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Global variants of Hartogs’ theorem

Jacek Bochnak and Wojciech Kucharz

Abstract

Hartogs’ theorem asserts that a separately holomorphic function, defined on an
open subset of Cn, is holomorphic in all the variables. We prove a global variant
of this theorem for functions defined on an open subset of the product of complex
algebraic manifolds. We also obtain global Hartogs-type theorems for complex Nash
functions and complex regular functions.

1 Introduction

In this paper, by a complex algebraic variety we mean a quasiprojective complex
algebraic variety (not necessarily irreducible). A complex algebraic manifold is a
nonsingular complex algebraic variety of pure dimension. We assume throughout
that subvarieties are Zariski closed in the ambient variety. Unless explicitly stated
otherwise, we always make use of the Euclidean (metric) topology on complex al-
gebraic varieties. Due to the nature of the investigated problems, we employ termi-
nology typical to analytic geometry and differential topology (submersion, regular
value, etc.). All results stated in this section are proved in Section 2.

Let X = X1 × . . .×Xn be the product of n complex algebraic varieties and let
πi : X → Xi be the canonical projection. We say that a subset A of X is parallel to
the i-th factor of X if πj(A) consists of one point for each j 6= i.

One of the main goals of the present paper is the following.

Theorem 1.1. Let X = X1 × . . . × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of X. Assume
that for each nonsingular algebraic curve C ⊂ X, parallel to one of the factors of X,
the restriction f |U∩C is a holomorphic function. Then f is a holomorphic function.

Theorem 1.1 is a generalization of the classical theorem of Hartogs, which asserts
that a separately holomorphic function f : U → C, defined on an open subset U of
Cn, is holomorphic in all the variables [1, 5]. Separately holomorphic means precisely
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that for each affine line L ⊂ Cn, parallel to one of the coordinate axes, the restriction
f |U∩L is a holomorphic function.

It is natural to expect that Theorem 1.1 can be deduced from Hartogs’ theorem
by means of local holomorphic charts on X. This approach indeed works, but it
requires some additional insight. The local charts have to be chosen in a special way
since only nonsingular Zariski closed curves C ⊂ X are allowed in Theorem 1.1.

We also have a counterpart of Theorem 1.1 for complex Nash functions. For
the sake of clarity, we first recall the relevant definition. Let X,Y be complex
algebraic manifolds and let U ⊂ X,V ⊂ Y be open subsets. A map ϕ : U → V
is said to be a Nash map if it is holomorphic and each point x ∈ U has an open
neighborhood Ux ⊂ U such that the graph of the restriction ϕ|Ux is contained in
a complex algebraic subvariety of X × Y of dimension dimUx(= dimX) [2]. The
composite of Nash maps is a Nash map. Nash isomorphisms are defined in the
standard way.

Theorem 1.2. Let X = X1 × . . . × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of X.
Assume that for each nonsingular algebraic curve C ⊂ X, parallel to one of the
factors of X, the restriction f |U∩C is a Nash function. Then f is a Nash function.

Theorems 1.1 and 1.2 have a suitable analog for regular functions. Let X be
a complex algebraic manifold. A function f : U → C, defined on an open subset
U of X, is said to be regular if there exists a rational function R on X such that
U ⊂ X \Pole(R) and f = R|U , where Pole(R) stands for the polar set of R. Clearly,
any regular function on U is a Nash function.

Theorem 1.3. Let X = X1×. . . Xn be the product of n complex algebraic manifolds
and let f : U 7→ C be a function defined on an open subset U of X. Assume that
for each nonsingular algebraic curve C ⊂ X, parallel to one of the factors of X, the
restriction f |U∩C is a regular function. Then f is a regular function.

Theorem 1.3 is related to [7, Theorem 7.3]. It does not seem that any one of these
two theorems directly implies the other. However, our Theorem 2.8 is a sharpening
of [7, Theorem 7.3].

Theorems 1.1, 1.2, and 1.3 can be viewed as global variants of Hartogs’ theorem
for the appropriate classes of functions. In each of them the case n = 1 is crucial,
and we single it out in Propositions 2.3, 2.4, and 2.6, respectively.

2 Proofs

We let Pn denote complex projective n-space, and identify Cn with a subset of Pn
via the map

Cn → Pn, (z1, . . . , zn) 7→ (1 : z1 : . . . : zn).

Thus 0 = (0, . . . , 0) ∈ Cn ⊂ Pn.

Lemma 2.1. Let X be a projective complex algebraic manifold of dimension n, and
let p be a point in X. Then there exists a regular map ϕ : X → Pn for which 0 ∈ Pn
is a regular value and ϕ(p) = 0.
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Proof. We may assume that X is an algebraic subvariety of Pm, for some m > n,
and the following hold:

• p = (1 : 0 : . . . : 0) ∈ X;

• X ⊂ Pm \L, where L ⊂ Pm is the projective subspace of dimension m− n− 1
defined by

L = {(z0 : . . . : zm) ∈ Pm : z0 = 0, . . . , zn = 0};

• the regular map

π : X → Pn, (z0 : . . . : zm) 7→ (z0 : . . . : zn)

is a submersion at the point p.

A map ϕ having the required properties can be constructed by perturbing π. To
this end, let M be the space of all (n+ 1)-by-m matrices with complex entries. For
any constant ε > 0, set

Mε = {t = (tij) ∈M : |tij | < ε for 0 ≤ i ≤ n, 1 ≤ j ≤ m}.

The manifold X being compact, for any ε sufficiently small, we obtain a well-
defined regular map Φ: X ×Mε → Pn,

Φ(z, t) = (z0 +

m∑
j=1

t0jzj : . . . : zn +

m∑
j=1

tnjzj),

where z = (z0 : . . . : zm) ∈ X and t = (tij) ∈Mε.
If ε is small enough, the map Φ is a submersion since for each point z 6= p the

restriction of Φ to {z}×Mε is a submersion, and π is a submersion at p. In particular,
0 ∈ Pn is a regular value of Φ. Hence, according to the standard consequence of
Sard’s theorem [4, p. 79, Theorem 2.7], the point 0 ∈ Pn is also a regular value of
the map

Φt : X → Pn,Φt(z) = Φ(z, t)

for some t ∈Mε. The regular map ϕ = Φt satisfies all the requirements.

Let G1(Pn) (resp. G1(Cn)) denote the Grassmann manifold of projective lines
in Pn (resp. vector lines in Cn), and set

G1(Pn, 0) = {L ∈ G1(Pn) : 0 ∈ L}.

The map

G1(Pn, 0)→ G1(Cn), L 7→ L ∩ Cn

is a biregular isomorphism of complex algebraic manifolds.
Our next auxiliary result is inspired by [6].
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Lemma 2.2. Let X be a projective complex algebraic manifold of dimension n ≥ 1,
and let ϕ : X → Pn be a regular map for which 0 ∈ Pn is a regular value. Then the
set

Ω = {L ∈ G1(Pn) : ϕ is transverse to L}

is open in G1(Pn), and the set

Ω0 = Ω ∩G1(Pn, 0)

is dense in G1(Pn, 0).

Proof. Consider the standard action of the general linear group G = GLn+1(C) on
Pn. Any element σ ∈ G determines an automorphism

σ̂ : Pn → Pn.

The subgroup

G0 = {σ ∈ G : σ̂(0) = 0}

of G acts on Pn \ {0}, and this action is transitive. Moreover, the action of G on
G1(Pn),

G×G1(Pn)→ G1(Pn), (σ, L) 7→ σ̂(L)

is transitive, and so is the induced action of G0 on G1(Pn, 0).
Henceforth we work with a fixed projective line L0 ∈ G1(Pn, 0). The regular map

α : G→ G1(Pn), σ 7→ σ̂(L0)

is a submersion, and hence it is open. Moreover,

Ω = α(Γ) and Ω0 = α(Γ0),

where

Γ = {σ ∈ G : σ̂ ◦ ϕ is transverse to L0} and Γ0 = Γ ∩G0.

Thus it sufficies to prove that Γ is an open subset of G, and Γ0 is a dense subset
of G0.

Step 1. The subset Γ is open in G.
Consider the space C∞(X,Pn) of C∞ maps, endowed with the C∞ topology. The set

U = {f ∈ C∞(X,Pn) : f is transverse to L0}

is open in C∞(X,Pn). Moreover, since the manifold X is compact, the map

β : G→ C∞(X,Pn), σ 7→ σ̂ ◦ ϕ

is continuous. The proof of Step 1 is complete since Γ = β−1(U).
Step 2. The subset Γ0 is dense in G0.
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The regular map

ψ : G0 ×X → Pn, (σ, x) 7→ σ̂ ◦ ϕ

is a submersion since 0 ∈ Pn is a regular value of ϕ, and G0 acts transitively on
Pn \ {0}. In particular, ψ is transverse to L0. For any element σ ∈ G0, let

ψσ : X → Pn

be the map defined by

ψσ(x) = ψ(σ, x) = (σ̂ ◦ ϕ)(x).

Clearly,

Γ0 = {σ ∈ G0 : ψσ is transverse to L0}.

By the standard transversality theorem [4, p. 79, Theorem 2.7], the set on the right
hand side of the last equality is dense in G0. The proof is complete.

The following will play a key role in the proof of Theorem 1.1.

Proposition 2.3. Let X be a complex algebraic manifold and let f : U → C be
a function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a holomorphic function. Then f is
a holomorphic function.

Proof. According to Hironaka’s theorem on resolution of singularities [3], we may
assume that the manifold X is projective. Moreover, it sufficies to consider the case
n = dimX ≥ 1. Now we are ready to apply Lemmas 2.1 and 2.2. Pick a point
p ∈ X. By Lemma 2.1, there exists a regular map ϕ : X → Pn for which 0 ∈ Pn is
a regular value and ϕ(p) = 0. In view of Lemma 2.2, the set

Ω = {L ∈ G1(Pn) : ϕ is transverse to L}

is open in G1(Pn), and the set

Ω0 = Ω ∩G1(Pn, 0)

is dense in G1(Pn, 0). Hence there exist n projective lines L1, . . . , Ln in Ω0 such that
the vector lines L1 ∩ Cn, . . . , Ln ∩ Cn in Cn are linearly independent. Changing
coordinates in Cn we may assume that Li ∩Cn is the i-th coordinate axis in Cn for
i = 1, . . . , n. Given a constant ε > 0, we let A(ε) denote the set comprised of all
affine lines l ⊂ Cn with the following properties:

• l is parallel to one of the coordinate axes;

• l ∩ P (ε) 6= ∅, where P (ε) is the polydisc

P (ε) = {(z1, . . . , zn) ∈ Cn : |zj | < ε for j = 1, . . . , n}.
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Choose ε sufficiently small so that for any l ∈ A(ε) the Zariski closure L(l) ⊂ Pn
of l belongs to Ω; this is possible, the set Ω being open. For such an l the inverse
image C(l) = ϕ−1(L(l)) is a nonsingular algebraic curve in X.

We can complete the proof as follows. Choose an open neighborhood Up ⊂ U of
p so that the set Wp = ϕ(Up) is contained in P (ε) and the restriction

ϕp : Up →Wp

of ϕ is a biholomorphism. The composite function f ◦ ϕ−1
p : Wp → C is separately

holomorphic since for any affine line l ∈ A(ε) the restriction f |U∩C(l) is a holomor-
phic function. Hence, by Hartogs’ theorem, the function f ◦ ϕ−1

p is holomorphic,
which in turn implies holomorphicity of the restriction f |Up . Thus f is a holomorphic
function, the point p ∈ U being arbitrary.

Proof of Theorem 1.1. Pick a point p = (p1, . . . , pn) in X = X1 × . . . × Xn. For
i = 1, . . . , n, let

X(i) = Yi1 × . . .× Yin,

where Yii = Xi and Yij = {pj} if i 6= j. By Proposition 2.3, the restriction f |U∩X(i)

is a holomorphic function. It follows immediately that the function f is holomorphic
in a neighborhood of the point p. Indeed, it suffices to choose a local holomorphic
chart in a neighborhood od each point pi, and then apply Hartogs’ theorem. The
proof is complete since p is an arbitrary point of X.

Next we recall some facts concerning complex Nash functions. A function
f : U → C, defined on an open subset U of Cn, is a Nash function if and only
if it is holomorphic and algebraic. Here algebraic means that for each connected
component W of U there exists a nonzero polynomial function P on Cn × C with

P (z, f(z)) = 0 for all z ∈W.

Hence, by [1, p. 202, Theorem 6], a variant of Hartogs’ theorem holds in the Nash
case. Namely, f is a Nash function if and only if it is a separately Nash function.
Obviously, separately Nash is a counterpart of separately holomorphic.

Proposition 2.4. Let X be a complex algebraic manifold and let f : U → C be
a function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a Nash function. Then f is a Nash
function.

Proof. With notation as in the proof of Proposition 2.3, the holomorphic chart

ϕp : Up →Wp

is actually a Nash isomorphism. Hence the composite function f ◦ ϕ−1
p : Wp → C is

a Nash function since it is a separately Nash function. It follows that f is a Nash
function, as asserted.

Proof of Theorem 1.2. We can repeat the proof of Theorem 1.1, substituting Propo-
sition 2.4 for Proposition 2.3.
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It remains to consider regular functions. We will make use of Bertini’s theorem
[8] to produce connected, nonsingular algebraic curves. Given integers k and N ,
with 1 ≤ k ≤ N , we let Gk(PN ) denote the Grassmann manifold of k-dimensional
projective subspaces of PN .

Let X be a complex algebraic manifold of dimension d ≥ 1, and let W1,W2 be
nonempty open subsets of X. Assume that the manifold X is connected (which in
this case is the same as irreducible). Then there exists a connected, nonsingular
algebraic curve C ⊂ X such that C ∩Wi 6= ∅ for i = 1, 2. This assertion is obvious
if d = 1, so suppose that d ≥ 2. We may assume that X is a Zariski locally
closed subset od PN for some N . Setting k = N − d+ 1, by Bertini’s theorem, the
intersection C = X ∩ Λ of X with a suitable projective subspace Λ ∈ Gk(PN ) is an
algebraic curve with the required properties.

Lemma 2.5. Let X = X1×. . .×Xn be the product of n complex algebraic manifolds
and let f : U → C be a function defined on an open subset U of X. Let {Uα}α∈A
be the collection of all connected components od U . Assume that the following two
conditions hold:

(a) The restriction f |Uα is a regular function for all α ∈ A.

(b) For each nonsingular algebraic curve C ⊂ X, parallel to one of the factors of
X, the restriction f |U∩C is a regular function.

Then f is a regular function.

Proof. It suffices to consider the case in which all the Xi are connected, with
dimX1 ≥ 1. By assumption (a), for each α ∈ A there exists a rational function Rα
on X such that

Uα ⊂ Xα := X \ Pole(Rα) and f |Uα = Rα|Uα .

Clearly, if Rα = Rβ for all α, β ∈ A, then f is a regular function, and the proof
is complete.

Suppose to the contrary that Rµ 6= Rν for some µ, ν ∈ A. It follows that
Rµ(p) 6= Rν(p) for some point p = (p1, . . . , pn) in Uµ ∩Xν , and hence the set

W = {x ∈ Uµ ∩Xν : Rµ(x) 6= Rν(x)}

is an open neighborhood of p in X.
Observe that there exists a connected, nonsingular algebraic curve C ⊂ X,

parallel to the 1st factor of X, such that

W ∩ C 6= ∅ and Uν ∩ C 6= ∅.

Indeed, we can obtain such a curve C of the form C = C1 × {p2} × . . . × {pn},
where C1 ⊂ X1 is a suitably chosen connected, nonsingular algebraic curve. By
assumption (b), there exists a rational function RC on C such that

U ∩ C ⊂ C0 := C \ Pole(RC) and f |U∩C = RC |U∩C .

Note that both Uµ ∩ C0 and Uν ∩ C0 are nonempty open subsets of C0. Since
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Rµ|Uµ∩C0 = f |Uµ∩C0 = RC |Uµ∩C0 ,

we get

Rµ|Xµ∩C0 = RC |Xµ∩C0 .

Similarly, we have

Rν |Xν∩C0 = RC |Xν∩C0 .

Consequently,

Rµ|Xµ∩Xν∩C0 = Rν |Xµ∩Xν∩C0 .

The last equality leads to a contradiction since W ∩Xµ ∩Xν ∩ C0 6= ∅.

Let X be a complex algebraic manifold and let f : U → C be a function defined
on an open subset U of X. We say that a rational function R on X is a rational
representation of f if there exists a Zariski open dense subset X0 ⊂ X such that

X0 ⊂ X \ Pole(R) and f |U∩X0 = R|U∩X0 .

Since X is nonsingular, any continuous function on U that admits a rational repre-
sentation is actually regular.

Proposition 2.6. Let X be a complex algebraic manifold and let f : U → C be
a function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a regular function. Then f is a
regular function.

Proof. We may assume that the manifold X is connected and d = dimX ≥ 2. In
view of Lemma 2.5 (with n = 1), it suffices to consider the case in which the set U is
connected. By Proposition 2.4, f is a Nash function. Hence, since U is connected,
the graph of f is contained in an irreducible algebraic hypersurface Y ⊂ X × C.
The function f admits a rational representation if and only if π : Y → X, the
restriction of the canonical projection X × C → X, is a birational map. Suppose
that π is not birational, that is, it has degree m > 1. We obtain a contradiction as
follows. We may assume that X is a Zariski locally closed subset of PN for some
N . Set k = N − d + 1. By Bertini’s theorem, for a general projective subspace
Λ ∈ Gk(PN ) both X ∩ Λ and π−1(X ∩ Λ) are irreducible algebraic curves. Clearly,
the restriction πΛ : π−1(X∩Λ)→ X∩Λ of π has degree m. We can choose Λ so that
the curve C = X ∩ Λ is nonsingular and U ∩ C 6= ∅. The function f |U∩C does not
admit a rational representation since its graph is contained in π−1(C). However,
by assumption, f |U∩C is a regular function, so we get a contradiction. Thus f is a
Nash function which admits a rational representation. In conclusion, f is a regular
function.
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Proof of Theorem 1.3. In view of Lemma 2.5, we may assume that the set U is
connected. Pick a point p = (p1, . . . , pn) in X = X1 × . . . Xn. For i = 1, . . . , n, let

X(i) = Yi1 × . . .× Yin,

where Yii = Xi and Yij = {pj} for i 6= j. According to Proposition 2.6, the
restriction f |U∩X(i) is a regular function. Since p is an arbitrary point of X, the
function f is regular by [7, Theorem 7.3].

We conclude this section by presenting two improvements upon some results of
[7]. The following is a sharpening of [7, Theorem 7.2].

Proposition 2.7. Let X be a complex algebraic manifold and let f : U → C be a
function defined on a connected open subset U of X. Assume that for each non-
singular algebraic curve C ⊂ X and each point x ∈ U ∩ C there exists an open
neighborhood Ux ⊂ U of x such that restriction f |Ux∩C is a regular function. Then
f is a regular function.

Proof. By Proposition 2.4, f is a Nash function. Hence we can argue as in the proof
of Proposition 2.6.

Finally, [7, Theorem 7.3] can be sharpened as follows.

Theorem 2.8. Let X = X1×. . . Xn be the product of n complex algebraic manifolds
and let f : U → C be a function defined on a connected open subset U of X. Assume
that for each nonsingular algebraic curve C ⊂ X, parallel to one of the factors of
X, and each point x ∈ U ∩ C there exists an open neighborhood Ux ⊂ U of x such
that the restriction f |Ux∩C is a regular function. Then f is a regular function.

Proof. We can argue as in the proof of Theorem 1.3, substituting Proposition 2.7
for Proposition 2.6.
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