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In recent years, mathematicians have developed new
approaches to study convex sets: instead of consider-
ing convex sets themselves, they explore certain func-
tions or measures that are related to them. Problems
from convex geometry become thereby accessible to
analytic and probabilistic tools, and we can use these
tools to make progress on very difficult open prob-
lems.
We discuss in this Snapshot such a functional ex-

tension of some “volumes” which measure how “big”
a set is. We recall the construction of “intrinsic vol-
umes”, discuss the fundamental inequalities between
them, and explain the functional extensions of these
results.

1 Mixed volumes

A convex set is a set A such that for any two points p, q ∈ A (meaning p and
q belong to A), the entire line segment connecting p and q lies inside A. For
example, the set in Figure 1a is convex, while the set in Figure 1b is not.

The sets depicted in Figure 1 “live” in the two-dimensional plane. Every
point p in the plane can be identified with a pair of real numbers, p = (x, y).
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(a) convex (b) non-convex

Figure 1: A convex set and a nonconvex set.

For example, in Figures 1a and 1b we have p = (4, 2) and q = (−2, 1). We
denote the set of all planar points by R2. Two points p = (x, y) and q = (z, w)
in R2 can be added to create a new point p+ q = (x+ z, y + w). Moreover, we
can multiply the point p by a real number λ to obtain λp = (λx, λy). With
these operations, we can give a formal definition of convexity: A set A is convex
if for every p, q ∈ A and every 0 < λ < 1 we also have λp+ (1− λ)q ∈ A. The
two operations can also be extended to convex sets: If A and B are convex sets,
the sum A+B is comprised of all possible sums p+ q where p ∈ A and q ∈ B.
Similarly, λA is comprised of all points of the form λp where p ∈ A.

It is easy to understand the operation A 7→ λA geometrically: We take the
set A and either blow it up (if λ > 1) or shrink it down (if λ < 1). For example,
if A is a disk of radius 4, then 3A is a disk of radius 12 and 1

4A is a disk of
radius 1. As for the sum A+B, Figure 2 illustrates the sum of a quadrilateral
and a disk.

Figure 2: The sum of a quadrilateral and a disk.

For a convex set A in R2, we denote its area by |A|. Given two convex sets
A and B in R2 and a number t > 0, what can be said about the area |A+ tB|?
Figure 3 depicts again the case where A is a quadrilateral and B is a disk of
radius 1 (so tB is a disk of radius t).
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Figure 3: The set A+ tB, decomposed into three parts.

As we see in this figure, the set A+ tB can be decomposed into three parts.
The blue part is congruent to A, so its area is simply |A|. The green part is
comprised of four rectangles. If the lengths of the sides of A are a, b, c, d then
the areas of these rectangles are a · t, b · t, c · t, d · t. It follows that the total
area of the green part is

a · t+ b · t+ c · t+ d · t = (a+ b+ c+ d) · t = Per(A) · t,

where Per(A) is the perimeter of A. Finally, the red part is comprised of four
sectors of a disk of radius t. Since the sum of the external angles of any polygon
is 360◦, the four sectors can be glued together to create exactly one complete
disk. It follows that the area of the red part is πt2, the area of a disk of radius t.

Adding the three areas and using the fact that |B| = π, we conclude that

|A+ tB| = |A|+ Per(A) · t+ |B| · t2.

It turns out that this formula holds for any convex set A in the plane, as long
as B is the disk of radius 1. This is the 2-dimensional case of the important
Steiner formula.

Even though we can only really visualize convex sets in 2 or 3 dimensions,
we can also discuss n-dimensional convex sets for any natural number n. Just
like a point in a 2-dimensional space is a pair of real numbers, a point p in
an n-dimensional space is just an n-tuple p = (x1, x2, . . . , xn) ∈ Rn of n real
numbers, and such points are multiplied with real numbers and added just like
points in the plane:

λ · (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (λx1 + y1, λx2 + y2, . . . , λxn + yn).
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We define convex sets and their addition A+B in exactly the same way as in
the 2-dimensional case. For an n-dimensional convex set A, we denote by |A|
its volume 1 .

Again, we would like to know what the volume |A+ tB| is, where A is any
convex set in Rn and B is a ball of radius 1. The n-dimensional Steiner formula
(whose meaning we will explain in a moment) reads as

|A+ tB| = Vn(A) + Vn−1(A) · t+ Vn−2(A) · t2 + · · ·+ V0(A) · tn.

Like in the 2-dimensional case, the first coefficient Vn(A) is just |A|, and the
second coefficient Vn−1(A) is the surface area of A. The last coefficient, V0(A),
is again just |B|, so it doesn’t really depend on A. However, the remain-
ing coefficients V1(A), V2(A), . . . , Vn−2(A) don’t have such a straightforward
interpretation. The numbers V0(A), V1(A), . . . , Vn(A) (multiplied with some
constants, which we may conveniently ignore here) are known as the intrinsic
volumes of A. In a very informal sense, these numbers measure how “big” a
convex set is, just like the usual volume and the usual surface area.

A natural question which now arises is what happens if we take both A and
B to be arbitrary convex sets instead of taking B to be the ball. It turns out
that we still have a formula of the form

|A+ tB| = cn(A,B) + cn−1(A,B) · t+ cn−2(A,B) · t2 + · · ·+ c0(A,B) · tn

for some coefficients ck(A,B) that depend on both A and B. In fact, the same
is true not just for two sets but for any number of convex sets: the volume
|t1A1 + t2A2 + · · ·+ tmAm| is some polynomial 2 , with coefficients that depend
on the convex sets A1, A2, . . . , Am. This result is know as Minkowski’s theorem,
and the coeffcients are known as mixed volumes.

Mixed volumes are very important in convex geometry, and much of the
theory of convexity is built around inequalities between mixed volumes. For
the sake of simplicity we will only discuss intrinsic volumes in the remainder of
this note.

2 Inequal i t ies

The isoperimetric inequality is one of the most fundamental results in convex
geometry. It states that among all sets A in Rn with a given volume, the ball

1 We have not said what we mean by the volume of an n-dimensional set, but you can
just think of it as something analogous to the area of a 2-dimensional set or the volume of a
3-dimensional set.
2 Maybe so far you’ve only seen polynomials that depend on one variable. The volume
|t1A1+t2A2+· · ·+tmAm| depends on n variables t1, t2, . . . , tn; such a multivariate polynomial
is an expression that is built from the variables t1, t2, . . . , tn by multiplying and adding.
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has the minimal surface area. While this result was known to the ancient Greeks,
the first formal proof was given by Schwartz in the 19th century, building on the
work of Steiner (see [7] and [3] for surveys regarding the isoperimetric inequality
and the intimately related Brunn–Minkowski inequality).

Let us write the isoperimetric inequality as an inequality between intrinsic
volumes. To do so we will need to remember that the n-dimensional volume is
homogeneous of degree n, that is, Vn(rA) = rnVn(A). More generally, the k-th
intrinsic volume Vk is homogeneous of degree k – it satisfies Vk(rA) = rkVk(A).
A proof of the latter fact is not difficult, but we will not give it here.

To proceed, let A be any convex set and let B be the ball of radius 1. Choose
a number r such that the ball C = rB has the same volume as A. Then

Vn(A) = Vn(C) = Vn(rB) = rnVn(B),

and solving for r we obtain r =
(
Vn(A)
Vn(B)

)1/n
. By the isoperimetric inequality,

the surface area of the ball C is not larger than the surface area of A, so

Vn−1(A) ≥ Vn−1(C) = Vn−1(rB) = rn−1Vn−1(B).

Recalling the value of r, and reorganizing the inequality, we conclude that(
Vn−1(A)
Vn−1(B)

) 1
n−1

≥
(
Vn(A)
Vn(B)

) 1
n

.

It turns out that a similar inequality holds for any two intrinsic volumes.
The Alexandrov inequalities state that if A is any n-dimensional convex set and
B is the ball of radius 1, then for every 0 < i ≤ j ≤ n one has(

Vi(A)
Vi(B)

) 1
i

≥
(
Vj(A)
Vj(B)

) 1
j

. (?)

The Alexandrov inequalities for intrinsic volumes follow easily from the more
general Alexandrov-Fenchel inequality, which is a very deep inequality between
mixed volumes. Some history of the problem, and references to various proofs,
appear in Section 1.7 of [1].

3 Funct ional extensions

In this section we will shift our attention from sets A in Rn to functions
f : Rn → [0,∞), which will turn out to be good tool for understanding
convexity. More concretely, we will be interested in log-concave functions. A
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function f : Rn → [0,∞) is called log-concave if for every x, y ∈ Rn and every
0 < λ < 1 one has

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (??)

In order to understand the name “log-concave”, let us briefly discuss convex
and concave functions. A function φ : Rn → (−∞,∞] is called convex if for
every x, y ∈ Rn and every 0 < λ < 1 one has

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y).

Similarly, a function φ : Rn → [−∞,∞) is called concave if for every x, y ∈ Rn
and every 0 < λ < 1 one has

φ(λx+ (1− λ)y) ≥ λφ(x) + (1− λ)φ(y).

More geometrically, a function φ is convex if the area “above” the graph of φ is
a convex set. A function φ is concave if the area “below” the graph of φ is a
convex set. You may try to check yourself that these geometric conditions on
the graph are indeed captured by the formulas above. Figure 4 depicts such
functions in the simplest case n = 1. It can be seen from the definition that φ
is convex if and only if −φ is concave.

(a) convex (b) concave

Figure 4: A convex function and a concave function.

A function f : Rn → [0,∞) is log-concave if and only if log f is a concave
function, which explains the name “log-concave”. The reason we are especially
interested in log-concave functions is that for every convex set A in Rn, its
indicator function, which is defined as

1A(x) =
{

1 if x ∈ A,
0 otherwise,
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is log-concave. Let us prove this simple fact: If x /∈ A or y /∈ A then the
inequality

1A(λx+ (1− λ)y) ≥ 1A(x)λ1A(y)1−λ

definitely holds, since the right-hand side is 0 and the left-hand side is 0 or 1.
If on the other hand x, y ∈ A then also λx+ (1− λ)y ∈ A since A is convex,
and the inequality (??) becomes

1 ≥ 1λ · 11−λ,

which is obviously true.
Not every log-concave function f is an indicator function of a convex set. As

an example, the reader may want to check that the function f : R2 → [0,∞)
defined by f(x, y) = e−x

2−y2 is log-concave. We would like to think of log-
concave functions as “generalized convex sets” and try to prove geometric
statements about them. Over the last decade this approach proved itself to
be extremely useful. In fact, even if we are ultimately interested only in
convex sets and not in functions, the new functional point of view allows us to
attack problems that were completely intractable in the past. A survey of such
functional techniques and their success can be found in [4] (which is already
slightly outdated).

In the papers [5] and [6], which are joint with V. Milman, we define “mixed
volumes” for log-concave functions and prove many inequalities concerning
them. In order to present the definition, we should first understand how to
add log-concave functions. The obvious guess would be to add the functions
pointwise, that is, to consider

(f + g)(x) = f(x) + g(x).

However, this definition doesn’t make much sense for us, since the pointwise sum
of two log-concave functions is not necessarily log-concave: you may try to check
yourself that while the indicator functions 1[−2,−1] and 1[1,2] are log-concave,
their pointwise sum 1[−2,−1] + 1[1,2] = 1[−2,−1]∪[1,2] is not.

Hence, instead we make the following definition:

(f ⊕ g)(x) = max
y∈Rn

min{f(y), g(x− y)}.

Instead of explaining this strange-looking definition, let us expound a better
way to think about it. For every function f : Rn → [0,∞) and every number
t > 0, we define Kt(f) to be the set of all points x ∈ Rn such that f(x) ≥ t.
These sets are known as the upper level sets of f . It is easy to check that if
f is log-concave then the sets Kt(f) are convex sets. The sum f ⊕ g is then
characterized by the simple formula Kt(f ⊕ g) = Kt(f) + Kt(g), where the
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addition on the right hand side is the standard addition of convex sets we
already discussed. Figures 5a and 5b illustrate the concept of an upper level
set.

(a) graph of f with a level set (in blue) (b) corresponding upper level set

Figure 5: A log-concave function f : R2 → [0,∞) and an upper level set.

Similarly, if f is a log-concave function and λ > 0, we define

(λ� f)(x) = f
(x
λ

)
.

Again, this is a simple operation in terms of the upper level sets, sinceKt(λ�f) =
λKt(f).

In order to to define intrinsic volumes, we considered the volume of A+ tB.
What is the functional equivalent of the volume? In other words, what is the
“volume” of a log-concave function f? We claim the answer is the integral

∫
f .

One good reason for defining it in this way is the relation
∫

1A = |A|, which
the reader may be familiar with.

Consider an arbitrary log-concave function f , and define g = 1B , the indicator
function of the ball. Like in the classical case, which we considered before, one
has ∫

(f ⊕ (t� g)) = Vn(f) + Vn−1(f) · t+ Vn−2(f) · t2 + · · ·+ V0(f) · tn.

Again we have Vn(f) =
∫
f and V0(f) =

∫
g = |B|, but the remaining coefficients

V1(f), V2(f), . . . , Vn−1(f) are new. We call them the intrinsic integrals of the
function.

Again, one can consider not only the function g = 1B but any log-concave
function g, and even more generally one may consider m different log-concave
functions f1, f2, . . . , fm. This will lead to the construction of mixed integrals,
which generalize the classical mixed volumes. We will not discuss further this
more general case.
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Now that the intrinsic integrals are defined, we turn our attention to a
functional extension of the Alexandrov inequalities (?). In the case of convex
sets, we always compared a general set A with the ball B. Therefore, it makes
sense to assume that we will now compare a general log-concave function f with
the function g = 1B . Surprisingly it turns out that this is not a good approach,
and the correct function to compare with, h : Rn → [0,∞), is defined by

h(x1, x2, . . . , xn) = e−
√
x2

1+x2
2+···+x2

n .

Figure 6 shows the graph of this function for the easy-to-draw case n = 2.

Figure 6: The graph of the function h : R2 → [0,∞).

We can now formulate the main theorem proved in [6]: Let f : Rn → [0,∞)
be any log-concave function with f(0) = 1. Then for every 0 < i ≤ j ≤ n one
has (

Vi(f)
Vi(h)

) 1
i

≥
(
Vj(f)
Vj(h)

) 1
j

.

In particular, by taking i = n−1 and j = n, we obtain a functional isoperimetric
inequality: if f is a log-concave function such that

∫
f =

∫
h, then f has a

larger “surface area” than h. Here the surface area of a log-concave function f
should be understood as the intrinsic integral Vn−1(f).

Many more inequalities were proved in [6], but we will not discuss them
here. Instead, we will conclude this snapshot by mentioning the paper [2] of
Bobkov, Colesanti and Fragalà. In this paper the authors independently defined
the same intrinsic integrals (but not the more general mixed integrals), and
proved a completely different set of inequalities concerning them. For example,
it follows from their results that for any log-concave function f , g = 1B, and
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0 < i ≤ j ≤ n, one has (
Vi(f i)
Vi(gi)

) 1
i

≥
(
Vj(f j)
Vj(gj)

) 1
j

,

which is an analogue of the Alexandrov inequalities (?). Inequalities concerning
convex sets have thus inspired discoveries of new inequalities that deal with
certain interesting and useful classes of functions.
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