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THE SYLOW STRUCTURE OF SCALAR
AUTOMORPHISM GROUPS

WOLFGANG HERFORT, KARL H. HOFMANN, LINUS KRAMER,
AND FRANCESCO G. RUSSO

ABSTRACT. For any locally compact abelian periodic group A its
automorphism group contains as a subgroup those automorphisms
that leave invariant every closed subgroup of A, to be denoted by
SAut(A). This subgroup is again a locally compact abelian periodic
group in its natural topology and hence allows a decomposition
into its p-primary subgroups for p the primes for which topological
p-elements in this automorphism subgroup exist. The interplay
between the p-primary decomposition of SAut(A) and A can be
encoded in a bipartite graph, the mastergraph of A. Properties and
applications of this concept are discussed.

INTRODUCTION

This text deals with periodic locally compact abelian groups. A
topological group is called periodic if it is locally compact and totally
disconnected and if it is the union of compact subgroups. The ring Z of
integers acts on every abelian group A via scalar multiplication. The ring
Z has a universal compactification to a compact totally disconnected
topological ring Z D 7Z, and if A is a periodic locally compact abelian
group, then the scalar multiplication of A by Z extends to a continuous
scalar multiplication

(z,a) — z-a:Zx A— A

The automorphism group Aut(A) is of considerable interest to group
theoreticians. Its center contains all automorphisms of the form a — r-a
for any (multiplicatively) invertible element r € Z. Such elements are
called units and they form a compact multiplicative subgroup Z* of
7. The profinite abelian group Z* has a remarkably rich structure. So,
for each prime number p the compact ring Z, is a subring of Z, and so
its group of units Z; is a subgroup of 7*. Tt contains a compact open
multiplicative subgroup which is isomorphic to the additive group Z,,
but is also contains a finite cyclic group of order p — 1 of roots of unity

which therefore contains elements of order ¢"»(*~Y if ¢|(p — 1), where
1
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vp(q — 1) is the largest natural number n such that p = ¢"m + 1 for a
natural number m. The simple task of finding the p-Sylow subgroups
of Z* appears to be a mind boggling problem at first sight.

We solve this problem by describing a countably infinite bipartite
labeled graph that is easily depicted and imagined as drawn in the real
plane. It supplies a very good organization of the set of all procyclic
(and cyclic) subgroups of Z that are compact p-groups, which allows
us to find the maximal p-subgroups. Indeed, the essential cyclic and
procyclic subgroups are lucidly indexed by the labeled edges of the
graph, which we call the mastergraph. With the help of the tools that
it provides it is, for instance, possible to argue that the multiplicative

group Z* is isomorphic to the additively written group Z x tor(ix)

and that the group tor(Z)* contains a dense subgroup algebraically
isomorphic to the large torsion-free group (Z, +)™. (See Corollary 23.)

Given a periodic locally compact abelian group A we let SEnd(A) C
End(A) denote the subring of all endomorphisms implemented by scalar
multiplication. Then the natural homomorphism ¢: Z — SEnd(A)
defined by ((r)(a) = r-a will be shown to be a quotient morphism
of profinite rings, and we call the ring R(A) := Z/ker(¢) the ring
of scalars of A. Then ( factors through R(A) with an isomorphism
R(A) — SEnd(A) of rings. The group of units of SEnd(A) is denoted
SAut(A), and we have R(A)* = SAut(A). We shall clarify the structure
of R(A)* completely in the way it depends on the exponents of the A,.
(See Theorem 41)

Let G be a locally compact group with a closed normal subgroup A.
Let Int(A) denote the group of all inner automorphisms. There is a
natural representation G — Int(A) sending g to the inner automorphism
a — gag~! whose kernel is the centralizer of A in G.

Proposition 1. For a locally compact group G with a periodic abelian
closed normal subgroup A the following statements are equivalent:

(i) Int(A) C SAut(A).
(ii) Every inner automorphism induced on A is a scalar automorphism.
(iii) Every closed subgroup of A is normal in G.
(iv) There is a morphism p: G — R(A)* such that

(Vg € G, a € A) gag™ = p(g)-a

For a proof of this proposition see Proposition 36.
We emphasize here again that in Theorem 41 we shall give an explicit
structure theory of R(A)* = SAut(A).
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Now let us formalize the situation described in the preceding propo-
sition.

Definition 2. If (G, A) is a pair consisting of a topological group G
and a closed normal subgroup A, then we call it a special extension
of A if G is a locally compact group and the equivalent conditions of
Proposition 1 are satisfied.

For any special extension (G, A) of a periodic abelian group A we
have a subgraph

G(U(G,A),V(G,A),E(G,A), N

of the mastergraph G as follows:

(i) U(G,A) contains all vertices (p,1) for which p(G,) # {1} in
R(A)*.

(ii) V(G, A) contains all vertices (¢, 0) such that (R(A,)*) # {1}.

(iii) £(G, A) contains all edges from p to ¢ such that p(G,)R(A4,)* #
{1}.

All labels A(e) are those of the mastergraph.

As a sample of the efficiency of the graphs we show

Theorem 3. Let (G,A) be a special extension of a periodic locally
compact abelian group. Then for each sloping edge e € E(G, A) from
some p to some q, all of A, consists of commutators. In particular,
A, C G

(See Theorem 43 below.)

1. THE SYLOW STRUCTURE OF THE COMPACTIFIED RING OF
INTEGERS

By the “ring of compactified integers” we mean the profinite comple-
tion of the ring Z and we denote it by Z. Technically, if B = a(G) is the
Bohr compactification of a topological group G, then B/By (with the
identity component By of B) is the zero dimensional compactification
or the profinite completion of G. The profinite ring Z is at the focus of
the present discussion.

The set of all prime numbers is denoted 7. For each profinite abelian
group A the p-primary component or p-Sylow subgroup A, is the largest
p-subgroup of A, and one has the Sylow decomposition A = Hper Ap.
Note, however that the ring Z of integers in its discrete topology is
not profinite, allowing the standard notation Z, for the ring of p-adic
integers to be an exception to this convention. Accordingly, we shall
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formulate the equation (Z)p = Z,. The compact ring Z then satisfies

(1) z=1]@, =]z

This is the Sylow decomposition (or primary decomposition) of Z.

2. THE GROUP OF p-ADIC UNITS Z

For a unital commutative ring R we denote by R* the multiplicative
group of its units, i.e., invertible elements. We clarify this concept for
R = 7Z, by a reminder of some elementary structural information of Z,,.
Recall that under suitable circumstances in a topological ring R the
sequence 1 + x + %x + %x?’ -+« converges for z from a suitable domain
D and defines a function

exp: D —-1+D, 1+DCR".
If p € mis a prime and m € N, then
(2) vp(m) = max{n € Ny : p"|m}

is that unique nonnegative integer n for which m = p"m/ and (m/, p) = 1.
For the following information on the ring Z, of p-adic integers see e.g.

3].
Lemma 4. (i) For each prime p # 2, the function
exp: pZ — (1+pZy), 1+pZ,C7Z,;

is an isomorphism of profinite groups and 1 + pZ is an open subgroup
of Z;. In particular,

(3) 2 exppz i (Zy,+) = (14 pZy, X)

s an isomorphism of profinite groups.

(ii) The factor ring Z,/pZ, is the field GF(p) of p elements, and so
(Zp/pZy)* is a cyclic group of p— 1 elements. The ring Z) contains a
cyclic group C, of p— 1 elements (called roots of unity) such that

(z,¢) = xc: (1 +pZ,) x Cp — Z; is an isomorphism,
and

(4) (Zy, %) = (Zp o EBZ (¢7@~V) ,+> :

qe™
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In particular, for ¢ € m the ¢-Sylow subgroup of Z is procyclic and
7 (qVQ(p_l)) if q < P,
(Z)q = § Ly if ¢ = p,
{0} if p <gq.
From a formalistic point of view it is regrettable that the case p = 2 is
not exactly subordinate to the scheme. However, here it is:
Lemma 5. (i) The function
exp: 422—) (1—|—4Zg), 1—|—4Z2 gZ;
1 an wsomorphism of profinite groups and 1+ 47 is an open subgroup
of Z5 . In particular,
(5) z>expdz: (Lo, +) — (14+4Z,, x)
s an isomorphism of profinite groups.
(ii) The factor ring Zo/274 is the field GF(2) of 2 elements, and the

group of units of (Zs/472)* is a group of 2 elements. The group Z;
contains a cyclic group Cy of 2 elements (called roots of unity) such that

(x,¢) ¥ xc: (1 4+ 4Zs) x Cy — Z3 is an isomorphism,
and
(6) (23, %) = (Z2 ®Z(2), +).

In particular, Z5 is a nonprocyclic 2-group.

The product representation (1) Zp = [, ex Zp immediately yields
(7) < =1]z;.
pem
Since for p # 2 the profinite group Z; is not a p-group, the product

representation of the profinite group Z* in (1*) is not its Sylow decom-
position. Our first and foremost goal is now to determine the Sylow
decomposition of Z* and to describe it in an intuitive and useful form.

3. SOME HELPFUL FACTS ON GROUPS AND NUMBERS
The information contained in (1) through (6) suggests rather clearly
that products G' = [[,; Z(p™) (for families (n;);e; of natural numbfrs
and for a fixed prime number p will play a role in the structure of Z*.

Lemma 3.9 of [1] provides the following standard information:

Lemma 6. The group HjeJZ(p”f) is a torsion group if and only if
(nj)jes s a bounded family.
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Accordingly we first collect some general facts on groups G for general
families (n;)je; and keep in mind as a special example the family
N =(1,2,3,...) and, accordingly, the group

(8) P = Z(p) x Z(p*) x Z(p®) x - --
Definition 7. Let p € . Given G = [[;.;Z(p"™) for a family (n;);e,,
for each m € N we define

~Jny ifng <m,
Njm = .
0  otherwise.

Now we set G, = [[,; Z(p™™). For any finite subset F C J we let

{nj ifj€F,
TL]'F =

jeJ

0  otherwise

and set

Gr = [[2mr) =P 2o™).

jeJ jEF
We see that m < n implies G,,, < G,,, and for any finite subset F' C J
there is an m such that Gy < G,. Since Upc; g guie G 15 dense in

[I;c; Z(p"7), we have

Remark 8. For any family (n;);es of natural numbers, the profinite
p-group G = [[,; Z(p") has the dense torsion subgroup (J,,,cyy Gm of
the ascending sequence G,,, m =1,2,... of compact torsion subgroups.

Let us consider the character group A := G of G. Then A =

@jeJZ(pnj)‘

From Propositions 8.2 and 8.3 in [2] we cite

Lemma 9. If I is any compact or any discrete group, then
(9) torI' = Div(D)*,
the annihilator of the group of all divisible elements of the character
group of T'.
We consider the special group
(10) 2, =Z(p) O L") O L) & -+

the character group of the group P in (8) above. In [1] ¥, emerges as

the torsion subgroup of the remarkable locally compact p-group V,, (see

[1], Theorem 3.16) and it shows some surprising features itself.
Firstly we cite Lemma 3.17 of [1] known to Priifer:
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Lemma 10. Let e,, be the generator of Z(p™) in ¥, and let ¢: ¥, — X,
be the endomorphism defined by ¢(e,,) = e, —p-eny1. Then ¢ is injective
and its cokernel ¥,/d(3,) is, up to isomorphism, the Prifer group
Z(p>). That is, the following sequence is exact:

0 2,535, = Z(p™) — 0.

We can iterate ¢ and set S, = ¢"(X,), n =0,1,2,.... Then X, =
So 2 51 252 D ---. Since ¢ is injective, all S,, are isomorphic to X,,.

Proposition 11. The countable torsion group X, is filtered by a se-
quence Sy = X, 2 S1 2 Sy D -+ of isomorphic subgroups such that

(1) Sp—1/Sn = Z(p*>) forn € N, and
(i) Npen Sn = {0}

Proof. We have to prove (i) and (ii). For each n € N, set K,, = S,,/S,_1;
in particular Ky = Z(p>). The injective endomorphism ¢: Sy — Sy
leaves S,, invariant and induces an injective endomorphism ¢,,: S, — S,
with cokernel K,,. We have the commutative diagram

0 — So —i)—) SO — KO - 0

3 oo, 3 \ !

0 — Sl —2> Sl — Kl — 0

3 3 \J \J \J
én

0O — S5, — S, - K, — 0

in which all rows are exact and the vertical morphisms S,,_1 — S,
n € N are the isomorphisms induced by ¢|S,, Since the downarrows
Sp—1 — S, are isomorphisms inductively, and Ky, = Z(p™), it follows,
inductively, that K, = Z(p*) for all n € N.

(ii) By the definition of ¢ in Lemma 10 we have ¢(e,) = €, — p-€ni1.
We define ¢: ¥, — N as follows: let x = Y _\ @, with z,, € Z(p™).
Then

0 if v =0,
l(xz) = < max{m € N| 0 # z,, € Z(p™)}
—min{m € N| 0 # z,,, € Z(p™)} +1 otherwise.

In the definition of ¢ in Lemma 10 we set ¢(e,) = e, — p-€,41. Thus
let y = >, cn¥n be ¢(x) and assume z # 0. Then

min{m € N| 0 # y,, € Z(p™)} = min{m € N| 0 # z,,, € Z(p™)}
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and
max{m € N| 0 # y,,, € Z(p™)} = max{m € N| 0 # z,,, € Z(p™)} + 1.
Thus

(11) (¢" () = l(x) +n.

Now assume that y € (),cySm- Suppose that y # 0 and set n =
((y) € N. Then y € (,,en Sm C Sn, and so there is an x # 0 such
that ¢"(z) = y. Thus (11) shows that ((y) = ((¢"(z)) = l(z) +n =
((x) + L(y), that is, /(x) = 0 and hence x = 0 which is impossible. [

This proposition dualizes comfortably according to the Annihilator
Mechanism of locally compact abelian groups (see [2], 7.17 ff., notably
Corollary 7.22, all of which fully applies to locally compact abelian
groups). So let P of (8) be the dual of ¥, and let H,, < P be the
annihilator (S,)* of S, < ,. Since the S, are descending, the H, are

ascending, and since (), .y Sn = {0} we know that

(12) P=|JH,.

neN
For all n € N we deduce via duality from S,_1/S, = Z(p*>) that
H,/H, 1 = 7Z, for n € N. However, at this point we can utilize the fact
that in the category of compact p-groups, the group Z, is projective
(since its dual Z(p™) is divisible hence injective in the category of
discrete p-groups; see also [2], Theorem 8.78.) Therefore, for each

n € N, the compact group H,, contains a compact subgroup K, = Z,
such that

(13) (Y\ne N)H,, = H, 1K, = H, x K,.

By induction we conclude at once that

(14) (VneN)H,=C,--C,=C1 x---xC, =7,

and

w  Une (Yoo
neN neN neN

Let us collect this information:

Corollary 12. The group P = Z(p) x Z(p?) x Z(p*) x -+ contains a
dense Zy,-submodule which is algebraically isomorphic to the Z,-module
M.
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Corollary 13. For any family (n;);es of natural numbers, the profinite
p-group G = HjeJZ(p”j) is either a torsion group or else it contains a

Zy,-submodule isomorphic to ZJ(DN) whose closure is 1somorphic to P =
Z(p) x Z(p*) x Z(p*) % -

Proof. Either the family (n;);ecs is bounded, in which case G is a torsion
group, or else it is unbounded. In that case there is an increasing
unbounded subsequence (1(m))men- Set Ky, = njn). Since the k,
are increasing, we have n < k,,. The cyclic group Z(p*m) = Z(p"itm)
contains a subgroup B, = Z(p™). Then group By X By X By X - -+
is clearly isomorphic to a subgroup B of G which is isomorphic to

Z(p) x Z(p*) x Z(p®) x ---. Then it follows from Corollary 12 that
B contains a dense Z,-submodule algebraically isomorphic to Z;S)N), as
asserted. U

We shall need the following pieces of information. The first one is
number theoretical. As in (2), for a prime p and a natural number r,
let v,(r) be the exponent of the largest p-power dividing r.

Lemma 14. Letp € 7 be an arbitrary prime number and n an arbitrary
natural number. Then there is a prime number q such that n < v,(g—1).
Accordingly, p™|(q — 1). In particular p|(q — 1).

Proof. Fix p € m and an arbitrary natural number n. The numbers
a = p™ and b = 1 are relatively prime. Hence the arithmetic progression
(am + b)men contains infinitely many primes ¢ by the Dedekind Prime
Number Theorem. Let ¢ be one of them. Then ¢ — 1 = p™m, that is
vp(q¢ — 1) > n. In particular, p|(¢ — 1). O

Lemmas 4 and 5 imply via (7) that Z* contains for each fixed prime
p a product

E =]z,

qE™

where we note that v,(¢ — 1) = 0 if p fails to divide ¢ — 1. Therefore
the following conclusion of the preceding Lemma 14 is relevant:

Proposition 15. Let p € m be an arbitrary prime number. Then the
group E contains a subgroup isomorphic to

P =Z(p) x Z(p*) x Z(p®) x - -

which in turn contains a dense subgroup and Z,-module D = Z;N).
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Proof. By Lemma 14 for each n there is a ¢ € 7 such that n < v,(¢—1).
Hence the group Z(p**@~V) contains a subgroup B, = Z(p"). Thus £
contains an isomorphic copy of

B =[] B.=Zp) x Z(p*) x Z(p®) x - -

neN

The remainder then follows from Corollary 12. U

4. THE MASTERGRAPH

We introduce a bipartite edge-labeled graph G as follows:

Definition 16. A bipartite graph consists of two disjoint sets U and
V' and a binary relation & C (U U V)? such that (u,v) € & implies
u €U andv € V. The elements of U UV are called vertices and the
elements of € are called edges. Any triple (U, V,E) of this type is called
a bipartite graph.

An edge labeled graph is a quadruple (U,V,E, \) such that (U, V,E)
is a bipartite graph and X is a function A\: & — L for some set L of
labels.

Labels could be numbers, or symbols like oo.
Now we define a particular edge labeled graph G. Recall the definition
of v,(m) from (2) above.

Definition 17. The following bipartite edge labeled graph
G=(UV,EN), ECUXYV,

will be called the prime mastergraph or mastergraph for short:

(i) U=mx {1} Cm x {0,1},
(i) V =x x {0} Cmx {01},
(i) € ={((p.1),(¢,0)) :p=q orpl(g— 1)},

I

We shall call the vertices in U the upper and those in V the lower
vertices. The edges ((p,l), (p, O)), p € 7 are said to be vertical, all
others are called sloping. We say that e = ((p,1),(g,0)) is the edge
from p to q.
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2\\%
2 3 5 7T ..oo=on

F1GURE 2. The five edges in U connected to the lower
edge numbered “2117 in V.

2 3 5 7 2 3  °5 =7

FI1GURE 1. Vertical and sloping edges

The labels of the sloping edges are all =1 in this example.
The “geometric” terminology is chosen because G has an intuitive
representation in the plane R? preserving the order:

Proposition 18. Let w: m — N be the bijection inverse to the usual
enumeration n +— p, of primes according to their natural ordering
according to their size. Let id be the identity map of the set {0,1}.
There is a faithful representation of the configuration of G into the plane
R? preserving the componentwise order which is induced by the injection

wXxid incl

7 x {0,1}**3¥N x {0,1}=5R x R = R?

and taking U to N x {1} and V to N x {0}.
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11 13

[Rv)
y _Jon]
(W)
-J

.

~l®

[Sv]
W
e

11 13

F1GURE 3. The initial part of the master-graph.

The label of the edge from (2,1) to (13,0) is 2.

Definition 19. Let p and ¢ be any primes. Then

E={e:e=((p,1),(p,0)) € € such that p=p" or p|(p' — 1)},
the set of all edges emanating downwards from the vertex (p,1) € U
will be called the cone peaking at p. Further the set

Fo={e:e=1((¢,1),(g,0)) € & such that ¢'|(¢ — 1)},

the set of edges ending below in the vertex (¢,0) € V, is called the
funnel pointing to q.

Both the cones and the funnels provide a partition of the set of edges.
It is instantly clear that each funnel is finite, and so the funnels, are not
as important as the cones. The structure of a cone is more interesting
than that of a funnel, as the following proposition shows.

Proposition 20. Let p be any prime. Accordingly, in the graph G,
the cone &, is peaking at the upper vertex (p,1), and for each natural
number n, it contains an edge e = ((p, 1), (¢,0)) labeled v,(q¢ — 1) > n.
In particular, £ contains infinitely many edges.

Proof. There is nothing to prove — this is just a translation of Lemma
14 into the language of the mastergraph G. O

5. THE SYLOW DECOMPOSITION OF Z INDEXED BY G

We recall that £ is the set of all edges of the mastergraph G =
(U,V,E,)\). We start the indexing by attaching to each edge e =
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((p,1),(q,0)) € & a profinite group S, being, up to a natural isomor-
phism, a subgroup of Z:

Definition 21. For each edge e € £ from p to q we set

Zy®L(2), ifp=q=2,
(16) Se = 3 Zy, if 2 <p=gq,
Z(p@=D), ifp <q.

We noted in (7) that Z* = [l,exZ, and in Lemmas 4 and 5 a
procyclic p-group occurs precisely as a subgroup of some S, for an
edge e with upper vertex p. Therefore the p-Sylow subgroup of Z* is
represented by the cone £ peaking in p:

(Zx>p = H Se7
ecép
p—=& :m—C
is a bijection from the set of primes to the set C of cones such that

C = U,ex & in the mastergraph.

Taking these matters and Proposition 15 into account, we can sum-
marize:

Theorem 22. (i) The group 7" of units of the universal procyclic
compactification Z of the ring of integers Z is the product

(17) z*=][s.
ec&

extended over the set £ of all edges of the mastergraph, where S, is the
profinite group given in (16) above.

(ii) Its p-Sylow subgroup is the subproduct extended over the cone
peaking in p:

a8) @9, =[[s.={>° Z(2) ® [1sn Z(227Y), ifp=2,
’ ecE ’ L, & Hq>p Z(Pyp(q_l)), otherwise.
(iii) For each p € m fized,
(19) (Z), 2 Z, ®T,,  where T, = tor(Z*),,

and where T}, contains a Zy,-submodule algebraically isomorphic to Z]S,N)
whose closure is isomorphic to [], . Z(p™).
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Let T = tor(Z). For each prime p, define

(200 zp,=[]z@"), zP=]]zP,= II Z(p

neN peE™ (p,n)emxN

Corollary 23. (i) ZIP contains a dense copy of the torsion-free Z-
module M = ZM N

(ii) The closure T of the torsion subgroup of Z* contains a copy of
M.

Proof. (i) The group ZP, contains a dense copy of Z ™ (See Theorem 22
(iii) above). Hence ZP =[] . ZP, contains a dense copy of [] )

pGTr

~ (N)
which contains a copy of ZMN) = (HPETr Zp> and this copy is still

dense in ZP.
(ii) From Theorem 22 (iii) implies that for each prime, 7}, contains a
copy of ZP,. Hence T contains a copy of ZP. 0

6. THE SYLOW DECOMPOSITION OF Z(n)* INDEXED BY G

We record n = [],, p’™ (finite product: almost all v,(n) # 0
only if p[n) and accordingly Z(n) = [[,, Z(p*»™). Hence Z(n)* =
[L. Z(p*»™)*  and it suffices to recall the case that n = p™. This we
assume for the remainder of this section, and we fix a prime p.

Here we have Z(p™) = Zp/p™Zyp. Let u: Zy, — Zp, denote the scalar
endomorphism given by u(z) = p™z. Then

0 — Zp—=Zp — Z(p™) = 0
is exact and p induces a quotient morphism p*: Zg — Z(p™)*. We
recall that the morphism Z, — Z,/pZ, = GF(p) maps C}, of Lemmas
4 and 5 faithfully because p™Z, C pZp, unless p = 2 and m < 2,

in which case p™ = 2 or = 4, in which case we have Z(2)* = {1},
respectively, Z(4)* = {£1}. If p > 2 then we know that

exp: (pZp,+) = (1 + pZy, X) is an isomorphism,
whence by applying u

7,
exp: < P ZP ,—l—) — (u(1+ pZp), x) is an isomorphism.
p" Ly

z T
Since r:an >~ Z(p™ ') in view of Lemma 4 we have

Z(p™) = Z(P" ) e Zp-1).
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Analogously, for p = 2 and m > 2, from Lemma 5 we obtain
(21) Z(2™)* 2 72" © Z(2)
Summarizing, we have

Lemma 24. The group of units of Z(p™) is

(o1, o =2
AKX A Z(Q), ifpm = 47
(22) Z(p™)* = Z(272) @ Z(2), ifp=2,m>2,

Zp" HaeZp-1), ifp>-2

We may use G as index set for describing the p-Sylow decomposition
of A=Z(p™)* as follows:

We index subgroups S, < A by attaching again to each edge e =
((p,1),(q,0)) € & a profinite group S, being, up to a natural isomor-
phism, a subgroup of Z:

Definition 25. For each edge e € £ from p to q we set

({0}, if p" =2 orq>p™",

7(2), ifp"=4andp=q=2,
(23) Se=Z2®ZL(2), fp=q=p=2,

Z(pm™?), if 2<p and ¢ < p,

(Z (p D), ifp<q<p.

With this indexing we can formulate

Theorem 26. For a fixed prime p and a fived natural number m,
(i) the group Z(p™)* of units of the universal cyclic group Z(p™) is

(24) z(pm)* = [ .

ec&

extended over the set £ of all edges of the mastergraph, where S, is the
profinite group given in (23) above.
(i) Its p-Sylow subgroup is the subproduct extended over the cone
peaking in p:
(25)
Z(4) o Z(2) & P Z (224 | ifp=2
m\ X ~ _ P>g>2 ) )
(Z(p™) )p—HSe—{Z( 4

by PG Bysye, Z (p7Y), otherwise.
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7. THE MASTERGRAPH OF A PERIODIC ABELIAN GROUP

Recall that for a locally compact group G an element ¢ is called
compact if it is contained in a compact subgroup. The set of compact
elements is called comp(G). If G is abelian, then comp(G) is a fully
characteristic subgroup. For details see [2], Chapter 7 and [1]. The
identity component of a topological group is written Gj.

Definition 27. A locally compact group G is said to be periodic, if it
satisfies the following conditions:

(i) G = comp(G),

(i) Go = {0}.

In other words, GG is the union of its compact subgroups and is totally
disconnected. In fact, if G is abelian, then G is the directed union of
its compact open subgroups, and if ' and K are two of them, then C'
and K are commensurable, that is both C'/(C N K) and K/(C'NK) are
finite.

If (Gj)jes is a family of topological groups and C; < G; is a compact
open subgroup for each j, then the set of all (g;);e; € T = HjeJ G,
such that {j € J| g; ¢ C;} is finite forms a subgroup L < T of the
product containing C' = [ | jes Cj, and Lis a locally compact topological
group for the topology generated by all C'N U with the open sets U of
T in the Tychonov product topology. This group L is called the local
product of the family (G, C;);es and is written

loc
L=]]@G;.cy.
jeJ
We shall write abelian groups additively in general, unless the context
demands otherwise, e.g. in the case of the group of units of a ring, such
as L.

With this notation it is easy to reproduce Braconnier’s theorem on
the Sylow decomposition of a periodic locally compact abelian group A
into its p-Sylow subgroups A,, p € m:

Theorem 28.  (J. Braconnier) Let A be a periodic locally compact
abelian group and C' any compact open subgroup of A. Then A is
1somorphic to the local product
loc
(26) 114G
P
If A is a periodic locally compact abelian group, then every en-
domorphism « leaves the Sylow subgroup A, invariant. We write
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a, = a|G, : A, = A,. If C is a compact open subgroup, let End(G, C)
denote the subring of the endomorphism ring End(G) of all endomor-
phisms leaving C' invariant.

In view of Theorem 28 we may identify A with its canonical local
product decomposition of the pair (A, C).

Every locally compact abelian p-group A is a Z,-module for a mul-

tiplication (ry, gp) = 7p-gp. If we identify Z and [] . Z, by (1) and a
periodic locally compact abelian group A with HIOC (A,, C,) for any

pET
compact open subgroup C', we see at once that we have a continuous

module multiplication

(27) (r,9) = ((rp)ps (Gp)p) = (rpGp)p =19 1 Z x A— A
In a similar vein we observe
Proposition 29. For a periodic locally compact abelian group A, the
componentwise application k defined by
a— (o), End(4,C) — l_IEmd(Ap7 Cy)
P

is an isomorphism of groups, and a((gy)p) = (p(gp))p-

Proof. After identifying (A, C) and H;OC(AP, C,) according to Theorem
28, it is straightforward to verify that s is an injective morphism of
groups. Moreover, if

(6p)p € [ End(4,,C,),

then the morphism

¢: Hp Ap — Hp Ay defined by ¢((9p)p) = (9p(9p))p
leaves C' =[], C, fixed as a whole and does the same with H;}OC(AP, Cy)
and so k(¢) = (¢p),. Thus & is surjective as well. O

We noted in (27) that every r € Z yields an endomorphism a — r-a
of the periodic locally compact abelian group A, giving us a morphism
of rings (: 7 — End(A). In particular, since scalar multiplication
Z x A — A is continuous, ker(¢) is a closed ideal of Z.

Definition 30. For a locally compact abelian group A we denote the
factor ring 7./ ker(C) by R(A) and call it the ring of scalars of A. There
is an obvious scalar multiplication R(A) x A — A.

The ring morphism ( factors through an isomorphism of rings
(28) R(A)— End(A).
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We note that

(29) R(A) = [[R(A),,

and scalar multiplication operates componentwise on A = [] (Ap, C)).
We shall be mostly interested in the scalar multiplication by units
r € Z. In this context it is clear that (29) induces an isomorphism

(30) R(A)* = [ [(R(A),)".

X

where (R(A),)* is isomorphic to a quotient group of (Z,)*.
One verifies easily the following piece of information:

FExample 31. Let A be a locally compact abelian p-group. Then

Zy/p" Ly = Z(p™), if A has finite exponent p™,
Ly, otherwise.

(81)  R(A) = {

Lemma 6 shows that among the compact abelian groups A the torsion
groups are exactly the ones having finite exponent.

8. SCALAR MULTIPLICATION ON A PERIODIC LocALLY COMPACT
ABELIAN GROUP

The following lemma is straightforward:

Lemma 32. For a continuous endomorphism « of a locally compact
group G the following conditions are equivalent:

(i) a(H) C H for all closed subgroups H of G.

(ii) a((g)) € (g) for allg € G.

(i) a(g) € (g) for all g € G.
Definition 33. An endomorphism « of a locally compact group G is
called scalar if it satisfies the equivalent conditions of Lemma 32.

In [3] it is shown that on a compact abelian p-group G, for any
automorphism « which is scalar in the sense of Definition 33 there is an
r € Z) such that a(g) = r-g for all g € G. The proof through Lemma
2.21 and Proposition 2.22 in [3] works for endomorphisms as well and
thus yields

Lemma 34. Let A be a compact abelian p-group. Then for any scalar
endomorphism « there is an r € Z, such that a(a) = r-a for all a € A.
Accordingly, o is an automorphism iff r € Z; .
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In [1], Lemma 4.6 it is shown for a locally compact abelian p-group
A for any automorphism « for which any restriction to a compact-open
subgroup is scalar, there is an r € Z, such that a(a) = r-a for all a € A.
Again this proof works for endomorphisms as well as for automorphisms.
Therefore we have

Lemma 35. Let A be a locally compact abelian p-group. Then for any
scalar endomorphism o there is an r € Z, such that a(a) = r-a for all
a € A. Accordingly, o is an automorphism iff r € Z,; .

Finally, if A = H;OC(AP,CP) is any periodic locally compact abel-
ian group we observe that every closed subgroup H is of the form
H;OC(HP, C, N H,), and so an endomorphism « of A is scalar iff every
restriction oy, to A, is scalar. If this is the case, then for every p there
is an r, € Z, such that a,(a,) = ry-a, for all a, € A,. So if r = (r,),
inZ = Hp Zy, for the scalar endomorphism o we have an r € 7. such
that a(a) = r-a for a € A. Thus we have the following classification of
scalar endomorphisms, justifying the nomenclature:

Proposition 36. Let A be a periodic locally compact abelian group and
a: A — A an endomorphism of locally compact abelian groups such
that o(H) C H for all closed subgroups of A. Then there is an r € 7
such that a(a) = r-a for all a € A.

Definition 37. The group of scalar automorphisms of a locally compact
group G is denoted by SAut(Q).
If A is abelian and is written additively, then the subgroup
{idA, — idA} Q SAut(A)
1s said to consist of trivial scalar automorphisms. All other scalar
automorphisms are called nontrivial.

Notice that we shall not only call the identity automorphism, but
also the inversion automorphism “—idg” trivial.

For periodic locally compact abelian groups A we have seen in Propo-
sition 36 that all scalar automorphisms are indeed scalar multiplications
in the traditional sense (see [1], Proposition 4.15):

Proposition 38. Let the locally compact abelian group G be periodic.
Then we have the following conclusions:

(i) The natural map ¢: Z* — SAut(G) (such that ((r)(g) = r-g)
is surjective. In particular, SAut(G) is a profinite group and a
homomorphic image of 7Z.*.

(ii) The subsequent two statements are equivalent:

(a) SAut(G) = {idg, - ldG}
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(b) The exponent of G is 2, 3, or 4.
Notably: The exponent of G is 2 if and only if —idg = idg.

Indeed, periodicity and the existence of nontrivial scalar multiplica-
tions are related as follows (see [1], Theorem 4.16):

Theorem 39. For a locally compact abelian group G, we consider the
following statements:

(i) G has nontrivial scalar automorphisms.

(ii) G is periodic.
Then (i) implies (ii), and if G does not have exponent 2, 3, or 4, then
both statements are equivalent.

The Sylow decomposition of SAut(G) is described in the following
theorem (see [1], Theorem 4.17)

Theorem 40 (Mukhin, Theorem 2 in [4]). Let G be a locally compact

abelian group written additively.

(a) SAut(G) is a homomorphic image of Z.*.

(b) If G is not periodic, then SAut(G) = {id, —

(¢) If G is periodic, then SAut(G)= ], SAut(G,), where SAut(G,) may
be identified with the group of units of the ring R(G,) of scalars of
Gp, namely, R(G,)* is isomorphic to

(Z, x Z(p — 1), if p > 2 and the exponent of G, is infinite,
Z(p™ Y x Z(p—1), if p> 2 and the exponent of G, is p™,

Ly X 7(2), if p= 2 and the exponent of G5 is infinite,
Z(2™%) x 7(2), if p =2 and the exponent of Gy is 2™ > 2,

{0}, if p =2 and the exponent of Gy is 2.

(d) An a € Aut(G) is in SAut(G) iff there is a unit z € Z>* such that
(Vg€ G)alg) = z-g = Hp ZpGp Jor z = Hp Zpy 9 = Hp 9p-

9. THE PRIME GRAPH OF A PERIODIC LocALLy COMPACT
ABELIAN GROUP

Now let A be a periodic locally compact abelian group; the Sylow
structure of SAut(A) is now easily discussed: The quotient morphism
(: Z* — SAut(A) of Proposition 38, preserving the Sylow structures,
and the structure of SAut(A) described so far in Theorem 40 allow a
precise description of the Sylow structure of SAut(A).
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We associate with A the bipartite graph G(A) = (U, V,E(A), A) with
U and V as in the mastergraph and with

E(A)={ee E:e=((p,1),(q,0)) such that SAut(A,), # {ida}},
and for fixed p we define

Ep(A) S {e € &(A) - e=((p,1),(q,0)) such that p[(g — 1)},

is the set of all edges in G(A) from p to g such that SAut(4,), is
nontrivial, and for ¢

Fq(A) C{ee&(A):e=((p,1),(g,0)) such that p|(g — 1)},

is the set of all edges in G(A) from p to ¢ such that SAut(A,), is
nontrivial.
Finally, for e € £(A) from p to ¢ the label is

(32) M@={w’ *p=g

vp(g—1), ifplg—1).
Now let A be a periodic locally compact abelian group; the Sylow
structure of SAut(A) is then easily discussed: The quotient morphism

¢: A SAut(A) of Proposition 38, preserving the Sylow structures,
and the structure of SAut(A) described so far in Theorem 40 allow a
precise description of the Sylow structure of SAut(A).

Theorem 41.  (The Sylow Structure of SAut(A)) Let A be a periodic
locally compact abelian group and SAut(A) = [, SAut(A), the p-
primary decomposition of the profinite group SAut(A) = HeGS(A) Se.
Then

(i) The p-primary decomposition of SAut(A,) is (additive notation

assumed)
H SAut(Ag)p, = H Se(A),
e€Fy ecFy
and this group is equal, in case p = 2, to
{0}, if Ay has exponent < 2,
Z(2 ) @ Z(2), if As has finite exponent 27 > 2, ,
Zs ® 7(2), if As has infinite exponent,

and in case p > 2, to

Z(qr_l) D @eefq, sloping Z(pé\(e))a Zf Aq has ﬁnite exponent qT’7
Z, ® ®eefq, loping Z(pé‘(e)), if Ay has infinite exponent.
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(ii) The structure of the p-primary component SAut(A), of SAut(A)

is
H (SAut(4,, ), = H Se(A) =
e€ép e€ép
(Heegw sloping Z(279), if p=2 and Ay has exponent < 2,
Z(2"2) @ Z(2) & ILce, sioping Z7(22€), if p =2 and Ay has fin.exp. 27">2,
Zy ® Z(2) @ [Ioce,, stoping Z(22)), if p=2 and Ay has inf. exponent,
Zp—H @ Heegp, sloping Z(p;\(e)), if 2 < p and A, has exponent p",
(Zp @ []oce,, SlopingZ(pi‘(e)), if 2 < p and A, has infinite index.

10. AN APPLICATION

For easy reference we repeat the following definition from the intro-
duction

Definition 42. If (G, A) is a pair consisting of a topological group G
and a closed normal subgroup A, then we call it a special extension
of A if G is a locally compact group and the equivalent conditions of
Proposition 1 are satisfied.

We now prove the following result as an example of the methods we
are proposing.

Theorem 43. Let (G, A) be a special extension of a periodic locally
compact abelian group. Then for each sloping edge e € E(G, A) from
some p to some q, all of A, consists of commutators. In particular,

A, C G

Proof. By definition the existence of e that there is a p-element g € G,
such that 1 # r = p(g) € (R(4,)*),. Since e is sloping, p < g¢.
By Theorem 40 we know that (R(4,)*), is a cyclic group of order
p)\(e) = pr(q—l).

We claim that 1 — r is a unit in the ring R(A,) of scalars which is
isomorphic to Z, or quotient ring thereof depending as A, has infinite
or finite exponent. By way of contradiction suppose that » — 1 is not
a unit. Since Z) = Z, \ qZg, there is an element u € R(A,) such that
1 —r =gqu. Thenr =1—qu € 1+ ¢R(A,) which, according to the
structure of Z in (4), respectively, of Z(¢™)* in (22), is the ¢-Sylow
subgroup of R(A,)*. But r is a p-clement with p < ¢ and this is a
contradiction.

Now let a € A,. For the purpose of this proof we write G additively.
Then the commutator of g and a is [g,a] = p(g)(a) —a =ra—a =
(r —1)-a. Since 1 — r is invertible, we set b = (r — 1)"'.a € A, and
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obtain

a=p(g)(b) —b=gbg~" —b=[g,0].

This shows that every element of A, is a commutator and thus proves
the theorem. O
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