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Topological complexity is a number that measures
how hard it is to plan motions (for robots, say) in
terms of a particular space associated to the kind of
motion to be planned. This is a burgeoning subject
within the wider area of Applied Algebraic Topology.
Surprisingly, the same mathematics gives insight into
the question of creating social choice functions, which
may be viewed as algorithms for making decisions by
artificial intelligences.

1 What can topology do for you?

When physicists and engineers study or design physical systems, they must
take account of the totality of all states of the system in order to understand
questions of, for instance, effectiveness and stability. The set of states is called
the configuration space of the system. For example, consider a simple pendulum
that can only swing in a plane. What are its states? The state of the pendulum
is determined by where it is in its circular path; that is, the angle θ (measured
counterclockwise starting from the hanging vertical state) tells us everything
about the position of the pendulum. The configuration space is the set of all
possible angles θ; that is, a circle. In mathematical set notation, this circle,
denoted S1, consists of all angles from 0◦ to 360◦, with 0◦ and 360◦ considered
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the same angle. We write

S1 = {θ | 0◦ ≤ θ ≤ 360◦, 0◦ = 360◦} .

As another example, take a double pendulum: one pendulum joined to
the end of the other. We confine each of the pendula to swing in its own

Figure 1: A double planar pendulum

plane, offsetting the two planes so that the pendula do not collide. What is
the configuration space? The positions of the rods is what we are after and
they are determined by the angles of the first and second pendula, θ1 and θ2
(see Figure 1). These are independent of each other, so we can write the set of
states as a product space: that is, a set of pairs of angles where the first angle
always comes from the first pendulum and the second angle comes from the
second pendulum. We write

S1 × S1 = {(θ1, θ2) | 0 ≤ θ1 ≤ 360◦, 0◦ ≤ θ2 ≤ 360◦, 0◦ = 360◦}

where the first circle S1 of S1 × S1 corresponds to the first pendulum and the
second to the second.

How can we picture this product space? First take one circle, then attach
the center of the second circle at a point (perpendicular to the plane of the
first circle for easier visualization). Now move the second circle around the
first by simply moving the attached center of the second circle around the first
circle. This gives us a space that looks like a hollow bagel — it is called a
(2-dimensional) torus (see Figure 2).
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Figure 2: The configuration space of a double pendulum: a torus

Another way in which we can extend our first example is by allowing universal
joints connecting the rods of a pendulum, so their motion is not confined to a
plane. The configuration space of a single arm on a universal joint is the surface
of a sphere — the radius of the sphere is the length of the arm.

As we did with the planar pendulum, we can form a double pendulum with
two rods connected by a universal joint (we must idealize, to avoid issues with
self-intersections). Furthermore, we could mix-and-match planar and universal
joints on our double pendulum, to further extend the range of examples.

But why stop at a double pendulum? By the same reasoning as above, a
triple planar pendulum has a configuration space

S1 × S1 × S1 = {(θ1, θ2, θ3)}

which is called a 3-dimensional torus. We can keep doing this forever, but
we shorten the notation (using T for torus); a pendulum with n arms has
configuration space

Tn = {(θ1, θ2, . . . , θn)}.

Of course we can see T 1 = S1 and T 2 = S1 × S1, but where do these higher
dimensional tori live?
S1 lives in the plane R2; T 2 = S1 × S1 lives naturally in R2 × R2 = R4

(four-dimensional space); T 3 = S1×S1×S1 lives naturally in R2×R2×R2 = R6

(six-dimensional space); and so on. Actually, as we saw with T 2 above, it is
sometimes possible to fit the configuration space Tn into a Euclidean space
of dimension less than 2n. Generally speaking, however, we will need to use
Euclidean spaces of arbitrarily high dimension to accommodate the state spaces
of these examples. For instance, it is not possible to embed T 3 in ordinary
three-dimensional space.
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Notice how naturally we have entered the realm of higher-dimensional spaces.
We must distinguish between the work space of the robot, that is, the setting in
which the task is carried out, and its configuration space. Whereas the work
space is ordinary three-dimensional space, the configuration space is usually
(much) higher dimensional, and thus difficult to visualize or analyze.

Human beings can’t visualize higher dimensions very well, so we need help
to study spaces of high dimensions. This is where algebraic topology comes in.
Modern algebraic topology attempts to describe shapes or properties of spaces in
terms of algebra. It does this by assigning to a space various algebraic invariants
that can be calculated (or sometimes just estimated). Knowledge of these
invariants allows us to compare spaces, perhaps to say that one configuration
space is different from another in a fundamental way. Let’s see what algebraic
topology can help us understand about robot arms.

A simple type of robot arm can be thought of as a collection of pendula,
perhaps some with universal joints, so its configuration space is a product of
circles and spheres.

The following problem is fundamental if we hope to be able to use robots to
carry out tasks autonomously — that is, without human intervention. For each
system, we have the motion planning problem (MPP), as follows:

Problem 1.1 (Motion Planning Problem) Given any initial state A and
any final state B, produce a path in the configuration space of the system. The
outputs must be continuous with respect to the inputs.

That is, we want an algorithm which takes in any pair of states and returns
a path, in a continuous way, that is, so that a small change in the initial and
final states results in only a small change in the resulting path.

To see more precisely what motion-planning looks like, consider just a single
arm on a universal joint, whose configuration space is a sphere S2.

Example 1.2 Given x and y, two points on S2, what path would you choose
from x to y? There are several different possibilities for how x and y could be
related.

If x and y are not antipodal (that is, directly opposite the sphere from one
another), then x, y and (0, 0, 0) define a unique plane in R3 that slices the
sphere S2 in a circle with the same radius as the sphere: a great circle. On this
circle there is a unique shortest path from x to y (this is where we use the fact
that x and y are not antipodal). Always choose this path in this situation, as
illustrated in Figure 3.
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Figure 3: First motion planner: shortest distance

So for any pair (x, y) in the set

U1 = {(x, y) | y 6= −x},

we have a choice of motion.
What if x and y are antipodal? We need a mathematical fact. You may have

heard the theorem that, at any instant of time, there is at least one place on
the Earth where the wind does not blow. 1 In particular we can find (wind)
directions at every point on Earth continuously except for one special point, call
it A. 2

Consider the set of antipodal pairs (excluding A and its antipode):

U2 = {(x,−x) |x 6= A}.

We’ll give a motion-planning rule for such pairs. At x take the wind direction
and use it to get a plane through x and (0, 0, 0) with the wind direction vector in
the plane. The intersection of the plane and S2 is a circle containing x and −x.
Use the direction vector to move along the circle from x to −x, as illustrated in
Figure 4.

Thus we have accounted for all pairs except for the one pair (A,−A) consisting
of the no-wind point and its antipode. For this pair we simply choose any path
from A to −A.

We have thus given a way to plan motions from any x to any y on the sphere
S2. It is not so very hard to check, however, that the scheme described above

1 This fact is more widely known as the Hairy Ball Theorem, since it says that you cannot
neatly comb the hair on, say, a Tribble, except if there is one spot with no hair at all.
2 The technical phrase is: we have chosen a continuous tangent vector field which vanishes
only at A.
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Figure 4: Second motion planner: “Gone With the Wind”

is not continuous as we vary x and y: starting from a non-antipodal pair (x, y),
if we slide both x and y toward being antipodal, we must change regimes, and
this may result in a large change in the path that the scheme suggests for us. It
turns out that we cannot really do better.

The rest of this section and the next will focus on this MPP, and the extent
to which we can solve it. Before we can discuss the feasibility of solving the
Motion Planning Problem, we need a few mathematical ideas which lie at the
heart of modern topology. First, mathematicians understand processes in terms
of mappings. A mapping f has inputs in a space X and outputs in a space Y ;
we denote it by f : X → Y . A mapping can be thought of as a manufacturing
process: something goes in and a different thing (perhaps a different kind of
thing) comes out. Two mappings f : X → Y and g : X → Y can be similar
even if they do not produce the exact same outputs for the same inputs. The
relevant form of similarity we will need is called homotopy. Mappings f and g
are homotopic if f can be continuously deformed to g. Formally, this is when
there is a mapping H : X × [0, 1]→ Y with H(x, 0) = f(x) and H(x, 1) = g(x).
We write f ∼ g to denote this relation.

We observe that homotopy really is a kind of ‘similarity’: every map is
homotopic to itself; if f ∼ g then g ∼ f ; and if f ∼ g and g ∼ h, we can
conclude that f ∼ h. 3

Here is a crucial example of homotopic maps.

Example 1.3 Any mapping f : Rn → Rn is homotopic to the mapping c0 :
Rn → Rn which sends all points to the origin 0 ∈ Rn. We see this by using the
homotopy H : Rn × [0, 1]→ Rn given by H(x, t) = (1− t)f(x).

3 Relations with these properties are called equivalence relations.
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When a space X has this property, we say that X is contractible. The
idea behind this term is that the entire space X can be continuously collapsed
to a single point. This is a very restrictive condition on a space; it means
that, viewed through the filter of homotopy, contractible spaces are just like
single points — a not-too-interesting class of spaces. Spheres and tori are not
contractible, although it is not so easy to prove this without using some tools
from algebraic topology, such as homology or homotopy groups.

Equipped with the notion of contractibility, we can state the following
sobering result.

Theorem 1.4 Let X be the configuration space of a system. There is a solution
to the MPP (Problem 1.1) on X exactly when X is contractible.

Since many configuration spaces of interest, such as the torus, are not
contractible, we will often find ourselves in the situation in which a global
continuous motion planning algorithm (that is, a motion-planning regime which
applies to all pairs of initial and final point) is not possible. This disappointing
result affords an opportunity for topology to introduce some order into the chaos.
A major approach to studying the topology of spaces is a kind of molecular
approach to spaces: break them apart into understandable pieces and then
analyze how the pieces are glued together. Now, how can we use this method
to obtain a next-best-solution to the motion planning problem? In order to see
this, we need a more precise mathematical formulation of the MPP.

2 Topological Complexi ty

In the MPP, we are interested in finding a path in a configuration space X
from any point x ∈ X to any other point y ∈ X. A path from x to y is just a
mapping γ : I = [0, 1]→ X with γ(0) = x and γ(1) = y. We denote the set of
all paths in X by XI . There is a special map from XI to the product space
X × X denoted π : XI → X × X and defined by π(γ) = (γ(0), γ(1)), which
associates to each path its endpoints. A motion planning algorithm would then
be a mapping s : X ×X → XI such that π(s(x, y)) = (x, y). That is, s(x, y)
is a path in X from x to y, the given starting and ending points in X. Such
a map s is called a section of π. But now we see that Theorem 1.4 says that
a section of π exists only when X is contractible. For other spaces, what can
we do? We can measure how complicated a space is by asking for the minimal
number of pieces into which X ×X can be decomposed, such that for each of
these pieces there is a motion planning algorithm inside X.
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Definition 2.1 The topological complexity [6] of a space X, denoted TC(X),
is the least number n of subsets 4 U1, . . . , Un of X ×X such that the union of
the sets Uj is all of X ×X and for each Uj, there exists a map sj : Uj → XI

with πsj ∼ ij : Uj → X ×X, where ij : Uj → X ×X denotes the inclusion.

Example 1.2 shows that TC(S2) ≤ 3. In fact, an extra algebraic calculation
shows that TC(S2) = 3.

This means that a robot arm consisting of a single arm with universal artic-
ulation needs at least three motion planning algorithms to automate movement.
Thus, topology is giving crucial information to engineers about what not to
waste time doing: namely, trying to use only one or two motion planners.

From just the small amount of mathematical detail given above, we can now
give a proof of Theorem 1.4.

Proof. First note that, by the definition of TC, a motion planner exists on the
whole space X exactly when TC(X) = 1. So we will show that TC(X) = 1 is
equivalent to X being contractible.

Suppose X is contractible. Then there is a homotopy H : X × I → X with
H(x, 0) = x and H(x, 1) = x0 (for some fixed point x0 ∈ X). Define a section
s : X ×X → XI (recalling that s(x, y) is a path in X) by

s(x1, x2)(t) =
{
H(x1, 2t) for 0 ≤ t ≤ 1

2
H(x2, 2(1− t)) for 1

2 ≤ t ≤ 1.

This definition is just saying that the path s(x1, x2) first goes from x1 to the
fixed point x0 at twice the usual speed (hence the 2t in H(x1, 2t)) and then
goes from x0 to x2 at twice the usual speed. Thus a contracting homotopy on
X provides well-defined paths from any point to any other — a motion planner.

Now suppose that a motion planner s : X ×X → XI exists (that is, π ◦ s ∼
id : X ×X). We can replace s by a map ŝ with π ◦ ŝ = idX . Choose any point
x0 ∈ X and define a homotopy H : X × I → X by H(x, t) = ŝ(x, x0)(t). Note
then that H(x, 0) = x = idX(x) and H(x, 1) = x0 = cx0(x) since these are the
endpoints of the motion planner ŝ. This homotopy H is then a contracting
homotopy and we see that X is contractible. QED

There are many examples for which the value of TC(X) is known. For
instance (see [6]), we have: TC(Sm) = 3 if m is an even number; TC(Sm) = 2 if
m is an odd number; and TC(Tn) = n+ 1. Generally, however, it is difficult to

4 To rule out pathologies, the subsets have to satisfy an extra condition such as being open
or being Euclidean Neighborhood retracts, for instance.
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compute the value of TC(X); often, we are able to determine a range of possible
values. For instance, it is relatively easy to see that the topological complexity
of the Klein bottle must be either 3 or 4. Which of these it is, however, remains
an open problem at the time of writing.

3 Social Choice

An amazing thing about mathematics is that ideas developed for one reason
often find use in some completely unrelated context. Who would have thought
that the eigenvalues of linear algebra would turn out to be the observables in
quantum mechanics? Or that the differential geometry of Riemann would be
the setting 50 years later of Einstein’s General Theory of Relativity? Or that
Radon’s transform would be the basis for CT scans a half-century after being
defined? Here, let’s look at a completely different subject that uses the ideas
we have developed in Section 2.

In Social Theory and Economics, a main goal is to understand how societal
decisions are made when individuals have different preferences. This is precisely
what is done in the limited context of game theory when we find Von Neumann-
Morgenstern and Nash equilibria. Here we want to broaden the scope by
considering preference spaces X which, for a given societal decision problem,
contain all the possible preferences of the individuals involved in coming to the
societal decision. This space is a continuous (non-discrete) topological space
akin to the utility functions of Economics in the sense that individuals have
a continuous range of preferences in many “directions”. Somehow, in order
to obtain a compromise decision, the preferences of the individuals must be
aggregated. This leads to the following.

Definition 3.1 Suppose there are k individuals each of which has preference
space X. A social choice function is a continuous function f : Xk → X (where
Xk = X × · · · ×X (k-times)) satisfying two properties.

• (Unanimity) If all individuals have the same preference, then this is also
the societal preference. Mathematically, this is saying that f(x, x, . . . , x) = x.

• (Anonymity) It is the set of input preferences to the function that determine
the output decision, not the individuals who have certain preferences. That
is, any shuffling of k fixed preferences among the individuals produces the
same outcome. Mathematically, this is saying that

f(x1, x2, . . . , xk) = f(xσ(1), xσ(2), . . . , xσ(k)),

where σ is any permutation of the integers {1, 2, . . . , k}.
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These types of functions were actually studied in the 1950’s under the name
of generalized means. Economists [2, 3] re-discovered the main results about
means given in [4] (which, in fact, were also mathematically re-discovered in
[9]). Also, we note that there is a beautiful topological approach to the related
topic of Arrow’s Impossibility Theorem in [1]. Here is the main result (which
looks a lot like Theorem 1.4).

Theorem 3.2 Let X be a preference space 5 and k ≥ 2. Then a social choice
function f : Xk → X exists for some k ≥ 2 exactly when X is contractible.

See [5, 9] for a proof. Theorem 3.2 says that, unless the preference space is very
special (i.e. contractible), there is no algorithmic way to achieve compromise.

Yet it is unlikely that the preference space is contractible, so what can be
done? Let’s take a cue from topological complexity and make a wild proposal.
Let’s split Xk into pieces where (local) social choice functions can be given.

We start by looking at the case in which there are just two choices to
aggregate. Let’s think of a couple who need to make a joint decision, based
on their preferences from a preference space X. Here we seek a social choice
function f : X ×X → X that satisfies

• f(x, x) = x, and
• f(x2, x1) = f(x1, x2) for all x1, x2.

As we have seen, this will not be possible unless X is a contractible space.
So, we proceed as follows:

Definition 3.3 The social choice complexity of a space X, denoted sc(X),
is defined to be the least integer n for which X × X is the union of n sets
U1, . . . , Un, each of which is “symmetric,” in that we have T (Uj) = Uj, and on
each of which we have a continuous map sj : Uj → X that satisfies:

(i) sj(x, x) = x whenever x ∈ Uj ∩DX(X);
(ii) sj(x2, x1) = sj(x1, x2);
(iii) DX ◦ sj ∼ ij : Uj ↪→ X ×X while leaving Uj ∩DX(X) fixed throughout the

homotopy. Here DX : X → X ×X is given by DX(x) = (x, x).

In this definition, conditions (i) and (ii) correspond to unanimity and
anonymity, respectively, applied to the restricted set of preferences Uj . Con-
dition (iii) is a separate condition that we have added. We call this condition

5 We always suppose that spaces are a nicely-behaved sort of space known as finite CW
complexes.
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“close compromise,” as it expresses in some way that the social choice should be
close to each of the individual chosen preferences. As with topological complex-
ity, sc(X) gives us a way to measure the necessary degree of discontinuity in
a social choice function f : X ×X → X that is determined by the topology of
the preference space X. It is clear that there is some similarity between the
two notions. We can make this similarity more precise by bringing into the
discussion a variant of topological complexity, which was introduced in [7] and
is known as symmetric topological complexity.

Recall that a motion planner is a section σ : X × X → XI of the map
π : XI → X ×X that assigns to a path its endpoints. Rather than accepting
any old path σ(x, y) starting at x and ending at y, we can place two reasonable
restrictions on the acceptable paths: (1) If the initial and final states agree, then
the path is constant, that is, we have σ(x, x) = cx; and (2) if we interchange
initial and final states, then the path should be the time-reverse of the original,
that is, we have σ(x, y)(t) = σ(y, x)(1− t) for t ∈ [0, 1]. We call such a motion
planner a symmetric motion planner. Since a symmetric motion planner is a
special kind of motion planner, only a contractible space will admit a global
continuous one. As usual, by now, we will decompose X ×X into pieces, each
of which allows a local symmetric motion planner. Then we have the following
connection between symmetric motion planners and social choice functions.

Theorem 3.4 Suppose that X×X is the union of n sets U1, . . . , Un that satisfy
T (Uj) = Uj , and on each of which we have a (local) symmetric motion planner
in X, namely a continuous map σj : Uj → XI that satisfies π ◦ σj = ij : Uj →
X ×X, as well as:

(i) σj(x, x) = cx whenever x ∈ Uj ∩∆(X);
(ii) σj(x, y)(t) = σj(y, x)(1− t) for t ∈ [0, 1].

Let r : XI → X be the map that assigns to each path in X its midpoint (in
time), namely, r(α) = α(1/2). Then each r ◦σj : Uj → X is a local social choice
function in X, and we have sc(X) ≤ n.

In [7], the authors define an invariant, denoted TCS(X) and called the
symmetric topological complexity, and show that, if TCS(X) = n, then there is
a decomposition of X ×X and local symmetric motion planners, that together
satisfy the conditions of Theorem 3.4 (see Lemma 8, Corollary 9, and the
discussion in-between, of [7]). Combining this with Theorem 3.4, we see that
sc(X) ≤ TCS(X).

In fact,

Theorem 3.5 We have the following inequalities:

TC(X) ≤ sc(X) ≤ TCS(X).
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As with TC(X), the invariants sc(X) and TCS(X) are generally difficult to
compute. Indeed, very little is known about TCS(X), and no in-depth study of
sc(X) has yet been undertaken. For instance, in [7, Cor.18]), it is shown that,
for a circle, we have TCS(S1) = 3. On the other hand, we have TC(S1) = 2.
At present, we do not even know whether sc(S1) equals 2 or 3! (It must be one
or the other, by Theorem 3.5.)

We should say a few words about social choice functions where more than
two choices must be aggregated—after all, we want to consider decisions made
in society and not simply within couples. We indicate the ideas here, but omit
details. Suppose we seek a social choice function f : Xk → X that satisfies
unanimity and anonymity. A continuous such function will only exist when X is
contractible, by Theorem 3.2. Therefore, we decompose Xk into pieces, on each
of which there is a local social choice function in X. We adapt Definition 3.3
by replacing X × X with Xk, the interchange map T with a more general
permutation of k coordinates, and making all concomitant changes. We keep
the condition (iii) of “close compromise” in this setting, too. The result is an
invariant which we denote by sck(X), and call the k-social choice complexity of
the preference space X.

Now there is another variant of topological complexity, denoted by TCk(X),
for k ≥ 3, and called the k-th (higher) topological complexity. This is introduced
in [8], and is defined as follows:

Definition 3.6 TCk(X) is the least number n of subsets of Xk, U1, . . . , Un
such that the union of the Uj is all of Xk and for each Uj, there exists a
map sj : Uj → XI with πksj equal to the inclusion ij : Uj → Xk., where
πk : XI → Xk is defined by

πk(γ) = (γ(0), γ(1/(k − 1)), γ(2/(k − 1)), . . . , γ((k − 2)/(k − 1)), γ(1)).

This is the mathematical formulation of a motion planning problem with k
total points to be visited in the configuration space. (Think of a robot that has
to pick up materials in various spots before it goes to its final configuration.)
For example (see [8]), we have: TCk(Sm) = k + 1 if m is an even number;
TCk(Sm) = k ifm is an odd number; and TCk(Tn) = n(k−1)+1. Furthermore,
for any k, we have TC(X) ≤ TCk(X) ≤ TCk+1(X).

Similar reasoning to that used above now gives inequalities as follows:

Theorem 3.7 For each k ≥ 3, we have the following inequalities:

TC(X) ≤ TCk(X) ≤ sck(X).

We omit details of this result. We note that there is not, at present, a
suitable notion of “symmetric higher topological complexity” that might be
placed as an upper bound on sck(X) here as there was in Theorem 3.5.
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Social choice complexity sck is a measure of the “social homogeneity” of the
individuals with preference space X. That is, if sck is small, then there are a
small number of sets that Xk can be split into so that, within these preference
sets, compromise can be obtained algorithmically. Of course, the pieces Uj of
Xk in this case must be large in order to cover all of Xk. This means that
compromise may be found among vast arrays of preferences. This must be due
to the topology of the preference space itself. When sck is large, then the set of
preferences is complicated and only generically small sets of preferences lead to
agreeable compromise.

4 Conclusion

Topology is, more and more, finding a place in Applied Mathematics. But this
is not necessarily the applied mathematics of the 19th or 20th centuries. It is
a new applied mathematics that attempts to provide principles to guide the
investigations of 21st century social scientists and biologists as well as physical
scientists and engineers.
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