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Waves of diverse types surround us. Sound, light
and other waves, such as microwaves, are crucial for
speech, mobile phones, and other communication tech-
nologies. Elastic waves propagating through the Earth
bounce through the Earth’s crust and enable us to
“see” thousands of kilometres in depth. These propa-
gating waves are highly oscillatory in time and space,
and may scatter off obstacles or get “trapped” in
cavities. Simulating these phenomena on comput-
ers is extremely important. However, the achievable
speeds for accurate numerical modelling are low even
on large modern computers. Our snapshot will in-
troduce the reader to recent progress in designing
algorithms that allow for much more rapid solutions.

1 Time harmonic waves in one and more dimensions

We are all familiar with the waves that spread out in growing circles when a
raindrop hits a puddle, or a stone is thrown into a pond. This is an example of
a wave equation in two dimensions. If x and y are Cartesian coordinates in the
horizontal plane, then the height U(x, y, t) of the water surface varies in space
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(x, y) and time t. In fact the function U obeys a partial differential equation
(PDE) 1 , which relates its space and time derivatives.

1.1 Time harmonic waves in one dimension

Let us start here with a simpler case: waves in one dimension (1D). You can
easily observe these by plucking a long elastic string, such as a washing line,
and watching the waves bounce back and forth along it. Starting from Newton’s
second law, we can derive the displacement function U(x, t), where x is the
coordinate along the string, and show that it obeys the PDE

∂2U

∂x2 −
1

c(x)2
∂2U

∂t2
= 0 , (1D wave equation) (1)

where c(x) is the local speed of waves at the point x, which may vary with
position (to understand how the speed of the wave might change in such a
fashion, imagine that the rope is heavier in some places than others, thereby
slowing down the waves in those locations). This 1D PDE is a good model
for the majority of musical instruments [5], including strings, guitars, wind,
brass, and pianos 2 . In many scenarios, one cares about a single wave that
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Figure 1: Simple traveling time harmonic wave in 1D with frequency ω/2π = 5,
and constant wave speed c(x) = 1, hence constant wavelength λ =
2π/k = 0.2. The left shows U(x, t) = Re[eikxe−iωt] as a 3D height
plot in space and time. Note that the crests all move to the right
with unit speed. The right graphs the real and imaginary parts of
the complex-valued spatial function u(x) = eikx.

1 There are many good books on PDEs; a basic one is [4] and a more mathematical one [7].
2 For the fascinating reason that the spacing between resonant frequencies of percussion
instruments is irregular, most of these instruments require instead either the 2D version of
the wave equation (1), or wave equations for bending beams or plates (which are 4th order).
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oscillates at a given frequency: this wave is called “time harmonic,” which
means that “everything vibrates with the same sinusoidal function of time”.
Imagine continuously vibrating the washing line, in which case its shape would
settle into a steadily repeating pattern after a short time. A general sinusoidal
(oscillating) function of time with frequency f (that is, repetition period 1/f)
can be written as a cos(ωt) + b sin(ωt) for appropriate constants a and b, where
ω = 2πf . Including the changes, or displacements, in space we can also write
U(x, t) = u1(x) cos(ωt) + u2(x) sin(ωt). Mathematicians find it simpler to
rewrite this expression using complex numbers as

U(x, t) = Re[u(x)e−iωt] , (definition of time harmonic solution) (2)

where you can check that u(x) = u1(x)− iu2(x).
It is now easy to substitute (2) into (1) to obtain the differential equation

satisfied by this complex function u, which reads

u′′(x) + k(x)2u(x) = 0 (1D Helmholtz equation) (3)

where the known function k(x) = ω/c(x) is called the wavenumber.
Another key property of a time harmonic wave is its wavelength λ = 2π/k.

The wavelength can be viewed as the “repetition distance”, the distance covered
by one full oscillation. Larger k (shorter λ) means more oscillations per given
length. Remember that we are immersed in a bath of waves. For instance,
sounds are transmitted by sound waves of wavelengths λ between about 15 mm
and 15 m, while everything we see is light (electromagnetic waves) of wavelengths
between 4× 10−7 m and 7× 10−7 m.

Notice that u(x) is a function of only one variable. Therefore it is easier to
find the solution to (3) than the solution to (1) which depends on two variables.
Figure 1 shows an example U and u. Also notice that u(x) = 0 is a (very boring,
also known as trivial) solution to (3).

In more practical scenarios, one adds a “source term” g(x, t) to (3) which
specifies the strength of vibrational driving at each point in space, or models
waves sent in from far away so that they scatter or reflect. This gives

u′′ + k(x)2u = g(x) (1D Helmholtz equation with source) (4)

Finally, one usually cares only about a bounded region of space, such as an
interval Ω = (0, L) (the washing line tied between two points); on its endpoints
one needs to impose “boundary conditions” which enforce that waves are only
radiating away from the region. Another type of boundary condition – common
for washing lines – is that u is pinned down to zero at some point; this is called
a Dirichlet condition.
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1.2 Time harmonic waves in more dimension

Many more wave phenomena occur in 2D (surface waves) or in 3D (acoustic,
electromagnetic, and elastic waves). Waves that travel in more than one
dimension are much harder to simulate on computers than waves that travel
in 1D, essentially because of all the different directions waves can travel. The
generalisation of (3) to more than 1D takes the form

∆u+ k(x)2u = g(x) (Helmholtz equation with source) (5)

where x = (x, y) in 2D, or (x, y, z) in 3D. Here, the operator ∆ is defined
as ∆ = ∂2/∂x2 + ∂2/∂y2 in 2D, or ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in 3D, and is
called the Laplacian operator. To create a mathematically well-posed problem,
we must also impose boundary or radiation conditions on a curve or surface
enclosing Ω, the region of interest. This guarantees that the solutions to (5) are
“good” solutions.

Figure 2 shows example “scattering and source” problems in 2D.

 

 

Figure 2: Highly oscillatory problems in 2D. Left: numerical computation
of scattering of a “plane wave” (coming from about the 10 o’clock
direction) from the unit square with Dirichlet boundary condition
(k = 50 is constant in space), with error ε = 10−10, using the method
of [1]. Note that the waves do not cast a hard shadow; they “diffract”
around the corners. Right: numerical finite-difference computation
of solution where g is a point source in a model for seismic wave
propagation (k(x) varies in space, causing bending and reflection of
waves), from [9]. In both cases, Re[u] is plotted using a colour scale
where red is positive, blue is negative, and yellow or green is around
zero.

2 The highly osci l latory case, and real wor ld appl icat ions

When might we care about solving the above Helmholtz equations?
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Imagine that you are a sound engineer who has been given the 3D geometry
of a (small) concert hall (our region Ω) of typical dimension L =15 m, and you
are asked to predict how sound emitted by the performers will be heard by each
audience member (this will involve various “reflecting boundary conditions” due
to the materials of the walls reflecting the sound waves). In this case, since
the air density is almost the same everywhere, we can safely assume that c(x),
and hence k(x), is constant. However, we note that the ratio of the shortest
wavelength we can hear (λ ≈ 15 mm) to the hall size is L/λ ≈ 103, a big number.
This regime where L/λ� 1 is called highly oscillatory. We will see below why
solving such a problem accurately is very challenging, even on a big computer.

We have just seen an example of highly oscillatory waves in architectural
acoustics. What others are there? 3

Geology is studied, or oil searched for, using seismic (3D, elastic) waves
emitted by earthquakes or by special heavy vibrator trucks. 4 In these cases,
the wavelength k(x) varies in unknown ways, and the goal is to reconstruct
k(x) given only a large number of detection events of reflected waves reaching
the Earth’s surface. This approach is called an inverse problem, and it is
even harder than solving the Helmholtz or elastic equation itself (the forward
problem). Figures. 2 and 3 include simulated seismic–wave solutions.
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Figure 3: Left: Seismic wave solution u in a 3D domain (acoustic approxima-
tion), where g is a point source with frequency f of 6 cycles/second.
The domain is 20 km × 20 km × 4.7 km. Red is positive and blue
negative. Right: setup for 1D finite difference approximation in [0, L].
Each number uj represents u at a gridpoint.

Another case is the following. Given the shape of an aircraft, engineers want
to know the directional pattern that electromagnetic waves emitted from radars
(electromagnetic waves in the 0.01 m to 1 m range) will scatter or reflect from
it. Another goal is to find out how to design the aircraft shape to minimise
wave-reflection or sound pollution.

3 In some of these examples the Helmholtz equation must be replaced by the related Maxwell
or elastodynamic equations.
4 Really!
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Other cases are the following. Whales communicate using underwater sound
waves that propagate hundreds of kilometres through a depth-dependent k(x).
The human body can be safely imaged by ultrasound reflection (another inverse
problem), yet to get the best pictures one needs accurate models of wave
propagation in the various tissues. Light pulses are guided and switched on and
off at high speeds in microscopic devices that enable the “internet backbone”.
One day, they might enable ultra-fast optical computing. The design of more
efficient thin-film solar cells for renewable energy requires modelling light waves
in complex geometries (that glass used there has a different wavelength k from
air). Finally, at the microscopic scale, quantum mechanics uses wave functions
to describe matter. These waves obey the Schrödinger equation, a multi-
dimensional complex-valued version of (1) but with a single time derivative. 5

This range of applications shows the importance of efficient numerical meth-
ods for solving highly oscillatory wave problems.

3 Numer ical approximate solut ions

3.1 Numer ical approximate solut ions: f in i te di f ference discret izat ion

The PDEs presented involve mostly continuous functions. This means that, to
describe them exactly, one would need to know the values of these functions
at an infinite number of points. Of course, computers can handle only a finite,
limited, number of real numbers.

An art in numerical analysis is to approximate the function u only to some
desired accuracy ε, using a reasonably small number N of discrete unknowns.
This procedure is called “discretization.” This often involves relying on the fact
that u is a “smooth” function, which means a continuous function without any
sharp edges. This allows us to create a more efficient algorithm, thus faster
computer solution time. Sometimes it is even possible to prove rigorously that
the error in the final result is no larger than some maximum value ε.

We illustrate this procedure with a “finite difference” discretization of (4)
(see [8] for more detail). Let the values uj be defined by uj := u(xj) at points
xj , for j = 1, . . . , N , on a regular grid of spacing h = L/(N − 1), as in the right
panel of Figure 3. The simplest way to approximate the second derivative in
(4) is by

u′′(x) ≈ h−2(uj−1 − 2uj + uj+1). (3-point stencil formula) (6)

Enforcing (4) at each grid point and using (6), we obtain the linear system
Au = g, where A is an N × N matrix with diagonal entries of the form

5 You can find more on the Schrödinger equation in Snapshot 14/2015 Quantum diffusion
by Antti Knowles.
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k(xj) + 2h−2, entries of the form −h−2 adjacent to the diagonal, and zero
elsewhere. Here, g is a vector with entries g(xj), and u the unknown vector
with entries uj .

Since A has most entries zero it is called sparse. There are direct solution
methods for this “tridiagonal” sparse structure that require only O(N) arith-
metic operations. 6 This is much faster than the O(N3) operations usually
needed for the standard “Gaussian elimination”.

3.2 Numer ical approximate solut ions: error est imat ion

The natural question at this point is: how accurate is this scheme? For simplicity,
consider a source-free region (that is, g = 0), where k(x) is constant. Then, let’s
take u(x) = eikx. 7 We know (eikx)′′ = −k2eikx, but (6) gives instead, using
the Taylor series for cosine,

ei(k−h)x − 2eikx + ei(k+h)x

h2 =2(cos kh− 1)
h2 eikx

=− k2eikx

(
1− (kh)2

12 +R(kh),
)

(7)

where R(k h) is a polynomial that contains terms of the form (kh)2n for n =
2, 3, 4, . . ..

The term −(kh)2/12 is thus the first term in the relative error of this
discretization. Therefore, it is clear that kh� 1 is needed for high accuracy and
to be able to discard the correction terms contained in R(kh). In other words,
there must be several grid points per wavelength, which means N � L/λ. How
can we see this? We have argued that kh� 1 for high precision approximation
methods. Then, using the expressions h = L/(N − 1) and λ = 2π/k we see
that kh� 1 implies N � 2π L/λ.

A rigorous error analysis is quite tricky, but we just mention that it would
show that this scheme must have an even larger number of grid points per
wavelength in order to maintain the same accuracy as k grows (a phenomenon
known as the the pollution effect).

3.3 Numer ical approximate solut ions: extensions and general isat ions

Researchers have invented much better ways to numerically solve the 1D
Helmholtz equation, but the point is that the method described above can be

6 The notation O(N) means that there are positive constants C and N0 such that, for all
N > N0, the number of operations never exceeds CN .
7 In fact u is a linear combination of this and its conjugate. The argument still applies.
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easily generalised to 2D and 3D, giving the commonly used 5-point and 7-point
stencils. The resulting linear systems are characterised by matrices that are
sparse but not tridiagonal, therefore the linear systems are harder to solve.

We can say that in 2D, N � (L/λ)2, and a direct solution takes a number
of operations of the order O

(
N3/2)

. In 3D, one has N � (L/λ)3, and a
direct solution takes O

(
N2)

operations. Returning to the concert hall problem,
where L/λ = 103, we see that at least a billion unknowns would be needed,
and 1018 arithmetic operations (which would take up to many months on a
desktop computer!). Fortunately, mathematicians and engineers have developed
improved solution methods that are more efficient. Incidentally, this problem size
(N ∼ 109) is about the largest that can be currently solved in 3D variable-k(x)
seismic applications.

4 Modern progress and open quest ions

We saw above that highly oscillatory problems can lead to massive linear systems
when discretized. The other standard discretization approach is called the finite
element method, which is useful when the geometry of the domain (concert hall)
and/or the variations of the wavenumber k(x) are complicated.

There are plenty of iterative methods to solve such systems (that is, these
massive linear systems) that rely only on the ability to compute Ax for a given
vector x. We briefly report on recent progress of the tools that allow us to
tackle the problem of simulating useful PDEs.

Domain decomposition. In this procedure we find direct solutions in sub-
regions (areas of the concert hall) where these can be easily obtained, and
then use iterative methods to combine the solutions in these different regions
(for instance [9]).
Sweeping preconditioners. Here one exploits the fact that, in many applica-
tions, waves do not reflect very strongly from the medium [3].
Higher-order finite difference. Another direction is to discretize the PDEs
with a higher order of accuracy. In this procedure, the stencil formulas
are bigger (that is, there are more terms), and the resulting linear systems
become more difficult to handle. However, the accuracy is higher. The error
decreases very fast with the increase of number of divisions, if one is working
in the regime of applicability of “spectral methods” or “spectral collocation”.
Boundary integral equations. If the wavenumber k(x) is piecewise constant 8 ,
as in the concert hall example or in the case where light transitions between

8 This means that it is constant in some region of space, such as air, and then it is constant
in a neighboring region of space, such as glass.
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air and glass, we can obtain analytical predictions of how the waves propagate
through each region of constant wavenumber k (such as air-to-glass).
Let us consider a point-like source g and the 3D Helmholtz equation (5) for
propagating waves generated by the source. It can be shown that the usual
grid-like approach to solving the Helmholtz equation within the domain
of interest (concert hall) can be mapped to a scenario where we employ
grid-like information on the boundary of the domain (walls of the concert
hall). The advantage in this approach is that fewer grid points suffice now,
since the boundaries of a surface are at least “one dimension lower” than
those of the volume they contain. In other words, the advantage is that it
reduces the 3D system (the entire concert hall) to a 2D system (the walls
of the concert hall). When the wavenumber k is large (or, equivalently,
wavelengths are short), this can be a huge reduction.
Careful design leads to a well-conditioned (that is, a linear system whose
solution is stable with respect to changes in the data) linear system for
which iterative methods converge rapidly. This contrasts with the direct
PDE discretizations described above, which are always ill-conditioned (a
linear system whose solution is unstable with respect to changes in the data).
However, the N ×N linear system is now dense rather than sparse (that is,
it can have non-zero entries everywhere), therefore computing Ax from x
would naively take O(N2) work.
Amazingly, by clever hierarchical use of the fact that the interaction between
distant clusters of points is well approximated by a low rank matrix, one
may reduce this work to only O(N), or O(N logN). This is called the fast
multipole method, see [6, 2]. The extension of such ideas to fast direct and
“butterfly” solvers for integral equations is an active area of research.
Ray optics approximation. When L/λ is huge, for example L/λ > 100, one
can often get a decent solution using the ray optics approximation. This
approximation allows us to view light not as an electromagnetic wave but
simply as a set of rays that propagates in a straight line from the source.
These rays might reflect against obstacles and refract when they propagate
between two different media. This approximation is useful to explain why it
is very easy (and not surprising) to predict that, in a concert hall, you will
see the performers clearly (unless obstructed by an object, of course). Note
that λ is much larger for sound waves than for light waves, which means
that the ratio L/λ might not be very big for the typical sound wave emitted,
say, by a cello. The ray optics approximation, therefore, does not apply
and this explains why sound engineering for concert halls is required and
represents an extremely important task.
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5 Conclusions and considerat ions

I end this snapshot with a couple of open questions to think about. Solutions
to these questions could revolutionize current understanding of high frequency
wave problems.

What is the most efficient way to numerically represent oscillatory solutions
in 2D or 3D when the wavenumber k is constant? And which one when the
wavenumber k(x) changes?
How can we best employ distributed computer architectures (that is, a
network of computers which take on parts of a complex task in parallel to
each other) to solve wave problems with huge amounts of data?
It is generally believed that, when a wave is trapped in a resonant (reflective)
cavity, the complexity of the numerical problem is at least O(k3) in 2D, or
O(k6) in 3D. Can these bounds be beaten for resonant cavities that operate
in the highly oscillatory regime?
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Fig. 2, r ight panel PhD thesis of Leo Zepeda-Nuñez, MIT, 2015.

Fig. 3, lef t panel Until summer 2018: Seismic Laboratory for Imaging and
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(SLIM), GATech, https://www.slim.eas.gatech.edu
/SLIM.Projects.ResearchWebInfo/Modelling/modelling.html.

Al l other f igures Produced by the author.

References

[1] A.H. Barnett and T. Betcke, An exponentially convergent non-polynomial
finite element method for time-harmonic scattering from polygons, SIAM
Journal on Scientific Computing 32 (2010), no. 3, 1417–1441.

[2] H. Cheng, W.Y. Crutchfield, Z. Gimbutas, L. Greengard, F. Ethridge,
J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, A wideband fast multipole
method for the helmholtz equation in three dimensions, Journal of Computa-
tional Physics 216 (2006), 300–325.

[3] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equa-
tion: Moving perfectly matched layers, Journal on Multiscale Modeling and
Simulation 9 (2011), no. 2, 686–710.

10

https://www.slim.eos.ubc.ca/SLIM.Projects.ResearchWebInfo/Modelling/modelling.html
https://www.slim.eos.ubc.ca/SLIM.Projects.ResearchWebInfo/Modelling/modelling.html
https://www.slim.eas.gatech.edu
/SLIM.Projects.ResearchWebInfo/Modelling/modelling.html


[4] S. J. Farlow, Partial differential equations for scientists and engineers, Dover,
1993.

[5] N.H. Fletcher and T. Rossing, The physics of musical instruments, 2nd
edition ed., Springer-Verlag, 1998.

[6] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,
Journal of Computational Physics 73 (1987), 325–348.

[7] R. B. Guenther and J.W. Lee, Partial differential equations of mathematical
physics and integral equations, Prentice Hall, 1988.

[8] R. J. LeVeque, Finite difference methods for ordinary and partial differential
equations, SIAM, 2007.

[9] L. Zepeda-Nuñez and L. Demanet, Nested domain decomposition with polar-
ized traces for the 2D Helmholtz equation, arxiv:1510.01831 (2016).

11



Alex Barnett is an associate professor of
mathematics at Dar tmouth Col lege, New
Hampshire, and in the Numer ical
Algor i thms Group at the Flat i ron Inst i tute,
Simons Foundat ion, New York.

Mathematical subjects
Numer ics and Scient i f ic Comput ing

Connect ions to other f ie lds
Engineer ing and Technology, Physics

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2018-006-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Edi tors
David Edward Bruschi and Johannes
Niediek
junior- edi tors@mfo.de

Senior Edi tor
Car la Cederbaum
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

http://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2018-006-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Fast Solvers for Highly Oscillatory Problems
	Time harmonic waves in one and more dimensions
	Time harmonic waves in one dimension
	Time harmonic waves in more dimension

	The highly oscillatory case, and real world applications
	Numerical approximate solutions
	Numerical approximate solutions: finite difference discretization
	Numerical approximate solutions: error estimation
	Numerical approximate solutions: extensions and generalisations

	Modern progress and open questions
	Conclusions and considerations


