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What kind of strange spaces hide behind the enig-
matic name of tropical geometry? In the tropics, just
as in other geometries, one of the simplest objects is
a line. Therefore, we begin our exploration by con-
sidering tropical lines. Afterwards, we take a look at
tropical arithmetic and algebra, and describe how to
define tropical curves using tropical polynomials.

1 Entrée

This snapshot gives a glimpse of tropical algebra and geometry. To start with,
let us take a look at one of the simplest objects from any geometry: a line.

A tropical line in the plane consists of three usual half lines in the directions
(-1,0),(0,-1) and (1,1) emanating from some point in the plane (see Figure
la). Why call this strange object a line, in the tropical sense or any other? If we
look more attentively, we find that tropical lines have certain familiar geometric
properties of “usual” or “classical” lines in the plane. For instance, most pairs
of tropical lines intersect in a single point (see Figure 1b). Also for most choices
of pairs of points in the plane there is a unique tropical line passing through
the two points (see Figure lc).

What is even more important, although not at all visible from the picture,
is that classical and tropical lines are both given by an equation of the form
ax + by + ¢ = 0. In fact, one could say that classical and tropical geometries
are developed following the same principles but from two different methods of
calculation. They are simply the geometric faces of two different algebras.



a) b) c)

Figure 1: The tropical line

In the tropical world, addition is replaced by the operation of taking the
maximum and multiplication is replaced by addition. Just by doing this, all of
our objects drastically change form! In fact, even “being equal to 0” takes on a
very different meaning.

Yet tropical geometry is not disconnected from the geometry we usually
consider. In fact, many objects from classical geometry can be degenerated to
tropical objects, and many tropical objects can be deformed, or “quantized”,
to classical ones. One advantage of this connection is that tropical objects
are piecewise-linear and thus often they are much simpler to study than their
classical counterparts! Additionally, if we keep track of the sometimes-peculiar
behavior of geometric properties under these transitions we can study one of the
two worlds with tools borrowed from the other. Even in a situation when such a
deformation does not exist, this approach has been a rich source of conjectures.

Before diving into the subject, we should explain the use of the word “tropical”.
It is actually not due to the exotic forms of the objects under consideration.
Before the term “tropical algebra”, the more cut-and-dry name of “max-plus
algebra” was used. Then, in honour of the work of their Brazilian colleague,
Imre Simon, the computer science researchers at the Université Paris Diderot
decided to trade the name of “max-plus” for “tropical”.

2 Tropical algebra

2.1 Tropical operations

Tropical algebra begins with the set of real numbers, where addition is replaced
by taking the maximum, and multiplication is replaced by the usual addition.
In other words, we define on the set R of real numbers two new operations,



called tropical addition and tropical multiplication and denoted by “+” and “ x”
respectively, in the following way:

“x+y” = max(z,y), “xy’=z+y.

In this entire text, quotation marks are placed around an expression to
indicate that the operations should be regarded as tropical. Just as in classical
algebra we often abbreviate “z x y” to “xy”. To familiarize ourselves with the
use of these two operations, let us do some simple calculations:

-

“Ual7=1, “1427=2, “142+487=3, “1x27=3, “Ix(2+(-1))"=3
“1 % (_2)w:_1, LL(5+3)2??:10-

The tropical operations have many properties in common with the usual
addition and multiplication. For example, they are both commutative:

(tx+y77:“y+x”7 “Ixy”:“yXxﬂ,
associative:
“TH(y+z)=(x+y)+2”, “ox(yxz)=(xxy)xz”

and the tropical multiplication “ x ” is distributive with respect to the tropical
addition “+ 7

“(I+y) XZ”:“ZEXZ‘FyXZ”.
There is, however, no “tropical zero” in R, that is to say tropical addition
does not have an identity element in R (i.e., there is no element z such that
max{y,x} =y for all y in R). Nevertheless, we can naturally extend our two
tropical operations to —co by posing

“r+(-00)” =max(z,-c0) =z and “zrx(-00)"=x+(-00)=-00

for any = in Ru {-co}. We use the notation T for Ru {-oco}. These are the
tropical numbers. We have seen that, after completing R by —oo, the tropical
addition has an identity element. On the other hand, a major difference remains
between tropical and classical addition: no element of R has an additive “inverse”.
Said in another way, tropical subtraction does not exist. Neither can we solve
this problem by adding more elements to T to try to cook up additive inverses.
In fact, “ + 7 is idempotent, meaning that “x + x” = x for all  in T. Our only
choice is to get used to the lack of tropical additive inverses.

Despite this last point, the set T of tropical numbers equipped with the
operations “ +” and “ x 7 satisfies all of the other properties of the classical
addition and multiplication. For example, 0 is the identity element for tropical
multiplication, and every element x of T different from —oco has a multiplicative

inverse “2” = —z. We say that T is the tropical semi-field.
T



2.2 Tropical polynomials

Having defined tropical addition and multiplication, we naturally come to
consider functions of the form

d .
P(z)=%) a;z'” with a; €T.
i=0

The above expression is a familiar polynomial, but it is interpreted tropically:
the addition and multiplication are tropical and the coefficients are tropical
numbers. If some coefficient a; of P(z) is equal to —oco, we can omit the
corresponding monomial in the expression “ Y% a;z%” (since —oo plays the
role of tropical zero). In addition, since 0 is the identity element of tropical
multiplication, we write “2*” instead of “0x®”.

By rewriting P(x) in classical notation, we obtain P(x) = max®(a; +iz).
Let us look at some examples of tropical polynomials:

1738} 29

2=z, “l+z”=max(l,z), “l+z+32"”=max(l,z,2z+3),

“1+ 2+ 322 + (-2)2>” = max(1,z,2z + 3,3z - 2).

Each tropical monomial gives rise to an affine-linear function (a linear function
plus a constant), and each tropical polynomial is the maximum of affine-linear
functions.

Now let us find the roots of a tropical polynomial. Of course, we must first
ask, what is a tropical root? The most standard definition of a classical root
of a polynomial P(x) is as follows: a root of P(x) is a number x¢ such that
P(z9) = 0. If we attempt to replicate this definition in tropical algebra, we
must look for elements z¢ in T such that P(xzg) = —oco. However, if ag is the
constant term of the polynomial P(z) then P(z) > ag for all  in T. Therefore,
if ag # —oo, the polynomial P(z) would not have any roots. This definition is
surely not adequate.

We may take an alternative, yet equivalent, classical definition: a root of a
polynomial P(z) is a number for which there exists a polynomial @Q(z) such that
P(x) = (x - 20)Q(z). We will soon see that a similar definition is appropriate
for tropical algebra. To understand this, let us take a geometric point of view. A
tropical polynomial is a piecewise-linear function (the graph of such a function
is a broken line), and each piece has an integer slope (see Figure 2). What is
also apparent from Figure 2 is that any tropical polynomial P(x) is convex,
that is, for any two points (x1,%1) and (z2,y2) of R? such that y; > P(z;)
and yo > P(z2), the segment connecting these two points is entirely contained
in the epigraph {(z,y) e R? | y > P(x)} of P(x). This is because P(x) is the
maximum of a collection of affine-linear functions.



We call tropical roots of a tropical polynomial P(z) all points xo of T for
which the graph of P(x) has a corner at xy. Moreover, the difference in the
slopes of the two pieces adjacent to a corner gives the order of the corresponding
root. (The tropical number —oo is considered as a tropical root of P(z) if the
left-most segment of the graph of P(x) is not horizontal; in such a situation,
the slope of this segment is the order of the root —co.) Thus, the polynomial
“0+ 2" has a simple root at x¢ = 0, the polynomial “0 +  + (~=1)z2” has simple
roots 0 and 1, and the polynomial “0 + z2” has a double root at 0.

(—o0,—00) 0 (-o0,-c0) 0 1 (—o0,—00) 0

a) P(z)=“0+xz” b) P(x) =“0+x+ (-1)x2” c) P(x)=“0+x2”

Figure 2: Graphs of some tropical polynomials

The tropical roots, different from —oo, of a tropical polynomial P(x) =
“d a;xz"” = maxl,(a; +iz) are therefore exactly the tropical numbers o for
which there exists a pair ¢ # j such that P(xzo) = a; +izo = aj + joo. We say
that the maximum of P(x) is attained (at least) twice at 2. In this case, the
order of the root at xg is the maximum of |i — j| for all possible pairs ¢, j which
realize this maximum at x¢. For example, the maximum of P(x) = “0 + x + 227
is attained three times at xy = 0, and the order of this root is 2. Equivalently, x
is a tropical root of order at least k of P(z) if there exists a tropical polynomial
Q(x) such that P(x) = “(x+x0)*Q(z)”. Note that the factor z —x¢ in classical
algebra gets transformed to the factor “x + xy”, since the tropical root of the
polynomial “x + zy” is x¢p and not —zg.

As we have seen, two equivalent definitions of a classical root translate to two
completely different notions in the tropical setting. In fact, this is a recurring
problem in tropical mathematics: a classical notion may have many equivalent
definitions, yet when we pass to the tropical world these could turn out to be
different. In the case of roots of polynomials our second definition is much
more interesting. In fact, with this definition, we have the following statement,
which we encourage you to try to prove! The counterpart of this proposition
when working over the complex numbers goes by the name of the fundamental
theorem of algebra.



Proposition 2.1 The tropical semi-field T is algebraically closed. In other
words, every tropical polynomial of degree d > 1 has exactly d roots when counted
with orders.d

3 Tropical curves

3.1 Definition

Now let us increase the number of variables in our polynomials. A tropical
polynomial in two variables can be written as P(x,y) = i ai’jxiyj 7 or
P(z,y) = max; j(a;; +ix + jy) in classical notation. In this way, our tropical
polynomial is again a convex piecewise-linear function. Here for simplicity, we
will only consider a tropical polynomial as a function on R? and leave points
with coordinates —oco aside. Then, the tropical curve C' c R? defined by P(x,y)
is the corner locus of this function. Said in another way, a tropical curve C
consists of all points (g, o) in R? for which the maximum of P(x,y) is attained
at least twice at (g, yo)-

Let us look at the tropical line defined by the polynomial P(x,y) = “0O+z+y”.
We must find the points (z9,30) in R? that satisfy one of the following three
systems:

zo =0 > yo, Yo =0 > xg, To =1y 2 0.

Hence, as depicted in Figure la, we see that our tropical line is made up of
three standard half-lines

{(0,y) eR? | y <0}, {(£,0) eR? | 2<0}, and {(z,z) e R? | > 0}.

It is always the case that the corner locus of a tropical polynomial in two
variables consists of line segments and half-lines, which we call edges. These
intersect at points which we call vertices. However, we are still missing one
bit of information to properly define a tropical curve. Just as in the case of
polynomials in one variable (where we took the difference of the slopes to be
the order of a root), for each edge of a tropical curve, we must take into account
the difference in the slope of P(z,y) on the two sides of the edge. If on the
one side of an edge of the tropical curve, the function P(z,y) coincides with
the function defined by a single monomial “a; ;z'y?”, then the slope of P(x,y)
on that side is (4,7). Therefore, we assign to each edge of a tropical curve
the weight which is the greatest common divisor (gcd) of the numbers |i — k|
and |j — |, where “ai,jwiyj ” and “ak’lxkyl” are the monomials coinciding with
P(x,y) on two sides of the edge. Upon doing this, we have a complete definition
of a tropical curve.

The degree of a polynomial (in one variable) is the highest power occurring in it.



a) “3+2x+2y+3xy+y>+2?” b) “O+x+y+y?+(-1)2?”

Figure 3: Two tropical conics

When depicting a tropical curve, the weight of an edge is only indicated if
the weight is at least two. For example, in the case of a tropical line, all edges
are of weight 1. Thus, Figure la represents fully a tropical line. Two examples
of tropical curves of degree 2 are shown in Figures 3a and b. (The degree of
a polynomial in several variables is the highest degree of its monomials, the
degree of a monomial being the sum of the powers appearing in this monomial;
tropical curves defined by polynomials of degree 2 are called tropical conics).
The tropical conic in Figure 3b has two edges of weight 2.

3.2 Balanced graphs and tropical curves

Tropical curves in R? have a very nice property, namely that a certain relation,
known as the balancing condition, is satisfied at each vertex.

Let I' c R? be a graph whose edges are straight line segments and half-lines
that have rational slopes and are equipped with positive integer weights. Let
v be a vertex of I' adjacent to the edges ey, ..., e, with respective weights
wi, ..., wg. Since every edge e; is contained in a line (in the usual sense) with
rational slope, there exists a unique integer vector ¥; = («, ) in the direction of
e; such that ged(a, ) =1 (see Figure 4). We say that T' satisfies the balancing
condition at the vertex v if

k
Z ’LUZ‘T)Z‘ =0.
i=1

We say that T' is a balanced graph if it satisfies the balancing condition at each
vertex.



Figure 4: Balancing condition

In fact, it is possible to give a purely combinatorial characterization of
tropical curves, without mentioning tropical polynomials.

Theorem 3.1 Any tropical curve in R? is a balanced graph, and vice versa,
any balanced graph in R? represents a tropical curve.

For example, the above theorem affirms that there exist tropical polynomials
(in fact, of degree 3) whose tropical curves are the weighted graphs presented
in Figure 5. In each case, the direction of the edges can be recovered from the
direction of unbounded edges ((-1,0), (0,-1), and (1,1)) and the balancing

condition.

Figure 5: Three tropical cubics



4 To go further

Following our previous observations we could summarize one motivation to
study tropical geometry as follows:

Simple tropical objects provide useful information concerning their
more complicated classical counterparts.

As an example, let us mention generalizations of the two basic observations
that we made in the introduction about tropical lines, namely that two lines
intersect in one point, and that a single tropical line passes through two points.
The first one generalizes to the tropical Bézout Theorem which states that, under
some genericity assumption, two tropical curves of degree d; and dy intersect
in dydy points (counted with suitable multiplicities). The second one is the
starting point of the development of tropical enumerative geometry, that had
tremendous applications to classical (complex and real) enumerative geometry.

Other important applications of tropical geometry are in real algebraic
geometry, combinatorics, mirror symmetry and mathematical biology, just to
name a few.

We end this short introduction with some references that would allow an
interested reader to delve deeper into the subject. The introductions to tropical
geometry [BS14] and [SS09] do not require a serious background in mathematics.
For a more advanced introduction to the subject, we refer to [IMS07], [Virll],
[BIMS15], and [MS15].
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