over frequency (right face).

samples xg,...,zN_1, with z,, being the amplitude of the sound wave at time
n/N. We should note that since we are dealing with discrete samples, as op-
posed to a continuous function, we focus throughout this section on a variant
of Fourier analysis called discrete Fourier transform.

If we want to remove frequencies which contribute very little, or are beyond
the perception of the human ear — in order to reduce the size of the data file —
then we can perform the surprisingly simple substitution

N-1
_ 2mikn
Yk =Y ane N, (1)
n=0
to get N complex numbers yq,...,yn—_1, which can be considered as samples of

the Fourier transform of the function describing the sound. Noting that

e 2mkn/N — cog (— 27rk:%) + 4 - sin (— 27‘(‘]6%)
we can affirm that each y; is, indeed, a combination of two periodic functions
with period N.

After we perform the summation in Equation (1) for each k =0,...,N — 1,
and have the sound samples in terms of frequencies, we can remove the desired
frequencies. There is a similar explicit formula for the backward computation
of z,, in Equation (1) when the y;’s are given. Clearly, the cost (number of
operations) of this computation is O(N) for each k, hence the total cost is
O(N?) for all the k’s.

When N is very large (for example, N = 5,000 or more for certain signal
analysis and image processing problems), there are two problems: (1) The
computational cost to perform the Fourier transform is very high; (2) The

accumulation of round-off errors is significant, so the computed results are not
very accurate.

Here is where the scientific computing comes into play. The fast Fourier
transform (FFT) is a mathematical reformulation of Equation (1) which takes
advantage of the periodic nature of the functions to regroup terms such that
they can be repeatedly used, and so one can obtain the values of y for all
k=0,1,...,N —1in O(N -log N) cost. Let us see how the most famous
algorithm for the FFT — the Cooley—Tukey Algorithm — does that.

We start by dividing the right-hand sum in Equation (1) into two sums
(assume that N is even): first we sum the even-indexed terms n = 2m (for
m=0,...,N/2—1) and then the odd-indexed terms n = 2m+ 1. Now, for each
yr. with k& < N/2 we have two sums that very much resemble two transforms of
N/2 samples (maybe multiplied by a constant). This is interesting, but doesn’t
seem to solve the problem: we still have the same amount of computations, and
we don’t know how to compute the y;’s for & > N/2. Here the periodic nature
of the functions comes into play: it appears that the terms for every k < N/2
differ from the terms for k + N/2 (a period apart) only by a predetermined
coefficient.2. Thus we can start by computing only transforms with half the
samples, and reuse the results for the y;’s with k > N/2. If we repeat this
process, then we can obtain the complete answer with the promised cost of
computation O(N - log N).

From the above description, we see that the FFT is more efficient if IV is a
product of small primes, for example, when N = 2". In this case, we compute
the transform of only very few terms and reuse it to get the transform of double
the terms, and then double that, and so forth. Even for IV as large as 5,000,
log N is very small. The savings in computational cost is thus very significant
— a job which required thousands of minutes can now be completed in a few
minutes. Also, the round-off error accumulation is significantly reduced.

We remark that FFT and the straightforward computation of performing
the summing of Equation (1) for each yi, give mathematically identical results.
There is no approximation involved here. We made the exact same computation
in a different order and more efficiently. Mathematical methods help us in
this case to get the same result much faster and more accurately. The original
research paper on FFT [3] by Cooley and Tukey, was motivated by the desire
to quickly analyze seismic signals, in order to determine whether the USSR
was conducting nuclear tests. It was published in the American Mathematical
Society (AMS) journal “Mathematics of Computation” and is one of the most
often downloaded papers of that journal.

Try it for yourself: start with Equation (1) and follow the described procedure. Perform
the calculations and see if you can really use only half of the terms. What coefficients are
added?

3 Fast Multipole Method

Another classical, but more recent, example for the crucial role of mathematics
in the design of important algorithms, is the so-called “fast multipole method”.
This fast method has the same spirit as the fast Fourier transform, and it aims
at certain types of dense systems of interactions. For example, we may have N
particles located at the points x,,, n =0,1,..., N — 1 in the three-dimensional
Euclidean space R3. Each particle interacts with each other and the interaction
strength could be inversely proportional to their distance |x; — ;| or its square
(for example, as it is for gravity). Thus, to compute the movement (due to
gravitational field of the other particles) of each particle, we would need to
sum up the interaction of this particle with every other particle, resulting in a
calculation of order O(N). The total cost of computing the movement of all N
particles is thus O(N?), which is very large as we have discussed before.

This time, the structure of the problem is less apparent than that of the
Fourier sum to group terms together to save computational cost. However,
with a clever choice of grouping techniques for the particles, Greengard and
Rokhlin [4] were able to obtain the fast multipole method, which improves the
computational cost to O(N -log N).

The name is derived from the computation at the heart of this method: the
multipole expansion. Having the group of particles in some area of the whole
space, a multipole expansion is a way to express their gravitational influence
on a sufficiently distant point as an infinite sum. One benefit of the multipole
expansion is that only few of the first terms (“poles”) in this infinite sum
should be computed in order to get a quite accurate outcome. Some obstacles
still remain, though: for each of the N particles we still need to compute the
expansion of the other N — 1 particles (with computational cost O(N?)) and
we cannot guarantee that each particle is distant enough from the rest for the
expansion to work.

The fast multipole method solves this by grouping the particles into clusters
that can be treated separately, and efficiently computing the interactions between
them. First, all N particles are imagined to be contained in a box. This box is
divided into eight smaller boxes by dividing the large box in half along each
axis. Each of these smaller boxes is also divided, until we reach boxes which
are small enough — this size is determined by the accuracy we wish to achieve.
At each of these smallest boxes we compute the finite sum for the multipole
expansion of the particles in that box (the finite number of poles depends on the
desired accuracy). The cost of this process is O(NN) as each particle contributes
to one expansion. We then move these expansions to the parent box and sum

them, thus getting the expansion of all the particles in the parent box.B! These
expansions, in turn, are moved to the upper level of boxes, and so on until
we have an expansion for each box at each level. These sums will be used to
compute the interactions between the particles.

Starting from the upper levels (the bigger boxes), for each box we add
the expansions calculated for boxes outside of its parent box (distant enough
particles). These sums are moved down to the box’s sub-boxes where we need
to add the expansions for boxes which are distant at this level but not at the
previous. This continues until, at the lowest level, we have expansions that
represent the influence of all the particles distant from the smallest box. This
is done while reusing the expansions calculated before. All that is left now to
do is, for each particle, to compute the interaction with the other particles in
its smallest box and its neighbors (not distant enough — there are only a few of
these) in a direct fashion, and add it to the interactions with the distant ones
obtained by the former expansions.

This technique is now widely used in solving various integral equations
and interaction systems. The discovery of the fast multipole method earned
Greengard and Rokhlin the shared AMS 2001 Leroy P. Steele Prize for a Seminal
Contribution to Research.

4 Multigrid

We now give another example demonstrating the power of mathematics to
obtain efficient algorithms, the so-called multigrid method for solving linear
systems.

In principle, we know how to solve a linear system

Axr =b,

where A is an N x N matrix. We can use, for example, the well-known Cramer’s
rule. However, a direct implementation of Cramer’s rule involves computing
the determinants of N matrices of size NV x N each — an operation cost on the
order of O(N!) (N factorial). This is of course not feasible for large N, for
example, N = 1 million. Such a computation is routine in today’s computer
simulations: it corresponds to a discretization of three dimensional partial
differential equations on a mesh of 100 x 100 x 100 grid points; in this case N!
is a number with more than 5 million digits.

This is actually not simple, as the original form of the multipole expansion assumes all
particles are centered about the point of origin.

Fortunately, we also have the method of Gauss elimination, another well-
known technique. For example, we can solve the linear system

21 +x9 =4

$1—$2=—1

in the following way: If we multiply the second equation by —2, and add the
first equation to it, the system becomes

2x1 +x0 =4
31‘2 =6

The system is now in a so-called upper-triangular form, which is easy to solve
explicitly by back substitution, to obtain first x90=6/3=2 and then substituting
this into 1 =(4—=x9)/2=1.

It is easy to verify that this procedure has a cost of at most O(N?) to reach
the solution (and is even smaller for banded matrices™ with many zero entries),
which is much lower than the O(N!) cost of applying Cramer’s rule. We can
also show that, with suitable “pivoting”, that is, suitable interchanges of rows
and columns of A (which do not change the solution), Gauss elimination can
always be performed in a stable fashion whenever A is non-singular, resulting
in accurate solutions in the presence of computer round-off errors.

However, in many situations, even O(N?) is an excessive cost. Storage might
also be a problem to store the full matrix A, when often, in applications, there
are many zeros in its entries.

Using mathematical techniques, scientists found an efficient class of algo-
rithms to solve a certain class of linear systems with only the cost of O(N).
This so-called “multigrid method” [1] is clearly optimal, as one would need
O(N) cost simply to write down the solution! This method combines different
techniques in separate steps to simplify the problem by looking at it at different
scales.

First, the solution is approximated using methods that are similar to a
sophisticated version of Newton’s method to find roots of functions. A series of
values is constructed iteratively — in which each is attained from the previous
— and each is closer to the real solution. Only very few of the iterations are
performed, though, as the purpose of this stage is to make the errors smaller
for the next stages, known as smoothing.

The next stage is the heart of the method: the problem is sampled to a
“coarser grid”. Think of it as looking at a picture from afar and instead of
details seeing only patches of the significant colors and features. This is done

Banded matrices have non-zero entries only on a “band” along their diagonal.

by multiplying A by an appropriate matrix which reduces the dimension. For
example, if at first we had N equations in N variables, now we have N/2
equations and variables — a so-called coarser grid. The equations and variables
that are chosen for this stage are the ones that, due to their coefficients or
powers, contribute the most to the final solution — as their solution will be
used to solve the others. This simpler problem can now be solved directly or
approximated quite easily.

Now, the solution (or its approximation) is moved back to the “fine grid”.
This is done by methods of interpolation which is like guessing the missing
colors by averaging the colors of the surrounding patches. Back at this stage
more smoothing is done. Quite surprisingly, this is enough. Sometimes, more
than just one grid is used, but very few iterations of the processes involved are
enough to solve the problem or approximate the solution to a reasonable error
for the practical needs at hand.

Because of his seminal contribution to the design of multigrid methods,
Brandt was awarded the 2005 Society for Industrial and Applied Mathemat-
ics/Association for Computing Machinery (STAM/ACM) Prize in Computational
Science and Engineering. The fact that both STAM (a society of applied mathe-
maticians) and ACM (a society of computer scientists) award this joint prize
to Brandt indicates that both applied mathematicians and computer scientists
view highly the important role of mathematics in scientific computing.

Since the appearance of electronic computers, there has been the well-known
Moore’s law, stating that computer power (speed and also memory) will increase
exponentially, doubling every few years. Perhaps less well-known is a similar
“Moore’s law” describing the improvement of algorithm efficiency, obtained
by using mathematics on algorithm design and analysis. For example, the
improvement in computational cost from O(N?) (Gauss elimination for banded
matrices in two dimensions) to O(N) (multigrid method) for solving linear
systems, is very large: with N = 10* (a two-dimensional grid of 100 x 100), the
improvement is already a factor of 10%. This saving becomes even bigger in
three and higher dimensions.

5 Algorithms for nonlinear hyperbolic conservation laws

Now let us come back to the theme of the recent workshop at the MFO in
Oberwolfach. The discussion in this section involves more advanced mathematics
and hence is given in a more sketchy fashion, but the general ideas are the same
as in the previous section, namely trying to use mathematical tools to help
design and analyze efficient and reliable algorithms for applications.

The specific class of problems in this workshop was the class of nonlinear
hyperbolic conservation laws. These are partial differential equations (PDEs)
describing the physical phenomena of conservation, such as conservation of mass,
conservation of momentum, conservation of energy, conservation of the total
number of cars in traffic flows, and more; See, for example, [7]. These PDEs
have the inconvenient property that their solutions may become discontinuous,
even if the initial and the boundary conditions are smooth. For example, the
pressure and density of the airflow at some distance in front of a fast flying
aircraft could be discontinuous (changing abruptly, the so-called shocks). This
poses a lot of difficulty in the design of efficient and reliable computer algorithms
for solving such PDEs. However, tremendous progress has been made over
the past decades, and several highly efficient and reliable computer algorithms
have been designed and used in applications. As an example of applications,
the majority of the design of Boeing 777 was performed based on computer
simulations with minimal traditional wind-tunnel tests, thus saving a lot of
money and time.

One could get a glimpse of such algorithms with two examples, the weighted
essentially non-oscillatory finite difference and finite volume schemes [6], and
the discontinuous Galerkin finite element methods [2, 5]. Many of the talks
in this workshop involved these two types of algorithms. One indication of
the importance of the influence of mathematics in helping the design of these
algorithms and the resulting applications, is that the author of this snapshot was
also awarded the STAM/ACM Prize in Computational Science and Engineering,
in 2007, for his contribution to the design and analysis of these and other
efficient algorithms in applications. It can be anticipated that mathematics will
continue to play an important role in scientific computing in future years.

For more about partial differential equations, especially in relation to conservation laws,
see Snapshot 7/2015 Darcy’s law and groundwater flow modelling by Ben Schweizer.

https://publications.mfo.de/handle/mfo/450

Image credits

Fig. 1 Extracted frame from a public domain animated gif created by Lucas
V. Barbosa which can be found at:
https://commons.wikimedia.org/wiki/File:Fourier series and_ transform.
gif.

References

[1] A. Brandt, Guide to multigrid development, in Multigrid Methods, Springer-
Verlag, 1982, pp. 220-312.

[2] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods
for convection-dominated problems, Journal of Scientific Computing 16
(2001), 173-261.

[3] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex Fourier series, Mathematics of Computation 19 (1965), 297-301.

[4] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,
Journal of Computational Physics 73 (1987), 325-348.

[5] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods,
Springer, New York, 2008.

[6] C.-W. Shu, High order weighted essentially non-oscillatory schemes for
convection dominated problems, SIAM Review 51 (2009), 82-126.

[7] J. Smoller, Shock Waves and Reaction-Diffusion Equations, second edition,
Springer-Verlag, New York, 1994.

10

https://commons.wikimedia.org/wiki/File:Fourier_series_and_transform.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_and_transform.gif

Chi-Wang Shu is the Theodore B. Stowell
University Professor of Applied
Mathematics at Brown University.
shu@dam.brown.edu

Mathematical subjects
Numerics and Scientific Computing

Connections to other fields

Chemistry and Earth Science, Computer
Science, Engineering and Technology,
Physics

License
Creative Commons BY-SA 4.0

DOl
10.14760/SNAP-2017-011-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Editor
Daniel Kronberg
junior-editors@mfo.de

Senior Editor

Carla Cederbaum
senior-editor@mfo.de

Mathematisches ~ wmeo
Forschungsinstitut -
Oberwolfach Ksocition é

Mathematisches Forschungsinstitut
Oberwolfach gGmbH
Schwarzwaldstr. 9 —11

77709 Oberwolfach

Germany

Director
Gerhard Huisken

IMAGINARY

open mathematics

mailto:shu@dam.brown.edu
http://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2017-011-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Mathematics plays a key role in scientific computing
	Introduction
	Fast Fourier Transform
	Fast Multipole Method
	Multigrid
	Algorithms for nonlinear hyperbolic conservation laws

