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A shor t story on opt imal transpor t
and i ts many appl icat ions

Fi l ippo Santambrogio

We present some examples of optimal transport prob-
lems and of applications to different sciences (logis-
tics, economics, image processing, and a little bit of
evolution equations) through the crazy story of an
industrial dynasty regularly asking advice from an
exotic mathematician.

1 Mines and factor ies, and bistochast ic matr ices

Mr. Hardwork was the owner of 26 iron mines and 26 factories; from each
mine exactly one ton of iron per day was extracted, and each factory used
precisely the same amount of iron for its industrial production. His father had
given names to the factories, and each name started with a different letter from
the latin alphabet, and luckily enough the names of the mines also started
with the 26 different letters of the alphabet. That’s why, when his engineers
wondered how to organize the shipping of the metal from mines to factories
in the best possible way, with no hesitation he chose the unique reasonable
way of proceeding: the whole shipping had to be done in alphabetical order,
with the iron production of each mine sent to the factory corresponding to the
same letter. . . But now he was hesitating: after several years, unexpected news
risked to force him to change his mind. Some factories were increasing their
iron demand, while some others were reducing it, and the same happened to
some mines. . . not to mention the fact that the employees of one of the factories
wanted to change its name, and that a plan for buying new mines in Greece
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and Russia risked to create alphabetical issues. And accountants and engineers
insisted for finding a solution which reduced shipping costs. . .

Mr. Hardwork had been told about an eccentric wise man with an exotic
name, called Grasped Mango, who was spending his time writing formulas and
strange symbols on a blackboard and solving problems. He wrote him a letter,
and he was pleased to receive the following answer:

Dear Mr. Hardwork,

if you don’t mind, I would like to give you an advice. Forget
about the alphabetical order. . .

“he really is a crazy guy”, reacted Mr. Hardwork, “the alphabetical naming
is the most important point of my whole industrial empire”, and continued
reading

. . .and just use mathematics. Actually, your problem reminds me
of an old problem first studied by a French mathematician, Gaspard
Monge (1746–1818). 1 The problem is more general, and it is the
same on every time you have a distribution of mass (in your case it’s
iron, in Monge’s case it was a pile of sand) to be moved, you know
its current position and the target you want to reach (mines and
factories, respectively), you know the shipping cost cx,y to move one
unit of mass from source x to target y, and you must choose where
to send each particle of material. This is called an optimal transport
problem, and it is quite easy to attack: we just need to write a 26×26
cost-matrix (that is, a table of 26× 26 numbers) indicating, at the
entry labeled by (x, y), the cost cx,y to ship from the source mine
x to the target factory y. Then, we have to choose another matrix
with numbers γx,y representing the fraction of mass that goes from
x to y. There are some constraints on this matrix: the numbers
γx,y must clearly not be negative, and the sum of the elements of
each column of the matrix – which we can write as

∑
y γx,y – and

of the elements of each row – which we write as
∑
x γx,y – must all

be equal to one (that is, the total amount of mass sent from a mine
x to all the factories y should be equal to the production of such
a mine, and vice versa – I am not yet considering the case where
productions and demand have changed).
These matrices γ are called bistochastic matrices. 2 We then

“overlay” such a γx,y matrix on top of the cx,y matrix to get a matrix

1 You can find the original in [14]
2 A bistochastic matrix is a matrix whose rows and columns each sum up to one, see [7].
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whose entries are cx,y γx,y and sum over all entries of this new matrix.
This represents the costs given the distribution choice γ. Finding
the optimal γ = (γx,y) is then just a problem of minimizing a linear
function under linear constraints. Don’t worry: you won’t need to
organize 26×26 different shipping. In practice, you will see that
most of the numbers in the optimal γ will be zero, and for each
mine x you will still have one unique target factory y. . . However, it
will be in alphabetic order no more. Indeed, you can prove (and I
leave it as an exercise for your engineers, or your kids) that the set
of bistochastic matrices is the convex hull 3 of the set of permutation
matrices. The permutation matrices are those that only have entries
equal to 0 and 1, and the positions of the 1 describe a permutation
of the indices. What I mean is that in the high-dimensional space
of 26× 26 matrices, the bistochastic ones are a polyhedron whose
vertices are represented by the permutation matrices, and you will
agree that a linear function is always optimized on a vertex.
Moreover, you don’t have to be scared if your mines or factories

do not produce or need all the same quantity of iron, or even if
they are no more in equal numbers. All you have to do is to solve a
linear program, which is a method to obtain the best outcome given
constraints that are linear equations, of the form

Imin := min

{∑
x,y

cx,yγx,y : γx,y ≥ 0,
∑

y

γx,y = µx,
∑

x

γx,y = νy

}
.

(1)
You won’t believe how fast such a solution can be obtained. 4

2 Pr ices, and Kantorovich dual i ty

Time passed by, and the Hardwork company passed on to Mr. Hardwork’s son.
The industrial world had evolved and the new owner of the company was more
interested in management and in particular in the pricing of the company’s
production. He decided as well to contact Grasped Mango, who was still alive,
and still in front of his blackboard. This time he did it by phone, and was much
more precise than his father.

- Mr. H: “Let me be very general, Dr. Mango. Suppose that there
is a set X of types of goods which are produced, a set Y of types
of consumers, and a quantity vx,y which is the value given by the

3 The convex hull of a set X is the smallest convex set that contains X.
4 See, for instance, [5].
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consumer y to the good x. Suppose also that for each x ∈ X, we
know how many items of type x are produced, and we call this
quantity µx, and we also know the quantity νy of consumers of type
y. My question is: what should be the price px for each good x given
the goods-values vx,y and the data on the production and on the
consumers?”
- Dr. M: “This reminds me of the approach that Leonid Kantorovich
(1912–1986) used to attack Monge’s problem [11]. If I have to be
honest, the answer that I gave to your father was already much
based on what this Russian researcher, who even got a Nobel prize in
Economics in 1975, developed in the 40s. You will soon understand
that his ideas have a clear economic interpretation. Indeed, Kan-
torovich understood that solving the same minimization problem
that I considered for your father is intimately related to another
optimization problem, that we usually call a dual problem. To obtain
a dual problem from the original one, which we therefore call primal
one, you can act in this way (let me give more details, since you seem
to be more open to mathematics than your father): Replace the
constraints on the sums of rows and columns of the matrix γxy with
a penalization, that you can obtain using the following computation.
Consider the equality

sup
φ,ψ

{∑
x

φx ∆x +
∑
y

ψy ∆y

}
=
{

0 if ∆x = ∆y = 0
+∞ otherwise,

(2)

where we have defined ∆x := µx −
∑
y γx,y and ∆y := νy −

∑
x γx,y

for convenience of notation. Instead of imposing the constraints, you
can add the value of the sup in (2) into the minimization problem .
In this way, you are adding nothing if the constraints are satisfied,
and you are adding +∞ if they are not, which is exactly the same
as imposing the constraints, in the end. Then, if you switch the
minimization and the maximation procedures, you “magically” end
up with a new optimization problem

Imax := max
{∑

x

φxµx +
∑
y

ψyνy : φx + ψy ≤ cx,y

}
. (3)

You can prove that the minimum Imin in (2) and the maximum
Imax in (3) are the same value. This result depends on advanced
convex analysis theorems, but you can imagine a situation similar to
that of a mountain pass separating two valleys. Among all possible
paths from one valley to the other, find the one which minimizes
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the highest point it passes through: its altitude is the same as the
one you would obtain if you wanted to find the path from one top
on the side of the pass to the other, which maximize the elevation
of the lowest point it passes through. Moreover, whenever you take
the three objects (γ, φ, ψ) you can say that γ is optimal in (2) and
(φ, ψ) in (3) if and only if they are admissible (that is, they satisfy
the constraints in (2) and (3)) and

φx + ψy = cx,y for all pairs (x, y) with γx,y > 0.′′ (4)

- Mr. H: “I understand, Prof. Mango, but what about my pricing
question?”
- Dr. M: “You see, what you look for is indeed a triple (γ, p, q) with
the following properties: γx,y stands for how many consumers of
type y buy the good x, px for the price of x, and qy for the net utility
of the consumer y, in other words, the value of the good he buys,
after subtracting the price he paid. The numbers that make up the
matrix γ must be nonnegative and satisfy the usual constraints on
the sums of the rows and columns, as happens in (2). Moreover, if
γx,y > 0, then this means that some people of type y actually buy a
good of type x: this would not happen if x was not the maximizer of
x 7→ vx,y − px, and in this case we have qy = maxx{vx,y − px}. To
be precise, this means that you want px + qy ≥ vx,y, with equality
whenever γx,y > 0. Now, you see that it is enough to solve (2) for
cx,y = −vx,y and take p = −φ and q = −ψ”. . .
- Mr. H: “That’s interesting, but in this way I could just add a
constant to all the prices px, and subtract it from all the utilities
qy, satisfying the equations while getting higher and higher prices.
I like adding constant to prices, but that’s not how markets work.”
- Dr. M: “It’s because you previously assumed that your consumers
are obliged to buy something. Just add an empty good x to your
set, and impose that its price must be 0 (I hope you will agree that
you cannot charge more than this for buying nothing), and you will
see that all the other prices will be fixed. This is a consequence of
the fact that, if consumers are not forced to buy but can choose not
to buy, then you cannot artificially inflate prices just for the sake of
your personal gain. Consumers would, in that case, simply not buy
anything!
Whatever choice of model you pick, that is, whether you decide

to handle the freedom of consumers to choose or not, I hope I have
convinced you that your problem is equivalent to that of your father.”
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3 Monotone maps, and color rearrangements

Time went on, and technologies went on changing. The Hardwork company
was now property of Mr. Hardwork’s grand-daughter, who had turned it into
a high-tech company mainly specialized in digital pictures. But the tradition
to ask Mango’s advice had not disappeared and, exactly as her father and her
grandfather, she also contacted the old wise man with a question. She did it by
email and attached many images and graphs.

—————————————————————————————–

From: Ms. Hardwork <director@hardwork.co>
To: Dr. Grasped <grasponge@maths.edu>
Subject: Information request.

My dear Grasped,
here is a natural question from image processing: suppose you

need to combine, or compare, two pictures which represent the same
object, or two parts of it, but have been taken in different conditions,
so that one is “globally” darker than the other; we would like to
change the colors of one of the two in order to have the comparable
colors, before attempting to compare pictures. If we have B&W
pictures, this is not so difficult:
• We draw the histograms of the gray-scale distributions of both

pictures (that is, we note how many pixels have each possible
level of gray, numbered from 0 to 255).

• We then find the monotonically increasing function T : R→ R
that allows us to obtain the following: the number of pixels of
the first image with gray level smaller than x equals the number
of pixels in the second image with level smaller than T (x).

• We transform the colors of the first image, by replacing every-
where the gray level x with the gray level T (x).

I guess that, at this point, you have already understood my question:
what should I do if instead of gray levels I have actual colors? How
can I choose the function T in 3D?
—————————————————————————————–
From: Dr. Grasped <grasponge@maths.edu>
To: Ms. Hardwork <director@hardwork.co>
Subject: Re: Information request.
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Dear Ms. Hardwork,

your question is once again a question about optimal transport.
Let me come back to your grandfather’s question; after my general
answer suggesting to solve a linear programming problem, he asked
me about some specific examples. In particular, he wanted to know
what happened if all the mines and the factories were on the same,
long, road, and the shipping cost only depended on the distance
along the road. That’s easy, I told him, if the cost is a power of the
distance, and this power is strictly convex (say, cx,y = |x− y|p for
p > 1 and x, y lying on a line), the optimal way is to order mines and
factories from left to right and to send the iron from the first mine to
the first factory, from the second to the second. . . essentially, to find
the monotonically increasing map T which does exactly the job that
you were mentioning with pixels. On the other hand, if p < 1, this is
not optimal, as one single long jump is preferable to many small ones.
For instance, if the mines are at points {1, 2, . . . , n} and the factories
at points {2, 3, . . . , n, n+ 1}, for p > 1 you will send each point x
to T (x) = x+ 1, and for p < 1 you will just send 1 to T (1) = n+ 1
and not move all the others (that is, T (x) = x). . . For p = 1 you
have the choice, with at least two different optimal solutions, which
are the two I just described (this is also known as the book shifting
example). An example of what I just said can be found in Figure 1
attached to this email. You can have a look at [9] if you want, where
you can see the important role played by the increasing transport
map. Moreover, you will see that there is no need of having mass
distributions represented by a finite number of locations, and you
can consider any distribution (that we call measure in mathematics),
in particular those distributions which are “diffuse everywhere”,
or continuous, like water or gas in a container, and therefore can
define a density, that is, the quantity defined at every point of the
total space available which gives the amount of matter enclosed in
a certain volume, once integrated over that volume.

• • • • • •
•• • • • •

• • • • • •
•• • • • •

Figure 1: The transport maps in the book shifting example

But your question is multidimensional, and hence more difficult.
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This reminds me of an old result 5 by Yann Brenier, see [4]. He
was particularly interested in the case cx,y = |x− y|2, which is the
most physically relevant, and considered transport maps T which
transform one given distribution of mass onto another given one.
He found out that the optimal map T exists, and is the gradient of
a convex function. A convex function in dimension one is exactly
characterized by the fact that its derivative is monotone increasing,
while in higher dimensions, if T = ∇u and u is convex we have

〈T (x)− T (x′) , x− x′〉 ≥ 0 for all x, x′,

which can be considered as a notion of higher-dimensional mono-
tonicity. 6 You could try using this transport map T between the
distribution of mass on the 3D space of colours given by one image,
and the distribution of the other image, and the results should be
good! 7

4 Middle points, barycenters, distances, steepest descent

Ms. Hardwork was quite satisfied by the suggestions of her by-now family
friend Grasped Mango, which inspired her engineers in developing many useful
algorithms, as you can see in Figure 2.

Hence, she decided to ask new questions.

—————————————————————————————–

From: Ms. Hardwork <director@hardwork.co>
To: Dr. Grasped <grasponge@maths.edu>
Subject: Changing colors.

Dear Grasped,
how about modifying the colors of both pictures into an interme-

diate color set? Beware that, for me, the midpoint between a red
picture and a yellow one is not half red and half yellow. . . I would
expect something orange.
—————————————————————————————–
From: Dr. Grasped <grasponge@maths.edu>

5 To appear more mysterious than what he really was, Grasped Mango always referred to
mathematical results calling them “old”, independently of how old they really were.
6 The gradient operator ∇ is the generalisation of derivative in more than one dimension.
The inner product 〈·, ·〉 measures the angle between vectors.
7 Similar color transfers were used, for instance, in [15].
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Figure 2: The last image is the first one, with the colors of the second, using
optimal transport methods.

To: Ms. Hardwork <director@hardwork.co>
Subject: Re: Changing colors.

Dear. Ms. Hardwork,
That’s easy. This reminds me of an old idea by Robert McCann,

see [13], who wanted to find a way to move continuously (in the
space of distributions) from one mass distribution to another, along a
“shortest path” between them, called geodesic. 8 . You can interpolate
between a distribution µ and another distribution ν by taking the
optimal transport map T sending µ onto ν, for instance for the
quadratic cost cx,y = |x − y|2 (called the Brenier map). Now, if
you take the particles of µ and move each of them from x to T (x),
you obtain ν; if you leave them at x, you obtain µ; if you take
a number t ∈ [0, 1] and you move them from their position x to
Tt(x) := (1 − t)x + tT (x) you will obtain a new distribution that
you can call µt. Letting t vary from t = 0 to t = 1 you will
obtain a continuous curve of distributions connecting µ to ν. In
the application to images that you have in mind, you will gradually
transform red into yellow by passing through all shades of orange.
—————————————————————————————–
From: Ms. Hardwork <director@hardwork.co>
To: Dr. Grasped <grasponge@maths.edu>
Subject: Re: Re: Changing colors.

8 This is in analogy with the theory of special relativity, where geodesics represent the
natural path followed by test (very small) particles that move through space and time.
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Dear Grasped,
this seems to be a nice idea, but what would happen if I had more

than two distributions?
—————————————————————————————–
From: Dr. Grasped <grasponge@maths.edu>
To: Ms. Hardwork <director@hardwork.co>
Subject: Re: Re: Re: Changing colors.

Dear. Ms. Hardwork,
this is also easy. What you need is to define a notion of barycenter

(center of mass), and it reminds me of an old paper by Martial
Agueh and Guillaume Carlier (which can be found at [1]). What
is the barycenter between some pointlike objects with weights λi
placed at points xi? If the λi are nonnegative numbers that sum
up to 1, that is, the weight is given as a percentage of the total
mass, then you just set x :=

∑
i λi xi and this defines the position

barycenter. I know that you do not want to sum and average mass
distributions, neither on the space of colors nor on the space of mine
locations, but, please, wait a little bit. The barycenter that I just
defined also happens to be the solution of the minimisation problem
minx

∑
i λi|x− xi|2. All you need is to define a suitable distance on

the space of mass distributions based on optimal transport ideas.
That is, a distance between distributions, so to speak. This distance
exists, and it is called Wasserstein distance W2(µ, ν) (don’t ask me
why this name, this is a long story, and not everybody agrees). Since
I know that I can use advanced mathematics with you, I will write
down the definition for you using integrals instead of sums, it in the
following way:

W2(µ, ν) := inf
{∫
|T (x)− x|2dµ(x) : T transports µ onto ν

}1/2
.

If you want to be convinced that the distance defined above does
the job we are looking for, think that it generalizes the length of
a vector connecting two points to the case where the vector has a
“continuous amount of elements”. Furthermore, each component in
the addition (that is, integral) is “weighted” by the value of the
distribution at that point. In this sense, each infinitesimal summand
in the integral contributes more or less depending on the value of
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the measure. If you know a little bit about Lp norms 9 , you can
guess that the exponent 2 could be replaced by other exponents
p, thus leading to Wp distances, and that the power 1/p outside
the infimum is needed to make it a distance (that is, satisfy the
triangle inequality). . . Anyway, you can now take a certain number
of distributions µi on a space X and solve

min
{∑

i

λiW
2
2 (ρ, µi) : ρ is a distribution on X

}
.

The distribution ρ which attains this minimum will be a barycenter
between the µi’s, with weights λi. You might say that this distribu-
tion is a mixture of the µi’s with proportions λi. You can get an
idea from Figure 3, and have a look at [16] for other applications of
barycenters in image processing.

Figure 3: Barycenters between four different shapes, with different weights.
Thresholding of the densities has been performed in order to visualize
shapes: the barycenters should a priori be mass distributions, not
necessarily uniform.

—————————————————————————————–

Once he started to tell a story on optimal transport, it was difficult to stop
Grasped Mango 10 , and he went on without Miss Hardwork having to ask.

9 The distances known as Lp norms help defining spaces of functions where integrals of
powers of these functions, such as

∫
dx|f(x)|p, have finite values. These norms are paramount

in many areas of modern sciences, such as quantum physics.
10 More or less the same as the author of this snapshot.

11



—————————————————————————————–

You know, Wasserstein distances can be used for many other
purposes. Essentially, every time that you have a distance on a
set you obtain a distance on the probability measures that are
defined on it, or on the histograms on it, you would say. You
can use them to compare objects, find middle points, find outliers
and clusters. . . they are widely used now in data processing. But
I would like to finish this story with a very different application:
after logistics, economics, and image processing, let me speak about
evolution equations. Indeed, I mentioned some particular curves
in the space of probabilites (geodesics) in my previous email. We
can study other curves, and if you imagine that these probabilities
are defined through their density ρ, then a curve of probability will
be a function ρ(t, x) of time and space, and it will be interesting
to study the equations this function solves. Indeed, I would like
to tell you something about an old idea by Richard Jordan, David
Kinderlehrer, and Felix Otto (printed in [10]). First, give me ten
seconds to tell you what is a gradient flow, in case you don’t know.

Take a point x0 in Rn and a function F : Rn → R, and follow the
equation x′(t) = −∇F (x(t)) starting from x(0) = x0, which is the
steepest descent curve for F stemming from such a point. There is an
easy way to approximate such a curve by time-discretization: you fix
a time step τ > 0, and you iteratively define xk+1 to be a minimizer
of x 7→ F (x) + 1

2τ |x− xk|
2. I guess you know that the gradient of a

function vanishes at minima points, which provides the condition,
1
τ (xk+1 − xk) = −∇F (xk+1), which is a discretization of the above
equation. The same iterated minimization can also be performed in
the framework of mass distributions: you can iteratively solve

min
ρ

{
F(ρ) + W 2

2 (ρ, ρk)
2τ

}
,

for different choices of the function F , defined on the set of prob-
ability measures. For instance, if you take F(ρ) :=

∫
F dρ, the

curve you get is just a superposition of trajectories of x′ = −∇F (x),
that is, you have a solution to the partial differential equation
∂tρ − ∇ · (ρ∇F ) = 0. If instead you use the entropy functional
F(ρ) :=

∫
ρ(x) log ρ(x)dx (to be properly defined), you can see that

you have a solution to the heat equation ∂tρ−∆ρ = 0 and, summing
the two, with F(ρ) :=

∫
ρ(x) log ρ(x)dx +

∫
F dρ

dx dx you have the
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Fokker-Planck equation

∂tρ−∆ρ−∇ · (ρ∇F ) = 0.

I am sorry if these equations are not easy to obtain from the mini-
mization problem above, but you can have a look at [10] if you want
to know more about the details.

Many other equations, in particular those coming from population
dynamics (because of the conservation of the mass which is implicit
in the idea that in optimal transport, the mass is fixed to 1, and
this is well adapted to describe the motion of a population), can be
studied via these tools: just to note some examples, you can find
biological equations such as the Keller-Segel models for chemotaxis
(see [3]), or models for crowd motion where the density is constrained
not to go beyond a given threshold (see [12]).

Fur ther reading

The Hardwork family fell in love with the stories by Grasped Mango, with
optimal transport, and with its many applications. If this also happened to you
and you want to know more, there are books which could be of interest (but
they are written as research monographs, and require advanced mathematics).
The main reference is [19], a book that, later on, the author has expanded into
a huge treaty, [20], detailing all the connections with differential geometry that
have been omitted in this short story. From the point of view of applications,
[17] is an accessible introduction, and [8] focuses on economics; a text specifically
devoted to numerical methods is [6]. When talking about “gradient flows”, the
bible for the general theory is [2], but a recent and shorter survey is available at
[18]. Finally, another simple introduction on the topic of optimal transport can
be also found in Snapshot 8/2017 Computational Optimal Transport by Justin
Solomon

Image credi ts

Figure 1 was designed by the author.

Figure 2 and Figure 3 have been kindly provided by Gabriel Peyré.
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