
  
 

 
 
Oberwolfach 
Preprints 

Mathematisches Forschungsinstitut Oberwolfach gGmbH 
Oberwolfach Preprints (OWP)   ISSN 1864-7596 

OWP 2018 - 11 
HERY RANDRIAMARO  
 
A Deformed Quon Algebra  
 



Oberwolfach Preprints (OWP) 
 
Starting in 2007, the MFO publishes a preprint series which mainly contains research results 
related to a longer stay in Oberwolfach. In particular, this concerns the Research in Pairs-
Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an 
Oberwolfach Lecture, for example.  
 
A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as 
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard 
copies (DIN A4, black and white copy) by surface mail.  
 
Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its 
website www.mfo.de as a documentation of the research work done at the MFO, which you are 
accepting by sending us your file.  
 
In case of interest, please send a pdf file of your preprint by email to                  or                   , 
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at 
the MFO.  
 
There are no requirements for the format of the preprint, except that the introduction should 
contain a short appreciation and that the paper size (respectively format) should be DIN A4, 
"letter" or "article".  
 
On the front page of the hard copies, which contains the logo of the MFO, title and authors, we 
shall add a running number (20XX - XX).  
 
We cordially invite the researchers within the RiP or OWLF programme to make use of this offer 
and would like to thank you in advance for your cooperation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Imprint:  
 
Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)  
Schwarzwaldstrasse 9-11  
77709 Oberwolfach-Walke  
Germany  
 
Tel  +49 7834 979 50  
Fax  +49 7834 979 55  
Email   
URL  www.mfo.de 
 
The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.  
Copyright of the content is held by the authors.  
 
DOI 10.14760/OWP-2018-11 

rip@mfo.de owlf@mfo.de 

admin@mfo.de 



A Deformed Quon Algebra

Hery Randriamaro ∗

June 20, 2018

Abstract

The quon algebra is an approach to particle statistics in order to provide a theory in
which the Pauli exclusion principle and Bose statistics are violated by a small amount.
The quons are particles whose annihilation and creation operators obey the quon algebra
which interpolates between fermions and bosons. In this paper we generalize these models
by introducing a deformation of the quon algebra generated by a collection of operators
ai,k, (i, k) ∈ N∗ × [m], on an infinite dimensional vector space satisfying the deformed

q-mutator relations aj,la
†
i,k = qa†i,kaj,l+qβ−k,lδi,j . We prove the realizability of our model

by showing that, for suitable values of q, the vector space generated by the particle
states obtained by applying combinations of ai,k’s and a†i,k’s to a vacuum state |0〉 is a
Hilbert space. The proof particularly needs the investigation of the new statistic cinv

and representations of the colored permutation group.

Keywords: Quon Algebra, Infinite Statistics, Hilbert Space, Colored Permutation Group

MSC Number: 05E15, 81R10, 15A15

1 Introduction

Let R(q) be the fraction field of the real polynomials with variable q. By a deformed quon
algebra A, we mean the free algebra R(q)

[
ai,k | (i, k) ∈ N∗×[m]

]
subject to the anti-involution

† exchanging ai,k with a†i,k, and to the commutation relation

aj,la
†
i,k = qa†i,kaj,l + qβ−k,lδi,j ,

where δi,j is the Kronecker delta and

β−k,l =

{
0 if l − k ≡ m mod m
1 otherwise

.

This algebra is a generalization of the quon algebra introduced by Greenberg [2], subject

to the commutation relation aja
†
i = qa†iaj + δi,j obeyed by the annihilation and creation

∗Mathematisches Forschungsinstitut Oberwolfach
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operators of the quon particles, and generating a model of infinite statistics. Moreover, the
quon algebra is a generalization of the classical Bose and Fermi algebras corresponding to the
restrictions q = 1 and q = −1 respectively, as well as of the intermediate case q = 0 suggested
by Hegstrom and investigated by Greenberg [1].

In a Fock-like representation, the generators of A are the linear operators ai,k, a
†
i,k : V → V

on an infinite dimensional real vector space V satisfying the commutation relations

aj,la
†
i,k − qa

†
i,kaj,l = qβ−k,lδi,j ,

and the relations
ai,k|0〉 = 0,

where a†i,k is the adjoint of ai,k, and |0〉 is a nonzero distinguished vector of V. The ai,k’s are

the annihilation operators and the a†i,k’s the creation operators.
Let H be the vector subspace of V generated by the particle states obtained by applying
combinations of ai,k’s and a†i,k’s to |0〉, or

H :=
{
a|0〉 | a ∈ A

}
.

The aim of this article is to prove the realizability of this model through the following theorem.

Theorem 1.1. H is a Hilbert space for the bilinear form (., .) : H×H→ R(q) defined by(
a|0〉, b|0〉

)
:= 〈0|a† b|0〉 with 〈0|0〉 = 1,

and for

−1 < q < 1 if m = 1 and
1

1−m
< q < 1 if m > 1.

Theorem 1.1 is a generalization of the realizability of the quon algebra model in infinite
statistics proved by Zagier [3, Theorem 1].

To prove Theorem 1.1, we begin by showing in Section 3 that

B :=
{
a†i1,k1 . . . a

†
in,kn
|0〉 | (iu, ku) ∈ N∗ × [m], n ∈ N

}
is a basis of H, so that we can assume that

H =
{ n∑
i=1

λibi | n ∈ N∗, λi ∈ R(q), bi ∈ B
}
.

Denote by Um the group of all mth roots of unity, and Sn the permutation group on [n]. We
represent an element π of the colored permutation group of m colors Um oSn by

π =

(
1 2 . . . n(

σ(1), k1
) (

σ(2), k2
)

. . .
(
σ(n), kn

) ) ,
where k1, . . . , kn ∈ [m], and σ is a permutation of [n]. But we also adopt the notation
π = (σ, α) meaning that σ ∈ Sn and α : [n]→ [m] such that

∀i ∈ [n], π(i) =
(
σ(i), α(i)

)
.
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More generally, let I be a multiset of n elements in N∗, and SI its permutation set. An
element θ of the colored permutation set Um o SI is defined by θ := (ϕ, ε) meaning that
ϕ ∈ SI and ε : [n]→ [m] such that

∀i ∈ [n], θ(i) =
(
ϕ(i), ε(i)

)
.

Denote the infinite matrix associated to the bilinear form in Theorem 1.1 by

M :=
(
(f, g)

)
f,g∈B.

Let

[
N∗
n

]
be the set of multisets of n elements in N∗. We also prove in Section 3 that

M =
⊕
n∈N

⊕
I∈

N∗
n


MI with MI =

(
〈0| aϑ(n) . . . aϑ(1) a

†
θ(1) . . . a

†
θ(n) |0〉

)
ϑ,θ∈UmoSI

.

For m = 3 for example, we have

M[2] =



1 q q q q2 q2 q q2 q2 q q2 q2 q2 q3 q3 q2 q3 q3

q 1 q q2 q q2 q2 q q2 q2 q q2 q3 q2 q3 q3 q2 q3

q q 1 q2 q2 q q2 q2 q q2 q2 q q3 q3 q2 q3 q3 q2

q q2 q2 1 q q q q2 q2 q2 q3 q3 q q2 q2 q2 q3 q3

q2 q q2 q 1 q q2 q q2 q3 q2 q3 q2 q q2 q3 q2 q3

q2 q2 q q q 1 q2 q2 q q3 q3 q2 q2 q2 q q3 q3 q2

q q2 q2 q q2 q2 1 q q q2 q3 q3 q2 q3 q3 q q2 q2

q2 q q2 q2 q q2 q 1 q q3 q2 q3 q3 q2 q3 q2 q q2

q2 q2 q q2 q2 q q q 1 q3 q3 q2 q3 q3 q2 q2 q2 q
q q2 q2 q2 q3 q3 q2 q3 q3 1 q q q q2 q2 q q2 q2

q2 q q2 q3 q2 q3 q3 q2 q3 q 1 q q2 q q2 q2 q q2

q2 q2 q q3 q3 q2 q3 q3 q2 q q 1 q2 q2 q q2 q2 q
q2 q3 q3 q q2 q2 q2 q3 q3 q q2 q2 1 q q q q2 q2

q3 q2 q3 q2 q q2 q3 q2 q3 q2 q q2 q 1 q q2 q q2

q3 q3 q2 q2 q2 q q3 q3 q2 q2 q2 q q q 1 q2 q2 q
q2 q3 q3 q2 q3 q3 q q2 q2 q q2 q2 q q2 q2 1 q q
q3 q2 q3 q3 q2 q3 q2 q q2 q2 q q2 q2 q q2 q 1 q
q3 q3 q2 q3 q3 q2 q2 q2 q q2 q2 q q2 q2 q q q 1



.

We need to introduce the statistic cinv : Um oSn → N defined by

cinv (σ, α) := #{(i, j) ∈ [n]2 | i < j, σ(i) > σ(j)} + #{i ∈ [n] | α(i) 6= m}.

Still in Section 3, we prove that MI is the representation of
∑

π∈UmoSn q
cinvππ on the Um oSn–

module R[Um oSI ]. Hence if the regular representation of
∑

π∈UmoSn q
cinvππ, which is M[n],

is positive definite, then MI is positive definite.

We prove in Section 4 that

detM[n] =
((

1 + (m− 1)q
)
(1− q)m−1

n−1∏
i=1

(1− qi2+i)
(n−i)
(i2+i)

)mnn!
.
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We particularly can infer that M[n] is nonsingular for

−1 < q < 1 if m = 1 and
1

1−m
< q < 1 if m > 1.

Since M[n] is the identity matrix of order mnn! if q = 0, we deduce by continuity that M[n]

is positive definite for the values of q mentioned above. For these suitable values of q, M is
then a symmetric positive definite matrix or, in other terms, the bilinear form of Theorem 1.1
is an inner product on H.

But before investigating the deformed quon algebra, it is necessary to recall some notions in
representation theory and do some computations in Section 2.

We would like to thank Patrick Rabarison for the discussions on quantum statistics.

2 Representation Theory

We recall the useful notions on representation theory of group and do some calculations for
the cyclic groups.

Take a group G and a finite-dimensional vector space V over a field K. Let g, h ∈ G, a, b ∈ K,
and u, v ∈ V . Then V is a G-module if there is a multiplication · of elements of V by elements
of G such that

• u · g ∈ V .

• (au+ bv) · g = a(u · g) + b(v · g),

• u · (gh) = (u · g) · h,

• u · 1 = u where 1 is the neutral element of G.

Take an element x in the group algebra K[G]. Suppose that {v1, . . . , vn} is a basis of V , and
that vj · x =

∑
i∈[n] µi,jvi. Then the representation of x on the G-module V is the matrix

RV (x) := (µi,j)i,j∈[n].

In particular if x =
∑

g∈G λgg ∈ K[G] with λg ∈ R, then the regular representation of x is

RK[G](x) :=
(
λh−1g

)
g,h∈G.

Lemma 2.1. Let G be a finite group, H ≤ G, and x ∈ K[H]. Then,

detRK[G](x) =
(

detRK[H](x)
)|G:H|

.

Proof. Let H = {h1, . . . , hr}, and {g1, . . . , gk} be a left coset representative set of H. On the
ordered basis (g1h1, . . . , g1hr, g2h1, . . . , g2hr, . . . , gkh1, . . . , gkhr) of K[G], we have

RK[G](x) = RK[H](x)⊗ I|G:H|,

where I|G:H| is the unit matrix of size |G : H|.

Now consider the cyclic group Zm of order m generated by γ, and take a variable z. We need
the following equalities on the group algebra R(z)[Zm].
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Lemma 2.2. We have

detRR(z)[Zm]

(
1 + z

∑
k∈[m−1]

γk
)

=
(
1 + (m− 1)z

)
(1− z)m−1.

Proof. The regular representation of 1 + z
∑

k∈[m−1] γ
k is the m ×m circulant matrix with

associated polynomial f(x) = 1 + z
∑

j∈[m−1] x
j . The determinant of this circulant matrix is∏

i∈[m] f(ζi). If i ∈ [m− 1], then

∑
j∈[m−1]

ζij =
1− ζi

1− ζi
∑

j∈[m−1]

ζij =
ζi − 1

1− ζi
= −1.

Thus f(1) = 1 + (m− 1)z, and f(ζi) = 1− z for i ∈ [m− 1].

Lemma 2.3. We have(
1 + z

∑
k∈[m−1]

γk
)−1

=
1(

1 + (m− 1)z
)
(1− z)

(
1 + (m− 2)z − z

∑
k∈[m−1]

γk
)
.

Proof. The form of 1 + z
∑

k∈[m−1] γ
k gives us the intuition that its inverse has the form

x+ y
∑

k∈[m−1] γ
k. The calculation(

1 + z
∑

k∈[m−1]

γk
)
·
(
x+ y

∑
k∈[m−1]

γk
)

= x+ (m− 1)zy +
(
zx+

(
1 + (m− 2)z

)
y
) ∑
k∈[m−1]

γk

confirms the intuition since it leads us to solve the equation system{
x+ (m− 1)zy = 1

zx+
(
1 + (m− 2)z

)
y = 0

to get the inverse of 1 + z
∑

k∈[m−1] γ
k. We obtain

x =
1 + (m− 2)z(

1 + (m− 1)z
)
(1− z)

and y = − z(
1 + (m− 1)z

)
(1− z)

.

Lemma 2.4. We have

(1− zγ)−1 =
1

1− zm
m−1∑
i=0

ziγi.

Proof. It comes from (1− zγ)(1 + zγ + · · ·+ zm−1γm−1) = 1− zm.
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3 The Bilinear Form (., .)

We first show that H is linearly generated by the particle states obtained by applying com-
binations of a†i,k’s to |0〉. Then we prove that M =

⊕
n∈N

⊕
I∈

N∗
n

MI , where MI is a

representation of
∑

π∈UmoSn q
cinvππ.

Lemma 3.1. The vector space generated by our particle states is

H =
{ n∑
i=1

λibi | n ∈ N∗, λi ∈ R(q), bi ∈ B
}
.

Proof. Let (j, l) ∈ N∗ × [m]. We have,

aj,l a
†
i1,k1

. . . a†ir,kr = qra†i1,k1 . . . a
†
ir,kr

aj,l

+
∑
u∈[r]
iu=j

qu−1qβ−ku,l a†i1,k1 . . . â
†
iu,ku

. . . a†ir,kr ,

where the hat over the uth term of the product indicates that this term is omitted. So

aj,l a
†
i1,k1

. . . a†ir,kr |0〉 =
∑
u∈[r]
iu=j

qu−1qβ−ku,l a†i1,k1 . . . â
†
iu,ku

. . . a†ir,kr |0〉.

Thus one can recursively remove every annihilation operator aj,l of an element a|0〉 of H.

Lemma 3.2. Let
(
(j1, l1), . . . , (js, ls)

)
∈ (N∗× [m])s and

(
(i1, k1), . . . , (ir, kr)

)
∈ (N∗× [m])r.

If, as multisets, {j1, . . . , js} 6= {i1, . . . , is}, then 〈0| ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr |0〉 = 0.

Proof. Suppose that v is the smallest integer in [s] such that jv /∈ {i1, . . . , ir} \ {j1, . . . , jv−1}.
Then

ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr = P ajv ,lv . . . aj1,l1 +Qajv ,lv with P,Q ∈ A.

We deduce that ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr |0〉 = P ajv ,lv . . . aj1,l1 |0〉+Qajv ,lv |0〉 = 0.
In the same way, suppose that u is the smallest integer in [r] such that iu does not belong to
the multiset {j1, . . . , js} \ {i1, . . . , iu−1}. Then

ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr = a†i1,k1 . . . a
†
iu,ku

P ′ + a†iu,ku Q
′ with P ′, Q′ ∈ A.

And 〈0| ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr = 〈0| a†i1,k1 . . . a
†
iu,ku

P ′ + 〈0| a†iu,ku Q
′ = 0.

We just then need to investigate the product 〈0| ajn,ln . . . aj1,l1 a
†
i1,k1

. . . a†in,kn |0〉, where (j1, . . . , jn)
is a permutation of (i1, . . . , in). Consider a multiset I of n elements in N∗.

Lemma 3.3. Let θ, ϑ ∈ Um oSI . Then,

〈0| aϑ(n) . . . aϑ(1) a
†
θ(1) . . . a

†
θ(n) |0〉 =

∑
π∈UmoSn
ϑ=θπ

qcinvπ.
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Proof. Let (j1, . . . , jn) be a permutation of (i1, . . . , in). Then,

ajn,ln . . . aj1,l1 a
†
i1,k1

. . . a†in,kn |0〉 =
∑

(u1,...,un)∈[n]n
iu1=j1, ... , iun=jn

∏
s∈[n]

qus−1−#
{
r∈[s−1] | ur<us

}
qβ−kus , ls |0〉

=
∑

(u1,...,un)∈[n]n
iu1=j1, ... , iun=jn

∏
s∈[n]

q#
{
r∈[s−1] | ur>us

}
qβ−kus , ls |0〉

=
∑

(u1,...,un)∈[n]n
iu1=j1, ... , iun=jn

q#
{
(r,s)∈[n]2 | r<s, ur>us

}
+
∑
s∈[n] β−kus , ls |0〉

=
∑
σ∈Sn

∀s∈[n], js=iσ(s)

q
#
{
(r,s)∈[n]2 | r<s, σ(r)>σ(s)

}
+
∑
s∈[n] β−kσ(s), ls |0〉

=
∑

π=(σ,α)∈UmoSn
∀s∈[n], js=iσ(s), ls ≡ kσ(s)+α(s) mod m

qcinvπ |0〉.

We obtain the result by remplacing ajn,ln . . . aj1,l1 and a†i1,k1 . . . a
†
in,kn

by aϑ(n) . . . aϑ(1) and

a†θ(1) . . . a
†
θ(n) respectively.

For example, take m = 4, ϑ =

(
1 2 3

(2, 4) (5, 1) (2, 4)

)
and θ =

(
1 2 3

(5, 2) (2, 3) (2, 1)

)
.

Then

〈0| a2,4 a5,1 a2,4 a†5,2 a
†
2,3 a

†
2,1 |0〉 = q

cinv

 1 2 3
(2, 1) (1, 3) (3, 3)


+ q

cinv

 1 2 3
(3, 3) (1, 3) (2, 1)


= q4 + q5

Define the multiplication of an element θ = (ϕ, ε) of Um o SI by an element π = (σ, α) of
Um oSn by

θ · π = (ψ, η) ∈ Um oSI with ∀i ∈ [n], ψ(i) = ϕσ(i), η(i) ≡ εσ(i) + α(i) mod m.

Consider the vector space of linear combinations of colored permutations

R(q)[Um oSI ] :=
{ ∑
θ∈UmoSI

zθθ | zθ ∈ R(q)
}
.

One can easily check that, relatively to the multiplication ·, R(q)[Um oSI ] is a Um oSn–module.

Proposition 3.4. We have

MI = RR(q)[UmoSI ]

( ∑
π∈UmoSn

qcinvπ
)
.
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Proof. Using Lemma 3.3, we obtain for θ ∈ Um oSI

θ ·
∑

π∈UmoSn

qcinvπ =
∑

ϑ∈UmoSI

( ∑
π∈UmoSn
ϑ=θπ

qcinvπ
)
ϑ

=
∑

ϑ∈UmoSI

〈0| aϑ(n) . . . aϑ(1) a
†
θ(1) . . . a

†
θ(n) |0〉ϑ.

4 The Determinant of M[n]

We compute the determinant and the inverse of the regular representation of
∑

π∈UmoSn q
cinvππ.

Consider the subgroup Cn of Um oSn defined by

Cn :=
{
π = (σ, α) ∈ Um oSn | ∀i ∈ [n], σ(i) = i

}
.

For i ∈ [n], let ξi be the colored permutation

(
1 2 . . . i . . . n

(1,m) (2,m) . . . (i, 1) . . . (n,m)

)
in

Cn. We need the following lemma.

Lemma 4.1. We have

detRR(q)[UmoSn]

( ∑
ξ∈Cn

qcinv ξξ
)

=
((

1 + (m− 1)q
)(

1− q
)m−1)mnn!

.

Proof. Remark that ∑
ξ∈Cn

qcinv ξξ =
∏
i∈[n]

(
1 + q

∑
k∈[m−1]

ξki
)
.

Then, using Lemma 2.1 and Lemma 2.2, we obtain

detRR(q)[UmoSn]
(
1 + q

∑
k∈[m]

ξki
)

=
((

1 + (m− 1)q
)(

1− q
)m−1)mn−1n!

.

Now we can compute the determinant of
∑

π∈UmoSn q
cinvππ.

Theorem 4.2. We have

detRR(q)[UmoSn]

( ∑
π∈UmoSn

qcinvππ
)

=
((

1 + (m− 1)q
)
(1− q)m−1

n−1∏
i=1

(1− qi2+i)
(n−i)
(i2+i)

)mnn!
.

Proof. Every π ∈ Um oSn has a decomposition π = σξ such that

σ ∈ Sn, ξ ∈ Cn, and cinvπ = cinvσ + cinv ξ.

Then, ∑
π∈UmoSn

qcinvππ =
( ∑
σ∈Sn

qcinvσσ
)( ∑

ξ∈Cn

qcinv ξξ
)
.
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It is known that [3, Theorem 2]

detRR(q)[Sn]

( ∑
σ∈Sn

qcinvσσ
)

=
n−1∏
i=1

(1− qi2+i)
(n−i)n!
(i2+i) .

We finally obtain the result by using Lemma 2.1 and Lemma 4.1.

For k ∈ [n], denote by tk,n the permutation (n n− 1 . . . k) in cycle notation. Let

γn =
→∏

k∈[n−1]

1− qn−ktk,n and εn =
←∏

k∈[n]

∑n−k
i=0 q

(n−k+2)i tik,n

1− q(n−k+1)(n−k+2)
.

Furthermore, let

ρk =
1 + (m− 2)q − q

∑
i∈[m−1] ξ

i
k(

1 + (m− 1)q
)
(1− q)

.

We finish with the inverse of
∑

π∈UmoSn q
cinvππ.

Proposition 4.3. We have( ∑
π∈UmoSn

qcinvππ
)−1

=
∏
i∈[n]

ρi ·
←∏

i∈[n−1]

γi+1εi.

Proof. We obtain
(∑

ξ∈Cn q
cinv ξξ

)−1
=
∏
i∈[n] ρi by means of Lemma 2.3.

Then [3, Proposition 2] and Lemma 2.4 permit us to write
(∑

σ∈Sn q
cinvσσ

)−1
=
∏←
i∈[n−1] γi+1εi.
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