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Comput ing the long term
evolut ion of the solar system with
geometr ic numer ical integrators

Shaula Fiorel l i Vi lmar t • Gil les Vi lmar t 1

Simulating the dynamics of the Sun–Earth–Moon sys-
tem with a standard algorithm yields a dramatically
wrong solution, predicting that the Moon is ejected
from its orbit. In contrast, a well chosen algorithm
with the same initial data yields the correct behavior.
We explain the main ideas of how the evolution of
the solar system can be computed over long times
by taking advantage of so-called geometric numerical
methods. Short sample codes are provided for the
Sun–Earth–Moon system. 2

1 Comput ing the trajector ies

Let us step back in time and imagine we are on the first of January of the
year 1600, when Johannes Kepler (1571–1630) has just moved to Prague to
become the new assistant of the astronomer Tycho Brahe. Kepler had to
escape from persecution in Graz, particularly caused by his adhesion to the
controversial Copernican theory, boldly saying that the planets revolve around
the Sun.

1 Partially supported by the Swiss National Science Foundation grants 200020_144313/1
and 200021_162404.
2 An earlier version in French of this article first appeared in [11].
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How the strange motion of Mars inspired Kepler. Tycho Brahe is very
interested in planetary motion and has already calculated very precisely the
orbits of known planets. But Mars escapes comprehension: he cannot properly
predict its trajectory. Without warning him of the difficulty, Brahe asks Kepler
to calculate the precise orbit of Mars.

It will take about six years for Kepler to complete this work. Indeed, while
Venus has a nearly circular orbit, the trajectory of Mars is more complex: it
turns out to be an ellipse, whose flattening 3 is, after Mercury’s, the second
largest of all planets’ in the solar system.
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Figure 1: Illustration of Kepler’s laws. The Sun S and the point F are the foci
of the elliptic trajectory (in red) of the planet P . By the law of equal
areas, when the time elapsed between positions P1 and P2 is equal
to the time elapsed between positions P3 and P4, then the domains
SP1P2 and SP3P4 (in blue) have the same area.

Kepler ’s three laws. This takes Kepler to propose his three basic laws (com-
pare Figure 1):

1. the planets describe elliptical orbits, with the Sun at a focus of each;
2. the segment connecting the Sun and a planet sweeps out equal areas during

equal times; this so-called invariant of the problem is called the law of equal
areas 4 ;

3 The flattening may be measured by the eccentricity of the ellipse, which is the ratio of
the distance between C and F to the semi-major axis a, compare Figure 1. The smaller its
eccentricity, the more an ellipse is shaped like a circle.
4 That the derivative with respect to time of the area swept out is zero turns out to be
connected to the conservation of the planet’s angular momentum.
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3. the square of the orbital period T of a planet is proportional to the cube of
the semi-major axis a of the elliptical orbit: T 2 = Constant · a3.

Newton’s laws of mot ion and the universal law of gravi tat ion. In 1687,
Isaac Newton (1642–1727) publishes his book Philosophiæ Naturalis Principia
Mathematica. Inspired by Kepler’s work, he proposes the three laws of motion
and the universal law of gravitation, stating that all cosmic objects attract each
other mutually with equal forces (but in opposite directions), proportional to
the product of their masses and inversely proportional to the square of the
distance between them.

Let mS and mP denote the masses of two bodies S and P , let D be the
distance between S and P , and let −→u be a vector with unit length in the
direction from S to P . The gravitational force −→F S→P applied by S to P is then
given by the formula

−→
F S→P = −−→F P→S = −G

mSmP

D2
−→u ,

where the constant of proportionality G is called the universal constant of
gravitation. It is this law that we will use later to calculate the motion of the
planets.

Newton’s explanat ion of Kepler ’s law of equal areas. Newton also pro-
vides a justification for Kepler’s laws: they represent the motion of a body
subject to a single gravitational force, that of the Sun. To explain the law of
equal areas, he uses a method that can be interpreted as the first geometric
numerical integrator, as presented in [3, 9]. The idea is to apply the Sun’s
attractive gravitational force not continuously over time, but via a sequence of
impulses: Suppose that S is the position of the Sun, and suppose that a planet
is located initially at point A, see Figure 2.

Let us first assume that the Sun applies no gravitational force at all; in this
case, the planet moves during a certain time from A to a point B along a straight
line, with a constant velocity in the direction −−→AB (see Figure 2). Waiting for
the same time again, the planet should continue on the same straight line until
it reaches the point c, with −−→AB = −→Bc.

However, let us apply an impulse of force from the Sun to the planet: this
force adds a velocity component to the motion of the planet that Newton
represents by the vector −−→BV along the segment SB. The planet’s velocity is
now the sum of two components: the vector −→Bc and the vector −−→BV , and the
resulting vector is −−→BC which defines the point C. The planet thus moves with
this new constant velocity until it reaches C.
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(a) Figure from Newton’s
Principia Mathematica (1687).
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(b) The planet’s motion subject
to a single “force impulse”.

Figure 2: Newton’s proof of Kepler’s second law.

Iterating this process, the planet follows the path A, B, C, D, E, F, . . .. New-
ton proves that all the triangles SAB, SBC, SCD, SDE, SEF have the same
area by the following argument:

Newton’s geometr ic proof. We first note that the triangles SAB and SBc

have the same area, because they have the same basis −−→AB = −→Bc and the same
height issued from S. Next, observing that BcCV is a parallelogram, we deduce
that −→Cc is parallel to −→SB. The triangles SBc and SBC thus have the same
basis −→SB and the same heights issued from c and C respectively; and hence
they have the same area. Thus, the triangles SAB and SBC have the same
area.

Newton thus proves a discrete version of Kepler’s second law, meaning a
motion with successive jolts. The process which permits to get from A to B,
then B to C, and so forth, corresponds in fact to a geometric numerical scheme,
known today as the symplectic Euler method, which we will present later on.
We will also see that as the time interval between two force impulses tends to
zero, the obtained approximation of the trajectory converges towards the exact
solution of the problem.

2 What is a di f ferent ia l equat ion, and how can we solve i t?

Many physical phenomena can be modeled by differential equations, that is
to say, equations in which the unknown is not a number but a function, and
involving one or more derivatives of this function. 5

5 Note to advanced readers: in this snapshot, we are only concerned with the case where
these functions depend on one variable only, so-called ordinary differential equations.
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A dif ferent ia l equat ion example: de Beaune’s problem. As an example,
let us consider a problem formulated by Florimond de Beaune in 1638: 6

Find a curve C in the plane, given by a function y(t), such that the
tangent to C in any point M with abscissa t intersects the horizontal
axis at the point u = t− 1 (see Figure 3).

C

b
t

bM

b
u = t − 1

D = 1

Figure 3: The problem of de Beaune (1638).

We note that the slope of the tangent at M = (t, y(t)) to the curve C equals
the quotient of the height y(t) over the width D = 1, which means the slope is
equal to y(t). In addition, we recall that by definition the slope is the derivative
of y at t. Together, this gives the differential equation

y′(t) = y(t).

The general solution of this equation is y(t) = C · et, where C is a constant
that can be determined by adding an initial condition y(0) = y0. The differential
equation with a given initial value then possesses a unique solution y(t) = y0 · et.

Numer ical methods. For a general differential equation, however, it is in
practice often difficult or even impossible to find a formula for the exact solution.
Therefore a numerical integrator, which is an algorithmic method for calculating
an approximate solution, must be used.

6 De Beaune (1601–1652) is famous mostly for the problem presented here. It is one of
four problems that he submitted to René Descartes (1596–1650), who had just published
La Géométrie in 1637.
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There exists a wide range of algorithms for solving a differential equation of
the form

y′(t) = f(y(t)), y(0) = y0,

where y0 is a given initial condition, f is a given function and y is an unknown
function depending on t. Note that for the problem of de Beaune, the function
f reduces to the identity, f(y) = y. We now present a few simple examples of
such methods, chosen for their importance.

Euler methods: approximat ions of the cont inuous model. When proving
the law of equal areas, Newton used gravitational force impulses, applied to the
planet at regular intervals. The numerical methods rely on the same idea.

We first choose a stepsize h and we compute an approximation yn ' y(tn)
of the continuous solution at times tn = nh, where n = 0, 1, 2, 3, . . .. The first
quantity y0 is known, this is the initial condition. Next, we compute y1, then
y2, then y3, and so on. The common approach of all so-called Euler methods is
to approximate the derivative by a difference quotient:

y′(tn) = lim
ε→0

y(tn + ε)− y(tn)
ε

' yn+1 − yn

h
.

Expl ic i t Euler method. This is the simplest numerical method. It is due to
Leonhard Euler (1707–1783). 7 By approximating f(y(tn)) with f(yn) in the dif-
ferential equation, we obtain the explicit Euler method, f(yn) = (yn+1 − yn)/h,
which can be written as

yn+1 = yn + h f(yn).

Convergence rate of a numer ical integrator. Successively calculating y1,
y2, y3, and so on, we obtain a polygonal line passing though the points (tn, yn),
see Figure 4. One can show that the polygonal line converges to the exact
solution as h goes to zero. Additionally, we observe in Figure 4 that when
dividing the stepsize h by a factor of two, the numerical solution (blue polygonal
line) gets closer to the exact solution (red curve) with an error divided by the
same factor, two to the power of one. The convergence rate is thus of order 1.

There exist many variants of the Euler method, in particular the so-called
Runge–Kutta methods, which can be more accurate, with distance proportional
to h2, h3, and so on, corresponding to a rate of convergence of order 2, 3, or
higher.

7 This was a great contribution of Euler among numerous ones in impressively many areas
of science. He presented it in the first volume of his Institutiones calculi integralis. Having left
Berlin in 1766, where he had written the book, Euler published it in 1768 in Saint Petersburg.
Thus, Euler’s method can already celebrate its 250 year anniversary.
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Figure 4: The explicit Euler method for solving the problem of de Beaune
y′(t) = y(t), with y(0) = 1 (in blue), and the exact solution (in red).
The stepsizes are h = 0.5, 0.25, 0.125, respectively.

The impl ic i t Euler method. In contrast to the explicit Euler method, by
instead choosing the approximation f(y(tn)) ' f(yn+1), we get the implicit
Euler method

yn+1 = yn + h f(yn+1).
This method is called implicit because the computation of yn+1 in general
requires solving a non-linear system. Indeed, one has to compute yn+1 while the
value f(yn+1) is not a priori known. There exist specific methods for solving
such problems.

Many other schemes could be considered. However, in some situations,
the rate of convergence is not the only important aspect to be taken into
consideration. Having a correct qualitative behavior for long times can be very
important, in particular regarding invariants, that is, conserved quantities such
as the energy of the Sun–Earth–Moon system. We will address this issue in the
next section.

3 How to conserve the energy of a physical system?

Before focussing on the planetary problem, let us consider first another, simpler
example of a physical system: a mass oscillating on a spring close to its rest
position (see Figure 5). We denote by q(t) the elongation of the spring at time t,
by p(t) the momentum, and by m the mass of the body. In the absence of
friction or damping forces, we can model the motion by the following system of
differential equations:

q′(t) = 1
m

p(t), p′(t) = −kq(t). (∗)

The first equation above is just the definition of momentum. The second
equation is a consequence of the following two facts: First, if the spring is
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m
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Figure 5: An mass oscillating on a spring, where q(t) is the elongation at time t.
The spring is compressed on the left, at its rest position in the middle,
and stretched on the right.

stretched or compressed with q(t) units with respect to its rest position, then a
restoring force −kq(t) proportional to q(t) but with opposite direction is applied.
This is called Hooke’s law, where k is a positive constant corresponding to the
stiffness of the spring.

Second, Newton’s second law of motion states that the sum of forces equals the
product of mass and acceleration: −→F (t) = m−→a (t), where −→a (t) has coordinates
q′′(t). We deduce −kq(t) = mq′′(t) = p′(t), yielding the second differential
equation in (∗).

Energy conservat ion. The total energy of this system is given by

E(p, q) = kinetic energy + potential energy = 1
2m

p2 + k

2
q2. 8

It is conserved in time by the exact solution, which means

E (p(t), q(t)) = E (p(0), q(0)) for all t .

Indeed, the derivative of the energy with respect to time is zero:
d

dt

(
E(p(t), q(t))

)
= 1

m
p′(t)p(t) + kq′(t)q(t) = 1

m
(−kq(t))p(t) + k

m
p(t)q(t) = 0.

In comparison, let us now examine how the numerical solutions behave in this
aspect.

8 The equations of motion have a peculiar structure when expressed in terms of q, p, and E,
namely q′ = ∂E

∂p
(p, q), p′ = − ∂E

∂q
(p, q). This observation is at the foundation of the so-called

Hamiltonian formulation of classical mechanics, going back, alongside many other innovations
in mathematics and physics, to William Rowan Hamilton (1805–1865).
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Behavior of the energy under expl ic i t and impl ic i t Euler methods. We
fix at a chosen instant t = 0 the initial conditions p(0) = p0 and q(0) = q0. For
simplicity, we also fix the mass as m = 1. Applying the explicit Euler method,
we obtain the recurrence relation

qn+1 = qn + hpn, pn+1 = pn − hkqn.

A calculation yields

E(pn+1, qn+1) = 1
2
p2

n+1 + k

2
q2

n+1 = (1 + kh2)
(1

2
p2

n + k

2
q2

n

)
= (1 + kh2)E(pn, qn).

We see that at each step of the scheme, the energy is amplified by the factor
1 + kh2, which is strictly larger than 1. Analogously, considering the implicit
Euler method,

qn+1 = qn + hpn+1, pn+1 = pn − hkqn+1,

the same calculation yields

E(pn+1, qn+1) = 1
1 + kh2 E(pn, qn).

This time the energy is not amplified, but damped at each step of the method.

Trajector ies in the (p, q)-p lane. The state of the spring at a given time t is
described by the knowledge of both its position q and momentum p. For the
exact solution, the law of conservation of energy implies that they satisfy the
identity

p2 + kq2 = 2E(p, q) = Constant.

Setting k = 1, the exact solution therefore corresponds to a circle in the
(p, q)-plane, passing through the given initial condition – see the red curve in
Figure 6. Here, at initial time the spring is stretched, q0 = 1, and without
velocity, p0 = 0.

We can also view the numerical solutions obtained for the spring problem
with stepsize h = 1/4 in Figure 6. We observe that the solutions obtained
with the explicit and implicit Euler methods are spiraling towards the exterior
or interior, respectively. This is due to the amplification or damping factor
described previously.
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Figure 6: Comparison of the explicit, implicit, and symplectic Euler methods
(in blue) for the harmonic oscillator (a mass m = 1 on a spring with
stiffness parameter k = 1). The trajectory of the exact solution is a
circle (in red).

The symplect ic method, an integrator that preserves the energy wel l
over long t imes. To get a better preservation of the energy, the idea is
to combine the explicit and implicit Euler methods. For the spring problem,
the symplectic Euler method is given by

qn+1 = qn + hpn, pn+1 = pn − hkqn+1.

Note that this method alternates between updating the position and the mo-
mentum, just as in Newton’s proof of the law of equal areas presented earlier.

We now consider the modified numerical energy Ẽh, defined as Ẽh(p, q) =
E(p, q) + hkpq. A calculation yields

Ẽh(pn+1, qn+1) = Ẽh(pn, qn).

This means that the modified energy is exactly conserved by the numerical
scheme, without amplification and attenuation factor. In the (p, q)-plane, the
curve Ẽh(p, q) = Ẽh(p0, q0) is in fact an ellipse close to the circle of the exact
solution when h is small. This is because the numerical energy Ẽh is a small
perturbation of the exact energy E of size proportional to h. This shows that
the numerical error in the energy always remains small with size h. Indeed,
we observe in Figure 6 (right picture) that the numerical trajectory (in blue)
remains close to the exact one (in red).

Even though not exactly, the symplectic Euler method conserves the energy
of the harmonic oscillator well. Compared to the explicit or implicit Euler
method, it is therefore better adapted to the problem. Numerical integrators
with the property that they preserve the invariants and symmetries of the exact
solution of the system well are called geometric.
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4 The Sun–Ear th–Moon system
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Figure 7: Comparison of the explicit Euler method (left) and the symplectic
Euler method (right) for the Sun–Earth–Moon system simulated over
one year. The distance between the Moon (blue trajectory) and the
Earth (black trajectory) is scaled by a factor of 100 in the plots, to
better distinguish the Earth and the Moon.

We finally consider the Sun–Earth–Moon system, where for simplicity we
neglect the other bodies and influences in the solar system. We represent the
positions of these three bodies at time t as −→qi (t) ∈ R3, i = 0, 1, 2, where the
index i = 0 corresponds to the Sun, i = 1 to the Earth, and i = 2 to the Moon.
The masses of the three bodies are denoted by mi, i = 0, 1, 2. We also consider
the momenta

−→pi (t) = mi
−→qi
′(t) . (∗∗)

Newton’s second law of dynamics then reads

−→p0
′ = −→F E→S +−→F M→S ,

−→p1
′ = −→F S→E +−→F M→E , (∗∗∗)

−→p2
′ = −→F S→M +−→F E→M .

Taking (∗∗) and (∗∗∗) together, and expressing the right sides in (∗∗∗)
through Newton’s law of gravitation, we get a system of six differential equations
for the functions −→qi and −→pi , to which we apply our numerical schemes.

In Table 1 we provide masses, positions, and initial velocities of the Sun, the
Earth, and the Moon at a given date (here 1st of January 2016), and a value
for the gravitational constant G 9 .

9 The gravitational constant G is among the most difficult physical constants to measure.
In precise celestial computations, one uses rather the product of G times the mass of the
body under consideration as input data (standard gravitational parameter).
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body mass (relative to M�) position (ua) velocity (ua/d)

Sun m0 = 1
0
0
0

0
0
0

Earth m1 = 3.00348959632 · 10−6
−0.1667743823220

0.9690675883429
−0.0000342671456

−0.0172346557280
−0.0029762680930
−0.0000004154391

Moon m2 = 1.23000383 · 10−2 m1

−0.1694619061456
0.9692330175719
−0.0000266725711

−0.0172817331582
−0.0035325102831

0.0000491191454
Gravitational constant G = 2.95912208286 · 10−4 ua3/d2/M�

Table 1: Initial data from [8] for Sun, Earth, Moon on 01/01/2016 at 0h00.
Masses are given relative to the Sun mass M�.

The Sun is chosen as reference and located at the origin (0, 0, 0). Distances
are expressed in astronomical units ua, a quantity based on the Earth–Sun
distance (1 ua is about 150 million kilometers), and the time is in Earth days.

Try yoursel f , wi th the free open source software Sci lab. We give below
a short sample code for the free open source software Scilab [10] for computing
the evolution of the system with either the explicit or the symplectic Euler
method. Results are presented in Figure 7. Notice that the trajectories are
almost in a plane, but actually evolve in 3D. The Sun itself is slightly moving as
well – this effect is, by the way, used as a common method to detect exoplanets
– but the software represents the trajectories relative to the Sun.

To get started with running your own simulations, put the following code into
a file sunearthmoon.sce. You can also download the file from this snapshot’s
website. 10

// Newton ’s law of gravitation
function f= fun_v (q)

deff (’[v]= vecf(v0)’,’v=v0/norm(v0 ).^3 ’);
sun =1:3; earth =4:6; moon =7:9;
f(sun) =-G*m0*m1*vecf(q(sun) -q( earth ))..

-G*m0*m2*vecf(q(sun) -q(moon ));
f( earth )=-G*m1*m0*vecf(q( earth )-q(sun ))..

-G*m1*m2*vecf(q( earth )-q(moon ));
f(moon) =-G*m2*m0*vecf(q(moon)-q(sun ))..

-G*m2*m1*vecf(q(moon)-q( earth ));
endfunction

10 http://dx.doi.org/10.14760/SNAP-2017-009-EN
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// Newton ’s second law of motion
function f= fun_u (p)

f=[p (1:3)/ m0;p (4:6)/ m1;p (7:9)/ m2 ];
endfunction

// Symplectic Euler method
function [vp ,vq ]= euler_symplectic (n,h,p,q)
vp=p;vq=q;
for i=1:n

q=q+h* fun_u (p); p=p+h* fun_v (q);
vq =[vq ,q]; vp =[vp ,q];

end
endfunction

// Explicit Euler method
function [vp ,vq ]= euler_explicit (n,h,p,q)
vp=p;vq=q;
for i=1:n

tmp=q; q=q+h* fun_u (p); p=p+h* fun_v (tmp );
vq =[vq ,q]; vp =[vp ,q];

end
endfunction

// Sun -Earth - Moon system integration
//
// body masses
m0 =1; m1 =3.00348959632E -6; m2=m1 *1.23000383E -2;
// gravitational constant
G =2.95912208286e -4;
// Initial conditions
// Source : PORTAIL SYSTEME SOLAIRE
// OBSERVATOIRE VIRTUEL DE L’ IMCCE
// Observatoire de Paris / CNRS
// http :// vo. imcce .fr/ webservices / miriade /? forms
// Target : p:Earth , s: Moon
// Epoch : 2016 -01 -01 00:00:00 , 1, 1.0 - day , UTC
// Reference center :
// INPOP Ecliptic Rectangular AstrometricJ2000
// Ecliptic coordinates
// Initial positions and velocities
q0 =[0;0;0; -0.1667743823220;0.9690675883429; -0.0000342671456;..

-0.1694619061456;0.9692330175719; -0.0000266725711];
v0 =[0;0;0; -0.0172346557280; -0.0029762680930; -0.0000004154391;..

-0.0172817331582; -0.0035325102831;0.0000491191454];
// Initial momenta
p0 =[ v0 (1:3)* m0;v0 (4:6)* m1;v0 (7:9)* m2 ];

// Time integration over 365 days -- choose one of the following :
[vp ,vq ]= euler_symplectic (365*10 ,0.1 ,p0 ,q0) // stepsize h =0.1
//[vp ,vq ]= euler_explicit (365*10 ,0.1 , p0 ,q0) // stepsize h =0.1

// Trajectories with respect to the Sun placed at the origin
vq (4:6 ,:)= vq (4:6 ,:) - vq (1:3 ,:);
vq (7:9 ,:)= vq (7:9 ,:) - vq (1:3 ,:);
comet3d (0 ,0 ,0);

// Increase the Earth - Moon distance by a factor 100 for visualization .
vq (7:9 ,:)= vq (4:6 ,:)+100*( vq (7:9 ,:) - vq (4:6 ,:))
comet3d ([ vq(4,:)’,vq (7 ,:) ’] ,[ vq(5,:)’,vq (8 ,:) ’] ,[ vq(6,:)’,vq (9 ,:) ’]);
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Once you have Scilab installed, open and run sunearthmoon.sce from within
Scilab using either euler_symplectic or euler_explicit as integrator. To change the
integrator, you can just (un)comment the corresponding lines, starting with
[vp,vq]=euler_.... Do you see the difference?

Note that this sample code can be straightforwardly adapted to include
additional planets of the solar system, using initial data from [8]. It could also
be extended to predict solar or lunar eclipses when the Earth moves into the
Moon’s shadow or the converse, taking into account the diameters of the bodies.
Enjoy creating your own simulations!

5 Is the solar system stable?

A question closely related to the topic of this snapshot is the issue of the stability
of the solar system. Soon after Newton proposed his universal law of gravitation,
many researchers, including, amongst others, Pierre-Simon Laplace (1749–1827),
Joseph-Louis Lagrange (1736–1813), and Siméon Denis Poisson (1781–1840),
were studying the question whether the regular trajectories of the planets will
continue nicely until the end of times, or if collisions or ejections will occur.

In 1885, King Oscar II of Sweden sponsored a competition about this question.
The prize was awarded to Henri Poincaré (1854–1912), although he did not
really solve the problem. His contribution, however, is at the origin of the theory
of dynamical systems. It also led to important developments in “Hamiltonian
perturbation theory” and gave rise to the so-called Kolmogorov–Arnold–Moser
(KAM) theory, which deals with the persistence of quasi-periodic motions under
small perturbations, see the survey [7]. Unfortunately, this beautiful theory
does not apply to realistic solar system models.

The initial question “Is the solar system stable?” then remained open until
the last decades, where the final negative answer, revealing that the solar system
is chaotic, was given by the mathematician and astronomer Jacques Laskar
and his collaborators. The argument is based on analytic means, but also uses
numerical methods including geometric integrators. 11 In addition, some of
their recent computations show that collisions or ejections could even occur in
the next five billion years, that is, before the end of the life of the Sun (see the
survey [4]).

Notice that the past evolution of the solar system over long times has a
surprising application: it serves as a measurement scale for geological dating.

11 The chaotic behavior of the solar system was shown by Laskar in 1989: a small error of a
few meters in the initial position of the Earth is amplified by a factor 10 every 10 million years,
leading to a huge error of dozens of millions of kilometers after 100 million years. This makes
precise numerical predictions based on planetary trajectories in the solar system become
infeasible beyond this time horizon of 100 million years.
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Indeed, the position of the planets and their orbital parameters – such as
the inclination – influence how sediments are deposited on the surface of the
Earth, which allows for geological dating by observing these sediment deposits.
Such geological calculations are known again through the work of Laskar and
collaborators. The calculation named La2010 [5], which uses geometric numerical
methods with high order of accuracy, shows that the extinction of dinosaurs
(about 65 million years ago) may have been slightly earlier than previously
estimated.

6 Conclusion and out look

Based on the examples of an oscillating spring and the three-body problem Sun–
Earth–Moon, we have shown that in order to get a good qualitative behavior of
the numerical solution of a problem with certain invariants, it is essential to
use geometric numerical methods, which preserve these invariants.

We have seen that the energy, a key invariant of all mechanical systems, is
well preserved by the symplectic Euler method. In contrast, the explicit Euler
method, and more generally any standard explicit Runge–Kutta methods, do
not preserve it and are thus not suitable for integration over long time intervals.
A mathematical theory called “backward error analysis” permits to demonstrate
that symplectic integrators have a good energy conservation for such mechanical
systems.

The theory of geometric numerical integration [6, 3, 2, 1] turns out to be a
powerful tool for the study and design of integrators in many areas of physics
(here for example celestial mechanics), chemistry (molecular dynamics), and
biology. In addition to that, it has connections with algebraic tools from other
fields of mathematics and physics, such as the so-called renormalization in
quantum field theory, see [3, Section III.1.5].
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Fig. 2a Illustration of Theorem I, Book I, from I. Newton, Philosophiæ Natu-
ralis Principia Mathematica, Londini anno MDCLXXXVII, 1687.
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/* Scilab code "sunearthmoon.sce" from: Shaula Fiorelli Vilmart and Gilles
Vilmart, Computing the long term evolution of the solar system with geometric
numerical integrators, Snapshots of modern mathematics from Oberwolfach, 2017.

The snapshot is licensed under the Creative Commons Attribution-ShareAlike 4.0 
license (CC-BY-SA-4.0). 
This code is licensed under the MIT license as specified in the copyright
notice below.

Code and snapshot are available from http://dx.doi.org/10.14760/SNAP-2017-009-EN

Further information on Scilab and download is available from http://www.scilab.org


Copyright Notice/License Agreement (MIT License) 
------------------------------------------------

Copyright © 2017 Shaula Fiorelli Vilmart and Gilles Vilmart

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */

//______________________________________________________________________________

//Newton's law of gravitation
function f=fun_v(q)
  deff('[v]=vecf(v0)','v=v0/norm(v0).^3');
  sun=1:3;earth=4:6;moon=7:9;
  f(sun)  =-G*m0*m1*vecf(q(sun) -q(earth))..
           -G*m0*m2*vecf(q(sun) -q(moon));
  f(earth)=-G*m1*m0*vecf(q(earth)-q(sun))..
           -G*m1*m2*vecf(q(earth)-q(moon));
  f(moon) =-G*m2*m0*vecf(q(moon)-q(sun))..
           -G*m2*m1*vecf(q(moon)-q(earth));
endfunction

//Newton's second law of motion
function f=fun_u(p)
  f=[p(1:3)/m0;p(4:6)/m1;p(7:9)/m2];
endfunction

//Symplectic Euler method
function [vp,vq]=euler_symplectic(n,h,p,q)
vp=p;vq=q;
for i=1:n
  q=q+h*fun_u(p);  p=p+h*fun_v(q);
  vq=[vq,q];       vp=[vp,q];
end
endfunction

//Explicit Euler method
function [vp,vq]=euler_explicit(n,h,p,q)
vp=p;vq=q;
for i=1:n
  tmp=q; q=q+h*fun_u(p);  p=p+h*fun_v(tmp); 
  vq=[vq,q];       vp=[vp,q];
end
endfunction

//Sun-Earth-Moon system integration
//
//body masses
m0=1;m1=3.00348959632E-6;m2=m1*1.23000383E-2; 
//gravitational constant
G=2.95912208286e-4; 
//Initial conditions
//Source: PORTAIL SYSTEME SOLAIRE
//        OBSERVATOIRE VIRTUEL DE L'IMCCE
//        Observatoire de Paris / CNRS
//http://vo.imcce.fr/webservices/miriade/?forms
//Target: p:Earth, s:Moon
//Epoch: 2016-01-01 00:00:00, 1, 1.0 - day, UTC
//Reference center: 
//INPOP Ecliptic Rectangular AstrometricJ2000
//Ecliptic coordinates
//Initial positions and velocities
q0=[0;0;0;-0.1667743823220;0.9690675883429;-0.0000342671456;..
          -0.1694619061456;0.9692330175719;-0.0000266725711];
v0=[0;0;0;-0.0172346557280;-0.0029762680930;-0.0000004154391;..
          -0.0172817331582;-0.0035325102831;0.0000491191454];
//Initial momenta
p0=[v0(1:3)*m0;v0(4:6)*m1;v0(7:9)*m2];
          
//Time integration over 365 days -- choose one of the following:
[vp,vq]=euler_symplectic(365*10,0.1,p0,q0) //stepsize h=0.1
//[vp,vq]=euler_explicit(365*10,0.1,p0,q0) //stepsize h=0.1

//Trajectories with respect to the Sun placed at the origin
vq(4:6,:)=vq(4:6,:)-vq(1:3,:); 
vq(7:9,:)=vq(7:9,:)-vq(1:3,:);  
comet3d(0,0,0);

//Increase the Earth-Moon distance by a factor 100 for visualization.
vq(7:9,:)=vq(4:6,:)+100*(vq(7:9,:)-vq(4:6,:))
comet3d([vq(4,:)',vq(7,:)'],[vq(5,:)',vq(8,:)'],[vq(6,:)',vq(9,:)']);


