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The codimension

Antonio Lerar io

In this snapshot we discuss the notion of codimension,
which is, in a sense, “dual” to the notion of dimension
and is useful when studying the relative position of
one object insider another one.

1 The not ion of codimension

1.1 A simple observat ion

We start this snapshot by observing a crucial geometrical fact, which is at the
origin of all our discussion. Fix a point x ∈ R. Then pick two points y0, y1 ∈ R
with y0 on the left of x and y1 on the right: there is no way we can join y0 with
y1 with a smooth path in R without going through x. This fact would be no
longer true if we had more space to move; for example if we regard the whole
picture as placed in the plane R2. In this case, we could simply “go around”
the obstacle x (see Figure 1).
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Figure 1: Joining two points y0, y1 on the real line, that are separated by
another point x we wish to avoid, requires more “dimensions”.
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1.2 The di f ference between the dimensions

At the origin of this observation is a dimensional argument. A point is zero-
dimensional, a line is one-dimensional and a plane is two-dimensional. 1 If X is
a geometric object (for example a point or a circle) sitting inside another object
Y (for example the line of real numbers, the plane R2 or 3-dimensional space),
we call the difference between the dimension of Y and the dimension of X the
codimension of X in Y , which formally reads

codimY (X) = dim(Y )− dim(X).

We note that the codimension is a relative property: we always have to
specify the ambient space in which we are working! For example, with this
definition we get:

codimR(point) = 1 and codimR2(point) = 2.

When an obstacle X has codimension at least two in the ambient space Y , we
can reach any two points in Y \X without hitting X. Here by Y \X we mean
the set of points in Y that do not belong also to X.
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Figure 2: Left: A line (red) X has codimension two in the three-dimensional
space R3. Two points y0, y1 ∈ R3\X can always be joined (blue
path passing under the straight one) avoiding X. Right: A line (red)
X has codimension one in R2 and it might be impossible to join two
points in R2\X (broken blue path) without hitting X.

On the other hand, if codimY (X) = 1, this might be false (see Figure 2).
Moral of the story, with at least codimension 2 we can “go around obstacles”.

1 This is quite intuitive. For a more in-depth discussion about the concept of dimension
see [2]
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This is a consequence of a general result in the field of differential topology,
which goes under the name of “Transversality theorem” (see the corollary on
page 72 in [1]).

1.3 Links and knots

Let us look at the picture on the left of Figure 2. Because the infinite red line X
(our “obstacle”) has codimension two in R3 (our Y ), we can join any two points
in R3\X without hitting X with the blue path. However, there are several
different non-equivalent ways of joining these two points. For example, if we
look at the picture on the left of Figure 3, we see that we cannot continuously 2

deform the blue path, joining y0 and y1, to the black path, which is wrapped
around the line X without touching X. This has to do with the fact that
the obstacle has codimension two. Similarly, consider a circle in R3 which is
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Figure 3: Left: two “non equivalent” ways (blue and black) of joining y0
and y1 without hitting X. It is impossible to continuously deform
one of these two paths to match the other one without touching X.
Right: if the (red) obstacle X was instead a point in R3, hence with
codimension 3, this deformation would be possible.

“knotted” on the left picture in Figure 4. This is an example of a (nontrivial)
“knot”, called “trefoil”. Is it possible to continuously deform it into a simple
circle, like the one on the right of Figure 4? In general the answer is no.
This occurs because the knot itself is a codimension two obstacle for such a

2 By “continuously” here we mean that the line that joins y0 and y1 is held fixed at the
two points and can be shrunk, lengthened and deformed like a very elastic string without
detaching from the endpoints or cutting it.
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deformation. However, it would be possible in R4, where the knot would have
codimension three...

Figure 4: Left: The trefoil knot. Right: The trivial knot, also known as
“unknot”. We cannot deform the trefoil to the unknot using a process
free from self-intersections.

1.4 The not ion of general posi t ion

There is an idea closely related to the idea of codimension which turns out to be
very powerful in geometrical arguments: the notion of general position (see [1]).
We will illustrate this idea with a simple example – but we ask the reader all
their attention!

Consider two bees flying in a dark room, ignoring each other. Their tra-
jectories describe two curves in three-dimensional space. A very fundamental
question that we can ask at this point is: what is the probability that these
curves intersect? In other words, what is the probability that there is a point
in space through which both bees pass during their flight (maybe at different
times)?

Reasonably, this probability is zero, in the sense that if we do not impose
special conditions on the trajectories (for example, if the bees were constrained
to move on the same plane) then they will not intersect.

Similarly, we can ask what is the probability that the bees will hit a wall? 3

The reader might see that this probability is not zero. The intuition behind
these arguments is based on the notion of codimension: the wall represents a
codimension-one obstacle, which in general cannot be avoided. However, the
trajectory of the other bee represents instead a codimension-two obstacle. This
naive “probabilistic” idea is called in the mathematical language general position.
A crude, but intuitive, definition of general position is that the trajectories are
not “specially placed”. Therefore, if the two trajectories are in general position,
they will not intersect (see Figure 5).

Here are some properties we can derive based on a codimension reasoning:
* Two lines in general position in space do not intersect;

3 Again, assuming that the bees fly ignoring the surrounding environment.
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* Two curves in general position in the plane intersect only at some isolated
points (the same is true for a curve and a surface in general position in three-
dimensional space);
* A curve and a two-dimensional surface (for example a sheet of paper) in
general position in four-dimensional space do not intersect.

Essentially: pick two objects “in general position” in n-dimensional space.
If the sum of their codimensions is smaller than or equal to n, then it is likely
that they intersect! If this sum is larger than n and they are in general position,
they will not intersect.

An important consideration about general positions. In the case of
two ants moving on the plane, say a table, the probability that their trajectories
intersect is not zero. At this point, however, we make an important subtle remark.
Both for the bees and for the ants the probability that they pass at the same point
at the same time is zero! This is because the time variable can be included in the
problem as an additional dimension and therefore makes all the codimensions
increase by one... Two curves in general position in three-dimensional space
(the case of the ants in the plane with time) and in four-dimensional space (bees
in space with time) do not intersect.
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Figure 5: Left: Two curves in general position in R3 do not intersect. Right:
Two curves in general position in R2 might intersect!

1.5 The codimension as “number of equat ions”

A useful way to think of the codimension of a geometric object is the number
of equations needed to define it in the ambient space where it is placed. 4 For

4 This intuitive discussion can be made rigorous introducing the notion of regular equation,
see [1].
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example: a line in the plane is defined by one equation, the well-known equation
y = a x + b, where x, y are the coordinates on the plane and a, b are steepness
and y-axis intersect of the line, respectively. Hence, it has codimension one.
Similarly, a plane in three-space is defined by one equation. We need two
equations to define a line in three-dimensional space: one first realizes that the
line is the intersection of two planes and then takes the two equations defining
these planes. One single equation in three-space (for example, the equation
x2 + y2 + z2 = 1 for a sphere) defines a surface, that is, a two-dimensional
object with codimension one. An object defined by a single equation is called
in general hyper-surface. The ambient space where a hyper-surface sits in can
be possibly huge, but its codimension (the “relative dimension”) is always one.

The reader must be aware, however, that for such considerations one equation
over the complex numbers counts as two – one for the real and one for the
imaginary part. Let’s see an example. A complex line can be defined analogously
to a real one: y = a x + b where a, b and x are all complex numbers. Now
it is possible to show that what one gets when considering a complex line is
indeed a two-dimensional surface. Think about the plane of complex numbers:
it consists of all numbers obtained by multiplying “1” by an element of C,
hence it is a complex line. A complex line has codimension two in C2 (it is
a two-dimensional object in a four dimensional one), codimension four in C3

(because C3 can be thought as R6), and so on. . .

1.6 A related quest ion

Here is a question to challenge the reader. Consider the two real polynomials
p0(x) = x2 − 1 and p1(x) = x2 + 1. The zeores of p0 are 1,−1 and the zeroes of
p1 are i,−i, that is, p0(±1) = p1(±i) = 0. Is it possible to continuously change
the coefficients of p0 into the coefficients of p1, keeping them real and in such a
way that, during this process, the zeroes remain distinct?

This question taps into the the concept of homotopy of polynomials. We
say that, in a topological space, two functions are connected by a homotopy
if there exists a continuous deformation process that transforms one into the
other. A homotopy is, therefore, a continuous curve in the space of functions.
The concept of homotopy can be better understood thinking about two curves.
We say that two curves are homotopic if they can be continuously deformed one
into another. We have already discussed such transformations above, regarding
knots and trajectories of insects. Here we want to make this concept more
abstract and discuss how it can help us, in this case, to answer questions such
as the one about polynomials above.

We now look for a “family of polynomials” pt(x) of the general quadratic
form pt(x) = a(t)x2 + b(t)x + c(t), parametrized by the real parameter t ∈ [0, 1]
and with coefficients a(t), b(t), c(t) ∈ R, which has the following properties:
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• For t = 0 we have a(0) = 1, b(0) = 0 and c(0) = −1. That is, at t = 0 the
polynomial is p0(x) = x2 − 1, the initial polynomial.

• For t = 1 we have a(1) = 1, b(1) = 0 and c(1) = 1. That is, at t = 1 the
polynomial becomes p1(x) = x2 + 1, the final polynomial.

• The coefficients a(t), b(t) and c(t) are continuous functions of t.
• Most importantly: the zeroes of pt are distinct for all t ∈ [0, 1]. This

means that if x1(t) and x2(t) are the two zeroes of pt at any time t (namely,
pt(x1(t)) = pt(x2(t)) = 0), then x1(t) 6= x2(t).

Understanding the meaning of the question should be easier, now. The two
zeroes xt and x′

t are required to be distinct fo all t, and it is not obvious at all
that such a family of polynomials pt can exist.

Another interesting and related question is: what happens if, instead, we
drop the condition that the coefficients a(t), b(t) and c(t) must be real and we
allow that, during the deformation, the coefficients can become complex? In
the next section we will see how these questions are related to the notion of
codimension. But before proceeding, try to guess the answer!

2 The codimension of mult ip le zeroes

2.1 Polynomials of degree two

Given the polynomial p(x) = a x2 + b x + c, its discriminant is the number
disc(p) = b2 − 4ac. From high-school, we know that the zeroes x1, x2 of p can
be explicitly written in terms of the coefficients of p:

x1,2 = −b±
√

b2 − 4ac

2a
=
−b±

√
disc(p)

2a
,

and x1 6= x2 (the zeroes are distinct) if and only if disc(p) 6= 0.
Consider now the space of all degree-two real polynomials. This space can

be naturally identified with the three-dimensional space R3 of coefficients:

{real polynomials p(x) = ax2 + bx + c} ' {(a, b, c) | a, b, c ∈ R} = R3.

We will use this identification for the remainder of this discussion: we think
of a polynomial of degree two as a point in R3, whose coordinates are the
polynomial’s coefficients. Now, the discriminant disc(p) can be seen as a
function on the space R3 of all real, degree-two polynomials. The set where
this function takes the value zero is the hyper-surface ∆R of polynomials with
two equal zeroes:

∆R = {(a, b, c) ∈ R3 | b2 − 4ac = 0}.
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This set is called the discriminant variety and is a two-dimensional infinite
cone inside R3 (it is defined by a single equation, so its codimension is one, see
Figure 6). Every polynomial that is not in ∆R (and therefore is in R3\∆R) has
distinct zeroes; starting from a point that is not on the cone, as we approach
∆R the zeroes become closer and they coincide when we touch it.
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t

bc

Figure 6: Left: the discriminant variety ∆R ⊂ R3 and a path t 7→ pt joining
p0(x) = x2 − 1 with p1(x) = x2 + 1. Right: the function t 7→ disc(pt)
must equal zero at some point t ∈ (0, 1), since it is continuous.

Let us now go back to the question of Section 1.6, and start with a pictorial
argument. The discriminant variety is an infinite cone. Therefore, if we pick a
point p0 outside the cone and a point p1 inside it, we cannot go around the cone
and we must cross it to connect p0 to p1 with a continuous curve (see Figure 6).
Let us now look at a more mathematical description of this problem. Let the
point p0 correspond to the polynomial p0(x), while the point p1 corresponds to
the polynomial p1(x). If we try to join p0(x) = x2 − 1 to p1(x) = x2 + 1 with a
continuous path pt that represents the polynomials pt(x) = a(t) x2 +b(t) x+c(t),
with t ∈ [0, 1], we must intersect the discriminant variety. The reason for this is
the following: the continuous function t 7→ disc(pt) takes value 4 for t = 0 and
−4 for t = 1. Consequently, it must take the value zero for some t ∈ (0, 1). This
is a consequence of the intermediate value theorem [3]. Therefore, we conclude
that the answer to the first question of Section 1.6 is “no”.

Let us move now to the same question over the complex numbers. The
following family of complex polynomials joins p0 with p1 while keeping distinct
roots (or zeroes):

pt(x) = x2 − eiπt = (x + e
iπt

2 )(x− e
iπt

2 ).
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Observe that, for this family of polynomials, we have disc(pt) = 4eiπt 6= 0 and
that the coefficients of the polynomial pt are non-real for t 6= 0, 1. Intuitively pt
“rotates” around the complex discriminant variety:

∆C = {(a, b, c) ∈ C3 | b2 − 4ac = 0}.

(Here we are identifying the space of all complex degree-two polynomials with
C3 via their coefficients list.)

So, the question of Section 1.6 over the complex numbers has an affirmative
answer. In fact, any two polynomials with distinct roots can be joined by a
path in the space of complex polynomials keeping distinct roots. To see this, let
us interpret the complex discriminant variety ∆C as an obstacle that we want
to avoid. Remember what we said above about the number of equations and
the codimension? The complex discriminant variety ∆C is defined by a single
complex equation (equivalent to two real equations), hence it has codimension
two in C3 and consequently we can always avoid it by going around it (see
Figure 7)!

p1 p0

R3

∆

C3

b b

Figure 7: A simplified picture of the problem of avoiding the discriminant. In
the space R3 the discriminant variety ∆R has codimension one, and it
represents an obstacle (some sort of “wall”) that might be impossible
to avoid. Wen we move to the complex world the codimension of ∆C
is two and we can simply turn around it.

2.2 The general picture

We can consider the following more general problem: given two real polynomials
p0 and p1 of degree d with all distinct zeroes, is it possible to join them by a
continuous path in the space of real polynomials keeping the zeroes distinct?
Again the discriminant variety, that is, the hyper-surface of polynomials with
multiple zeroes, acts as a wall separating the space of all real polynomials into
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many chambers. The answer to the previous question is “no” if the polynomials
p0 and p1 lie in two different chambers and “yes” if the lie in the same chamber.

In the complex world the answer is always “yes”, because the complex
discriminant has codimension two in the space of complex polynomials! Here we
see the power of the notion of codimension: the space of all complex polynomials
of degree d becomes very big when d increases (it has dimension 2d + 2), and
the same is true for the discriminant variety (which has dimension 2d), but the
only information we need to know is the difference between their dimensions.
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