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METRIC CONNECTIONS WITH PARALLEL SKEW-SYMMETRIC
TORSION

RICHARD CLEYTON, ANDREI MOROIANU, UWE SEMMELMANN

Abstract. A geometry with parallel skew-symmetric torsion is a Riemannian manifold
carrying a metric connection with parallel skew-symmetric torsion. Besides the trivial case
of the Levi-Civita connection, geometries with non-vanishing parallel skew-symmetric torsion
arise naturally in several geometric contexts, e.g. on naturally reductive homogeneous spaces,
nearly Kähler or nearly parallel G2-manifolds, Sasakian and 3-Sasakian manifolds, or twistor
spaces over quaternion-Kähler manifolds with positive scalar curvature. In this paper we
study the local structure of Riemannian manifolds carrying a metric connection with parallel
skew-symmetric torsion. On every such manifold one can define a natural splitting of the
tangent bundle which gives rise to a Riemannian submersion over a geometry with parallel
skew-symmetric torsion of smaller dimension endowed with some extra structure. We show
how previously known examples of geometries with parallel skew-symmetric torsion fit into
this pattern, and construct several new examples. In the particular case where the above
Riemannian submersion has the structure of a principal bundle, we give the complete local
classification of the corresponding geometries with parallel skew-symmetric torsion.

1. Introduction

1.1. Motivation. Metric connections with torsion on Riemannian manifolds have been stud-
ied recently in many articles. Such connections usually arise in special geometric situations
and then come with further properties. Besides the (torsion free) Levi-Civita connection,
which is, for obvious reasons, the central object in Riemannian geometry, the next most nat-
ural class to consider is the one of metric connections with totally skew-symmetric and parallel
torsion. These connections have the same geodesics as the Levi-Civita connection. Moreover
their curvature tensor is still pair symmetric and satisfies the second Bianchi identity. There
are several important geometries admitting metric connections with parallel skew-symmetric
torsion as we will now explain.

1.2. Examples. The first example are the naturally reductive spaces with their canonical
homogeneous connection which turns out to have parallel skew-symmetric torsion and also
parallel curvature (see [15]). Another important class of examples are Sasakian and 3-Sasakian
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manifolds (see [9]). In even dimensions, nearly Kähler manifolds with their canonical Her-
mitian connection provide another class of examples (see [6]). Finally, in dimension 7, every
manifold with a nearly parallel G2-structure carries a canonical connection with parallel skew-
symmetric torsion (see [9]).

1.3. Previous results. Although not directly related to our topic, let us first mention that
the possible holonomy groups of arbitrary torsion-free connections (not necessarily metric)
have been classified, under the irreducibility assumption, by Merkulov and Schwachhöfer [17].

The classification of metric connections with parallel torsion and irreducible holonomy
representation was obtained by Cleyton and Swann in [7]. They show that a Riemannian
manifold admitting a metric connection with non-trivial parallel torsion is locally isometric
to a non-symmetric isotropy irreducible homogeneous space, or to one of the irreducible
symmetric spaces (G × G)/G or GC/G, or the manifold is nearly Kähler in dimension 6, or
has a nearly parallel G2-structure in dimension 7. The homogeneous spaces in the first case
are naturally reductive if the torsion is assumed to be skew-symmetric. For the other three
cases the torsion is automatically skew-symmetric.

The reducible case turns out to be much more involved, and it is the purpose of the
present article to describe a classification scheme in the case of connections with parallel
skew-symmetric torsion whose holonomy representation is reducible.

Further classification results only occur in in special geometric situations or in low dimen-
sions: Alexandrov, Friedrich and Schoenemann [3] have shown that if the canonical Hermitian
connection of a Hermitian manifold has parallel torsion and holonomy in Sp(n)U(1) then the
manifold is locally isomorphic to a twistor space over a quaternion-Kähler manifold of positive
scalar curvature. Partial classifications of 6-dimensional almost Hermitian manifolds admit-
ting a canonical Hermitian connection with parallel torsion are obtained by Alexandrov [4]
and Schoenemann [20]. Similarly, cocalibrated G2-manifolds with a characteristic connection
of parallel torsion are studied by Friedrich [8]. Moreover, Agricola, Ferreira and Friedrich [1]
obtained classification results in low dimensions, up to 6.

Finally, we would like to mention the recent work of Storm [21], [22] and that of Agricola
and Dileo [2]. In his thesis, Storm describes a new construction method for naturally reductive
spaces and gives classification results in dimensions 7 and 8. He also has a general result on
metric connections with skew-symmetric and ”reducible” parallel torsion (see Thm. 1.3.5 in
[22]), similar to our Lemma 3.2 below. Agricola and Dileo introduce in [2] a new classes of
almost 3-contact metric manifolds called 3 − (α, δ)-Sasakian manifolds (including as special
cases 3-Sasakian manifolds and quaternionic Heisenberg groups). They show that these spaces
admit a canonical metric connection with skew-symmetric and parallel torsion (see Thm. 4.4.1
in [2]).

Several of the examples mentioned above are total spaces of Riemannian submersions over
manifolds without torsion, e.g. Sasakian manifolds locally fiber over Kähler manifolds, 3-
Sasakian manifolds locally fiber over quaternion-Kähler manifolds and the twistor spaces are
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S2-fibrations over quaternion-Kähler manifolds. We will see that this is a general phenom-
enon which characterizes connections with parallel skew-symmetric torsion with reducible
holonomy.

1.4. Overview. We now turn to the main results contained in this paper. Let ∇τ be a
metric connection with parallel skew-symmetric torsion on a Riemannian manifold (M, gM).
As already mentioned, the case where the holonomy representation of ∇τ is irreducible has
been dealt with in [7], so one can always assume that the holonomy representation is reducible.
In contrast to the Riemannian (torsion free) situation, this by no means gives a reduction of
the manifold as a Riemannian product (unless the geometry is decomposable, see Definition
3.1), since the de Rham theorem does not apply.

Our first achievement is to show that among all possible parallel distributions of the tangent
bundle, there is a particular one which we denote with VM and which has the remarkable
property that its leaves are totally geodesic, and define locally a Riemannian submersion
M → N , which we call the standard submersion. Even more strikingly, the restriction of the
curvature of τ to the leaves is ∇τ -parallel, so each leaf is a locally homogeneous space by the
Ambrose-Singer theorem [5].

The next step is to show that the fibration M → N can be obtained as the quotient of a
principal bundle over N carrying a connection with parallel curvature by a subgroup of its
structure group. This is achieved as follows. One shows that the holonomy bundle Q of ∇τ

over M with group K = Hol(∇τ ) can be viewed as a principal bundle over the base N of
the standard submersion, with a larger structure group L containing K, and such that L/K
is isomorphic to the fibers of the standard submersion. This fact can be interpreted as a
Ambrose-Singer-like theorem for families, and reduces to the usual Ambrose-Singer theorem
when the base N is a point.

The proof, explained in §4.2, is based on the following idea: the horizontal lift to Q of
the parallel distribution VM defined above, together with the vertical distribution of Q,
define a new vertical distribution of Q as principal bundle over the base N . Moreover, this
bundle Q→ N has a natural connection, whose connection form is just the sum of the initial
connection form of Q → M , and some component of the initial soldering form of Q → M .
Since the curvature of this connection is determined by some component of the torsion of
∇τ , and by the curvature of ∇τ , one can expect it to be parallel, after doing some further
reduction. This is achieved in §4.3, where we show that Q reduces to a principal bundle P
over N with parallel curvature, together with some further properties. We call it a geometry
with parallel curvature. Conversely, this geometry with parallel curvature over N still contains
enough information in order to recover the whole structure of M , as shown in §5.

In §6 we study an important particular case of geometries with parallel curvature, called
parallel g-structures. This corresponds to the case where the standard submersion is a prin-
cipal bundle, and already contains most of the examples of geometries with parallel skew-
symmetric torsion available in the literature. In Theorem 7.1 we give the local classification
of manifolds with parallel g-structures, which is thus a first step towards the classification of
geometries with parallel skew-symmetric torsion.
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2. Preliminaries

2.1. Connections with parallel skew-symmetric torsion. Let (M, g) be a Riemannian
manifold. We will identify as usual vectors and 1-forms or skew-symmetric endomorphisms
and 2-forms via the metric g.

In the sequel, if A is a skew-symmetric endomorphism of TM , we will denote by A· the
action of A on exterior forms as derivation, given by

(1) A · ω :=
∑
i

Aei ∧ ei yω, ∀ω ∈ Λ∗TM ,

in every local orthonormal basis {ei} of TM . Note that if B is another skew-symmetric
endomorphism, identified with a 2-form via the metric, then A ·B is the 2-form corresponding
to the commutator of A and B, whence:

(2) A ·B = [A,B] = −B · A .

Every 3-form τ on M can be identified with a tensor of type (2, 1) by writing for every
x ∈M

τ(X, Y, Z) = g(τXY, Z), ∀ X, Y, Z ∈ TxM .

In this way τX can be viewed as a skew-symmetric endomorphism of TxM for every tangent
vector X ∈ TxM .

Definition 2.1. A geometry with parallel skew-symmetric torsion on M is a Riemannian
metric g with Levi-Civita connection ∇g and a 3-form τ ∈ Ω3(M) which is parallel with
respect to the metric connection ∇τ := ∇g + τ , i.e. ∇ττ = 0.

Of course, since τ is a 3-form, ∇τ has skew-symmetric torsion T τ = 2τ .

Writing ∇g = ∇τ − τ and using the fact that τ is ∇τ -parallel, we readily see that the
curvature Rτ satisfies

(3) Rg = Rτ + τ 2 with (τ 2)X,YZ = [τX , τY ]Z − ττXYZ + ττYXZ .

Taking the scalar product with a vector W in this formula we obtain

Lemma 2.2. Let ∇τ = ∇g + τ be a connection with parallel skew-symmetric torsion τ . Then

Rg(X, Y, Z,W ) = Rτ (X, Y, Z,W ) − g(τYZ, τXW ) + g(τXZ, τYW ) − 2g(τXY, τZW )·

In particular the curvature Rτ is pair symmetric: Rτ (X, Y, Z,W ) = Rτ (Z,W,X, Y ).
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2.2. Examples. As mentioned in the introduction, there are several known families of ge-
ometries with parallel skew-symmetric torsion. We review here the most important ones.

Example 2.3. A homogeneous space M = G/K is called reductive if the Lie algebra g of G
admits an Ad (K)-invariant splitting g = k⊕ m, where m can be identified with the tangent
space to M in the origin o. The canonical homogeneous connection on the K-principal
bundle G → G/K is defined as the projection onto the Lie algebra k, i.e. its connection
1-form α ∈ Ω1(G, k) is given by α(X) = Xk for any vector X ∈ g. The connection α
induces the canonical homogeneous connection on the tangent bundle of M . Its torsion is
given by T (X, Y )o = −[X, Y ]m for vectors X, Y ∈ m. A reductive homogeneous space M
equipped with a G-invariant metric g corresponding to a Ad (K)-invariant scalar product
〈·, ·〉 on m is called naturally reductive if the torsion of the canonical homogeneous connection
is skew-symmetric, i.e. if 〈[X, Y ]m, Z〉 + 〈Y, [X,Z]m〉 = 0 holds for all vectors X, Y, Z ∈ m.
It is well-known that the canonical homogeneous connection has parallel torsion (see [15],
Ch. X, Thm. 2.6). In this situation not only the torsion but also the curvature is parallel.
Conversely, the theorem of Ambrose and Singer [5] shows that if a metric connection on
a Riemannian manifold has parallel skew-symmetric torsion and parallel curvature, then
the manifold is locally homogeneous and naturally reductive. There are many examples of
naturally reductive spaces, e.g. all homogeneous spaces G/K of a compact semi-simple Lie
group G equipped with the metric induced by the Killing form of G.

Example 2.4. Nearly Kähler manifolds are almost Hermitian manifolds (M, g, J) where
the almost complex structure J satisfies the condition (∇XJ)X = 0 for all tangent vectors
X. The canonical Hermitian connection ∇̄ with ∇̄J = 0 = ∇̄g is defined by ∇̄XY =
∇g
XY − 1

2
J(∇g

XJ)Y . Hence the nearly Kähler condition directly implies that the canonical
Hermitian connection has skew-symmetric torsion. The torsion is also ∇̄-parallel as was first
shown in [13] (see [6] for a short proof). Important examples of nearly Kähler manifolds in
any dimension 4k + 2 are provided by the twistor spaces of quaternion-Kähler manifolds of
positive scalar curvature. Another class of examples are the naturally reductive 3-symmetric
spaces (see [11], Prop. 5.6). In dimension 6 one has the spaces S6, S3 × S3,CP 3 and the
flag manifold F (1, 2). In [19] it is proved that any strict nearly Kähler manifold is locally
isometric to a product with factors either 6-dimensional, or homogeneous of a certain type,
or a twistor space of a quaternion-Kähler manifold of positive scalar curvature.

Example 2.5. A Sasakian structure on a Riemannian manifold (M, g) is given by a unit
length Killing vector field ξ satisfying the condition ∇g

Xdξ = −2X ∧ ξ for all tangent vectors
X. In this situation ∇̄ = ∇g + 1

2
ξ ∧ dξ defines a metric connection with skew-symmetric

torsion preserving the Sasakian structure. It is easy to show that its torsion T = ξ ∧ dξ is
∇̄-parallel (see [9]). There are many examples of Sasakian structures, e.g. on S1-fibre bundles
over compact Kähler manifolds with integer fundamental class (so-called Hodge manifolds).

In the case of 3-Sasakian manifolds one has 3 unit length Killing vector fields satisfying
the so(3)-commutator relations and such that each vector field defines a Sasakian structure.
Examples for 3-Sasakian manifolds are given e.g. as the total space of certain SO(3)-bundles
over quaternion-Kähler manifolds of positive scalar curvature.
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Example 2.6. A G2-structure on a 7-dimensional manifold is defined by a stable 3-form ω,
i.e. for any x ∈ M the form ωx lies in an open orbit of the GL(TxM)-action on the space of
3-forms Λ3TxM . Then ω defines a structure group reduction to G2 ⊂ SO(7) and in particular
it induces a Riemannian metric g on M . Nearly parallel G2-manifolds are defined by the
condition that the Hodge dual ∗ω is proportional to dω. Then there is a metric connection ∇̄
preserving the G2-structure. Its torsion is skew-symmetric and proportional to ω. It is shown
in [9] that the torsion is ∇̄-parallel. There are several examples of homogeneous nearly parallel
G2-manifolds, e.g. SO(5)/SO(3), where the embedding of SO(3) into SO(5) is given by the
5-dimensional irreducible representation of SO(3) or the Aloff-Wallach spaces SU(3)/U(1)k,l.
Moreover one can show that on any 7-dimensional 3-Sasakian manifold there exists a second
Einstein metric defined by a nearly parallel G2-structure (see [10]).

3. The standard decomposition

In contrast to the Riemannian case, there are two different notions of reducibility for
geometries with parallel skew-symmetric torsion, which we will explain now.

Definition 3.1. A geometry with parallel skew-symmetric torsion (M, g, τ) is called:

• reducible if the holonomy representation of ∇τ is reducible, and irreducible otherwise.
• decomposable if the tangent bundle of M decomposes in a (non-trivial) orthogonal

direct sum of ∇τ -parallel distributions TM = T1 ⊕ T2 such that the torsion form
satisfies τ = τ1 + τ2 ∈ Λ3T1 ⊕ Λ3T2, and indecomposable otherwise.

Of course, irreducibility implies indecomposability, but as we will see, there are many
examples of indecomposable but reducible geometries with parallel skew-symmetric torsion.

If (M1, g1, τ1) and (M2, g2, τ2) are geometries with parallel skew-symmetric torsion, then
their Riemannian product (M1 × M2, g1 + g2, τ1 + τ2) is again a decomposable geometry
with parallel skew-symmetric torsion. Conversely, the next result shows that a decomposable
geometry with parallel skew-symmetric torsion is always locally a Riemannian product:

Lemma 3.2. Assume that (M, g, τ) is decomposable, with TM = T1 ⊕ T2 and τ = τ1 + τ2 ∈
Λ3T1 ⊕ Λ3T2. Then (M, g, τ) is locally isometric to a product of two manifolds with parallel
skew-symmetric torsion (Mi, gi, τi).

Proof. For every vector fields X ∈ Γ(T1) and Y ∈ Γ( TM) the assumptions in Definition 3.1
yield ∇τ

YX ∈ Γ(T1) and τ(X, Y ) ∈ Γ(T1), whence

∇g
YX = ∇τ

YX − τ(Y,X) ∈ Γ(T1),

thus showing that T1 is ∇g-parallel. Similarly, T2 is ∇g-parallel. By the local de Rham
theorem, (M, g) is locally isometric to a Riemannian product (M1, g1)× (M2, g2).

Moreover, for every X ∈ Γ(T1) we have

∇g
Xτ2 = ∇τ

Xτ2 − τX · τ2 = −τX · τ2 = −(τ1)X · τ2 = 0,
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and similarly ∇g
Zτ

1 = 0 for every vector field Z ∈ Γ(T2). This shows that τ1 and τ2 are
projectable on M1 and M2 respectively. It is now clear that τi is parallel with respect to
∇τi := ∇gi + τi, so (Mi, gi) are Riemannian manifolds with metric connection ∇τi with
parallel skew-symmetric torsion for i = 1, 2.

�

Now write k for the holonomy algebra of ∇τ and n for the dimension of M . The repre-
sentation of k on Rn decomposes into an orthogonal sum of irreducible k-modules hα and vj
such that each summand hα satisfies kα := so(hα) ∩ k 6= 0 and each summand vj satisfies
so(vj) ∩ k = 0. We define h := ⊕αhα and v := ⊕jvj. Note that kα is an ideal of k for every α.

Lemma 3.3. For every index α, the representation of k on hα⊗Λ2h⊥α has no trivial subspace.

Proof. Consider the space

Eα := {v ∈ hα | Av = 0, ∀A ∈ kα}.

Since kα is an ideal of k, for every v ∈ Eα, A ∈ kα and B ∈ k we get:

A(Bv) = [A,B]v +B(Av) = 0,

thus showing that Eα is a k-invariant subspace of hα, so by the irreducibility of hα we deduce
that either Eα = 0 or Eα = hα. The latter case is impossible by the very definition of kα.
Thus Eα = 0.

Suppose that u ∈ hα ⊗ Λ2h⊥α satisfies Bu = 0 for every B ∈ k. We write u =
∑

i vi ⊗ wi
where wi is a basis of Λ2h⊥α . By definition, every A ∈ kα acts trivially on h⊥α . We thus get
0 = Au =

∑
i(Avi)⊗ wi for every A ∈ kα, whence

(4) Avi = 0, ∀i, ∀A ∈ kα .

Thus vi ∈ Eα = 0 for all i, so finally u = 0.

�

Decomposing Λ3Rn according to the decomposition Rn = (⊕αhα) ⊕ (⊕jvj) = h ⊕ v and
using the above result, we readily obtain that every k-invariant element of Λ3Rn is contained
in the following sub-space:

(5) (Λ3Rn)k ⊂ (⊕αΛ3hα)⊕ (⊕αΛ2hα ⊗ v)⊕ Λ3v ⊂ Λ3h⊕ (Λ2h⊗ v)⊕ Λ3v.

Corresponding to the decomposition Rn = (⊕αhα)⊕(⊕jvj) = h⊕v we obtain an orthogonal
∇τ -parallel decomposition of the tangent bundle of M as

(6) TM = (⊕αHαM)⊕ (⊕jVjM) = HM ⊕ VM .

Definition 3.4. The above defined decomposition TM = HM ⊕ VM will be referred to as
the standard decomposition of the tangent bundle of a manifold with parallel skew-symmetric
torsion.
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We now decompose the torsion as a sum of ∇τ -parallel tensors

τ = τ h + τm + τ v ,

where τ h ∈ Λ3HM , τ v ∈ Λ3VM and τm ∈ (Λ2HM ⊗ VM) ⊕ (Λ2VM ⊗ HM). By (5) we
obtain directly:

Lemma 3.5. The projection of τ onto Λ2VM ⊗ HM vanishes, i.e. τm ∈ Λ2HM ⊗ VM .
Moreover, τ h and τm have further decompositions

τ h =
∑
α

τ hα ∈
⊕
α

Λ3HαM, τm ∈

(⊕
α

Λ2HαM

)
⊗ VM.

This has an immediate consequence which we will discuss now. We will assume for the rest
of this section that (M, g, τ) is a geometry with parallel skew-symmetric torsion and standard
decomposition TM = HM ⊕ VM .

Lemma 3.6. The distribution VM is the vertical distribution of a locally defined Riemannian
submersion (M, g)

π→ (N, gN) with totally geodesic fibers.

Proof. Lemma 3.5 shows that for U, V in VM we have ∇g
UV = ∇τ

UV − τUV ∈ VM . Thus
VM is a totally geodesic involutive distribution. We need to show that the restriction gh of
the metric g to HM is constant along the leaves of VM . The Lie derivative

(LUgh)(A,B) = U(gh(A,B)) − gh([U,A], B) − gh(A, [U,B])

clearly vanishes if A or B is a section of VM . For X, Y sections of HM we have:

(LUgh)(X, Y ) = U(gh(X, Y )) − gh([U,X], Y ) − gh(X, [U, Y ])

= g(∇g
XU, Y ) + g(X,∇g

YU)

= g(∇τ
XU, Y ) + g(X,∇τ

YU) = 0 .

This shows that if N denotes the space of leaves of VM in some neighbourhood of M , the
restriction of g to the distribution HM projects to a Riemannian metric gN on N .

�

Definition 3.7. The Riemannian submersion (M, g) → (N, gN) defined in Lemma 3.6 will
be called the standard submersion of a manifold with parallel skew-symmetric torsion.

The next result is the crucial step for showing that the horizontal part of the torsion is a
projectable tensor with respect to the standard submersion:

Lemma 3.8. For every vector field V in VM one has τV · τ h = 0.

Proof. Employing a local orthonormal frame {ei} of TM we write:

dV =
∑
i

ei ∧∇g
ei
V =

∑
i

ei ∧ (∇τ
ei
V − τeiV ) =

∑
i

ei ∧∇τ
ei
V + 2τV ,
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whence

0 = d2V =
∑
j

ej ∧∇g
ej

dV =
∑
j

ej ∧ (∇τ
ej

dV − τej · dV )

=
∑
i,j

ej ∧ (∇τ
ej

(ei ∧∇τ
ei
V )) + 2

∑
j

ej ∧ (∇τ
ej
τV )−

∑
i,j

ej ∧ (τej · (ei ∧∇τ
ei
V ))

−2
∑
i

ei ∧ τei · τV(7)

=
∑
i,j

ej ∧ (∇τ
ej

(ei ∧∇τ
ei
V )) + 2

∑
j

ej ∧ τ∇τejV −
∑
i,j

ej ∧ τejei ∧∇τ
ei
V

−
∑
i,j

ej ∧ ei ∧ τej∇τ
ei
V − 2

∑
i

ei ∧ τei · τV

On the other hand, using (2) and the fact that τV is a derivation of Λ∗TM , the last summand
in (7) reads∑

i

ei ∧ τei · τV = −
∑
i

ei ∧ τV · τei = −
∑
i

(τV · (ei ∧ τei)− τV ei ∧ τei)(8)

= −3τV · τ + τV · τ = −2τV · τ.

Moreover, using the skew-symmetry of τ we obtain∑
i,j

ej ∧ ei ∧ τej∇τ
ei
V =

∑
i,j

ei ∧ ej ∧ τ∇τeiV ej = 2
∑
i

ei ∧ τ∇τeiV ,

so the second and fourth terms in (7) cancel each other. From (7) and (8) we thus get∑
i,j

ej ∧ (∇τ
ej

(ei ∧∇τ
ei
V ))−

∑
i,j

ej ∧ τejei ∧∇τ
ei
V + 4τV · τ = 0.

Since ∇τ preserves VM , the projection onto Λ3HM of the first two terms in this last equation
vanishes. Moreover, by Lemma 3.5 we have τV ∈ Λ2VM ⊕ Λ2HM , so the action of τV as
endomorphism on TM preserves the splitting TM = HM ⊕ VM . We thus obtain

0 = πΛ3HM(τV · τ) = τV · πΛ3HM(τ) = τV · τ h.

�

Using Lemma 3.8 we can now prove the announced result:

Lemma 3.9. The horizontal part τ h of the torsion τ is projectable to the base N of the
standard submersion.

Proof. It suffices to show that LV τ h = 0 for all vector fields V in VM . The torsion τ is
∇τ -parallel, and so are its components τ h, τm and τ v. In particular, for every X ∈ TM we
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have 0 = ∇τ
Xτ

h = ∇g
Xτ

h + τX · τ h. Moreover, for V ∈ VM we have V y τ h = 0, so we can
compute in a local orthonormal basis {ei} of TM using Lemma 3.8:

LV τ h = V y dτ h =
∑
i

V y (ei ∧∇g
ei
τ h) = −

∑
i

V y (ei ∧ τei · τ h)

= −τV · τ h +
∑
i

ei ∧ (V y (τei · τ h)) =
∑
i

ei ∧ (τei · (V y τh)− τeiV y τ h)

=
∑
i

ei ∧ (τV ei y τ
h) = −

∑
i

τV ei ∧ (ei y τ
h) = −τV · τ h = 0.

�

Remark 3.10. By Lemma 3.9 there is a 3-form σ on N such that τ h = π∗σ. If ∇gN

denotes the Levi-Civita connection of the metric gN , Lemma 3.6 shows that ∇σ := ∇gN + σ
is a connection with parallel skew-symmetric torsion T σ = 2σ on N . Indeed, the fact that
∇σσ = 0 follows immediately from the O’Neill formulas for Riemannian submersions, together
with the fact that for every vector X in HM we have

0 = ∇τ
Xτ

h = ∇g
Xτ

h + τX · τ h = ∇g
Xτ

h + τ hX · τ
h.

We will now make another crucial observation, which will give more information about
the fibers of the standard submersion. Since by Lemma 3.6 every fiber F of the standard
submersion is totally geodesic, the Levi-Civita connection of M restricts to the Levi-Civita
connection of F , and the connection ∇τ restricts to a connection ∇F with parallel, skew-
symmetric torsion T F := 2τ v|F .

Proposition 3.11. The composition of the curvature tensor Rτ : Λ2 TM → Λ2VM ⊕Λ2HM
with the projection on the first summand Λ2VM is ∇τ -parallel. In particular, ∇F has par-
allel curvature and parallel skew-symmetric torsion, so F is (locally) a naturally reductive
homogeneous space.

Proof. In order to keep the notation simple, we will identify here k-representations with the
associated bundles over M , and notice that every k-invariant object corresponds to a ∇τ -
parallel section on M . Since so(vj) ∩ k is trivial for each irreducible summand vj of v, [7,
Thm. 4.4] shows by immediate induction on the number of components vj that the space
K(k) of algebraic curvature tensors with values in k satisfies

(9) K(k) ⊂ Sym2(k) ∩ Sym2(so(h)) ⊂ Sym2(so(h)).

Decompose Sym2(k) orthogonally into K(k) ⊕ K(k)⊥ and write Rτ = Rτ
0 + Rτ

1 for the cor-
responding decomposition of the curvature tensor of ∇τ . The Bianchi map b : Sym2(k) →
Λ4(h⊕v) is of course k-invariant. Since its kernel isK(k), there exists a k-invariant isomorphism
called b−1 from b(Sym2(k)) to K(k)⊥, and (3) shows that Rτ

1 = −b−1b(τ 2). Consequently,
∇τRτ

1 = 0 since τ ist ∇τ -parallel.

Consider now the projection πso(v) : so(h⊕v)→ so(v). By (9) we have πso(v)◦Rτ = πso(v)◦Rτ
1

and therefore ∇τ (πso(v) ◦ Rτ ) = 0. In particular, restricting this equation to F shows that
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∇F is a metric connection for which both the (skew-symmetric) torsion T F and curvature
RF are parallel, so by the Ambrose-Singer theorem [5] F is (locally) a naturally reductive
homogeneous space.

�

Remark 3.12. If one of the summands in the standard decomposition TM = HM ⊕VM is
trivial, then either HM = 0 and (M, g) is locally a naturally reductive homogeneous space by
Proposition 3.11, or VM = 0, in which case Lemma 3.2 and Lemma 3.5 show that (M, g) is
locally a product of irreducible geometries with torsion. By [7], each factor is either naturally
reductive homogeneous, or has a nearly Kähler structure in dimension 6, or a nearly parallel
G2-structure in dimension 7.

We will thus implicitly assume from now on that the standard decomposition TM =
HM ⊕ VM is non-trivial.

4. Geometries with parallel curvature

We have seen that the base space N of the standard submersion (Definition 3.7) M → N
of a manifold M with parallel skew-symmetric torsion carries again a geometry with parallel
skew-symmetric torsion. In this section we will show that this geometry carries additional
structure.

4.1. Connections on principal bundles. For the convenience of the reader we collect here
some notation and well known formulas about principal bundles and connections. The reader
familiar with this topic can skip to §4.2.

Let K be a Lie group, M a manifold of dimension n and π : Q → M a K-principal
fibre bundle over M . We consider a connection 1-form α ∈ Ω1(Q, k) with curvature form
Ωα ∈ Ω2(Q, k), defined as the horizontal part of dα. The curvature form is given by

(10) Ωα = dα + 1
2
α ∧ α ,

where (α ∧ α)(U, V ) := 2[α(U), α(V )] for U, V ∈ TQ.

We assume from now on that g is a Riemannian metric on M and that Q is a sub-bundle
of the orthonormal frame bundle of M (in particular K is a subgroup of the orthogonal group
O(n)). Then points u ∈ Q can be considered as linear isomorphisms u : Rn → Tπ(u)M . The
canonical (or soldering) 1-form θ ∈ Ω1(Q,Rn) is defined by θu(U) = u−1(π∗U). Similar to the
curvature, the torsion form Θ ∈ Ω2(Q,Rn) satisfies the equation

(11) Θ = dθ + α ∧ θ ,

where (α∧θ)(U, V ) := α(U)(θ(V ))−α(V )(θ(U)). Equations (10) and (11) are called structure
equations.

We define the horizontal and vertical distributions on Q by Thor
u Q := ker(αu) and Tk

uQ :=
ker(π∗), so that TQ = ThorQ ⊕ TkQ. A vector field X on M induces a unique vector field
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X̃ on Q tangent to ThorQ such that X and X̃ are π-related. This vector field is called the
horizontal lift of X.

To every vector field X on M one can also associate a Rn-valued function X̂ on Q defined
by X̂(u) := u−1Xπ(u). The connection α induces a covariant derivative ∇α on TM which
satisfies

(12) (∇α
XY )π(u) = u(X̃(Ŷ ))

for every vector fields X, Y on M and u ∈ Q (see [14], Lemma on p. 115).

Comparing ∇α to the Levi-Civita connection ∇g of g, we can write ∇α
XY = ∇g

XY + τXY
on every vector fields X, Y on M for some (2, 1) tensor τ . Since ∇α is actually determined
by the tensor τ , we will from now on denote it by ∇τ .

The curvature and torsion of ∇τ defined by

Rτ
X,YZ := ∇τ

X∇τ
YZ −∇τ

Y∇τ
XZ −∇τ

[X,Y ]Z, T τXY := ∇τ
XY −∇τ

YX − [X, Y ].

for every vector fields X, Y, Z on M , are related to the curvature and torsion forms of α by
the standard formulas (see [14], Prop. 5.2 Ch. III):

(13) Ωα
u(X̃, Ỹ )(u−1Z) = u−1(Rτ

X,YZ), Θu(X̃, Ỹ ) = u−1(T τ (X, Y )), ∀u ∈ Q .

More generally, if V is a representation space of K and VM is the associated vector bundle,
every element u ∈ Q defines tautologically a linear isomorphism between V and VMπ(u) and
every section σ of VM determines a V -valued function σ̂ on Q defined by σ̂(u) := u−1σπ(u).
The covariant derivative on VM induced by α satisfies

(14) (∇α
Xσ)π(u) = u(X̃(σ̂)), ∀u ∈ Q, ∀X ∈ Tπ(u)M ,

and the curvature tensor of ∇α is related to the curvature form Ωα by the classical formula

(15) Ωα
u(X̃, Ỹ ) = u−1Rα

X,Y , ∀u ∈ Q, ∀X, Y ∈ Tπ(u)M .

Any Lie algebra element A ∈ k induces a vertical vector field A∗ on Q defined at u ∈ Q by
A∗u := d

dt

∣∣
t=0

(u · exp(tA)). By definition of the connection we have α(A∗) = A. The vector
field A∗ is also called fundamental vector field. As Q is a subbundle of the frame bundle of

M , then any ξ ∈ Rn induces a horizontal vector field ξ∗ defined at u ∈ Q by ξ∗u := ũξ. Note
that θ(ξ∗) = ξ. The vector field ξ∗ is called standard horizontal vector field. It is easy to
check that for A,B ∈ k and ξ ∈ Rn we have

(16) [A∗, B∗] = [A,B]∗, [A∗, ξ∗] = (Aξ)∗ .

Note that for every ζ1, ζ2, ζ3 ∈ Rn and u ∈ Q, formulas (13) read

(17) Ωα
u(ζ∗1 , ζ

∗
2 )(ζ3) = u−1(Rτ

uζ1,uζ2
uζ3), Θu(ζ

∗
1 , ζ
∗
2 ) = u−1(T τ (uζ1, uζ2)) ,

or equivalently

(18) Ωα(ζ∗1 , ζ
∗
2 )(ζ3) = R̂τ

ζ1,ζ2ζ3, Θ(ζ∗1 , ζ
∗
2 ) = T̂ τ (ζ1, ζ2) .
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Lemma 4.1. For every ζ1, ζ2, ζ3, ζ4 ∈ Rn and u ∈ Q, the covariant derivative of the torsion
and curvature tensors of ∇τ satisfy

(∇τ
uζ1
T τ )(uζ2, uζ3) = u(ζ∗1 (Θ(ζ∗2 , ζ

∗
3 )))(19)

(∇τ
uζ1
Rτ )uζ2,uζ3uζ4 = u(ζ∗1 (Ωα(ζ∗2 , ζ

∗
3 )(ζ4))) .(20)

Proof. Applying (14) to σ = T τ and σ = Rτ and using (17) we readily obtain

(∇τ
uζ1
T τ )(uζ2, uζ3) = u(ζ∗1 (T̂ τ ))(uζ2, uζ3) = u(ζ∗1 (T̂ τ )(ζ2, ζ3))) = u(ζ∗1 (Θ(ζ∗2 , ζ

∗
3 ))) ,

and

(∇τ
uζ1
Rτ )uζ2,uζ3uζ4 = u(ζ∗1 (R̂τ ))uζ2,uζ3uζ4 = u(ζ∗1 (R̂τ )ζ2,ζ3ζ4)) = u(ζ∗1 (Ωα(ζ∗2 , ζ

∗
3 )(ζ4))) .

�

4.2. The geometry of the standard submersion. Let us now return to a geometry with
parallel skew-symmetric torsion (M, gM , τ). We fix some orthonormal frame u on M and
denote with K the holonomy group of ∇τ at u, with k its Lie algebra, and with πM : Q→M
the reduction of the frame bundle of M to a principal K-fibre bundle. From Remark 3.12
we can assume that the representation of K on Rn is reducible. We denote like before by
TM = HM ⊕ VM the standard decomposition of the tangent bundle of M (which is a ∇τ -
parallel and orthogonal splitting) and denote correspondingly by Rn = h⊕ v the k-invariant
decomposition of Rn.

Our first aim is to define a Lie algebra structure on l := k ⊕ v induced from the Lie
algebra structure on the space of vector fields on Q by the injective map Φ : l = k ⊕ v →
Γ( TQ), A+ ξ 7→ A∗ + ξ∗, for A ∈ k and ξ in v.

Lemma 4.2. The image of the map Φ is closed under the bracket of vector fields.

Proof. Since [A∗, B∗] = [A,B]∗ for A,B ∈ k and [A∗, ξ∗] = (Aξ)∗ for A ∈ k and ξ ∈ v, it only
remains to consider the bracket of the fundamental vertical vector fields induced by ξ1, ξ2 ∈ v.
Denoting by α ∈ Ω1(Q, k) the connection 1-form induced by ∇τ , the structure equations (10)
and (11) imply

(21) θu([ξ
∗
1 , ξ
∗
2 ]) = −Θu(ξ

∗
1 , ξ
∗
2) and αu([ξ

∗
1 , ξ
∗
2 ]) = −Ωα

u(ξ∗1 , ξ
∗
2), ∀ ξ1, ξ2 ∈ v .

Using the fact that the torsion of τ is ∇τ -parallel, together with (19), we see that for every
ζ1, ζ2 ∈ Rn = h⊕v, the function u 7→ Θu(ζ

∗
1 , ζ
∗
2 ) is constant along horizontal curves in Q, thus

constant on Q since every two points of Q can be joined by a horizontal curve. Consequently,
there exists an element T ∈ Λ3Rn such that

(22) Θu(ζ
∗
1 , ζ
∗
2 ) = T (ζ1, ζ2), ∀ ζ1, ζ2 ∈ Rn, ∀ u ∈ Q .

Moreover, by Lemma 3.5 we have T ∈ Λ3h⊕ (Λ2h⊗ v)⊕ Λ3v ⊂ Λ3Rn.
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Similarly, using the fact that the projection of the curvature tensor Rτ to Λ2(VM) is ∇τ -
parallel (Proposition 3.11), together with the pair symmetry of Rτ (Lemma 2.2) and (20), we
obtain the existence of elements R1 ∈ Λ2v⊗ k and R2 ∈ Λ2Rn ⊗ so(v) such that

(23) Ωα
u(ξ∗1 , ξ

∗
2) = R1(ξ1, ξ2) ∀ ξ1, ξ2 ∈ v, ∀ u ∈ Q .

and

(24) ρ∗Ω
α
u(ζ∗1 , ζ

∗
2 ) = R2(ζ1, ζ2), ∀ ζ1, ζ2 ∈ Rn, ∀ u ∈ Q ,

where ρ∗ : k→ so(v) is the differential of the Lie group morphism ρ : K → SO(v) obtained by
restricting to v the standard representation of the holonomy group K of ∇τ on Rn = h⊕ v.

The above equations (21), (22) and (23) yield

(25) [ξ∗1 , ξ
∗
2 ] = −T (ξ1, ξ2)∗ − R1(ξ1, ξ2)∗ ,

thus proving the lemma.

�

Hence we can define the Lie bracket on l = k⊕ v extending the one on k by

(26) [A, ξ] := Aξ and [ξ1, ξ2] := −T (ξ1, ξ2) − R1(ξ1, ξ2) .

The Euclidean scalar product on Rn induces scalar products on v ⊂ Rn and on k ⊂ so(n),
as well as a scalar product 〈·, ·〉 on l making the direct sum l = k⊕ v orthogonal. This scalar
product is clearly k-invariant. Moreover, since T is skew-symmetric, (26) yields

(27) 〈[ξ1, ξ2], ξ3〉+ 〈ξ2, [ξ1, ξ3]〉 = 0

for every ξ1, ξ2, ξ3 ∈ v.

The decomposition TQ = ThorQ⊕ TkQ of the tangent bundle of Q given by the connection
α can now be refined as

TQ = ThQ⊕ TvQ⊕ TkQ ,

where ThQu = {η∗u | η ∈ h}, TvQu = {ξ∗u | ξ ∈ v} and TkQu = ker(πM)∗ = {A∗u | A ∈ k}.
The map Φ : l → Γ( TQ) is by definition of the Lie algebra structure on l a Lie algebra
homomorphism, i.e. it defines a structure of an infinitesimal l-principal bundle on Q over
some locally defined manifold N , whose fibers are the leaves of the integrable distribution
Φ(l) = TvQ⊕ TkQ of Q. Since (πM)−1

∗ (VM) = TvQ⊕ TkQ, this locally defined manifold N
is the same as the locally defined manifold N introduced in the previous section.

Lemma 3.6 shows that the metric of M projects to a metric gN on N with Levi-Civita
covariant derivative denoted by ∇gN . Moreover, Lemma 3.9 shows that the horizontal part
τ h of τ projects to a 3-form σ on N defining a covariant derivative ∇σ := ∇gN + σ with
parallel skew-symmetric torsion.

We will now introduce a connection on the principal bundle Q over N . By definition,
the connection 1-form α of the K-principal bundle Q over M is K-equivariant, i.e. R∗aα =
Ad a−1(α) for every a ∈ K. Differentiating this at the identity we get

(28) (LA∗α)(U) = −[A,α(U)], ∀ A ∈ k, ∀ U ∈ Γ( TQ) .
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Let θ = θh + θv be the decomposition of the canonical 1-form θ with respect to the decom-
position Rn = h ⊕ v. Since θ is K-equivariant, and the representation of K on Rn = h ⊕ v
preserves the decomposition, we obtain that θv is K-equivariant too, whence

(29) (LA∗θv)(U) = −A(θv(U)), ∀ A ∈ k, ∀ U ∈ Γ( TQ) .

Let Θv ∈ Ω2(Q, v) and Θh ∈ Ω2(Q, h) denote the projections of Θ on v and h, so that
Θ = Θh + Θv. The K-invariance of v and h together with the structure equation (11) shows
that

(30) Θv = dθv + α ∧ θv, Θh = dθh + α ∧ θh .

Lemma 4.3. The 1-form β := α + θv ∈ Ω1(Q, l) is a connection form on Q with respect to
the infinitesimal l–principal bundle structure, i.e. it satisfies β(B∗) = B for every B ∈ l and

(31) (LB∗β)(U) = −[B, β(U)], ∀ B ∈ l, ∀ U ∈ Γ( TQ) .

Proof. The relation β(B∗) = B is tautological from the definition of the infinitesimal action
of l on Q. Indeed, if B = A+ ξ ∈ k⊕ v then

β(B) = (α + θv)(A∗ + ξ∗) = α(A∗) + θv(ξ∗) = A+ ξ = B.

Equation (31) follows from (28) and (29) when B ∈ k. It remains to check it when B = ξ
is a vector in v. By tensoriality and linearity, it is sufficient to consider three cases: when
U = A∗ for some A ∈ k, U = ξ∗1 for ξ1 ∈ v and U = η∗ for η ∈ h. Since β(U) is constant in
each of these cases, we get:

(Lξ∗β)(A∗) = −β([ξ∗, A∗]) = −β([ξ, A]∗) = −[ξ, A] = −[ξ, β(A∗)]

(Lξ∗β)(ξ1
∗) = −β([ξ∗, ξ1

∗]) = −β([ξ, ξ1]∗) = −[ξ, ξ1] = −[ξ, β(ξ1
∗)]

(Lξ∗β)(η∗) = −β([ξ∗, η∗]) = dβ(ξ∗, η∗) .

As β(η∗) = 0, we have [ξ, β(η∗)] = 0, and it remains to check that dβ(ξ∗, η∗) = 0. From (10)
and (30) we get

dβ(ξ∗, η∗) = dα(ξ∗, η∗) + dθv(ξ∗, η∗) = Ωα(ξ∗, η∗) + Θv(ξ∗, η∗).

For every u ∈ Q we denote by X := u(ξ) and Y := u(η) the corresponding tangent vectors
to M . Then by definition X̃u = ξ∗u and Ỹu = η∗u. Using (17) we infer

Ωα(ξ∗, η∗)u + Θv(ξ∗, η∗)u = u−1(Rτ
X,Y + πVMT

τ (X, Y )),

where πVM denotes the orthogonal projection of TM onto VM . Since X ∈ HM and Y ∈ VM ,
the right hand side term vanishes from the pair symmetry of Rτ (Lemma 2.2) and the fact
that T τ has no component in Λ2VM ⊗HM (Lemma 3.5).

�

Since β is a connection form on Q over N , it follows that its curvature form Ωβ is equivari-
ant, i.e.

(32) (LB∗Ωβ)(U, V ) = −[B,Ωβ(U, V )], ∀ B ∈ l, ∀ U, V ∈ Γ( TQ) .
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As β = α + θv, (10) and (30) yield the following decomposition of the curvature form Ωβ:

(33) Ωβ = dβ+ 1
2
β∧β = (dα+ 1

2
α∧α) + (dθv+α∧θv) + 1

2
(θv∧θv) = Ωα+Θv+ 1

2
(θv∧θv) .

Since θv vanishes on ThQ, projecting the above formula on v yields

(34) Ωβ(η∗1, η
∗
2)v = Θ(η∗1, η

∗
2)v, ∀ η1, η2 ∈ h .

For later use, we note that since the torsion T τ is skew-symmetric, we have for every η1, η2 ∈ h
and ξ ∈ v:

〈Θ(η∗1, η
∗
2), ξ〉 = −〈Θ(η∗1, ξ

∗), η2〉 = −〈dθ(η∗1, ξ∗), η2〉 = 〈θ([η∗1, ξ∗]), η2〉 ,
whence

(35) 〈θ([η∗1, ξ∗]), η2〉 = 〈Ωβ(η∗1, η
∗
2), ξ〉, ∀ η1, η2 ∈ h, ∀ ξ ∈ v .

4.3. The reduction procedure. It turns out that the connection β on the principal bundle
Q over N does not have the properties that we would need: some components of its curvature,
viewed as a 2-form with values in the adjoint bundle, are parallel but not all of them. This
is because the structure group L is too large, and contains some unnecessary information.
We will now apply a reduction procedure, which will eventually lead to the desired construc-
tion: a principal fibre bundle over N with parallel curvature (plus some further properties),
containing enough information in order to recover the geometry of M .

Consider the linear map

(36) λ∗ : l = k⊕ v→ so(v)⊕ v, λ∗ = ρ∗ ⊕ id

where ρ∗ denotes as before the differential of the Lie group morphism ρ : K → SO(v). Clearly
the kernel of λ∗ is an ideal of the Lie algebra l (being equal to the kernel of the Lie algebra
morphism ρ∗). Consequently, there is a unique Lie algebra structure on g := im(λ∗) making
λ a Lie algebra morphism. We denote by L and G the simply connected Lie groups with Lie
algebras l and g respectively, and by λ : L → G the group morphism whose differential at
the identity is λ∗. For later use, we denote by k1 ⊂ so(v) the image of k by λ∗:

(37) k1 := λ∗(k) ⊂ g = k1 ⊕ v.

Consider the associated G-principal bundle

(38) P := Q×λ G
over N and the canonical principal bundle morphism f : Q→ P given by f(u) := [u, 1]. We
clearly have f(ua) = f(u)λ(a) for every u ∈ Q and a ∈ L. At the infinitesimal level, this
reads f∗(A

∗
u) = (λ∗(A))∗f(u) for every u ∈ Q and A ∈ l. In particular, this shows that the

vertical vector field A∗ on Q is f -related to the vertical vector field (λ∗(A))∗ on P .

From the general theory of principal bundle morphisms, the connection form β ∈ Ω1(Q, l)
induces a connection 1-form called γ ∈ Ω1(P, g). These 1-forms and their corresponding
curvature forms are related by

(39) f ∗γ = λ∗β, f ∗Ωγ = λ∗Ω
β .
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We denote by ad(P ) := P ×Ad g the adjoint bundle associated to P via the adjoint rep-
resentation of G on g, by ∇γ the covariant derivative induced by γ on ad(P ) and by Rγ the
section of Λ2 TN ⊗ ad(P ) corresponding to the equivariant curvature form Ωγ of P .

Lemma 4.4. The covariant derivative of Rγ with respect to ∇σ ⊗∇γ is given by:

(40) ((∇σ ⊗∇γ)XR
γ)(Y, Z) = u

(
X̃(Ωγ(Ỹ , Z̃))− Ωγ(∇̃σ

XY , Z̃)− Ωγ(Ỹ , ∇̃σ
XZ)

)
,

for every vector fields X, Y, Z on N .

Proof. Every vector fields Y, Z ∈ Γ( TN) define a section σ := Rγ(Y, Z) of ad(P ). The
corresponding g-valued map σ̂ on P defined in §4.1 is σ̂ = Ωγ(Ỹ , Z̃), since by (15):

(41) uΩγ(Ỹ , Z̃) = Rγ(Y, Z), ∀u ∈ P .

Using (14) and (41) we thus get

((∇σ ⊗∇γ)XR
γ)(Y, Z) = ∇γ

X(Rγ(Y, Z))−Rγ(∇σ
XY, Z)−Rγ(Y,∇σ

XZ)

= u
(
X̃(Ωγ(Ỹ , Z̃))− Ωγ(∇̃σ

XY , Z̃)− Ωγ(Ỹ , ∇̃σ
XZ)

)
.

�

Corollary 4.5. The section Rγ of Λ2 TN ⊗ ad(P ) is parallel with respect to ∇σ ⊗∇γ.

Proof. The morphism f : Q → P of principal bundles over N maps horizontal lifts to hori-
zontal lifts, so by (39) and Lemma 4.4, the condition (∇σ ⊗∇γ)Rγ = 0 is equivalent to the
following equation on Q

(42) λ∗

(
X̃(Ωβ(Ỹ , Z̃))− Ωβ(∇̃σ

XY , Z̃)− Ωβ(Ỹ , ∇̃σ
XZ)

)
= 0, ∀ X, Y, Z ∈ Γ( TN) .

Let YN be a vector field on N with horizontal lift YM to a vector field on M . It is clear that
the horizontal lifts of YN and YM to vector fields on Q coincide. Thus we may write ỸM = ỸN
for this horizontal lift. We fix a frame u ∈ Q and write η1 = u−1(YM), η2 = u−1(ZM). Then
ỸN = ỸM = ũη1 = η∗1 and similarly for Z̃N .

Recall now the existence of an element R2 ∈ Λ2Rn⊗ so(v) which by (24) applied to vectors
ζi := ηi ∈ h satisfies

R2(η1, η2) = (ρ∗Ω
α)(η∗1, η

∗
2) = (ρ∗Ω

α)(ũη1, ũη2), ∀ η1, η2 ∈ h .

This relation can be equivalently written ρ∗Ω
α(ỸM , Z̃M) = R2(u−1YM , u

−1ZM) and taking the
derivative in the direction direction of X̃M gives

X̃M(ρ∗Ω
α(ỸM , Z̃M)) = R2(X̃M(u−1YM), u−1ZM) + R2(u−1YM , X̃M(u−1ZM))

= R2(u−1(∇τ
XM

YM), u−1ZM) + R2(u−1YM , u
−1(∇τ

XM
ZM))

= ρ∗Ω
α(∇̃τ

XM
YM , Z̃M) + ρ∗Ω

α(ỸM , ∇̃τ
XM

ZM)
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In this equation we may replace the horizontal lifts of XM , YM , ZM by the horizontal lifts of

XN , YN , ZN . Moreover it follows from O’Neill’s formula that ∇̃τ
XM

YM = ∇̃σ
XN
YN . Hence

(43) X̃N(ρ∗Ω
α(ỸN , Z̃N)) − ρ∗Ω

α(∇̃σ
XN
YN , Z̃N) − ρ∗Ω

α(ỸN , ∇̃σ
XN
ZN) = 0 .

Since the torsion τ is ∇τ -parallel, a similar argument, followed by a projection on v, gives
the equation

(44) X̃N(Θv(ỸN , Z̃N)) − Θv(∇̃σ
XN
YN , Z̃N) − Θv(ỸN , ∇̃σ

XN
ZN) = 0 .

Finally, since θv vanishes on ThQ, (33) shows that for every vectors U, V ∈ ThQ one has
λ∗Ω

β(U, V ) = ρ∗Ω
α(U, V ) + Θv(U, V ), so (42) follows from (43) and (44).

�

Lemma 4.6. For all vector fields U, V ∈ ThorP := ker(γ) and vectors ξ1, ξ2 ∈ v, the following
formula holds:

0 = 〈[Ωγ(U, V ), ξ2], ξ1〉+ 〈Ωγ
ξ1

(V ),Ωγ
ξ2

(U)〉 − 〈Ωγ
ξ1

(U),Ωγ
ξ2

(V )〉,

where Ωγ
ξi

is the endomorphism of the horizontal distribution ThorP defined by

〈Ωγ(U, V ), ξi〉 = (π∗Ng
N)(Ωγ

ξi
(U), V ), ∀ U, V ∈ ThorP .

Proof. As a consequence of (34) we see that the function u 7→ 〈Ωβ(η∗1, η
∗
2), ξ1〉 is constant on

Q for any η1, η2 ∈ h and ξ1 ∈ v. Taking the Lie derivative with respect to ξ2
∗ for some ξ2 ∈ v

and using (32) yields

0 = ξ2
∗(〈Ωβ(η∗1, η

∗
2), ξ1〉) = −〈[ξ2,Ω

β(η∗1, η
∗
2)], ξ1〉+〈Ωβ([ξ2

∗, η∗1], η∗2), ξ1〉+〈Ωβ(η∗1, [ξ2
∗, η∗2]), ξ1〉 .

On the other hand, (35) shows that the horizontal part of [ξ2
∗, η∗i ] equals −Ωβ

ξ2
(η∗i ), where Ωβ

ξi

is the endomorphism of ThQ defined by

〈Ωβ(X, Y ), ξi〉 = π∗Mg
M(Ωβ

ξi
(X), Y ), ∀ X, Y ∈ ThQ .

The above formula can thus be rewritten as

0 = 〈[Ωβ(η∗1, η
∗
2), ξ2], ξ1〉+ 〈Ωβ

ξ1
(η∗2),Ωβ

ξ2
(η∗1)〉 − 〈Ωβ

ξ1
(η∗1),Ωβ

ξ2
(η∗2)〉, ∀ η1, η2 ∈ h ,

or equivalently

0 = 〈[Ωβ(X, Y ), ξ2], ξ1〉+ 〈Ωβ
ξ1

(Y ),Ωβ
ξ2

(X)〉 − 〈Ωβ
ξ1

(X),Ωβ
ξ2

(Y )〉, ∀ X, Y ∈ ThQ .

The result follows from this formula, together with (39), by noticing that f∗ maps each space
ThQu isomorphically onto ThorPf(u).

�

In view of the above results it makes sense to introduce the following:
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Definition 4.7. A geometry with parallel curvature (N, gN , σ, P, g, γ, k1) is defined by a Rie-

mannian manifold (N, gN) with Levi-Civita covariant derivative ∇gN , carrying a metric co-

variant derivative∇σ := ∇gN+σ with parallel skew-symmetric torsion T σ = 2σ, and a (locally
defined) G-principal bundle pN : P → N endowed with a connection form γ ∈ Ω1(P, g), where
g is the Lie algebra of G, such that the following properties hold:

(i) If ∇γ denotes the covariant derivative induced by γ on ad(P ), then the section Rγ

of Λ2 TN ⊗ ad(P ) defined by the curvature form Ωγ of γ is parallel with respect to
∇σ ⊗∇γ;

(ii) There exists a Lie sub-algebra k1 ⊂ g of compact type and a k1-invariant scalar product
〈., .〉 on g such that the isotropy representation of k1 on v := k⊥1 is faithful, and the
splitting g = k1 ⊕ v is naturally reductive, i.e. 〈[ξ1, ξ2], ξ3〉+ 〈ξ2, [ξ1, ξ3]〉 = 0 for every
ξ1, ξ2, ξ3 ∈ v;

(iii) For every local section u of P , ξ1, ξ2 ∈ v, and X, Y ∈ Γ( TN), the following relation
holds:

(45) gN(Rγ
uξ2

(X), Rγ
uξ1

(Y ))− gN(Rγ
uξ2

(Y ), Rγ
uξ1

(X)) + 〈[u−1Rγ
X,Y , ξ2], ξ1〉 = 0 ,

where for every ξ ∈ v, Rγ
uξ is the endomorphism of TN defined by

(46) 〈u−1Rγ
X,Y , ξ〉 =: gN(Rγ

uξ(X), Y ), ∀ X, Y ∈ TN .

One can summarize the results of this section in the following:

Theorem 4.8. Let (Mn, g, τ) be a geometry with parallel skew-symmetric torsion (Definition
2.1), with standard decomposition TM = HM⊕VM (Definition 3.4). Then the base N of the
standard submersion (Definition 3.7) carries a geometry with parallel curvature (Definition
4.7) canonically induced by the geometry of M .

Proof. Consider the (locally defined) standard submersion π : M → N . From Lemma 3.6,
there exists a unique Riemannian metric gN on N making π into a Riemannian submersion.
Lemma 3.9 and Remark 3.10 show that there exists a unique 3-form σ on N such that
π∗σ = τ h, and the connection ∇σ = ∇gN + σ has parallel skew-symmetric torsion T σ = 2σ.
The group G, the G-principal bundle P over N , the connection γ on P and the Lie sub-algebra
k1 of g were constructed in (36), (38), (39) and (48) respectively. The properties (i) − (iii)
from Definition 4.7 follow from Corollary 4.5, Equation (27) and Lemma 4.6 respectively.

�

5. The inverse construction

The aim of this section is to prove the following converse of Theorem 4.8:

Theorem 5.1. Let (N, gN , σ, P, g, γ, k1) be a geometry with parallel curvature, and let Tk1P
be the integrable distribution of TP spanned at each point by fundamental vertical vector fields
A∗ with A ∈ k1. Then the manifold M , locally defined as the space of leaves of Tk1P , carries
a geometry with parallel skew-symmetric torsion (g, τ).
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Proof. Let us start by deriving a formula which will be necessary later on. The fact that
Rγ is parallel with respect to ∇σ ⊗∇γ, together with Lemma 4.4, and the Bianchi identity
dΩγ = −γ ∧ Ωγ, shows that for all vector fields X, Y, Z on N we have

0 = SXY Z

(
X̃(Ωγ(Ỹ , Z̃)) − Ωγ([̃X, Y ], Z̃)

)
= SXY Z

(
Ωγ(∇̃σ

XY , Z̃) + Ωγ(Ỹ , ∇̃σ
XZ) − Ωγ([̃X, Y ], Z̃

)
= SXY Z

(
Ωγ(∇̃σ

XY , Z̃) + Ωγ(Z̃, ∇̃σ
YX) − Ωγ([̃X, Y ], Z̃

)
= 2SXY Z Ωγ( ˜σ(X, Y ), Z̃)

as ∇σ
XY −∇σ

YX − [X, Y ] = ∇gN

X Y −∇gN

Y X − [X, Y ] + 2σ(X, Y ) = 2σ(X, Y ). We thus obtain

(47) SXY Z Ωγ( ˜σ(X, Y ), Z̃) = 0, ∀X, Y, Z ∈ TN .

Step 1. We define a Riemannian metric gP on the total space of P by

gP (U, V ) = (p∗Ng
N)(U, V ) + 〈γ(U), γ(V )〉 .

In this way, the projection pN : P → N becomes a Riemannian submersion. The tangent
bundle TP splits into a gP -orthogonal direct sum of distributions TP = ThorP⊕TvP⊕Tk1P ,
where ThorP := ker(γ) is spanned at each point by horizontal lifts X̃ of vector fields X on N ,
and TvP and Tk1P are spanned at each point by fundamental vertical vector fields A∗ with
A ∈ v and A ∈ k1 respectively. The Levi-Civita connection of gP can be easily computed
using these adapted vector fields. By definition,

gP (X̃, Ỹ ) = gN(X, Y ), gP (X̃, A∗) = 0, gP (A∗, B∗) = 〈A,B〉 .
Moreover, since γ([X̃, Ỹ ]) = −dγ(X̃, Ỹ ) = −Ωγ(X̃, Ỹ ), we obtain

[A∗, B∗] = [A,B]∗, [A∗, X̃] = 0, [X̃, Ỹ ] = [̃X, Y ]− Ωγ(X̃, Ỹ )∗ .

The Koszul formula immediately implies that the Levi-Civita connection ∇gP of gP is given
by

∇gP

X̃
Ỹ = ∇̃gN

X Y − 1
2

Ωγ(X̃, Ỹ )∗(48)

∇gP

X̃
A∗ = ∇gP

A∗X̃ = 1
2

Ωγ
A(X̃)(49)

gP (∇gP

A∗B∗, X̃) = 0(50)

gP (∇gP

A∗B∗, C∗) = 1
2

(〈[A,B], C〉 − 〈[B,C], A〉 + 〈[C,A], B〉)(51)

where∇gN denotes the Levi-Civita covariant derivative of (N, gN) and Ωγ
A(X̃) is the horizontal

vector field of P satisfying gP (Ωγ
A(X̃), Ỹ ) = 〈Ωγ(X̃, Ỹ ), A〉 for each vector field Y ∈ Γ( TN).

Of course, this definition of Ωγ
A(X̃) coincides with the one in (46) when A ∈ v.

Step 2. We show that the metric gP projects to a metric gM on M making the (locally
defined) projection pM : P → M a Riemannian submersion with totally geodesic fibres
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tangent to Tk1P . The distribution Tk1P is totally geodesic by (50) and (51), and the fact
that [k1, v] ⊂ v.

It remains to show that the restriction h of gP to ThorP ⊕ TvP is constant in Tk1P -
directions, that is, (LA∗h)(U, V ) = 0 for every A ∈ k1 and U, V ∈ Γ( TP ). Note first that

h(∇gP

U A∗, V ) = U(h(A∗, V ))− h(A∗,∇gP

U V ) = 0.

We thus obtain

(LA∗h)(U, V ) = A∗(h(U, V ))− h([A∗, U ], V )− h(U, [A∗, V ])

= (∇gP

A∗h)(U, V ) + h(∇gP

U A∗, V ) + h(U,∇gP

V A∗)

= (∇gP

A∗h)(U, V ).

Since Tk1P is totally geodesic, it is clear that this last term vanishes when U or V are

tangent to Tk1P . Hence, to check the vanishing of ∇gP

A∗h, it is sufficient to consider the cases

(U, V ) = (X̃, Ỹ ), (U, V ) = (X̃, ξ∗) and (U, V ) = (ξ∗, ξ1
∗), where X, Y are vector fields on N

and ξ, ξ1 ∈ v. Using (48)–(51) and the fact that A∗(h(U, V )) = 0 for the above chosen vector
fields (U, V ) and A ∈ k1, we get:

(∇gP

A∗h)(X̃, Ỹ ) = −h(∇gP

A∗X̃, Ỹ )− h(X̃,∇gP

A∗Ỹ )

= −1
2

(
gP (Ωγ

A(X̃), Ỹ ) + gP (X̃,Ωγ
A(Ỹ ))

)
= −1

2

(
〈Ωγ(X̃, Ỹ ), A〉+ 〈Ωγ(Ỹ , X̃), A〉

)
= 0 ,

(∇gP

A∗h)(X̃, ξ∗) = −h(∇gP

A∗X̃, ξ∗)− h(X̃,∇gP

A∗ξ∗) = 0 ,

(∇gP

A∗h)(ξ∗, ξ1
∗) = −h(∇gP

A∗ξ∗, ξ1
∗)− h(ξ∗,∇gP

A∗ξ1
∗) = 0 .

Step 3. We define a 3-form τP on P which projects onto a 3-form τ on M . Let γ = γk1 +γv

be the decomposition of the connection form γ corresponding to the decomposition g = k1⊕v.
Inspired by formulas (34) and (35) in the previous section, we define

(52) τP = τ1 + τ2 + τ3 ,

where

τ1(U, V,W ) := (p∗Nσ)(U, V,W ) ,(53)

τ2(U, V,W ) := 1
2
SUVW 〈Ωγ(U, V ), γv(W )〉 ,(54)

τ3(U, V,W ) := − 1
2
〈[γv(U), γv(V )], γv(W )〉 .(55)

Note that the 3-form τ3 is skew-symmetric because of the natural reductivity of the decompo-
sition g = k1⊕ v. The 3-form τP is clearly horizontal with respect to pM , in the sense that it
vanishes whenever one of the entries belongs to Tk1P . In order to show that it is projectable
onto M , it suffices to show that its Lie derivative with respect to any fundamental vector
field A∗ with A ∈ k1 vanishes.
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First, it is clear that τ1 is projectable onto N , so LA∗τ1 = 0 for every A ∈ g. Using the
equivariance of γ we have as before

(LA∗γ)(U) = −[A, γ(U)], (LA∗Ωγ)(U, V ) = −[A,Ωγ(U, V )], ∀ A ∈ g, ∀ U, V ∈ Γ( TP ) .

In particular, when A ∈ k1, the bracket with A preserves the decomposition g = k1 ⊕ v,
whence

(LA∗γv)(U) = −[A, γv(U)], ∀ A ∈ k1, ∀ U ∈ Γ( TP ) .

Using these relations we can compute

(LA∗τ2)(U, V,W ) = −1
2
SUVW (〈[A,Ωγ(U, V )], γv(W )〉+ 〈Ωγ(U, V ), [A, γv(W )]〉) = 0

since adA is skew-symmetric on g, and finally, using the Jacobi identity, we get

(LA∗τ3)(U, V,W ) = 1
2
〈[[A, γv(U)], γv(V )], γv(W )〉+ 1

2
〈[γv(U), [A, γv(V )]], γv(W )〉

+1
2
〈[γv(U), γv(V )], [A, γv(W )]〉

= 1
2
〈[[γv(V ), γv(U)], A], γv(W )〉 − 1

2
〈[A, [γv(U), γv(V )]], γv(W )]〉 = 0 .

This shows the existence of a 3-form τ on M such that p∗M(τ) = τP .

Step 4. We check that ∇τ := ∇gM + τ has skew-symmetric parallel torsion, where ∇gM

denotes the Levi-Civita covariant derivative of (M, gM). Let us denote by ∇τP = ∇gP + τP .
Since p∗M(τ) = τP and since pM : (P, gP ) → (M, gM) is a Riemannian submersion, we have

∇ττ = 0 if and only if ∇τP τP vanishes whenever applied to vectors in ThorP ⊕ TvP . Since
the vector fields of the form X̃ for X ∈ Γ( TN) span ThorP and vector fields of the form ξ∗

for ξ ∈ v span TvP at each point, we will assume that each of the 4 entries of ∇τP τP is of
one of these types.

First, using (48)–(51) and (53)–(55), we readily compute

∇τP

X̃
Ỹ = ∇̃σ

XY − 1
2

(Ωγ(X̃, Ỹ )k1)∗ ,(56)

∇τP

X̃
ξ∗ = 0 ,(57)

∇τP

ξ∗ X̃ = Ωγ
ξ (X̃) ,(58)

∇τP

ξ∗1
ξ∗2 = 1

2
([ξ1, ξ2]k1)∗ ,(59)

where the superscript k1 in (56) and (59) denotes the projection from g to k1. Now, τ1 vanishes
unless all entries are in ThorP , τ2 vanishes unless two entries are in ThorP and one is in TvP ,
and τ3 vanishes unless all entries are in TvP . From (56)–(59) we see that the only possibly
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non-vanishing terms in ∇τP τP on vectors of the type X̃ or ξ∗ are:

(∇τP

X̃
τ1)(Ỹ1, Ỹ2, Ỹ3) = (∇σ

Xσ)(Y1, Y2, Y3) ,

(∇τP

ξ∗ τ1)(Ỹ1, Ỹ2, Ỹ3) = ξ∗(τ1(Ỹ1, Ỹ2, Ỹ3))−S123(p∗Nσ)(Ωγ
ξ (Ỹ1), Ỹ2, Ỹ3)

= −S123〈Ωγ(Ỹ1, ˜σ(Y2, Y3)), ξ〉 ,

(∇τP

X̃
τ2)(Ỹ , Z̃, ξ∗) = 1

2

(
X̃(〈Ωγ(Ỹ , Z̃), ξ〉)− 〈Ωγ(∇̃σ

XY , Z̃), ξ〉 − 〈Ωγ(Ỹ , ∇̃σ
XZ), ξ〉

)
,

(∇τP

ξ∗1
τ2)(Ỹ , Z̃, ξ∗2) = 1

2

(
ξ∗1(〈Ωγ(Ỹ , Z̃), ξ2〉)− 〈Ωγ(Ωγ

ξ1
(Ỹ ), Z̃), ξ2〉 − 〈Ωγ(Ỹ ,Ωγ

ξ1
(Z̃)), ξ2〉

)
= 1

2

(
−〈[ξ1,Ω

γ(Ỹ , Z̃)], ξ2〉) + 〈Ωγ
ξ1

(Ỹ ),Ωγ
ξ2

(Z̃)〉 − 〈Ωγ
ξ2

(Ỹ ),Ωγ
ξ1

(Z̃)〉
)
,

(∇τP

X̃
τ3)(ξ∗1 , ξ

∗
2 , ξ
∗
3) = −1

2
X̃(〈[ξ1, ξ2], ξ3〉) = 0 ,

(∇τP

ξ∗ τ3)(ξ∗1 , ξ
∗
2 , ξ
∗
3) = −1

2
ξ∗(〈[ξ1, ξ2], ξ3〉) = 0 .

The vanishing of the first four expressions follows from the assumption that ∇σ has parallel
torsion on N and from (47), (40), and (45) respectively.

�

6. Parallel g-structures

We now introduce the following notion, which turns out to be a particular case of geometries
with parallel curvature introduced in Definition 4.7 for the case when the sub-algebra k1 of g
vanishes:

Definition 6.1. Let G be a compact Lie group with Lie algebra g. A parallel g-structure on
a manifold N is given by:

(i) a Riemannian metric gN on N ;
(ii) a locally defined G-principal bundle P → N with adjoint bundle ad(P );

(iii) an adg-invariant scalar product 〈., .〉 on g, thus inducing a scalar product also denoted
by 〈., .〉 on the fibers of ad(P );

(iv) a connection form γ ∈ Ω1(P, g) whose curvature tensorRγ : Λ2 TN → ad(P ) is parallel
with respect to the Levi-Civita connection of gN on Λ2 TN and the connection induced
by γ on ad(P );

(v) a Lie algebra bundle morphism ψ : ad(P ) → Λ2 TN which is the metric adjoint of
−Rγ, in the sense that

(60) gN(ψ(σ), X ∧ Y ) = −〈σ,Rγ
X,Y 〉, ∀ X, Y ∈ TN, ∀ σ ∈ ad(P ) .

Remark 6.2. This definition is in many respects similar to the one of parallel even Clifford
structures introduced in [18, Def. 2.2]. More precisely, a parallel rank r even Clifford structure
on N satisfying the curvature condition in [18, Thm. 3.6 (b)], which up to a factor 2 is exactly
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(60) above, defines a parallel so(r)-structure on N in the sense of Definition 6.1 after rescaling
the scalar product on so(r) by a factor 2.

We denote by ∇N and RN the Levi-Civita covariant derivative and the curvature tensor
of gN . Since by Definition 6.1 (iv), ψ = −(Rγ)∗ is ∇N ⊗∇γ-parallel, we get for every vector
fields X, Y on N and local section σ of ad(P ):

ψ(∇γ
Xσ) = ∇N

X(ψ(σ)) ,

whence after a second covariant derivative and skew-symmetrization:

(61) ψ(Rγ
X,Y σ) = RN

X,Y (ψ(σ)) = [RN
X,Y , ψ(σ)] .

Here the curvature Rγ
X,Y acts on σ by the Lie bracket Rγ

X,Y σ = [Rγ
X,Y , σ] of the Lie algebra

bundle ad(P ). Since ψ is a Lie algebra bundle morphism, (61) equivalently reads

(62) [ψ(Rγ
X,Y ), ψ(σ)] = [RN

X,Y , ψ(σ)]

for all tangent vectors X, Y ∈ TN and σ ∈ ad(P ).

There are several types of natural operations that one can make with parallel g-structures:
products, reductions to ideals of the Lie algebra, restrictions to Riemannian factors of the
manifold, or Whitney products. We will explain these constructions now.

6.1. Products of parallel g-structures. Clearly, if (gNi , Pi, γi, ψi) are parallel gi-structures
on Ni for i = 1, 2, and if g denotes the direct sum g1⊕g2, endowed with the direct sum scalar
product, then (gN1 + gN2 , P1×P2, γ1 +γ2, ψ1 +ψ2) is a parallel g-structure on N1×N2, called
the product g-structure.

Note that this construction also makes sense in the degenerate cases where N2 is a point,
or when g2 = 0 (in which case we call this a 0-structure).

6.2. Reduction to an ideal of the Lie algebra. Assume that (P, γ, ψ) is a parallel g-
structure on (N, gN) and that g1 is an ideal of g. Since 〈., .〉 is adg-invariant, g is a direct sum
of Lie algebras g = g1 ⊕ g2, where g2 := g⊥1 . Since everything is local, one can assume that
G = G1 ×G2, such that the Lie algebra of Gi is gi.

Lemma 6.3. Let G1 and G2 be compact Lie groups with Lie algebras g1 and g2 endowed with
bi-invariant scalar products, and let G := G1×G2, with Lie algebra g = g1⊕g2 endowed with
the direct sum scalar product. Then every parallel g-structure on N with respect to this scalar
product, induces in a canonical way parallel g1- and g2-structures on N .

Proof. Let (gN , P, γ, ψ) be a parallel g-structure on N . One can write the connection form
γ = γ1 + γ2 with γi ∈ Ω1(P, gi) for i = 1, 2. The G-equivariance property of γ

g∗γ = Adg−1γ, ∀g ∈ G
shows that γi are Gi-equivariant, γ1 is G2-invariant and γ2 is G1-invariant. Then P1 := P/G2

and P2 := P/G1 are Gi-principal bundles over N and γi projects to connection forms (also
denoted by γi) on Pi. The adjoint bundle ad(P ) is naturally identified to ad(P1) ⊕ ad(P2)
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(and this decomposition is parallel with respect to the covariant derivative induced by γ).
For every X, Y ∈ TN one has Rγ

X,Y = Rγ1
X,Y + Rγ2

X,Y . Denoting by ι the natural embedding
of ad(P1) into ad(P ), we see that the composition ψ1 := ψ ◦ ι is a parallel Lie algebra bundle
morphism from ad(P1) to Λ2 TN ' so( TN) which clearly verifies (60).

�

In the sequel, we will say that the parallel g1-structure obtained in this way from an ideal
g1 of g is a reduction of the initial parallel g-structure to the ideal g1.

6.3. Restriction to Riemannian factors.

Lemma 6.4. Assume that (N, gN) is the Riemannian product of (N1, g
N1) and (N2, g

N2).
Then every parallel g-structure (P, γ, ψ) on (N, gN) with the property that

(63) ψ(ad(P )) ⊂ Λ2 TN1 ⊕ Λ2 TN2 ⊂ Λ2 TN

induces parallel g-structures on the factors (Ni, g
Ni).

Proof. Every point of N2 defines an isometric embedding of (N1, g
N1) into (N, gN). By pull-

back through this embedding one obtains a G-principal bundle P1 over N1 with connection
γ1. Moreover, the condition (63) shows that ψ defines by restriction a Lie algebra bundle
morphism ψ1 : ad(P1) → Λ2 TN1, which is clearly still parallel and satisfies (60). The proof
for N2 is similar.

�

Note that the condition (63) is automatically satisfied for the factors of N in the standard
de Rham decomposition, see Lemmas 7.2 and 7.3 below.

6.4. Whitney products. As a converse to Lemma 6.3 we have the following:

Lemma 6.5. Let G1 and G2 be compact Lie groups with Lie algebras g1 and g2 endowed with
bi-invariant scalar products, and let G := G1 × G2, with Lie algebra g = g1 ⊕ g2 endowed
with the direct sum scalar product. If (P1, γ1, ψ1) and (P1, γ1, ψ1) are parallel g1- and g2-
structures on (N, gN) such that ψ1(ad(P1)) commutes with ψ2(ad(P2)), then the Whitney
product (P1 × P2, γ1 + γ2, ψ1 + ψ2) is a parallel g-structure on (N, gN).

Proof. Everyhing is tautological, by noticing that the map

ψ1 + ψ2 : ad(P1 × P2) = ad(P1)⊕ ad(P2)→ Λ2 TN

is a Lie algebra bundle morphism due to the commutation assumption.

�

Definition 6.6. A parallel g-structure is called non-degenerate if for every orthogonal and
parallel decomposition TN = D1⊕D2 and orthogonal decomposition g = g1⊕ g2 with gi Lie
sub-algebras of g satisfying ψ(uξ1) ∈ Λ2D1 and ψ(uξ2) ∈ Λ2D2 for every u ∈ P , ξ1 ∈ g1 and
ξ2 ∈ g2, then either D1 = 0 and g1 = 0, or D2 = 0 and g2 = 0.
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Equivalently, a parallel g-structure is non-degenerate if it is not locally a product of parallel
g-structures, as described in §6.1.

Remark 6.7. Note that the morphism ψ of a non-degenerate parallel g-structure is injective.
Indeed, let g1 ⊂ g be defined by P ×Ad g1 = kerψ, g2 := g⊥1 , D1 = 0 and D2 = TN . The
conditions in Definition 6.6 are clearly satisfied, and since D2 6= 0, we necessarily have g1 = 0.

Example 6.8. (i) If (gN , P, γ, ψ) is a parallel u(1)-structure on N , ad(P ) has a global parallel
section whose image by ψ is a parallel 2-form on N . Conversely, if Ω is a parallel 2-form on
(N, gN), let η ∈ Ω1(N) be any locally defined primitive of Ω. We define P := N × R
(viewed as a principal R-bundle) and γ := dt+ η ∈ Ω1(P ) (everything is locally defined, and
we omit writing down the pull-back signs, in order to keep notation simple). The adjoint
bundle ad(P ) is trivial, generated by a section called 1. We define the parallel morphism
ψ : ad(P ) → Λ2 TN by ψ(1) := −Ω. Then (P, γ, ψ) is a non-degenerate u(1)-structure on
(N, gN). Indeed, Rγ is equal to dγ = Ω, so it is parallel as a section in the trivial bundle ad(P ),
and the map ψ satisfies (60) and is clearly a Lie algebra bundle morphism since the fibers
of ad(P ) are 1-dimensional. The non-degeneracy of the u(1)-structure is clearly equivalent
to the non-degeneracy of the corresponding 2-form. A non-degenerate parallel u(1)-structure
thus defines a Kähler structure on N , which is moreover unique up to sign when (N, gN) is
irreducible.

(ii) More generally, if (gN , P, γ, ψ) is a parallel u(1)m-structure on N , ad(P ) is spanned
by m parallel sections, whose images by ψ are m parallel 2-forms on N whose associated
endomorphisms mutually commute. Moreover these endomorphisms have no common kernel
if the u(1)m-structure is non-degenerate. By diagonalising them simultaneously applying de
Rham’s decomposition theorem, we see that (N, gN) is a Riemannian product of Kähler man-
ifolds. Conversely, let N = N1× . . .×Ns be a Riemannian product of Kähler manifolds with
fundamental 2-forms Ωα, and let ciα be real numbers for α ∈ {1, . . . , s} and i ∈ {1, . . . ,m}.
We consider the parallel forms Fi :=

∑
α ciαΩα on N and some locally defined primitive

ηi ∈ Ω1(N) of Ωi and denote by P := N × Rm, and γi := dti + ηi ∈ Ω1(P ). Then γi are the
components of a connection form on P whose curvature form has components Fi. For every
scalar product on u(1)m one obtains a parallel u(1)m-structure on N by choosing a parallel
orthonormal basis ξ1, . . . , ξm of ad(P ) and defining ψ(ξj) := −Fj, so that (60) holds.

Once we have fixed Kähler structures on the factors Nα, a parallel u(1)m-structure on
N = N1× . . .×Ns is thus determined by the m×s real matrix {ciα}. It is possible to express
the non-degeneracy condition in terms of this matrix:

Lemma 6.9. The above defined parallel u(1)m-structure is degenerate if and only if there
exists a partition {1, . . . , s} = A t B and an orthogonal decomposition Rm = V1 ⊕ V2 with
V1, V2 6= 0, such that (c1α, . . . , cmα) ∈ V1 for every α ∈ A and (c1β, . . . , cmβ) ∈ V2 for every
β ∈ B.
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Proof. Consider A,B, V1, V2 satisfying the above condition. We define

D1 := ⊕α∈A TNα, D2 := ⊕β∈B TNβ, gj := {
m∑
i=1

xiξi | x ∈ Vj}, j = 1, 2 .

For every x ∈ V1 we have

ψ(
∑
i

xiξi) =
∑
i

xiFi =
m∑
i=1

s∑
α=1

xiciαΩα =
∑
α∈A

m∑
i=1

xiciαΩα ,

showing that ψ(g1) vanishes on D2, and similarly ψ(g2) vanishes on D1. Since g1 and g2

are non vanishing, Lemma 6.6 shows that the u(1)m-structure is degenerate. The converse
statement can be proved similarly.

�

Corollary 6.10. If a parallel u(1)m-structure on N = N1 × . . .×Ns constructed as before is
non-degenerate, then m ≤ s.

Proof. Indeed, if m > s then the s vectors (c1α, . . . , cmα) span a strict subspace V1 of Rn (if
V1 = 0 we replace it by any proper subspace of Rn). Then V2 := V ⊥1 , A := {1, . . . , s} and
B := ∅ satisfy the condition of Lemma 6.9, so the structure is degenerate. �

Example 6.11. Every quaternion-Kähler manifold (N, g) carries a 3-dimensional parallel
sub-bundle B of skew-symmetric endomorphisms locally spanned by almost complex struc-
tures satisfying the quaternion relations. The frame bundle P of B was introduced by Konishi
[16], who showed that it has a connection (induced from the Levi-Civita connection of N)
whose curvature is parallel as section of Λ2 TN ⊗ ad(P ). If N has positive scalar curvature,
then (60) is satisfied after rescaling the metric on N if necessary. We thus have a parallel
non-degenerate sp(1)-structure on N .

Conversely, if (N, gN) carries a parallel sp(1)-structure, then by Lemma 7.4 below, the
structure is degenerate unless N is irreducible, in which case it is quaternion-Kähler with
positive scalar curvature by Proposition 7.6 below.

Example 6.12. Every symmetric space of compact type N = L/G carries a natural parallel
g-structure. Indeed, consider the natural metrics on N and g induced by an Ad L-invariant
scalar product on the Lie algebra l of L, and define P := L, seen as G-principal bundle over
N , with the connection γ induced from the Levi-Civita connection of N . If m denotes the
orthogonal complement of g in l, γ is just the m-component of the Maurer-Cartan form of L.
Then the G-equivariant map φ : g→ so(m) ' Λ2m, a 7→ ada|m induces a parallel Lie algebra
bundle morphism ψ : ad(P )→ Λ2 TN by ψ(uξ) := uφ(ξ) for every u ∈ P and ξ ∈ g. In order
to check (60), let u be a local section of P , x, y ∈ m and X := ux, Y := uy the corresponding
local vector fields on N . Then for every ξ ∈ g we have

〈uξ,Rγ
X,Y 〉 = −〈uξ, u[x, y]〉 = −〈ξ, [x, y]〉 = 〈[x, ξ], y〉 = −〈adξ(x), y〉

= −〈φ(ξ), x ∧ y〉 = −gN(uφ(ξ), ux ∧ uy) = −gN(ψ(uξ), X ∧ Y ) .
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More generally, according to Lemma 6.3, a symmetric space of compact type N = L/H
carries a canonical parallel g-structure for every ideal g of the isotropy Lie algebra h.

Conversely, we have the following:

Lemma 6.13. Let g be a semi-simple Lie algebra of compact type and let (P, γ, ψ) be a
parallel g-structure on a locally symmetric space (N = L/H, gN) of compact type with ψ
fiberwise injective. Then g is an ideal of h and the g-structure on N obtained as in Example
6.12 by reduction of the canonical parallel h-structure on N to g.

Proof. Let us consider as usual the curvature tensors Rγ of (P, γ) and RN of (N, gN) as bundle
morphisms Rγ : Λ2 TN → ad(P ) and RN : Λ2 TN → Λ2 TN by

Rγ(ω) := 1
2

∑
i,j

ω(ei, ej)R
γ
ei,ej

, RN(ω)(X, Y ) := 1
2

∑
i,j

ω(ei, ej)g
N(RN

ei,ej
X, Y ) .

Since N = L/H is of compact type, the metric on N is defined by a bi-invariant scalar product
on the Lie algebra l of L. Let h denote the Lie algebra of H and let m be its orthogonal
complement in l. The isotropy representation of h on m defines an embedding of h in Λ2m,
and we denote by h⊥ its orthogonal complement, so that Λ2m = h ⊕ h⊥. Correspondingly,
the bundle Λ2 TN decomposes in an orthogonal direct sum Λ2 TN = hN ⊕ h⊥N . As an
endomorphism of Λ2 TN , the Riemannian curvature tensor RN takes values in hN , so by pair
symmetry RN vanishes on h⊥N .

We now use (61), which in the present context reads

(64) ψ(Rγ(ω)s) = [RN(ω), ψ(s)]

for every s ∈ ad(P ) and ω ∈ Λ2 TN . Applying this to some ω ∈ h⊥N and using the vanishing
of RN on h⊥N , together with the injectivity of ψ yields Rγ(ω)s = 0 for every ω ∈ h⊥N
and s ∈ ad(P ). Moreover, Rγ(ω)s = [Rγ(ω), s] and since g is semi-simple, this shows that
Rγ(ω) = 0 for every ω ∈ h⊥N . From (60) we thus get that ψ(ad(P )) is orthogonal to h⊥N ,
i.e. ψ(ad(P )) ⊂ hN . Since ψ is a Lie algebra bundle morphism, this shows that g is identified
with a Lie sub-algebra of h. Moreover, it is well known that RN is an isomorphism of hN , so
(64) shows that g is actually an ideal of h.

�

7. Classification of non-degenerate parallel g-structures

The aim of this section is the following classification result:

Theorem 7.1. Let g be a Lie algebra of compact type and (gN , P, g, γ, ψ) a non-degenerate
parallel g-structure on a manifold N . Then either

• N is quaternion-Kähler with positive scalar curvature, g = sp(1) and P is the Konishi
bundle like in Example 6.11, or
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• N = L/H is an irreducible locally symmetric space of compact type, g is isomorphic to
a semi-simple factor of h and the parallel g-structure is the one described in Example
6.12, or
• N is locally a Riemannian product N = N1 × . . . × Np × S1 × . . . × Sq with Nα

Kähler for α ∈ {1, . . . , p}, Sβ = Lβ/U(1)Hβ Hermitian symmetric of compact type
for β ∈ {1, . . . , q}, g = u(1)m ⊕ k1 ⊕ . . . ⊕ kq and kβ a non-zero factor of hβ. The
parallel g-structure on N is the Whitney product of a parallel u(1)m-structure on N
like in Example 6.8 (ii) and a parallel k1 ⊕ . . . ⊕ kq-structure on N which is the Rie-
mannian product of the canonical parallel kβ-structures on Sβ (Example 6.12) and the
0-structures on the factors Nα.

Proof. Let (N, gN) = N0×N1× . . .×Ns be the local de Rham decomposition of N , with N0

flat and Ni irreducible for i ≥ 1. We decompose the Lie algebra g as g = z ⊕ g1 ⊕ . . . ⊕ gl,
where z denotes its center and gi are simple Lie algebras of compact type. Since the scalar
product is adg-invariant, this decomposition can be chosen to be orthogonal. We define the
corresponding Lie algebra bundles zP := P ×ad z (which is actually trivial) and giP :=
P ×ad gi, so that ad(P ) = zP ⊕ g1P ⊕ . . . ⊕ glP . Recall that by Remark 6.7 the map ψ is
injective since the parallel g-structure is assumed to be non-degenerate.

Lemma 7.2. If the Lie algebra bundle morphism ψ is injective, then

ψ(giP ) ⊂
⊕
α≥1

Λ2 TNα, ∀ i ∈ {1, . . . , l} .

Proof. Let α, β ∈ {0, . . . , s} be either different or both equal to 0, and let Xα, Xβ be tangent
vectors to Nα and Nβ respectively. From the symmetries of the Riemannian curvature tensor
we obtain RN

Xα,Xβ
= 0. Using (61) we get for every ξ ∈ g

0 = RN
Xα,Xβ

(ψ(uξ)) = ψ(Rγ
Xα,Xβ

(uξ)),

whence Rγ
Xα,Xβ

(uξ) = 0 by the injectivity assumption. On the other hand

0 = Rγ
Xα,Xβ

(uξ) = [Rγ
Xα,Xβ

, uξ]

as local sections of ad(P ), so Rγ
Xα,Xβ

is a section of zP . This shows that for every i ≥ 1 and

ξ ∈ gi we have
0 = 〈Rγ

Xα,Xβ
, uξ〉 = −gN(ψ(uξ), Xα ∧Xβ),

so finally ψ(uξ) is orthogonal to the sub-bundles Λ2 TN0 and to TNα ∧ TNβ of Λ2 TN for
all α 6= β.

�

Lemma 7.3. ψ(zP ) ⊂ ⊕α≥0Λ2 TNα

Proof. Let ξ1, . . . , ξm be an orthonormal basis of the center z, inducing a global orthonormal
parallel basis ξ̂1, . . . , ξ̂m of zP . Let ψ(ξ̂i) =: Fi be the corresponding parallel skew-symmetric
endomorphisms of TN .
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The de Rham theorem shows that the restricted holonomy group of N is isomorphic to a
product K0× . . .×Ks, and TN is associated to a representation of this group on a direct sum
h0⊕ . . .⊕hs, (with hα corresponding to TNα), such that K0 = 0 and for every α ≥ 1, Kα acts
irreducibly on hα and trivially on hβ for β 6= α. Each parallel endomorphism Fi corresponds
to an equivariant map of this representation. On the other hand, every equivariant map
clearly preserves each summand hα, thus showing that Fi( TNα) ⊂ TNα for all α ≥ 0.

�

We now define I = {1, . . . , l + m} and denote by gl+i the sub-algebra generated by ξi
for 1 ≤ i ≤ m. Let g = ⊕i∈Igi be the decomposition of g with corresponding ∇γ-parallel
decomposition of ad(P ) = ⊕i∈IgiP of the adjoint bundle. By Lemmas 7.2 and 7.3, the
parallel bundle morphism ψ maps ad(P ) to ⊕α∈AΛ2 TNα, where A = {0, . . . , s}. Let πα be
the projection of Λ2 TN onto the sub-bundle Λ2 TNα. We use the notation

(65) Eαi := πα(ψ(giP ))|Nα
for the corresponding parallel sub-bundle of Λ2 TNα → Nα. In other words, Eαi is the parallel
sub-bundle of Λ2 TNα corresponding to parallel gi-structure on Nα obtained by reducing the
initial g-structure to gi (Lemma 6.3) and then restricting to Nα (Lemma 6.4).

The next result can be seen as a generalization to parallel g-structures of the well known
fact that quaternion-Kähler manifolds are irreducible.

Lemma 7.4. If Eαi 6= 0 for some i ∈ {1, . . . , l}, then Eβi = 0 for every β ∈ {0, . . . , s} \ α.

Proof. The first Bianchi identity and the Riemannian curvature identities show that for every
α 6= β and tangent vectors X, Y ∈ TNα and Z ∈ TNβ one has

(66) RN
X,YZ = 0.

Let x be any point of N and u an element in the fibre of P over x. The hypothesis gives
the existence of two vectors X, Y ∈ TxNα and some ξ ∈ gi such that gN(ψ(uξ), X ∧ Y ) 6= 0.
By (60) we thus get 〈uξ,Rγ

X,Y 〉 6= 0. Since gi is a simple Lie algebra, it has no center, so there
exists some ζ ∈ gi with [Rγ

X,Y , uζ] 6= 0. For every β ∈ A, the map

πβ ◦ ψ : ad(P )→ Λ2 TNβ

is a parallel Lie algebra bundle morphism, so using again the fact that gi is simple, πβ ◦ ψ
either vanishes identically, or is injective. Assume for a contradiction that Eβi 6= 0 for some
β ∈ {0, . . . , s} \ α. Then from (61) we obtain

0 6= πβ ◦ ψ([Rγ
X,Y , uζ]) = πβ([ψ(Rγ

X,Y , ψ(uζ)]) = πβ([RN
X,Y , ψ(uζ)]).

This shows that there exists Z ∈ TxNβ such that

[RN
X,Y , ψ(uζ)](Z) 6= 0.

Denoting by F := ψ(uζ), this reads RN
X,Y FZ 6= FRN

X,YZ. On the other hand, FZ ∈ TxNβ

by Lemma 7.2, so both RN
X,Y FZ and FRN

X,YZ vanish from (66). This contradiction concludes
the proof.
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�

Lemma 7.5. If there are partitions A = A1 tA2 and I = I1 t I2 of the two index sets I and
A such that Eαi = 0 for all α ∈ A2, i ∈ I1 and for all α ∈ A1, i ∈ I2, then either A1 = I1 = ∅
or A2 = I2 = ∅.

Proof. The argument is similar to the one used in the proof of Proposition 8.4. Consider such
partitions A = A1tA2 and I = I1t I2. For i = 1, 2 we define the distributions Ti on M := P
spanned by the horizontal lifts of vectors in

⊕
α∈Ai TNα and by fundamental vector fields ξ∗

with ξ ∈
⊕

j∈Ii gj. We claim that τ ∈ Λ3T1 ⊕ Λ3T2.

It is enough to show that τ(U, V,W ) = 0 whenever two of the vectors U, V,W belong to T1

and one to T2, and by multi-linearity, one can assume each of them is either a horizontal lift
or a vertical fundamental vector field. Using Lemmas 3.5 and 8.3, we are left with two cases:

a) U, V,W are all vertical, and U = ξ∗, V = ζ∗ ∈ T1, and W = η∗ ∈ T2. Then by (52) we
have

τ(U, V,W ) = −1
2
〈[ξ, ζ], η〉 = 0,

since ξ and ζ belong to the sub-algebra
⊕

j∈I1 gj of g, which is orthogonal to
⊕

j∈I2 gj, which
contains η.

b) U = X̃ and V = Ỹ are horizontal lifts and W = ξ∗, with X ∈ TNα, Y ∈ TNβ, ξ ∈ gi,
and either α, β ∈ A1, i ∈ I2, or α ∈ A1, β ∈ A2, i ∈ I2. In both cases we have by (52)

τ(U, V,W ) = 1
2
〈Ωγ(X̃, Ỹ ), ξ〉 = 1

2
〈u−1Rγ

X,Y , ξ〉 = −1
2
gN(ψ(uξ), X ∧ Y ).

If α = β ∈ A1, i ∈ I2, this expression vanishes by the assumption that Eαi := πα(ψ(giP ))|Nα
vanishes. If α 6= β, this expression vanishes by Lemmas 7.2 and 7.3.

If T1 and T2 are non-vanishing, the decomposition TM = T1⊕T2 satisfies the decomposabil-
ity conditions in Definition 3.1. On the other hand, (M, g, τ) is assumed to be indecomposable
by Definition 8.1, we necessarily have T1 = 0 or T2 = 0, thus proving that either A1 = I1 = ∅
or A2 = I2 = ∅.

�

We will now restrict our attention to the case where N is irreducible.

Proposition 7.6. Let (N, gN) be an irreducible Riemannian manifold with a parallel g-
structure such that the morphism ψ is not identically zero. Then one of the following three
cases may occur:

• The Lie algebra sub-bundle Im(ψ) ' ad(P )/Ker(ψ) of Λ2 TN is a line bundle, and N
is Kähler;
• Each fiber of Im(ψ) is isomorphic to sp(1) and N is quaternion-Kähler with positive

scalar curvature;
• N is locally symmetric of compact type.
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Proof. The sub-bundle V N := Im(ψ) of Λ2 TN ' End−( TN) is a parallel sub-bundle, closed
under the usual bracket of endomorphisms. It corresponds to an invariant subspace V of
Λ2T , where T denotes the holonomy representation of N .

Consider the Riemannian curvature tensor RN of N , also viewed as an endomorphism
RN : Λ2 TN → Λ2 TN by

(67) gN(RN(X ∧ Y ), Z ∧W ) = gN(RN
X,YZ,W ) .

Using the relation between the curvatures of ad(P ) and N obtained in (62), we see that
the endomorphism R⊥ of Λ2 TN defined by

(68) R⊥ := RN − ψ ◦Rγ

takes values in the centralizer of V N .

Let us decompose V in an orthogonal direct sum of irreducible components V = V1⊕. . .⊕Vk
and correspondingly V N = ⊕aVaN .

Schur’s lemma shows that there exist positive real numbers λa such that ψ ◦ψ∗ =
∑

a λaπa,
where πa denotes the orthogonal projection from Λ2 TN to VaN . On the other hand, (60)
shows that ψ ◦Rγ = −ψ ◦ ψ∗, so by (68) we obtain

(69) RN = R⊥ −
∑
a

λaπa ,

where we recall that R⊥ takes values in the centralizer of V N . We introduce the symmetric
endomorphisms of TN

Sa(X) :=
∑
i

eiyπa(ei ∧X), S⊥(X) :=
∑
i

eiyR
⊥(ei ∧X),

for every local orthonormal basis {ei} of TN .

We fix some a ∈ {1, . . . , k} and consider any orthonormal basis {As} of VaN (with respect
to the natural scalar product on 2-forms induced by gN). The endomorphism

∑
sA

2
s of TN

is clearly parallel, so by the irreducibility of N , there exists some positive constant ba such
that

∑
sA

2
s = −baid. We thus have for every X ∈ TN :

(70) Sa(X) =
∑
i,s

gN(ei ∧X,As)As(ei) = −
∑
s

A2
s(X) = baX.

Moreover, since Va is a simple Lie algebra, the Casimir element of its adjoint representation
is a multiple of the identity. Consequently, there exists a positive constant ca such that∑

s[As, [As, A]] = −caA for every section A of VaN . Consequently we have:

(71) −caA =
∑
s

[As, [As, A]] =
∑
s

A2
sA+ A

∑
s

A2
s − 2

∑
s

AsAAs,

whence

(72)
∑
s

AsAAs = (1
2
ca − ba)A, ∀A ∈ VaN.
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Let A be any section of VaN . Using (69), (70), the first Bianchi identity for RN and the
fact that A commutes with the images of R⊥ and of πb for every b 6= a, we obtain for every
tangent vector X:

R⊥(A)(X) = RN(A)(X) + λaA(X) = 1
2

∑
i

RN
ei,Aei

X + λaA(X)

= −1
2

∑
i

RN
X,ei

Aei − 1
2

∑
i

RN
Aei,X

ei + λaA(X) =
∑
i

RN
ei,X

Aei + λaA(X)

=
∑
i

R⊥(ei ∧X)(Aei)−
∑
i,b

λbπb(ei ∧X)(Aei) + λaA(X)

= AS⊥(X)−
∑
b6=a

λbbbA(X)− λa
∑
i

πa(ei ∧X)(Aei) + λaA(X).

On the other hand, we have∑
i

πa(ei ∧X)(Aei) =
∑
i,s

gN(As, ei ∧X)AsAei = −
∑
i,s

gN(As(X), ei)AsAei

= −
∑
s

AsAAs(X),

so using (72) we obtain

(73) R⊥(A) = AS⊥ + daA, ∀A ∈ VaN,

where

da := −
∑
b 6=a

λbbb + λa(
1
2
ca − ba) + λa = −

∑
b

λbbb + λa(1 + 1
2
ca).

Since A and R⊥(A) are skew-symmetric and S⊥ is symmetric, (73) shows that S⊥ commutes
with A for every A ∈ V N . On the other hand, R⊥(A) commutes with every B ∈ V N , so
using (73) again, we obtain

(74) (S⊥ + daid) ◦ [A,B] = 0

for every A,B ∈ V N . Let us denote by DN the parallel sub-bundle of TN spanned by the
images of all endomorphisms of the form [A,B] with A,B ∈ V N .

Then the irreducibility of N implies that either DN = 0 or DN = TN .

Case 1: DN = 0. In this case V N is an Abelian Lie algebra sub-bundle of Λ2 TN .
Thus ψ vanishes on all sub-bundles giP for i ∈ {1, . . . , l}, so V N is spanned by the parallel

commuting endomorphisms ψ(ξ̂1), . . . , ψ(ξ̂m) defined in the proof of Lemma 7.3. Using again
the irreducibility of N we obtain that V has dimension 1, hence V N is generated by a parallel
endomorphism whose square is proportional to the identity, and thus N is Kähler.
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Case 2: DN = TN . In this case, S⊥ + daid = 0 by (74). In particular da is independent
of a, whence λa(1 + ca

2
) =: r > 0 for every a. By (69) we obtain

RicN =
∑
a

λaSa − S⊥ = (
∑
a

λaba)id− (
∑
b

λbbb − r)id = r id,

and thus N is Einstein and has positive scalar curvature. If N is locally symmetric, we are
in the last case of the proposition. If N is not locally symmetric, we examine the possible
holonomy representations of N given by the Berger-Simons holonomy theorem:

1. If Hol0(N) is one of G2 ⊂ SO(7), Spin(7) ⊂ SO(8), SU(m) ⊂ SO(2m) or Sp(q) ⊂ SO(4q),
then N is Ricci-flat, so it cannot have positive scalar curvature.

2. If Hol0(N) = SO(n) and T = Rn, then Λ2T is irreducible and has no center, unless
n = 4, when Λ2T = Λ+T ⊕ Λ−T . Up to a change of orientation for N one can assume that
V N = Λ+ TN . Let us denote by R+ the orthogonal projection from Λ2 TN onto Λ+ TN .
From (69), the curvature endomorphism of N can be written RN = R⊥ − λR+, where λ > 0
and R⊥ takes values in the centralizer of V N , which in the present situation is Λ−TN . Using
the well known decomposition of the curvature operator in dimension 4 as

(75) RN = −

Scal
12

id +W+ 1
2
R̃icN0

1
2
R̃icN0

Scal
12

id +W−

 ,

(where R̃icN0 denotes the Kulkarni-Nomizu product of gN with the trace-less Ricci tensor of
N) we thus obtain that Scal = 12λ > 0, W+ = 0 and RicN0 = 0, so N is anti-selfdual and
Einstein, which corresponds to the quaternion-Kähler condition in dimension 4.

3. If Hol0(N) = U(m) and T = R2m, then the decomposition of Λ2T in irreducible
components reads so(2m) ' Λ2T = u(1)⊕su(m)⊕m, where m ' Λ(2,0)+(0,2)T is isomorphic to
the isotropy representation of the symmetric space SO(2m)/U(m) (and thus verifies [m,m] =
u(1)⊕su(m)). Consequently, the only su(m)-invariant Lie sub-algebras of so(2m) of dimension
larger than 1 are su(m) and u(1) ⊕ su(m). Their centralizers in so(2m) are both equal to
u(1). Geometrically, this means that N is a Kähler manifold such that the endomorphism
(∇N

XR
N)Y,Z is proportional to the complex structure for every tangent vectors X, Y, Z. This

easily implies that ∇NRN = 0. Indeed, assume that (∇N
XR

N)Y,Z = T (X, Y, Z)J for some
tensor T . Using the second Bianchi identity we obtain for every tangent vectors A,B,C, Y, Z:

0 = SA,B,Cg
N((∇N

AR
N)Y,ZB,C) = SA,B,CT (A, Y, Z)gN(JB,C).

Taking B = JC of unit length and orthogonal to A and JA yields T (A, Y, Z) = 0 for every
A, Y, Z. Thus T = 0, so N is locally symmetric.

4. If Hol0(N) = Sp(q) · Sp(1) and T = R4q with q ≥ 2, then N is quaternion-Kähler. It
remains to check that the fibers of ψ(gP ) are isomorphic to sp(1). It is well known that the
decomposition of Λ2T in irreducible summands is Λ2T = sp(q) ⊕ sp(1) ⊕ m. We denote by
Λ2 TN = sp(q)N ⊕ sp(1)N ⊕mN the corresponding decomposition of the bundle of 2-forms
on N . We claim that [m,m] contains sp(q)⊕ sp(1). Indeed, if [m,m] were orthogonal to some
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non-zero element in sp(q)⊕ sp(1), then this element would commute with each element of m,
and this would contradict the fact that the isotropy representation of the symmetric space
SO(4q)/U(2q) is faithful.

The centralizer of sp(q)⊕ sp(1) in so(4q) clearly vanishes, so we are left with two possibil-
ities: either V = sp(1) (in which case we are done), or V = sp(q).

We will show that this last case is impossible. Indeed, if V = sp(q), (69) reads RN =
R⊥ − λRV for some positive constant λ, where RV denotes the projection on V N and R⊥ is
a symmetric endomorphism of sp(1)N satisfying the first Bianchi identity. At every point of
N one can diagonalize R⊥ in an orthonormal basis ω1, ω2, ω3 of sp(1)N so that

R⊥(X ∧ Y ) = 1
2q

∑
a

λag
N(X ∧ Y, ωa)ωa.

An easy computation then shows that the Bianchi condition
∑

i,j ei ∧ ej ∧R⊥(ei ∧ ej) = 0 is

equivalent to
∑

a λaωa ∧ ωa = 0. On the other hand, for q ≥ 2 the 4-forms ω2
a are linearly

independent, so R⊥ = 0, which shows that RN is parallel. Since N was assumed to be non
locally symmetric, this case is impossible, so the proposition is proved.

�

By Lemma 6.4, together with Lemmas 7.2 and 7.3, we see that every factor Nα of N
(including the flat factor N0) inherits a parallel g-structure (Pα, γα, ψα). We will distinguish
two cases:

Case 1. Assume first that there exists a factor Nα such that the sub-bundles Eαj defined
in (65) vanish for every j ∈ {l + 1, . . . , l +m}.

We consider the partitions A = A1 t A2 and I = I1 t I2 of the two index sets I =
{1, . . . , l +m} and A = {0, . . . , s} defined by

A1 := {α}, A2 := A \ {α}, I1 = {i ∈ I | Eαi 6= 0}, I2 = {i ∈ I | Eαi = 0}.

By Lemma 7.4 we have that Eβi = 0 for all β ∈ A2, i ∈ I1, and by the very definition of I2

we have Eβi = 0 for all β ∈ A1, i ∈ I2. Moreover A1 is non-empty, so by Lemma 7.5 we must
have A2 = I2 = ∅. Thus N = Nα is irreducible. By Proposition 7.6, N is either a non locally
symmetric quaternion-Kähler manifold with positive scalar curvature as in Example 6.8 (iii),
or a locally symmetric space of compact type L/H. In the latter case, Lemma 6.13 shows
that g is an ideal of the Lie algebra h of H and the parallel g-structure on N is the reduction
of the canonical parallel h-structure of L/H to g.

Case 2. For every α ∈ A, there exists j ∈ {l+1, . . . , l+m} such that Eαj 6= 0. By Lemmas
6.3 and 6.4, the reduction of the g-structure to the element of the center of g generated by
ξj defines a non-vanishing parallel 2-form on Nα, so by irreducibility, Nα is Kähler for every
α ∈ A\{0}. The same holds for N0, except that here the Kähler structure is not unique (one
might need to further decompose N0 into a product of flat Kähler factors, but we don’t want
to insist on this). The important fact is that the reduction of the g-structure to the center z
of g is an Abelian g-structure on N , which can be written as in Example 6.8 (ii).
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We now denote by

A′ := {α ∈ A | Eαi = 0 ∀i ∈ {1, . . . , l}}, A′′ := {α ∈ A | ∃i ∈ {1, . . . , l}, Eαi 6= 0}.

By Lemma 7.2, 0 ∈ A′. By Proposition 7.6, for each α ∈ A′′, the corresponding factor is
locally symmetric, Nα = Lα/Hα, so being Kähler, it is in fact Hermitian symmetric. By
Lemma 6.13, the reduction of the parallel g-structure on N to the semi-simple part of g,
followed by restriction to Nα is a reduction of the canonical parallel hα-structure of Lα/Hα

to a semi-simple factor of hα.

Finally, the parallel g-structure on N is the Whitney product (Lemma 6.5) of its reductions
to z and to the semi-simple part of g, which is exactly the last case in the theorem.

�

8. Special geometries with torsion

Definition 8.1. A special geometry with torsion is an indecomposable geometry with parallel
skew-symmetric torsion (M, g, τ) satisfying one of the following equivalent conditions:

- the summand VM in the standard decomposition (Definition 3.4) is spanned by ∇τ -
parallel vector fields;

- the holonomy representation of k := hol(∇τ ) on v defined in §3 is trivial;

- the Lie algebra k1 defined in (37) vanishes.

We assume for the remaining part of this section that (M, g, τ) is a special geometry with
torsion. Thus VM is spanned by an orthonormal frame of ∇τ -parallel vector fields ξ1, . . . , ξr.

Denote as before by τ = (
∑

α τ
hα) + τm + τ v the decomposition of τ . We start by deriving

some useful properties of ∇τ -parallel vector fields.

Lemma 8.2. Let ξ be a ∇τ -parallel vector field. Then ξ is a Killing vector field and τξ ·τ hα = 0
for every α.

Proof. From the definition of the standard decomposition it follows that ξ has to be a section
of VM . By Lemma 3.8 we thus have τξ ·τ h = 0. Moreover, the skew-symmetric endomorphism
τξ is a section of the bundle (⊕αΛ2HαM)⊕Λ2VM . It thus follows that it preserves the sub-
bundles HαM and VM of TM , and its action on Λ3 TM preserves the sub-bundles Λ3HαM ,
so τξ · τ hα = 0 for every α.

To see that ξ is a Killing vector field, one writes for every tangent vector X

0 = ∇τ
Xξ = ∇g

Xξ − τXξ = ∇g
Xξ + τξX,

showing that X 7→ ∇g
Xξ = −τξX is skew-symmetric.

�
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The torsion decomposes under the action of the holonomy group of ∇τ as

τ =
∑
α

τα +
∑
i,α

ξi ⊗ Fiα +
∑
ijk

cijk ξi ∧ ξj ∧ ξk ,

with τα ∈ Λ3hα, Fiα ∈ Λ2hα. Since all components are ∇τ -parallel, it follows that cijk are
constants.

Lemma 8.3. For every special geometry with torsion, the horizontal part τ h =
∑

α τα of τ
vanishes.

Proof. We compute the action of τξi on τ h. It is clear that Fiα acts trivially on the components
τ hβ for every β 6= α. From Lemma 3.8 we thus obtain

0 = τξi · τ h =

(∑
α

Fiα + 3
∑
j,k

cijk ξj ∧ ξk

)
· τ h =

∑
α

Fiα · τ h =
∑
α

Fiα · τ hα .

This shows that Fiα · τα = 0 for all α. Note that Fiα ∈ Λ2HαM is a ∇τ -parallel 2-form
on the irreducible sub-bundle HαM , so as an endomorphism it is proportional to a complex
structure on HαM . On the other hand, complex structures act injectively on 3-forms.

Assume that there exists some index α0 with τ hα0 6= 0. Then the above argument shows
that Fiα0 = 0 for every i, hence the decomposition TM = Hα0M ⊕ (Hα0M)⊥ would satisfy
the hypothesis of Lemma 3.2, contradicting the indecomposability of M . This shows that
τ hα = 0 for every α.

�

We will now explain the correspondence between parallel g-structures and special geome-
tries with torsion.

Proposition 8.4. The (locally defined) base N of the standard submersion of a special ge-
ometry with torsion (M, g, τ) carries a non-degenerate parallel g-structure. Conversely, every
non-degenerate parallel g-structure (gN , P, g, γ, ψ) on a manifold N induces a special geometry
with torsion on the total space P .

Proof. By Theorem 4.8, N carries a geometry with parallel curvature (gN , σ, P, g, γ, k1) sat-
isfying Definition 4.7. This shows already that conditions (i) and (ii) in Definition 6.1 hold.
By Definition 8.1, we have k1 = 0, which by (38) implies that P can be identified with M
itself. Lemma 8.3 shows that τ h = 0 on M , so σ = 0 by Remark 3.10, i.e. the connection ∇σ

on N is the Levi-Civita connection of gN . The Lie algebra g is in this special case isomorphic
to v and the scalar product on g from Definition 4.7 (ii) is now adg-invariant. In particular
g is of compact type, thus proving condition (iii). As for (iv), it is a direct consequence of
Definition 4.7 (i).

Finally, (v) follows from Definition 4.7 (iii). Indeed, with the notation introduced in (46),
the metric adjoint of −Rγ, denoted by ψ : ad(P ) → Λ2 TN ' so( TN), defined by (60),
satisfies ψ(uξ) = −Rγ

uξ. Using (45) together with the adg invariance of the scalar product on
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g we obtain for every local section u of P , for every elements ξ1, ξ2 ∈ v = g, and for every
local vector fields X, Y on N :

gN(ψ([uξ1, uξ2]), X ∧ Y ) = −〈[uξ1, uξ2], Rγ
X,Y 〉 = −〈u[ξ1, ξ2], Rγ

X,Y 〉
= −gN(Rγ

uξ2
(X), Rγ

uξ1
(Y )) + gN(Rγ

uξ2
(Y ), Rγ

uξ1
(X))

= gN(Rγ
uξ1

(Rγ
uξ2

(X)), Y )− gN(Rγ
uξ1

(Rγ
uξ2

(Y )), X)

= gN([Rγ
uξ1
, Rγ

uξ2
], X ∧ Y ) = gN([ψ(uξ1), ψ(uξ2)], X ∧ Y ),

thus showing that ψ is a Lie algebra bundle morphism.

We will now check that the parallel g-structure on N is non-degenerate. Suppose that there
is an orthogonal and parallel decomposition TN = D1⊕D2 and an orthogonal decomposition
g = g1 ⊕ g2 with gi Lie sub-algebras of g satisfying ψ(uξ1) ∈ Λ2D1 and ψ(uξ2) ∈ Λ2D2 for
every u ∈ P , ξ1 ∈ g1 and ξ2 ∈ g2. Consider for i = 1, 2 the distributions Ti on M = P spanned
by the horizontal lift of Di and by fundamental vector fields ξ∗ with ξ ∈ gi. By (53)–(55), if
T1 and T2 are non-trivial, (M, g, τ) would be decomposable, according to Definition 3.1. On
the other hand (M, g, τ) is assumed to be indecomposable by Definition 8.1, so we necessarily
have T1 = 0 or T2 = 0. This shows that the g-structure of N is non-degenerate.

Conversely, a parallel g-structure (gN , P, g, γ, ψ) on N defines in a tautological way a ge-
ometry with parallel curvature on N (Definition 4.7) with k1 = 0. By Theorem 5.1, the total
space of P carries a geometry with parallel skew-symmetric torsion (g, τ), and the fact that
k1 = 0 just means that the holonomy of ∇τ acts trivially on the vertical space v ' g (see
Definition 8.1).

It remains to show that if the parallel g-structure of N is non-degenerate, then (g, τ) is
indecomposable (see Definition 3.1). Indeed, assume that TP = T1 ⊕ T2 is an orthogonal
∇τ -parallel decomposition of the tangent bundle of P , such that τ ∈ Λ3T1⊕Λ3T2. We denote
by H := ker(γ) the horizontal distribution of P , and by V the vertical distribution (tangent
to the fibers). Then TP = H⊕V is another orthogonal ∇τ -parallel decomposition, and from
(52) we have τ(H,H) ⊂ V , τ(V ,V) ⊂ V and τ(V ,H) ⊂ H. Let V ′ be the set of vectors
V ∈ V such τV |H is non-degenerate. For V ∈ V ′ we decompose V = Y1 +Y2 with Y1 ∈ T1 and
Y2 ∈ T2, and then we decompose Yi = Xi + Vi with Xi ∈ H and Vi ∈ V for i = 1, 2. We thus
have V = V1 + V2 and X1 +X2 = 0. Since τ ∈ Λ3T1 ⊕ Λ3T2 we obtain for every X ∈ H:

0 = τ(Y1, Y2, X) = τ(V1 +X1, V2 −X1, X) = τ(V1, V2, X) + τ(X1, V2, X)− τ(V1, X1, X)

= −τ(V1 + V2, X1, X) = −τV (X1, X).

The assumption that τV |H is non-degenerate thus shows that X1 = 0, whence V = V1 + V2.
This shows that (T1 ∩ V)⊕ (T2 ∩ V) contains the set V ′, which is dense in V , so

(T1 ∩ V)⊕ (T2 ∩ V) = V .

The orthogonal complement of Ti ∩ V in Ti is clearly contained in Ti ∩ H, so a dimension
count immediately shows that

(T1 ∩H)⊕ (T2 ∩H) = H.
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Denoting Ti ∩ V =: Vi and Ti ∩H =: Hi, we thus get orthogonal ∇τ -parallel decompositions
V = V1 ⊕ V2 and H = H1 ⊕ H2. The assumption τ ∈ Λ3T1 ⊕ Λ3T2 implies τ(V1,V2) = 0,
whence τ(Vi,Vi) ⊂ Vi for i = 1, 2. By (55), this means that Vi are involutive distributions.
Recalling that V = P ×Ad g, this shows that the Lie algebra g decomposes in an orthogonal
direct sum of Lie sub-algebras g = g1 ⊕ g2 such that Vi = P ×Ad gi.

Being ∇τ -parallel, the distributions Hi project to parallel distributions Di on N . Indeed,
if V is a section of V and X1 is a section of H1, then the horizontal part of [V,X1] reads

[V,X1]H = (∇VX1−∇X1V )H = (∇τ
VX1−∇τ

X1
V +2τ(V,X1))H = (∇τ

VX1 +2τ(V,X1))H ∈ H1.

The fact that τ(V1, X2) = 0 for every V1 ∈ V1 and X2 ∈ H2 is equivalent by (54) with the
condition ψ(V1) ⊂ Λ2D1. Similarly, ψ(V2) ⊂ Λ2D2. From Definition 6.6 we thus obtain that
Vi = Hi = 0 for some i ∈ {1, 2}. This shows that Ti = 0, so (g, τ) is indecomposable.

�

Remark 8.5. The above result shows that every parallel g-structure (gN , P, g, γ) on N defines
a geometry with parallel curvature (N, gN , σ = 0, P, g, γ, k1 = 0) in the sense of Definition 4.7.
More generally, for every sub-algebra k1 ⊂ g, it defines a geometry with parallel curvature
(N, gN , σ = 0, P, g, γ, k1). By Theorem 5.1, we thus see that the principal bundle P of a
parallel g-structure on N , as well as each of its quotients by subgroups of G, carry geometries
with parallel skew-symmetric torsion.

Example 8.6. A parallel rank r even Clifford structure on N satisfying the curvature con-
dition in [18, Thm. 3.6 (b)] determines a Sr−1-fibration Z → N whose vertical distribution
belongs to the curvature constancy of Z. By Remark 6.2, the parallel rank r even Clifford
structure also defines a parallel so(r)-structure on N , whose quotient by so(r−1) is exactly Z.
Remark 8.5 thus shows that Z also carries a geometry with parallel skew-symmetric torsion.

In particular, when r = 3, a parallel even Clifford structure is just a quaternion-Kähler
structure on N , and Z is its twistor space. The curvature condition in [18, Thm. 3.6 (b)] is
satisfied after rescaling the metric provided that N has positive scalar curvature. We thus
recover the well known fact that the twistor spaces of positive quaternion-Kähler manifolds
carry a connection with parallel skew-symmetric torsion.

Note that Proposition 8.4 together with the classification of Riemannian manifolds car-
rying non-degenerate parallel g-structures (Theorem 7.1), yield the classification of special
geometries with torsion.
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versité Paris-Saclay, 91405 Orsay, France

E-mail address: andrei.moroianu@math.cnrs.fr

Uwe Semmelmann, Institut für Geometrie und Topologie, Fachbereich Mathematik, Uni-
versität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

E-mail address: uwe.semmelmann@mathematik.uni-stuttgart.de


	OWP2018_16_Deckblatt
	OWP 2018 - 16
	Richard Cleyton, Andrei Moroianu and Uwe Semmelmann
	Metric Connections with Parallel Skew-Symmetric Torsion

	OWP2018_16_Deckblatt-verso
	OWP2018_16_semmelmann

