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COMPUTING CONGRUENCE QUOTIENTS OF ZARISKI DENSE SUBGROUPS

A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

ABSTRACT. We obtain a computational realization of the strong approximation theorem. That is, we
develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated
Zariski dense group H ≤ SL(n,Z) for n ≥ 2. More generally, we are able to compute all congruence
quotients of a finitely generated Zariski dense subgroup of SL(n,Q), n > 2.

1. INTRODUCTION

The strong approximation theorem (SAT) is a milestone result of linear group theory and its
applications [18, Window 9]. It has come to play a similarly important role in computing with
linear groups [4].

If H is a finitely generated Zariski dense subgroup of SL(n,Z), then SAT asserts that H is
congruent to SL(n, p) for all but a finite number of primes p ∈ Z. Therefore SAT enables us
to describe the congruence quotients of H modulo all primes. Moreover, we can describe the
congruence quotients of H modulo all positive integers if n > 2 (see [4, Section 4.1]).

Finitely generated linear groups are residually finite. So the congruence quotients of H provide
important information about H; especially when H is arithmetic, i.e., of finite index in SL(n,Z).
In this case the set Π(H) of all primes p such that H 6≡ SL(n, p) mod p is (apart from some
exceptions for p = 2 and n ≤ 4) the set of primes dividing the level of H , defined to be the level of
the unique maximal principal congruence subgroup in H [5, Section 2]. If H is thin, i.e., dense but
of infinite index in SL(n,Z), then we consider the arithmetic closure cl(H) of H: the intersection
of all arithmetic groups in SL(n,Z) containing H [5, Section 3]. Note that Π(H) = Π(cl(H))

determines the level of cl(H) just as it does when H is arithmetic. The level is a key component of
subsequent algorithms for computing with arithmetic subgroups, such as membership testing and
orbit-stabilizer algorithms [7].

In [5, Section 3.2] and [4], we developed algorithms to compute Π(H) when n is prime or H
has a known transvection. This paper presents a complete solution: practical algorithms to compute
Π(H) for arbitrary finitely generated dense H ≤ SL(n,Z), n ≥ 2. We also give a characterization
of density that allows us to compute Π(H) without preliminary testing of density (although this can
certainly be done, as in [5, Section 5] and [6]). Without much extra work, we extend our methods
to cover finitely generated subgroups of SL(n,Q).

As in [4], we rely on the classification of maximal subgroups of SL(n, p). In fact, we follow
B. Weisfeiler’s proof of the strong approximation theorem [18, Window 9]. In Section 2 we prove
results about maximal subgroups of SL(n, p) that are needed for our main algorithms. In Section 3
we give methods to compute Π(H) for dense H ≤ SL(n,Q), and in Section 4 we outline the
algorithms. Section 5 demonstrates the practicality of our algorithms.

2010 Mathematics Subject Classification: 20-04, 20G15, 20H25, 68W30.
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2 A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

We fix some basic terms and notation. Let S = {g1, . . . , gr} be a generating set of H ≤
SL(n,Q). Then R is the ring (localization) 1

µZ generated by the entries of the gi and g−1i ; here
µ is a positive integer. Note that R does not depend on the choice of S. For m coprime to µ, the
congruence homomorphism ϕm induced by natural surjection Z → Zm = Z/mZ maps SL(n,R)

onto SL(n,Zm). Let Π(H) be the set of all primes p (not dividing µ) such that ϕp(H) 6= SL(n, p).
Overlining will denote the image modulo a specified prime p of an element of R or a matrix or set
of matrices over R. In particular, H̄ = 〈S̄〉 = ϕp(H). If h̄ ∈ H̄ is given as a word Πiḡ

ei
ji

in S̄, then
the ‘lift’ of h̄ is its preimage h = Πig

ei
ji

.
Throughout, F is a field, Fp is the field of size p, Mat(n,F) is the F-algebra of n × n matrices

over F, and 1n ∈ Mat(n,F) is the identity matrix. We write 〈G〉D for the enveloping algebra of
G ≤ GL(n,F) over a subring D ⊆ F.

2. MAXIMALITY OF SUBGROUPS IN SL(n, p)

Let G ≤ SL(n, p). We establish conditions to recognize when G is not in any maximal subgroup
of SL(n, p), i.e., when G = SL(n, p). Our approach, which characterizes maximal subgroups by
means of the adjoint representation, is motivated by [18, Window 9, Section 2].

We identify the adjoint module for SL(n,F) with the F-space

sl(n,F) = {x ∈ Mat(n,F) | trace(x) = 0}

of dimension n2 − 1 on which SL(n,F) acts by conjugation. Let ad : SL(n,F) → GL(n2 − 1,F)

be the corresponding linear representation.
The set of maximal subgroups of SL(n, p) is the union of Aschbacher classes C1, . . . ,C8,S

(see [1] and [18, p. 397]). The classes C4 and C7 involve tensor products, for which we adopt the
following convention. If H1 ≤ GL(a,F) and H2 ≤ GL(b,F) then H1 × H2 acts on Fa ⊗ Fb.
The associated matrix representation of degree ab has (h1, h2) ∈ H1 × H2 acting as the matrix
Kronecker product h1×̇h2. The group generated by these Kronecker products is denoted H1 ⊗H2.

Proposition 2.1. Let G be a proper absolutely irreducible subgroup of SL(n, p) such that ad(G) is
irreducible. Then G lies in a maximal subgroup in C6 ∪S .

Proof. Since G is absolutely irreducible, it cannot be in a subgroup in C1. Class C5 is irrelevant, as
we are over a field of prime size. For each of the remaining Aschbacher classes other than C6 or S ,
we identify a proper submodule T of the adjoint module A for SL(n, p).

C2. A maximal subgroup lies in W = GL(a, p) o Sb with n = ab. Let T ≤ A be the subspace
spanned by block matrices with b blocks from {1a, 0a,−1a} and zero trace. Clearly T is
preserved under conjugation by W and has dimension b− 1.

C3. A maximal subgroup here has a normal subgroup N ∼= SL(a, pb) with n = ab, 1 < a, b <

n. Each ‘entry’ of N is a b× b submatrix. The set of matrices in the center of N with trace
0 is a proper submodule of A.

C4. A maximal subgroup L is SL(a, p) ⊗ SL(b, p) for some a, b < n such that n = ab. If
x ∈ sl(a, p) and y = x×̇1b then trace(y) = 0 and thus y ∈ A. Let T be the space
spanned by all such products. Then L acts on T by the adjoint action of the SL(a, p)-part
of elements on the x-components of such products. Thus T ≤ A is invariant under L, so is
a proper submodule of A.

C7. We use an argument similar to the preceding one. Here a maximal subgroup is generated
by Sym(b) and SL(a, p)⊗ · · · ⊗ SL(a, p) with b factors, where n = ab and 1 < a, b < n.
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Let T be the subspace of A spanned by all Kronecker products of length b with every factor
1a except for one, taken from the adjoint module of SL(a, p). Then T is invariant under
action by the maximal subgroup.

C8. A maximal subgroup that stabilizes a form preserves its own adjoint module (see, e.g., [18,
p. 398] or [12, Section 1.4.3]), which cannot be A. �

Remark 2.2. (Cf. [18, p. 392].) Even if ad(G) is absolutely irreducible,G could still be in a maximal
subgroup in C6. For example, SL(8, 5) contains the maximal subgroup 4◦21+6.Sp6(2) ∈ C6 which
acts absolutely irreducibly on A; see [3, p. 399].

Theorem 2.3. There exists a function f , depending only on the degree n, such that |G| ≤ f(n) for
any proper absolutely irreducible subgroup G of SL(n, p) such that ad(G) is irreducible.

Proof. (Cf. [18, p. 398]). By [3, Section 2.2.6], L ≤ SL(n, p) in C6 has order bounded by a function
of n only. By Proposition 2.1, then, let L ∈ S . That is, L = NSL(n,p)(K) with K ≤ SL(n, p)

simple non-abelian and CL(K) = 〈1n〉. As L is embedded in Aut(K), a bound on |K| implies a
bound on |L|.

By the classification of finite simple groups, K can be alternating, or of Lie type, or sporadic.
Sporadic groups are of course bounded in order.

If K ∼= Alt(k) then [10, Theorem 5.7A, corrected] shows that n ≥ 2k−6
3 ; i.e., for fixed n, the

permutation degree k and hence |K| is bounded.
Now let K = Yl(r

e) for a Lie class Y , Lie rank l, and r prime. If r 6= p then [24, Table 1] gives
lower bounds for the smallest coprime degree n in which K has a faithful projective representation.
These bounds are functions a(l, re), independent of p, such that a(l, re) → ∞ as l → ∞ or
re → ∞. Thus, in bounded degree n, only a finite number (up to isomorphism) of groups Yl(re)
are candidates for K.

If r = p then [18, p. 398] shows that K and L must be in a proper connected algebraic subgroup,
and thus does not act irreducibly on A. �

Corollary 2.4. Let G ≤ SL(n, p), and let f(n) be as in Theorem 2.3. If ad(G) is absolutely
irreducible and |G| > f(n) then G = SL(n, p).

Proof. Suppose that G is block upper triangular with main diagonal (G1, G2) where Gi has degree
ni > 1. Then ad(G) leaves invariant the subspace of the adjoint module consisting of all block
upper triangular matrices with main diagonal (x, 0n2

), where x has trace 0. �

Remark 2.5. Theorem 2.3 and Corollary 2.4 remain valid if we let f(n) be a bound on exp(G), or
a bound on the largest order of an element of G.

Using the formulae for the smallest representation degree of alternating groups, and of Lie-type
groups in cross-characteristic, it would be possible to give a rough upper estimate of f(n). We do
not attempt this. In Section 5.1, we instead use the tables of [3, Chapter 8] to give tight values for
f(n) in degrees n ≤ 12, extending the values in [4, Remark 3.3].

3. REALIZING STRONG APPROXIMATION COMPUTATIONALLY

Let H be a dense subgroup of SL(n,R), R = 1
µZ. By Corollary 2.4 and Remark 2.5, if

ad(ϕp(H)) is absolutely irreducible and f(n) is exceeded by ϕp(H), then ϕp(H) = SL(n, p).
This result, and a well-known criterion of density, comprise the background for our main algorithm.

Input groups for all the algorithms are finitely generated. Sometimes we will write input as a
finite generating set, or as the group itself.
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3.1. Preliminaries. We start by giving two auxiliary procedures.

3.1.1. Bounded order test. The first auxiliary procedure is a slight generalization of one in our
previous work [8, Section 3.5] and [4, Section 2.1].

Lemma 3.1. If k is a positive integer and H ≤ GL(n,R) is infinite, then ϕp(H) has an element of
order greater than k for almost all primes p.

Proof. The proof is the same as in [4, Section 2.1]. �

Lemma 3.2. Suppose that H ≤ SL(n,R) and ϕp(H) = SL(n, p) for some prime p. If n ≥ 3 or
p > 2 then H is infinite.

Proof. See [4, Lemma 2.1]; a finite subgroup of SL(n,R) can be conjugated into SL(n,Z). �

The procedure PrimesForOrder(H, k) accepts an infinite subgroup H ≤ GL(n,R) and a
positive integer k, and returns the finite set of all primes p such that ϕp(H) has maximal element
order at most k. This output obviously contains all primes p such that |ϕp(H)| ≤ k.

3.1.2. Testing absolute irreducibility. For this subsection, we refer to [9, p. 401] and [5, Section
3.2].

Let N be the normal closure 〈X〉H where X is a finite subset of a finitely generated group H ≤
GL(n,F). The procedure BasisAlgebraClosure(X,S) computes a basis {A1, . . . , Am} of
〈N〉F, thereby deciding whether N is absolutely irreducible, i.e., whether m = n2.

The procedure PrimesForAbsIrreducible from [4, Section 2.2] will operate in the same
way for absolutely irreducible H ≤ GL(n,R): it accepts a generating set S of H , and returns the
(finite) set of primes p such that ϕp(H) is not absolutely irreducible. The first step is to compute
a basis of 〈H〉Q. By making a small adjustment, we get PrimesForAbsIrreducible(X,S);
for absolutely irreducible N = 〈X〉H , it returns the primes p such that ϕp(N) is not absolutely
irreducible.

If H̄ = ϕp(H) is absolutely irreducible (e.g., H̄ = SL(n, p)) and {Ā1, . . . , Ān2} is a basis
of 〈H̄〉Fp , then H is absolutely irreducible and {A1, . . . , An2} is a basis of 〈H〉Q. Thus, we can
simplify PrimesForAbsIrreducible by computing a basis of the enveloping algebra over a
finite field and then lifting it to a basis of 〈H〉Q (cf. [4, Section 2.2]).

3.2. Density and strong approximation. We now give elementary proofs of some properties of
dense groups, including strong approximation (cf. [17], [18, Theorem 9, p. 396], and [4, Corol-
lary 3.10]). Recall the following density criterion.

Proposition 3.3 ([22, p. 22]). A subgroup H of SL(n,C) is dense if and only if H is infinite and
ad(H) is absolutely irreducible.

Now let H be a finitely generated subgroup of SL(n,R).

Lemma 3.4. ϕp(ad(H)) = ad(ϕp(H)) for all primes p (coprime to µ).

Corollary 3.5. If ad(H) is absolutely irreducible then ad(ϕp(H)) is absolutely irreducible for
almost all primes p.

Lemma 3.6. If ϕp(H) = SL(n, p) then ad(H) is absolutely irreducible.

Proof. By Lemma 3.4, ϕp(ad(H)) = ad(SL(n, p)). Since the latter is absolutely irreducible, its
preimage ad(H) is too. �
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Proposition 3.7. The following are equivalent.

(i) H is dense.
(ii) H surjects onto SL(n, p) for almost all primes p.

(iii) H surjects onto SL(n, p) for some prime p > 2.

Proof. Suppose that (i) holds. Then by Lemma 3.1, Proposition 3.3, and Corollary3.5, ad(ϕp(H))

is absolutely irreducible and |ϕp(H)| > f(n) for almost all primes p. By Corollary 2.4, ϕp(H) =

SL(n, p) for such p.
Suppose that (iii) holds. By Lemma 3.6, ad(H) is absolutely irreducible, and by Lemma 3.2, H

is infinite. Thus H is dense by Proposition 3.3. �

4. THE MAIN ALGORITHMS

In this section we combine Sections 2 and 3 to obtain the promised algorithms to compute Π(H)

for dense groups H . These consist of the main procedure, a variation aimed at improved perfor-
mance, and an alternative that could be preferable in certain degrees.

Our main procedure, based on Corollary 2.4, follows.

PrimesNonSurjectiveSL

Input: a finite generating set of a dense group H ≤ SL(n,R).
Output: Π(H).
1. P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(ad(H)).
2. Return {p ∈ P | ϕp(H) 6= SL(n, p)}.

Step 2 is performed via standard methods for matrix groups over finite fields (available in, e.g.,
[19]).

Proposition 4.1. PrimesNonSurjectiveSL returns Π(H) for dense input H .

Proof. Proposition 3.3 implies that both procedures in Step 1 terminate. Then ϕp(H) = SL(n, p)

for any p /∈ P by Corollary 2.4 and Lemma 3.4. �

4.1. Testing irreducibility. Testing absolute irreducibility of ad(H) for H of degree n entails
computation in degree about n4, which is comparatively expensive. However, we can avoid this test
by Theorem 2.3. That is, we adapt Meataxe ideas [14, 21] to determine all primes modulo which
the adjoint representation is merely reducible. For simplicity, the discussion will be restricted to
R = Z.

Recall the following special case of Norton’s criterion for the natural module V of a matrix
algebra A.

Suppose that B ∈ A has rank rk(B) = n − 1. Assume that vA = V for some
nonzero v in the nullspace of B, and Aw = V ⊥ and for some nonzero w> in the
nullspace of B>. Then V is irreducible.

Now let A ⊆ Mat(n,Q) be a Z-algebra, and suppose that the following hold.

(1) We have found B ∈ A such that rk(B) = n− 1.
(2) For a nonzero v in the nullspace of B, the Z-span vA contains n linearly independent

vectors v1, . . . , vn.
(3) For a nonzero w> in the nullspace of B>, there are n linearly independent vectors w1, . . . ,

wn ∈ Aw.
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Norton’s criterion, applied to the above configuration modulo p, shows that ϕp(A) is irreducible
unless

rk(ϕp(B)) < n− 1, or
ϕp(v1), . . . , ϕp(vn) are linearly dependent, or
ϕp(w1), . . . , ϕp(wn) are linearly dependent.

To find (a finite superset of) the set of primes p for which ϕp(A) is reducible, we take the union
of three sets, namely the prime divisors of det(M1), det(M2), and det(M3), where

M1 is a full rank (n− 1)× (n− 1) minor of B (modulo other primes, B has rank n− 1),
M2 is the matrix with rows v1, . . . , vn (modulo other primes, v spans the whole module),
M3 is the matrix with rows w1, . . . , wn.

To make this into a concrete test PrimesForIrreducible, letA = 〈ad(H)〉Z. Take a small
number (say, 100) of random Z-linear combinations B ∈ A until a B of rank n − 1 is detected.
Although we do not have a justification that such elements occur with sufficient frequency, they
seem to (as observed in [20]); in every experiment so far we found such a B. (Also note that there
are irreducible H such that 〈H〉Q does not have an element of rank n − 1; but if H is absolutely
irreducible then such elements always exist.)

We now state a version of PrimesNonSurjectiveSL that may have improved performance
in many situations (see Section 5).

PrimesNonSurjectiveSL, modified.
1. If PrimesForIrreducible confirms that ad(H) is irreducible then
P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(H)

∪ PrimesForIrreducible(ad(H));
else
P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(ad(H)).

2. Return {p ∈ P | ϕp(H) 6= SL(n, p)}.

Proposition 4.2. The above modification of PrimesNonSurjectiveSL terminates, returning
Π(H) for input dense H .

Proof. This follows from Theorem 2.3 and Proposition 4.1. �

Remark 4.3. Suppose that PrimesForIrreducible completes, i.e., ad(H) is confirmed to
be irreducible. Then H is dense if it is infinite and absolutely irreducible (cf. the density testing
algorithm IsDenseIR2 of [6]).

4.2. Individual Aschbacher classes. Some Aschbacher classes may not occur in a given degree.
For example, the tensor product classes C4 and C7 are empty in degree 4. Consonant with the
approach of [4], we show how to determine the primes p such that ϕp(H) lies in a group in Ci 6∈
{C4,C7,S }, using tests that do not involve ad(H). The following is vital.

Lemma 4.4. Let H ≤ SL(n,Q) be dense. If N EH is non-scalar then N is dense, thus absolutely
irreducible.

Proof. This follows from Proposition 3.7: since N is non-scalar, ϕp(N) is a normal non-scalar
subgroup of SL(n, p) for almost all primes p. �
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4.2.1. Testing imprimitivity. Suppose that H ≤ GL(n,F) is imprimitive, so H ≤ GL(a,F) o
Sym(b) for some a, b > 1 such that n = ab. If Sym(b) has exponent k then 〈hk : h ∈ H〉 ≤
GL(a,F)b is reducible. Hence we have the following procedure.

PrimesForPrimitive

Input: dense H = 〈S〉 ≤ SL(n,Q).
Output: the set of primes p for which ϕp(H) is imprimitive.
1. Select h ∈ H such that he is non-scalar, where e = exp(Sym(n)).
2. P := PrimesForAbsIrreducible(he, S).
3. Return all p ∈ P such that ϕp(H) is imprimitive.

Once more [19] is used in implementing the last step. Lemma 4.4 guarantees termination, with
the stated output.

If we happen to know a prime p such that ϕp(H) = SL(n, p), then PrimesForPrimitive
simplifies in the familiar way (i.e., by computing in a congruence image and then lifting).

PrimesForPrimitive, modified.
1. Let p be a prime for which ϕp(H) = SL(n, p).
2. Find n2 elements hi ∈ H such that the ϕp(hki ) span Mat(n,Fp), where k := exp(Sym(n)).
3. Return all p ∈ PrimesForAbsIrreducible(hk1 , . . . , h

k
n2) such that ϕp(H) is

imprimitive.

The hi as required in Step 2 exist by Step 1 and Lemma 4.4.

4.2.2. Testing for field extensions. IfG ∈ C3 then the second derived groupG(2) is quasisimple and
reducible (see [3, p. 66] and [15, §4.3]). Accordingly, PrimesForReducibleSecondDerived
selects a non-scalar double commutator g in the dense group H then returns PrimesForAbs-
Irreducible(g, S). By Lemma 4.4, we get all primes modulo which H is in a group in C3.

If we know a prime p such that ϕp(H) = SL(n, p) then PrimesForReducibleSecond-
Derived can be modified along the lines that we modified PrimesForPrimitive. Now we
search for double commutators (instead of kth powers) in ϕp(H) that span Mat(n,Fp); they exist
because ϕp(H) = SL(n, p) is perfect (if n > 2 or p > 3).

4.2.3. Excluding classes. For prime n or n = 4, the results of Sections 4.2.1 and 4.2.2, together
with those of [4], enable us to compute Π(H) without recourse to ad(H). This is done by using the
procedures indicated below to rule out individual Aschbacher classes.

C1: PrimesForAbsIrreducible.
C2: PrimesForPrimitive.
C3: PrimesForReducibleSecondDerived.
C6, S : PrimesForOrder.
C8: PrimesForSimilarity, as in [4, Section 2.5].

5. EXPERIMENTS

Our algorithms have been implemented in GAP, enhancing previous functionality for computing
with dense groups [6]. Below we report on experiments undertaken with our new implementation.
One major application is computing all congruence quotients of a finitely generated dense group
H ≤ SL(n,Z) from Π(H), as explained in [4, Section 4.1].
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5.1. Explicit order bounds. As order bound f(n) we take a bound on the largest element order
for the absolutely irreducible groups of degree n in C6 ∪ S that are irreducible in their adjoint
representation. The tables in [3, Section 8] furnish bounds for n ≤ 12. We construct an example of
each such group in C6 ∪S , using the MAGMA [2] implementation that accompanies [3]. Then we
use GAP [11] to calculate conjugacy class representatives and their orders.

This data is compiled in Table 1. For completeness, we give maximal subgroup order, maximal
element order, and the least common multiple of exponents. The column ‘Geometric’ lists the
number i of each Aschbacher class Ci that can occur.

We also include, for degrees n ∈ {3, 4, 5, 7, 11}, the element order bounds from [4] for all groups
in C6 ∪S . The rows with these bounds have nS in the Degree column. For n = 3, 4, 5 we have
omitted the row beginning with n, because the bounds agree.

Degree Geometric Group Order Element order Exponent lcm
3S 1, 2, 3, 6, 8 1080 21 1260

4S 1, 2, 3, 6, 8 103680 36 2520

5S 1, 2, 3, 6, 8 129600 60 3960

6 1, 2, 3, 4, 8 39191040 60 2520

7 1, 2, 3, 6, 8 115248 56 168

7S 115248 84 168

8 1, 2, 3, 4, 6, 8 743178240 120 5040

9 1, 2, 3, 6, 7, 8 37791360 90 360

10 1, 2, 3, 4, 8 4435200 120 9240

11 1, 2, 3, 6, 8 244823040 198 637560

11S 244823040 253 637560

12 1, 2, 3, 4, 8 5380145971200 156 360360

TABLE 1. Order bounds in small degrees

5.2. Implementation and experimental results.

5.2.1. Triangle groups. Let ∆(3, 3, 4) be the triangle group 〈a, b | a3 = b3 = (ab)4 = 1〉. In [16,
Theorem 1.1], a four-dimensional real representation of ∆(3, 3, 4) is defined by

ρk(a) =


k(3− 4k + 4k2) −1− 4k − 8k2 + 16k3 − 16k4 0 0

1− k + k2 −1− 3k + 4k2 − 4k3 0 0

k(1− 2k + 2k2) −3− 4k − 2k2 + 8k3 − 8k4 1 0

2(1− k + k2) −2(1 + 2k − 4k2 + 4k3) 0 1

 ,

ρk(b) =


1 0 −4 0

0 1 0 −1

0 0 −1 −1

0 0 1 0

 .

Let H(k) = 〈ρk(a), ρk(b)〉. If k ∈ Z then H(k) ≤ SL(4,Z).
Let F (k) be the image under ρk of 〈[a, b], [a, b−1]〉. Calculations by D. F. Holt (personal commu-

nication) using kbmag [13] show that the latter is a free subgroup of ∆(3, 3, 4). All groups H(k)

(resp. F (k)) are 2-generated, and of the same structure; as k varies we are just changing the size
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of matrix entries. Note that the entries of the generators of F (k) have roughly twice the number of
digits as those of H(k). Our experiments justify that H(k), F (k) are dense (for H(k) this follows
independently from [16]), and non-arithmetic, i.e., thin. As C4 and C7 do not figure in degree 4, the
algorithm from Section 4.2 can be utilized here. This will illustrate the benefit of the improvements
in Sections 4.1 and 4.2.

In Table 2, M is the level of cl(H) and ‘Index’ is |SL(4,Z) : H|. We remark that com-
puting Π(H), M , and indices is not possible with our previous methods [4, 5]. Other columns
give runtimes in seconds on a 3.7GHz Xeon E5 (2013 MacPro). Column tA gives the runtime of
PrimesNonSurjectiveSL. Column tI gives the time of the Meataxe-based algorithm from
Section 4.1. Due to the randomized nature of the Meataxe calculations, these timings turned out to
be variable. We thus give a timing of ten experiments and list minimum, maximum, and average
runtime in the format min–max; average. Column tB gives runtimes of the algorithm in Section 4.2
(computing Π(H) without ad(H)), and the final column tM is runtime to compute M and Index
from Π(H).

H M Index tA tI tB tM
H(1) 2572 24133537619 63 7−69; 27 4 31

H(2) 23313 217325213·97·101·1812 54 10−104; 30 7 3331

H(3) 257·199 24336537·11·19·13267·19801 62 9−90; 43 7 1314

H(4) 237·607 22135557·13·19·101·7369·9463 90 22−65; 37 19 9650

H(5) 2552409 244335617·31·55897·83641 73 13−107; 48 11 7256

H(6) 237·31·97 22737557·13·19·37 85 14−144; 63 7 1679

·331·941·3169

H(10) 23527·919 22638587213·17·19231 93 67−390; 235 14 43468

·37·101·113·163

F (1) 253272 25338547619 77 595−707; 645 3 73

F (2) 24327·13·313 23839567·13·17·97·101·1812 78 689−831; 750 11 24133

F (3) 25327·29 262315567311·19·67·137 106 718−851; 769 10 76606

·37·199 ·421·13267·19801

F (4) 24337·59·607 237315577·13·19·29·101 102 719−899; 798 19 193796

·1741·7369·9463

F (5) 2533527 2663155107·17·31·2521 139 700−1010; 881 27 345039

·71·409 ·55897·83641

TABLE 2.

After computing M , we can find all congruence quotients of H(k), and hence a set of finite
quotients of ∆(3, 3, 4). We see from the results for k = 1, 2 that ∆(3, 3, 4) has quotients PSL(4, p)

for p > 2. On the other hand, a calculation with the GAP operation GQuotients shows that
∆(3, 3, 4) has no quotient isomorphic to PSL(4, 2). Furthermore, since ∆(3, 3, 4) has quotients
isomorphic to Alt(10), which cannot be a section of a matrix group of degree 4 over a finite field,
H(k) ≤ SL(n,Z) for k ∈ Z is thin. The F (k) are thin because they are free.

5.2.2. Other experiments. We used the following constructions of dense groups, including exam-
ples that permit tensor decomposition modulo some primes.
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(i) Let K(a, b,m) be the subgroup of SL(ab,Z) generated by SL(a,Z) ⊗ SL(b,Z) and the
elementary matrix mt1,a+1 (two generators per factor of the Kronecker product).

(ii) For distinct monic polynomials p(x), q(x) ∈ Z[x] of equal degree n, let C(p, q) be the
subgroup of SL(n,Z) generated by the companion matrices Cp and Cq for p(x) and q(x).

Regarding density of the K(a, b,m), cf. [4, Lemma 3.15]. By [22, Theorem 1.5], C(p, q) is dense
if it is nonabelian, Cq has infinite order, and p(x) is irreducible with Galois group Sym(n).

The runtimes in Table 3 have the same interpretation as in Table 2. For some of the larger groups,
the direct test for absolute irreducibility of the adjoint module did not complete for several hours. In
that event, the column entry is blank. Similarly, we did not try to compute the level (of the arithmetic
closure) for some of the larger groups, as the calculation would have taken too long. Indices are not
listed for space reasons.

Group Degree Primes M tA tI tM
K(2, 2, 275) 4 5, 11 5211 101 1−3; 1 43

K(2, 3, 441) 6 3, 7 3372 37951 4−47; 17 1488

K(3, 2, 8959) 6 17, 31 17231 39873 8−43; 28 49342

K(2, 4, 100) 8 2, 5 17−96; 53

K(3, 3, 11979) 9 3, 11 81−246; 180

C(x4−x+ 1, x4 + 5x3−x2 + 1) 4 11, 61 11·61 58 3−26; 8 19999

C(x6 + 2x4 + x+ 1, x6 − x2 + 1) 6 7, 23 12−305; 73

C(x8 + x+ 1, x8 − x+ 1) 8 2 22 52−368; 150 158

TABLE 3.

5.2.3. Performance observations. The runtime to find Π(H) is roughly proportional to the magni-
tudes of its elements. In fact, runtime is dominated by tests to ensure that no prime p returned is a
false positive, i.e., that the p-congruence image really is a proper subgroup of SL(n, p).

The timings show that the method of Section 4.2 is clearly superior to the default, with the
Meataxe-based algorithm performing better unless matrix entries become very large. This pattern
becomes more pronounced in larger degrees.
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