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A FUNCTION ALGEBRA PROVIDING NEW MERGELYAN TYPE

THEOREMS IN SEVERAL COMPLEX VARIABLES

JAVIER FALCÓ, PAUL M. GAUTHIER, MYRTO MANOLAKI, AND VASSILI NESTORIDIS

Abstract. For compact sets K ⊂ Cd, we introduce a subalgebra AD(K) of A(K), which
allows us to obtain Mergelyan type theorems for products of planar compact sets as well as

for graphs of functions.

1. Introduction

In one complex variable, approximation theory is well developed [5, 14]. In particular, we have

the celebrated theorems of Runge and Mergelyan. The present paper deals with approximation

in several variables, where the situation is far from being understood [4, 11].

Runge’s Theorem tells us that every function holomorphic on a neighbourhood of a given

planar compact set K can be approximated uniformly on K by rational functions of one complex

variable. The direct analogue of Runge’s Theorem fails in several complex variables. However,

in Section 2, we provide a Runge type theorem for approximation on products of planar compact

sets by rational functions of special type.

Mergelyan type approximation is much stronger than Runge type approximation in the

sense that the functions to be approximated are no longer assumed to be holomorphic on

neighbourhoods of K. This relates to the ubiquitous algebra A(K) [6, 15], which in both one

and several complex variables consists of all functions f : K → C continuous on the compact

set K and holomorphic on the interior of K, which is denoted by K◦. In particular, if K◦ = ∅,
then A(K) = C(K). In sections 4 and 5 we present stronger approximation results in the spirit

of Mergelyan.

A direct consequence of [7, Corollary 6.4] gives that every function in A(K1 × K2) can be

approximated by functions holomorphic on open sets containing K1 × K2, provided that K1

and K2 are planar compact sets and rational functions of one complex variable with poles off

Ki (equivalently, functions holomorphic on open sets containing Ki) are dense in A(Ki) for

i = 1, 2. This result has already been used in [2, 3, 8] for products of regular closed planar

compact sets Ki, that is K◦i = Ki. In Section 3, we give an example showing that [7, Corollary

6.4] does not always hold. Motivated by this, for compact sets K in Cd, we shall introduce an

algebra AD(K) for which the previous example is no longer a counterexample. Recalling that
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a mapping from a planar domain to Cd is holomorphic if each coordinate is a complex-valued

holomorphic function, we define the algebra AD(K) as the set of all functions f : K → C
that are continuous and such that, for every open disc D ⊂ C and every injective holomorphic

mapping Φ : D → K ⊂ Cd, the composition f ◦ Φ : D → C is holomorphic. Thus, f should be

holomorphic on every complex manifold contained in K that is immersed in Cd. This algebra is

a uniform Banach algebra endowed with the supremum norm. Since the new algebra AD(K) is

contained in A(K), we hope that it will become easier to obtain more Mergelyan type theorems

in several complex variables.

In Section 4 we prove two such theorems. Firstly, we prove that [7, Corollary 6.4] holds

in full generality if we replace A(K) by AD(K). Furthermore, if Ki are regular closed planar

compact sets for all i = 1, . . . , d, then the algebras A(K1 × · · · ×Kd) and AD(K1 × · · · ×Kd)

coincide and consequently [2, 3, 8] are justified. Secondly, we prove that if K are graphs of

certain functions, Mergelyan’s Theorem holds for AD(K) while it fails for A(K).

In Section 5 we consider K to be arbitrary products of planar compact sets, even infinitely

many, and also disjoint unions of such products. We provide results on approximation of

functions in AD(K) by rational functions of special type.

Finally, in Section 6 we provide some examples which clarify that the inclusions among all

the algebras we consider are in general strict.

In future papers, we shall explore more general Mergelyan type approximation by imposing

more natural restrictions on the class of plausibly approximable functions. Denote the polyno-

mially convex hull of K by K̂ and the rationally convex hull of K by K∧r . We shall (in these

future papers) also define the O(K)-hull appropriately. It is natural to restrict the class of

functions plausibly approximable on K by polynomials to the class of functions on K having an

extension in AD(K̂). For approximation by rational functions we replace the polynomial hull of

K by its rational hull and for approximation by holomorphic functions on open sets containing

K by the O(K)-hull of K.

Acknowledgement. We wish to thank T. Hatziafratis and A. Katavolos for helpful com-

munications. We would also like to thank E. Zeron for suggesting Example 6.1. This work was

completed during our stay in 2018 at the Mathematisches Forschungsinstitut Oberwolfach in

the framework of the “Research in Pairs” program. We thank the institute for the generous

hospitality which gave us the opportunity to realize this project.

2. Approximation by rational functions of special type

This paper deals with several classes of functions on compact sets K in Cd. We denote

by P (K) the closure of the set of polynomials in C(K). We also denote by r(K) the set of

all rational functions with no singular points on K and by R(K) the closure of r(K) in C(K).

Finally let O(K) be the set of functions g holomorphic on an open set Vg such that K ⊂ Vg ⊂ Cd

and let O(K) be the closure of O(K) in C(K).

We have the following inclusions:

P (K) ⊂ R(K) ⊂ O(K) ⊂ AD(K) ⊂ A(K) ⊂ C(K).
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The object of complex approximation is to determine under which conditions we have equalities

among some of these inclusions. The introduction of the class AD(K) is a significant innovation

as there are compacta K, for which AD(K) 6= A(K) and replacing A(K) by AD(K) renders

correct some incorrect results in the literature (see Section 3).

Firstly we shall focus our investigation on compacta K which are Cartesian products of

planar compact sets

K = K1 × · · · ×Kd,

for which we have information regarding the factors Ki. For such products we can introduce

some natural intermediate algebras of functions.

Definition 2.1. Let K1, . . . ,Kd be compact subsets of the complex plane C. For each i =

1, . . . , d, let Li ⊂ C∪{∞} be a set containing at least one point from each connected component

of (C∪{∞})\Ki. Also let K = K1×· · ·×Kd ⊂ Cd. We denote by rL(K) the set of all complex

functions defined on K that can be written as a finite sum of finite products of rational functions

of one variable zi with poles in Li, i = 1, . . . , d. Let RL(K) be the closure of rL(K) in C(K).

By abuse of notation when we write rL(K) or RL(K) we understand that the sets Li,

i = 1, . . . , d, are arbitrary but fixed and they satisfy the above conditions.

It follows directly from the definitions that

P (K) ⊂ RL(K) ⊂ R(K) ⊂ O(K) ⊂ AD(K) ⊂ A(K) ⊂ C(K).

If K ⊂ C, then

RL(K) = R(K) = O(K)

by Runge’s Theorem. Our main result in this section is that these equalities also hold if K is

a product of planar compact sets.

Theorem 2.2. For K = K1 × · · · ×Kd a product of planar compact sets and Li, i = 1, . . . , d,

as in Definition 2.1, we have

RL(K) = R(K) = O(K).

Proof. It suffices to prove that every function g in O(K) can be uniformly approximated on K

by functions in rL(K). Let g be a holomorphic function on an open set Vg with K ⊂ Vg ⊂ Cd.
We can find open sets Ui, i = 1, . . . , d, such that Ki ⊂ Ui ⊂ C and K ⊂ U1 × · · · × Ud ⊂ Vg.

For d = 1 the result follows from Runge’s Theorem in the complex plane. We proceed by

induction. Suppose the statement of the theorem holds for d− 1. For a point (z1, . . . , zd) ∈ Cd

we write w = (z1, . . . , zd−1) and z = zd. We choose a cycle γ in Ud \Kd such that

g(w, z) =
1

2πi

∫
γ

g(w, ζ)

ζ − z
dζ

for all z ∈ Kd and w ∈ U1 × · · · × Ud−1. The cycle γ can be chosen to be a finite sum of

closed polygons. Since the map (ζ, w, z) 7→ g(w,ζ)
ζ−z is uniformly continuous on the compact set

γ ×K1 × · · · ×Kd−1 ×Kd and the total length of γ is finite, the above Cauchy integral can be
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uniformly approximated by Riemann sums. Thus, for each ε > 0 there exists a natural number

M , constants c1, . . . , cM ∈ C and complex numbers ζ1, . . . , ζM in γ such that∣∣∣g(w, z)−
M∑
k=1

ckg(w, ζk)
1

ζk − z

∣∣∣ < ε

2

for all (w, z) ∈ K.

By the induction hypothesis, the functions w 7→ g(w, ζk), can be approximated uniformly on

K1 × · · · ×Kd−1 by functions gk(w) that are finite sums of finite products of functions of one

complex variable with poles in the set Li, i = 1, . . . , d−1 for k = 1, . . . ,M . Since ζk ∈ C\Kd for

k = 1, . . . ,M , by Runge’s Theorem in one variable, the functions z 7→ 1
ζk−z can be uniformly

approximated on Kd by rational functions of the variable z = zd with poles in Ld. Thus, there

exists fk ∈ rL(Kd), k = 1, . . . ,M , satisfying∣∣∣ M∑
k=1

ckg(w, ζk)
1

ζk − z
−

M∑
k=1

ckgk(w)fk(z)
∣∣∣ < ε

2

for all (w, z) ∈ K. We denote by f(w, z) =
∑M
k=1 ckgk(w)fk(z) ∈ rL(K). It follows that

|g(w, z)− f(w, z)| < ε

for all (w, z) ∈ K, which proves the desired statement. �

Since for a product of planar compact sets K = K1×· · ·×Kd all the algebras RL(K), R(K)

and O(K) coincide, we shall denote any of them simply by R(K). However, for compact sets

K ⊂ Cd which are not products of planar compact sets, it is not always true that R(K) = O(K).

For an example see Section 6.

From the previous theorem we obtain that the algebra R(K1 × · · · ×Kd) coincides with the

tensor product of the algebras R(K1), . . . , R(Kd), which we consider as in [7] to be the closure

in C(K) of finite sums of finite products of elements of R(Ki), i = 1, . . . , d.

Corollary 2.3. For planar compact sets K1, . . . ,Kd, we have

R(K1 × · · · ×Kd) = R(K1)⊗ · · · ⊗R(Kd).

In Theorem 2.2 the allowable singularities of the approximating functions depend strongly

on the compact set K = K1 × · · · ×Kd. In the following corollary we show that for products

of planar open sets U = U1 × · · · ×Ud, we can choose a common set of singularities that works

for all compact subsets of U . We shall denote by rL(U) the set of finite sums of finite products

of rational functions of one variable zi with poles in a set Li, i = 1, . . . , d.

Corollary 2.4. Let U1, . . . , Ud be open subsets of C and U = U1 × · · · × Ud ⊂ Cd. For

i = 1, . . . , d, let Li be a set containing at least one point from each component of (C∪{∞})\Ui.
For each f ∈ O(U) there exists a sequence gn ∈ rL(U), n = 1, 2, . . . converging to f uniformly

on compacta of U . Therefore, the set of rational functions with set of singular points disjoint

from U is dense in O(U).
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Proof. For each i = 1, . . . , d, let Km
i , m = 1, 2, . . . be a normal exhaustive sequence of compact

subsets of Ui. We notice that each connected component of (C∪{∞})\Km
i contains a connected

component of (C∪{∞}) \Ui. Thus, the set Li contains at least one point from each connected

component of (C ∪ {∞}) \Km
i . We set Km = Km

1 × · · · ×Km
d . Then every compact subset of

U is contained in some Km. Therefore, it suffices to find gm ∈ rL(Km) = rL(U) such that

sup
z∈Km

|gm(z)− f(z)| < 1

m
.

By Theorem 2.2 applied to the product Km such a gm exists. This completes the proof. �

Proposition 2.5. Let Ki, i = 1, . . . , d, be compact sets in C and K = K1 × · · · ×Kd. Using

the notation of Theorem 2.2, if f ∈ O(K), ε > 0 and I is a finite subset of {0, 1, 2, . . .}, then

there exists g ∈ rL(K) such that for every (α1, . . . , αd) ∈ Id we have

sup
z∈K

∣∣∣ ∂α1+···+αd

∂zα1
1 · · · ∂z

αd
d

(g − f)(z)
∣∣∣ < ε.

Proof. The function f is holomorphic on an open set Vf such that K ⊂ Vf ⊂ Cd. We can

find open sets Ui with Ki ⊂ Ui ⊂ C such that the open set U = U1 × · · · × Ud satisfies

K ⊂ U ⊂ Vf . Thus f ∈ O(U). According to Corollary 2.4 there exists a sequence gm ∈ rL(U),

m = 1, 2, . . . converging to f uniformly on compacta of U . Since uniform convergence of

holomorphic functions on an open set U implies uniform convergence of partial derivatives on

compact subsets of U , we have that for every (α1, . . . , αd) ∈ Id

sup
z∈K

∣∣∣ ∂α1+···+αd

∂zα1
1 · · · ∂z

αd
d

(gm − f)
∣∣∣→ 0

as m→∞. It suffices to set g = gm for sufficiently large m. This concludes the proof. �

Let g = (gm)∞m=1 be a sequence in O(K) such that for every α = (α1, . . . , αd) ∈ {0, 1, . . .}d,
the corresponding sequence of mixed partial derivatives ∂α1+···+αd

∂z
α1
1 ···∂z

αd
d

gm converges uniformly on

K to some function wα,g that depends on α and the sequence g = (gm)∞m=1. We denote by

R∞(K) the set of families

{wα,g : α ∈ {0, 1, . . .}d for g = (gm)∞m=1 in O(K) as above}.

Proposition 2.5 implies that in the definition of R∞(K) it is sufficient to consider only

sequences g = (gn)∞n=1 where gn ∈ rL(K). If Ki are regular closed then R∞(K) can be

identified with a set of holomorphic functions on K◦1 × · · · ×K◦d , because wα,g = ∂α1+···+αd

∂z
α1
1 ···∂z

αd
d

w

on K◦1 × · · · × K◦d , where w = limn→∞ gn and all these functions extend continuously on K.

Then, rL(K) is dense in R∞(K) endowed with the seminorms

sup
z∈K◦

∣∣∣ ∂α1+···+αd

∂zα1
1 · · · ∂z

αd
d

w(z)
∣∣∣, for (α1, . . . , αd) ∈ {0, 1, 2, . . .}d

provided that Ki is regular closed for i = 1, . . . , d.

We close this section replacing rational approximation by approximation by polynomials, see

[8]. For an open set U ⊂ Cd we denote by P (U) the class of functions f : U → C such that there

exists a sequence (Pn)∞n=1 of polynomials of d complex variables converging to f uniformly on

each compact subset of U .
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Proposition 2.6. Let Ki ⊂ C, i = 1, . . . , d, be compact sets and K = K1 × · · · ×Kd. Then

the following are equivalent:

(a) P (K) = O(K);

(b) For every i = 1, . . . , d the set C \Ki is connected.

Proof. To show that (b) implies (a) it suffices to set Li = {∞} and apply Theorem 2.2, because

every rational function of one variable with poles contained in {∞} is a polynomial of one

variable.

To see that (a) implies (b), let i0 ∈ {1, . . . , d} be fixed. Suppose (a) and suppose that C\Ki0

is not connected. We can pick a point b ∈ C in a bounded connected component V of C \Ki0 .

Then the function f(z1, . . . , zd) = 1
zi0−b

belongs to O(K) and so is a uniform limit on K of

polynomials (Pn(z1, . . . , zd))
∞
n=1. We fix zi = wi ∈ Ki for all i ∈ {1, . . . , d} \ {i0}. Then the

sequence of polynomials in one variable, Qn(z) = Pn(z1(z), . . . , zd(z)), where zi0(z) = z and

zi(z) = wi for all i 6= i0, converges uniformly on Ki0 to 1
zi0−b

. Fix a natural number n0 so that

max
zi0∈Ki0

∣∣∣Qn0
(zi0)− 1

zi0 − b

∣∣∣ < 1

2 maxzi0∈∂V |zi0 − b|
.

Then, by the maximum modulus principle on V ,

1/2 > max
zi0∈∂V

|zi0 − b| · max
zi0∈∂V

∣∣∣Qn0
(zi0)− 1

zi0 − b

∣∣∣
≥ max
zi0∈∂V

|(zi0 − b)Qn0
(zi0)− 1|

≥ max
zi0∈V

|(zi0 − b)Qn0(zi0)− 1|

≥ |(b− b)Qn0
(b)− 1| ≥ 1,

which is a contradiction. Thus, C \Ki0 is connected and the proof is complete.

�

Arguing in a similar way we obtain the following:

Proposition 2.7. Let Ui ⊂ C, i = 1, . . . , d, be open sets and U = U1 × · · · × Ud. Then the

following are equivalent:

(a) P (U) = O(U);

(b) For every i = 1, . . . , d, the set Ui is simply connected.

As a direct consequence of Proposition 2.5 we obtain the following special case for polyno-

mials.

Proposition 2.8. Let Ki, i = 1, . . . , d, be compact sets in C such that C\Ki is connected. Let

f be a function holomorphic on an open set containing K = K1 × · · · ×Kd, let ε > 0 and I a

finite subset of {0, 1, . . .}d. Then there exists a polynomial Q(z1, . . . , zd) such that

sup
z∈K

∣∣∣ ∂α1+···+αd

∂zα1
1 · · · ∂z

αd
d

(f −Q)(z)
∣∣∣ < ε

for every α = (α1, . . . , αd) ∈ I.
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3. The algebra AD(K)

Let K ⊂ Cd be a compact set. As we already mentioned P (K) ⊂ O(K) ⊂ A(K). One of the

most challenging questions in approximation theory is to determine under which conditions on

K, we have equalities. The situation in one complex variable is well understood. In particular,

let K be a compact set in C. The equality P (K) = O(K) holds if and only if the complement

of K is connected. The same characterization holds for the equality P (K) = A(K), according

to the celebrated theorem of Mergelyan. Vitushkin [16] gave the best Mergelyan type theorem

by providing necessary and sufficient conditions for the equality O(K) = A(K). However, in

several complex variables the analogous theory is much less developed, see [4, 11]. It is natural

to investigate the case where K is a product of planar compact sets. For example, in Proposition

2.2 we saw that if P (Ki) = O(Ki) then P (K1 × · · · ×Kd) = O(K1 × · · · ×Kd).

The following question mentioned in [7, Section 6] naturally arises.

Question 3.1. If Ki ⊂ C are compact sets such that O(Ki) = A(Ki) for i = 1, 2, . . . , d, is it

always true that O(K1 × · · · ×Kd) = A(K1 × · · · ×Kd)?

The example below provides a negative answer to this question.

Example 3.2. Let K1 = {0} ⊂ C and K2 = {w ∈ C : |w| ≤ 1} ⊂ C and let g : K2 → C
be a continuous function which is not holomorphic on {w ∈ C : |w| < 1}; for instance take

g(w) = |w|. Let f : K1 × K2 → C be defined by f(z, w) = g(w) for all (z, w) ∈ K1 × K2.

Since the interior of K1 × K2 in C2 is void, we have A(K1 × K2) = C(K1 × K2). It follows

that f ∈ A(K1 ×K2). Moreover, we have that A(K1) = O(K1) = C and A(K2) = O(K2). An

affirmative answer to Question 3.1 would then imply that O(K1 ×K2) = A(K1 ×K2), and so

f ∈ O(K1 ×K2). Therefore, there would be a sequence of functions gn holomorphic on open

sets Vn with K1 ×K2 ⊂ Vn ⊂ C2 such that

sup
(z,w)∈K1×K2

|gn(z, w)− f(z, w)| → 0, as n→∞.

This implies that g(w) = f(0, w) is holomorphic on {w ∈ C : |w| < 1}, which contradicts our

assumption concerning the function g. Therefore the answer to Question 3.1 is negative.

Our goal is to replace the algebra A(K) by an appropriate algebra so that the answer

to Question 3.1 becomes positive. More generally, we would like to obtain Mergelyan type

theorems for other compact sets in Cd. We recall that O(K) is the closure in C(K) of functions

holomorphic on (varying) open neighbourhoods of K. Thus, we shall consider sequences of

functions gn holomorphic on open sets Vn with K ⊂ Vn ⊂ Cd and converging uniformly on

K to some function f : K → C. We shall investigate some necessary properties of the limit

function f . The definition of the new class AD(K) that we shall introduce will incorporate

these necessary properties.

Firstly, each gn is continuous on K, therefore the uniform limit f should be continuous

on K. This will be the first requirement. Secondly, let m be a natural number and D an

open polydisc in Cm (or more generally any open subset of Cm). Let φ : D → K ⊂ Cd be
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a holomorphic mapping. Then, since K ⊂ Vn ⊂ Cd and gn is holomorphic on Vn, it follows

that the composition gn ◦ φ : D → C is well defined and holomorphic on D. Moreover, gn → f

uniformly on K. It follows that gn ◦ φ → f ◦ φ uniformly on D, where f ◦ φ is a well defined

function because φ(D) ⊂ K and f is defined on K. Since f ◦φ is a uniform limit of holomorphic

functions on the open set D, it follows that f ◦ φ is holomorphic on D. This will be the second

requirement.

In view of Hartogs’ Theorem on separate holomorphicity it suffices to restrict to the case

m = 1, for open discs D in C. Furthermore, we shall show that it is enough that our requirement

be valid for mappings φ : D → K ⊂ Cd holomorphic and injective on open discs D ⊂ C. Indeed,

let φ : D → K ⊂ Cd be a holomorphic mapping, not necessarily injective. We must show that

f ◦φ is holomorphic around every z0 ∈ D. We have φ(z) = (φ1(z), . . . , φd(z)) ∈ K ⊂ Cd, where

φi(z) ∈ C. If there is r > 0 such that φ restricted to the disc D(z0, r) = {z ∈ C : |z−z0| < r} ⊂
D is injective, then, by our assumption concerning injective mappings, it follows that f ◦ φ is

holomorphic on D(z0, r). Suppose that there is no r > 0 such that φ = (φ1, . . . , φd) is injective

on D(z0, r). Then φ′1(z0) = · · · = φ′d(z0) = 0. If at least one of the functions φ1, . . . , φd, say

φj , is non-constant, then φ′j 6≡ 0, so its zero set Z is a set of isolated points. Thus φj is locally

injective on D \Z which implies that φ is locally injective on D \Z. Thus, by our assumption,

we conclude that f ◦ φ is holomorphic on D \Z. Since f ◦ φ is continuous on D, it follows that

it is holomorphic on D. If all functions φ1, . . . , φd are constants, then f ◦ φ is constant, hence

holomorphic on D.

These considerations suggest that we introduce the following definition.

Definition 3.3. Let K ⊂ Cd be a compact set (or more generally a closed set). A function

f : K → C is said to belong to the class AD(K) if it is continuous on K and, for every open

disc D ⊂ C and every injective mapping φ : D → K ⊂ Cd holomorphic on D, the composition

f ◦ φ : D → C is holomorphic on D.

Roughly speaking the above definition tells us that f should be continuous on K and holo-

morphic on every complex manifold contained in K. In fact, it is enough to restrict our attention

to injective holomorphic mappings φ defined on the open unit disc. Moreover, one can check

that in the above definition we may replace the open discs D by closed discs D and φ by

injective mappings that are continuous on D and holomorphic on D.

Remark 3.4. Note that for compact sets K ⊂ Cd we have that O(K) ⊂ AD(K) ⊂ A(K) and if

K is a planar compact set then AD(K) = A(K).

In this paper we are mostly interested in products of planar compact sets. In this situation

we have the following characterization of AD(K).

Proposition 3.5. Let Ki ⊂ C be compact sets, i = 1, 2, . . . , d. The following are equivalent:

(a) f ∈ AD(K1 × · · · ×Kd);
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(b) f ∈ C(K1×· · ·×Kd) and for each i0 ∈ {1, . . . , d} and each wi ∈ Ki, i ∈ {1, . . . , d}\{i0},
the function K◦i0 3 z 7→ f(z1(z), . . . , zd(z)) ∈ C is holomorphic on K◦i0 , where zi0(z) = z

and zi(z) = wi for i ∈ {1, . . . , d} \ {i0}.

Proof. It is straightforward that (a) implies (b). For the converse, assume that f is as in (b). Let

K = K1× · · · ×Kd. By Hartogs’ Theorem f is holomorphic on K◦. Consider φ : D → K ⊂ Cd

an injective holomorphic mapping on an open disc D ⊂ C, and let z0 ∈ D. If φ(z0) ∈ K◦,

then the composition f ◦ φ is holomorphic on an open set containing z0. If φ(z0) ∈ ∂K,

where φ = (φ1, . . . , φd), then for at least one i ∈ {1, . . . , d} we have φi(z0) ∈ ∂Ki. The open

mapping theorem for holomorphic functions implies that φi ≡ ci for some constant ci ∈ C. Let

I denote the set of all these indices i for which φi(z0) = ci ∈ ∂Ki and let J = {1, . . . , d} \ I.

Then f(φ1(z), . . . , φd(z)) = g ◦ φ̃(z), where φ̃ : D →
∏
i∈J Ki is defined by φ̃ = (φi)i∈J and

g((wi)i∈J) = f((zi)i∈{1,...,d}), where zi = wi for i ∈ J and zi = ci for i ∈ I. According to

the assumption in (b) on separate analyticity of f and using Hartogs’ Theorem, the function

g :
∏
i∈J Ki → C is holomorphic on the interior of

∏
i∈J Ki and φ̃(z0) belongs to this set. Since

φ̃ is holomorphic it follows that f ◦ φ = g ◦ φ̃ is holomorphic around z0, provided J 6= ∅. If

J = ∅ then φ and f ◦ φ are constants, and hence they are holomorphic. This proves (a).

�

Condition (b) in the above proposition is motivated by [12], where the set of uniform limits

of polynomials on a product of closed discs is characterized. We notice that in this condition it

is essential that the points wi may belong to the boundary ∂Ki and not necessarily to K◦i . It

follows that the function f in the Example 3.2 does not belong to AD(K1×K2). Thus there is

hope that Question 3.1 could have an affirmative answer, if we replace A(K1 × · · · ×Kd) with

the new algebra of functions AD(K1 × · · · ×Kd) introduced in Definition 3.3. In fact we shall

prove that this is true in Theorem 4.6.

In connection with [2, 3, 7, 8], we notice the following.

Corollary 3.6. If Ki ⊂ C are planar compact regular closed sets for i = 1, . . . , d, then

A(K1 × · · · ×Kd) = AD(K1 × · · · ×Kd).

Proof. Let K = K1 × · · · × Kd. Obviously AD(K) is a subalgebra of A(K). For the other

inclusion, assume that f ∈ A(K). It suffices to show that f satisfies condition (b) in Proposition

3.5. Every wi ∈ Ki can be approximated by a sequence wi,n ∈ K◦i , n = 1, 2, . . . and the function

K◦i0 3 z 7→ f(z1(z), . . . , zd(z)) ∈ C is a uniform limit of functions which are holomorphic on

K◦i0 . Here the points wi have been replaced by the points wi,n ∈ K◦i0 where zi0(z) = z and

zi(z) = wi for i 6= i0. �

We mention that an advantage of condition (b) in Proposition 3.5 is that it can be naturally

extended to infinite products, see Definition 5.1. It suffices to require that the function f :∏
i∈I Ki → C be continuous when

∏
i∈I Ki is endowed with the product topology and that f

be separately holomorphic on K◦i0 when all other variables are fixed in Ki (even in ∂Ki).



10 J. FALCÓ, P. M. GAUTHIER, M. MANOLAKI, AND V. NESTORIDIS

4. Mergelyan type theorems

In this section we prove two Mergelyan type theorems in Cd using the algebra AD(K). Their

analogues in general fail for A(K). A direct corollary of our first main result, Theorem 4.6,

provides an affirmative answer to Question 3.1 for the algebra AD(K). Theorem 4.6 is the

analogue of [7, Corollary 6.4] for this new algebra. Our second main result, Theorem 4.8, deals

with compact sets K which are graphs of functions.

Before presenting our main theorems we need some auxiliary results. Let K be a planar

compact set and W a Banach space. Let C(K,W ) denote the Banach space of continuous

functions from K to W , endowed with the supremum norm. We also denote by W ∗ the dual

space of W . Let W be a closed subspace of C(Y ), where Y is a compact space. It is natural to

identify C
(
K,C(Y )

)
with C(K × Y ) via the bijection

(4.1)
C(K × Y ) −→ C

(
K,C(Y )

)
F (·, ·) 7−→ x 7→ F (x, ·).

Therefore, C(K,W ) is identified with a subspace of C(K × Y ).

Let A(K,W ) be the subalgebra of C(K,W ) of functions holomorphic on K◦. Let O(K,W )

be the closure in C(K,W ) of the functions which extend holomorphically in a neighborhood of

K. The following two results follow from [7, Theorem 6.1].

Theorem 4.1 ([7]). Let K be a planar compact set. If f ∈ C(K,W ), the following are

equivalent:

(a) f ∈ O(K,W );

(b) For each L ∈W ∗ we have L ◦ f ∈ O(K).

Corollary 4.2 ([7, Corollary 6.2]). Let K ⊂ C be compact. If O(K) = A(K), then O(K,W ) =

A(K,W ) for all Banach spaces W .

Lemma 4.3. Let K1 ⊂ C and K2 ⊂ Cm be compact sets. Then with the identification in (4.1)

we have O
(
K1,O(K2)

)
⊂ O(K1 ×K2).

Proof. Let f ∈ O
(
K1,O(K2)

)
and ε > 0. There is an open neighbourhood Vf of K1 and a

holomorphic function f̃ : Vf → O(K2) such that

‖f(z)− f̃(z)‖K2
< ε/3

for every z ∈ K1. Then, there is a cycle γ in Vf \K1 for which we have by the Cauchy formula:

f̃(z) =
1

2πi

∫
γ

f̃(ζ)

ζ − z
dζ,

for all z ∈ K1.

We observe that the function (ζ, z) 7→ f̃(ζ)
ζ−z defined on γ×K1 is uniformly continuous, as it is

a continuous function defined on a compact set, so we can approximate the integral uniformly

on K1 by its Riemann sums∥∥∥ 1

2πi

∫
γ

f̃(ζ)

ζ − z
dζ −

M∑
l=1

al
f̃(ζl)

ζl − z

∥∥∥
K2

< ε/3,
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for every z ∈ K1, where al ∈ C, ζl ∈ γ and f(ζl) ∈ O(K2) for l = 1, . . . ,M . Thus, for each

l = 1, . . . ,M there is a neighbourhood Ul of K2 and a holomorphic function hl : Ul → C such

that ‖hl − f̃(ζl)‖K2
< εl. We may choose εl sufficiently small such that∥∥∥ M∑

l=1

al
f̃(ζl)

ζl − z
−

M∑
l=1

al
hl

ζl − z

∥∥∥
K2

< ε/3

for every z ∈ K1, and so, by the triangle inequality,∥∥∥f(z)−
M∑
l=1

al
hl

ζl − z

∥∥∥
K2

< ε.

for every z ∈ K1. Set U = U1 ∩ · · · ∩ Ud which is also an open neighbourhood of K2.

Now, notice that the function (z, w) 7→
∑M
l=1 al

hl(w)
ζl−z is holomorphic on Vf × U which is a

neighbourhood of K1 ×K2, and yields the desired approximation. �

Lemma 4.4. Let K1 ⊂ C and K2 ⊂ Cm be compact sets. Then with the identification in (4.1)

we have AD(K1 ×K2) ⊂ A
(
K1, AD(K2)

)
.

Proof. We need to show that the identification (4.1) maps AD(K1 ×K2) to A
(
K1, AD(K2)

)
,

that is the mapping
AD(K1 ×K2) −→ A

(
K1, AD(K2)

)
F (·, ·) 7−→ x 7→ F (x, ·)

is well defined.

We need to show that:

(1) F (x, ·) ∈ C(K2) for all x ∈ K1;

(2) For every x ∈ K1 and Φ : D → K2 holomorphic and injective on a disc D in C we have

that F (x, ·) ◦ Φ is holomorphic on D;

(3) The mapping x 7→ F (x, ·) belongs to C
(
K1, AD(K2)

)
and is holomorphic on K◦1 .

Part (1) follows trivially since F ∈ C(K1 × K2). For part (2) consider Φ : D → K2

holomorphic and injective on an open disc D in C and, for each x ∈ K1, the function Φx : D →
K1 ×K2 defined by Φx(z) = (x,Φ(z)). Since Φx is holomorphic and injective on D, and since

F ∈ AD(K1×K2), we get that F ◦Φx is holomorphic on D for each x in K1, by Definition 3.3.

We have (F ◦Φx)(z) = F (x,Φ(z)) = (F (x, ·)◦Φ)(z), which shows that F (x, ·)◦Φ is holomorphic

on D as desired. Thus, F (x, ·) belongs to AD(K2).

Now we prove (3). The continuity follows because F is continuous on K1 ×K2. We need to

show that for all L ∈ AD(K2)∗ we have that

K1 −→ AD(K2) −→ C
x 7→ F (x, ·) 7→ L

(
F (x, ·)

)
is holomorphic on K◦1 .

By the Hahn-Banach Theorem, the continuous functional L can be extended to C(K2) and

by the Riesz Representation Theorem there is a finite complex measure µ depending only on L

and supported on K2 such that, for all g ∈ AD(K2),

L(g) =

∫
K2

g(w) dµ(w).
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In particular, we have L
(
F (x, ·)

)
=
∫
K2
F (x,w) dµ(w) for each x ∈ K1. Since F is uniformly

continuous on K1 ×K2, the last integral can be approximated uniformly on K1 by “Riemann

sums”
∑M
l=1 clF (x,wl), where M is a natural number, wl ∈ K2 and cl ∈ C for l = 1, . . . ,M .

The function K◦1 3 x 7→ clF (x,wl) is holomorphic on K◦1 because F ∈ AD(K1 × K2). It

follows that the function K◦1 3 x 7→
∑M
l=1 clF (x,wl) is holomorphic on K◦1 . Therefore, on K◦1 ,

the function x 7→ L
(
F (x, ·)

)
, which is the uniform limit of these functions, is also holomorphic.

This proves that x 7→ F (x, ·) is holomorphic on K◦1 , which completes the proof. �

Remark 4.5. We note that the previous lemma does not hold if we replace the algebras AD by

the algebra A (see Example 3.2).

Theorem 4.6. Let K1 ⊂ C, K2 ⊂ Cm be compact sets such that O(K1) = AD(K1) and

O(K2) = AD(K2). Then

O(K1 ×K2) = AD(K1 ×K2).

Proof. By Lemma 4.4 and the assumption that AD(K2) = O(K2) we have

(4.2) AD(K1 ×K2) ⊂ A(K1, AD(K2)) = A(K1,O(K2)).

Since A(K1) = AD(K1) = O(K1) by applying Corollary 4.2 with W = O(K2), we get that

(4.3) A(K1,O(K2)) = O(K1,O(K2)).

Finally, by Lemma 4.3, we conclude that

(4.4) O(K1,O(K2)) ⊂ O(K1 ×K2).

By combining equations (4.2), (4.3) and (4.4) we obtain that AD(K1×K2) ⊂ O(K1×K2) and

since O(K1 ×K2) ⊂ AD(K1 ×K2) the desired result follows. �

An immediate consequence of the previous theorem is the following corollary which gives

a positive answer to Question 3.1 provided we use the algebra AD(K1 × · · · ×Kd) instead of

A(K1 × · · · ×Kd).

Corollary 4.7. Let Ki ⊂ C, i = 1, . . . , d, be compact sets such that O(Ki) = AD(Ki). Then

RL(K1 × · · · ×Kd) = R(K1 × · · · ×Kd) = O(K1 × · · · ×Kd) = AD(K1 × · · · ×Kd).

We now give our second main result where K is not necessarily a product.

Theorem 4.8. Let K1 ⊂ Cm be a compact set such that AD(K1) = O(K1) and ω ∈ AD(K1).

Let K be the graph of the function ω; that is,

K = {(z, w) ∈ Cm+1 : z ∈ K1, w = ω(z)}.

Then AD(K) = O(K).

Proof. It suffices to show AD(K) ⊂ O(K) since the other inclusion follows trivially. Let f ∈
AD(K) and let Ψ : K1 → K be the mapping defined by Ψ(z) = (z, ω(z)). We claim that

f ◦ Ψ ∈ AD(K1). First, we note that f ◦ Ψ ∈ C(K1). Let Φ : D → K1 be a holomorphic

and injective mapping on some disc D ⊂ C. We shall show that (f ◦ Ψ) ◦ Φ is holomorphic
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on D. To see this, we notice that Ψ ◦ Φ : D → K is injective and holomorphic on D, since

Ψ◦Φ(z) = (Φ(z), ω(Φ(z))), the mapping Φ is holomorphic and injective on D and ω ∈ AD(K1).

Thus, (f ◦ Ψ) ◦ Φ = f ◦ (Ψ ◦ Φ) is holomorphic on D, because f ∈ AD(K). We conclude that

f ◦Ψ ∈ AD(K1). From the assumption we have AD(K1) = O(K1). Thus, for any given ε > 0,

there is a function q which is holomorphic on an open neighbourhood of K1 such that

sup
z∈K1

|f ◦Ψ(z)− q(z)| < ε.

We consider the function Q, given by Q(z, w) = q(z), which is holomorphic on a neighbourhood

of K. Thus

sup
(z,w)∈K

|f(z, w)−Q(z, w)| = sup
z∈K1

|f ◦Ψ(z)− q(z)| < ε,

and so f ∈ O(K). This shows that AD(K) ⊂ O(K), which completes the proof. �

Remark 4.9.

(1) Note that Example 3.2 can be seen as a trivial graph where K1 is the closed unit disc

and ω ≡ 0.

(2) Suppose that K1 is a compact set in C with K◦1 6= ∅. We note that if in Theorem 4.8 we

replace the algebra AD by the algebra A (both in the assumption and the conclusion),

then the corresponding result is not valid; that is, A(K) 6= O(K). To see this, assume

A(K1) = O(K1) where K1 is any compact subset of C with non-empty interior and let

K = {(z, w) ∈ C2 : z ∈ K1, w = ω(z)}, for some function w in A(K1). Consider the

function f(z, w) = |z|. Then f ∈ C(K) = A(K), because K has empty interior in C2.

Then, as in Example 3.2 we can derive that f is not in O(K).

(3) Using arguments similar to those in Theorem 4.8 we can obtain the corresponding

results if we replace (both in the assumption and the conclusion) the class O with the

classes R or P .

(4) We note that if K ⊂ Cd is a closed polydisc or a Euclidean ball, then A(K) = AD(K) =

O(K) = R(K) and the approximation can be realized by polynomials [12].

5. Applications

In this section we provide certain approximation results for Cartesian products of an arbi-

trary (possibly infinite) indexed family of planar compact sets. For this purpose, in view of

Proposition 3.5, we extend the definition of the algebra AD to arbitrary products.

Definition 5.1. Let (Ki)i∈I be an arbitrary family of compact subsets of C and K =
∏
i∈I Ki.

A function f : K → C is said to belong to the class AD(K) if the following conditions hold:

(a) f is continuous on K endowed with the Cartesian topology,

(b) For every i0 ∈ I, if we fix wi ∈ Ki, i ∈ I \ {i0} then the function Ki0 3 z →
f
(
(zi(z)i∈I

)
∈ C belongs to A(Ki0), where zi0(z) = z and zi(z) = wi for all i ∈ I \{i0}.

Theorem 5.2. Let {Ki}i∈I be a family of planar compact sets satisfying O(Ki) = AD(Ki).

Assume that for each i ∈ I, Li := {αi,j , j ∈ Ji} is a is a subset of C ∪ {∞} such that each
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connected component of (C∪ {∞}) \Ki contains one of such elements. Then, if K =
∏
i∈I Ki,

finite sums of finite products of rational functions of one variable zi with poles in the set Li are

uniformly dense in AD(K).

Proof. Let f ∈ AD(K) and ε > 0. Then according to [2, Lemma 4.3], there exists a finite set

F ⊂ I and an element (ζi)i∈I ∈ K such that the function g : K → C satisfies |f(z)−g(z)| < ε/2

for all z = (zi)i∈I ∈ K, where g(z) = f
(
(wi(z))i∈I

)
, with w(zi) = zi if i ∈ F and w(zi) = ζi

if i ∈ I \ F . Since g can be seen as an element of AD(
∏
i∈F Ki) = RL(

∏
i∈F Ki), according to

Corollary 4.7 we have that g can be ε/2 approximated by a function h which is a finite sum

of finite products of rational functions of one variable zi with poles in Li. Then, we define

h̃(z) = h
(
(zi)i∈F

)
for z ∈ K and we have that |f(z)− h̃(z)| < ε for all z ∈ K. This concludes

the proof. �

Given a product K =
∏
i∈I Ki of planar compact sets, we consider that a polynomial on K

is a finite sum of finite products of monomials depending only on one variable. As before we

denote by P (K) the set of uniform limits of polynomials on K. Moreover, a rational function

on K is a quotient P/Q of two polynomials on K with Q 6≡ 0.

Remark 5.3. If in the previous theorem we assume that C \Ki is connected for all i ∈ I, then

the approximation can be realized by polynomials depending on a varying finite set of variables.

Definition 5.4. Let {Ki}i∈I be a family of planar compact sets and K a compact subset of∏
i∈I Ki. A function f : K → C is said to belong to the class R(K) if it is a uniform limit on

K of rational functions depending on a finite number of variables with no singularities on K.

Let Li be a subset of (C ∪ {∞}) \Ki for each i ∈ I. Then RL(K) denotes the set of uniform

limits on K of finite sums of finite products of rational functions depending on one variable zi

with poles in Li.

Corollary 5.5. Let {Ki}i∈I be a family of planar compact sets and K =
∏
i∈I Ki. Let Li,

i ∈ I be a subset of (C ∪ {∞}) \ Ki containing at least one element from each component of

(C ∪ {∞}) \Ki. Then, the following assertions are equivalent:

(a) R(K) = AD(K);

(b) RL(K) = AD(K);

(c) R(Ki) = AD(Ki), for each i ∈ I.

Proof. The implication (c)⇒ (b) is given by Theorem 5.2. The implication (b)⇒ (a) is obvious

since RL(K) ⊂ R(K) ⊂ AD(K). Finally, the implication (a) ⇒ (c) is obtained by considering

suitable functions in AD(K) depending only on one complex variable. �

Remark 5.6. Under the above notation, the following assertions are equivalent:

(a) P (K) = AD(K);

(b) C \Ki is connected for each i ∈ I.
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Corollary 5.7. Let {Ki}i∈I be a family of planar compact sets with Ki = ∪k∈IiKk,i, where

{Kk,i}k∈Ii is a family of pairwise disjoint planar sets and Ii is some index set. Denote by

K =
∏
i∈I K

i and by {Kj}j∈J the family of all Cartesian products {
∏
i∈I Kk,i : k ∈ Ii}. Thus,

we have that ∪j∈JKj = K =
∏
i∈I K

i. Assume that for each i ∈ I, Li is a set of points

in C ∪ {∞} such that each connected component of C \ Ki contains one element of Li. If

R(K) = AD(K), then for every subset H ⊂ J with ∪j∈HKj compact and ∪j /∈HKj compact, we

have

(a) R(∪j∈HKj) = AD(∪j∈HKj),

(b) RL(∪j∈HKj) = AD(∪j∈HKj).

Proof. Note that if j1 6= j2 then Kj1 ∩Kj2 = ∅, since the sets {Kk,i}k∈Ii are pairwise disjoint.

For fixed H ⊂ J , we have that any function in AD(∪j∈HKj) can be extended to a function in

AD(K) by using the fact that the sets {Kj}j∈J are pairwise disjoint and ∪j∈HKj and ∪j /∈HKj

are compact. For instance the extension can be defined as the zero function on the set ∪j /∈HKj .

Then the previous corollary gives us the desired result. �

Before we continue, let us show the following lemma which will be necessary for the proof of

Theorem 5.10.

Lemma 5.8. Given ε̃ > 0, if z1, . . . , zd ∈ C are such that |zi − 1| ≤ ε̃ for i = 1, . . . , d, then

|1−
d∏
i=1

zi| ≤ (1 + ε̃)d − 1.

Proof. We prove the result by induction on d. For d = 1 the result follows immediately. Assume

that the result holds for any set of d− 1 complex numbers. Then,

|1−
d∏
i=1

zi| ≤ |1− zd|+ |zd −
d∏
i=1

zj |

≤ ε̃+ |zd||1−
d−1∏
i=1

zi|

≤ ε̃+ (1 + ε̃)
(

(1 + ε̃)d−1 − 1
)

= (1 + ε̃)d − 1.

�

For the purposes of our next result we need to extend Definition 5.1 to more general subsets

in CI , which are not necessarily products. If Kj =
∏
i∈I Ki ⊂ CI is a product of planar compact

sets Ki and K is a finite disjoint union of such products Kj , then for a function f : K → C we

say that f ∈ AD(K) if and only if f |Kj ∈ AD(Kj) for all j. More generally, if CI is endowed

with the product topology and K ⊂ CI is compact, we say that a function f : K → C belongs

to AD(K) if it is continuous on K, and for every Φ : D → K ⊂ CI holomorphic on an open

disc D ⊂ C, the composition f ◦ Φ : D → C is holomorphic on D. This definition in the case

of products of planar compact sets implies Definition 5.1. The converse is also true. To see
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this consider a function f : K → C satisfying the requirements of Definition 5.1. Then, since

f is continuous on K with respect to the product topology, it is the uniform limit on K of

a sequence of functions fn ∈ AD(K) depending on a varying finite set of coordinates. Using

Proposition 3.5 we conclude that fn ◦ Φ is holomorphic on the disc D. Since fn ◦ Φ → f ◦ Φ

uniformly on D, as n → ∞, we conclude that f ◦ Φ is also holomorphic on D. Therefore, we

see that in the case of products of planar compact sets the two definitions coincide, even in the

infinite dimensional case.

The next result is a generalization of Corollary 5.5. In this case we consider rational approx-

imation on pairwise disjoint unions of products of planar sets under some restrictions. Given a

set K and a subset E of K, we denote by χE the function that is equal to one on E and zero

on K \ E.

To help the reader comprehend the statement of Theorem 5.10 we first present a specific

example which satisfies its geometrical assumptions.

Example 5.9. Denote by P
(
(a1, a2), (ρ1, ρ2)

)
the closed polydisc in C2 of center (a1, a2) and

polyradius (ρ1, ρ2), that is {(z1, z2) ∈ C2 : |z1 − a1| ≤ ρ1 and |z2 − a2| ≤ ρ2}. Set

• K1 = P
(
(35, 55), (25, 5)

)
,

• K2 = P
(
(17, 35), (7, 5)

)
,

• K3 = P
(
(35, 15), (15, 5)

)
,

• K4 = P
(
(80, 55), (10, 12)

)
,

and

K = K1 ∪K2 ∪K3 ∪K4.

Then

K1 = D(35, 25) ∪D(17, 7) ∪D(35, 15) ∪D(80, 10) = D(35, 25) ∪D(80, 10),

and

K2 = D(55, 5) ∪D(35, 5) ∪D(15, 5) ∪D(55, 12) = D(15, 5) ∪D(35, 15) ∪D(55, 12).

|z1|

|z2|

K1

K2

K3

K4

K1
L1

K2

L2

and we also consider L1 = {100} and L2 = {5i}.
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Theorem 5.10. Let {Kj}mj=1 be a finite pairwise disjoint family of products of planar compacta,

Kj =
∏
i∈I Kj,i, for a fixed set I. Let K = ∪mj=1Kj and Ki = ∪mj=1Kj,i. Assume that, for all

i ∈ I and all 1 ≤ j1, j2, j3 ≤ m, if Kj1,i ∩Kj2,i 6= ∅ and Kj2,i ∩Kj3,i 6= ∅ then Kj1,i ∩Kj3,i 6= ∅.
Assume also that, for each i ∈ I, there exists a set of points in C∪ {∞} , Li, with Ki ∩Li = ∅
for i ∈ I and such that each connected component of C \Kj,i and each connected component of

C \Ki contains at least one such number.

Then the following assertions are equivalent.

(a) R(K) = AD(K);

(b) RL(K) = AD(K);

(c) For each j = 1, . . . ,m, R(Kj) = AD(Kj) and χKj ∈ R(K);

(d) For each j = 1, . . . ,m, RL(Kj) = AD(Kj) and χKj ∈ R(K);

(e) For each j = 1, . . . ,m and each i ∈ I, R(Kj,i) = AD(Kj,i) and χKj ∈ R(K).

Proof. We begin by showing that (a) implies (b) and we prove first the case where I is a finite

set of d elements. Fix a function h ∈ AD(K) and a positive number ε. For each j = 1, . . . ,m,

since R(K) = AD(K) and the sets {Kj}mj=1 are pairwise disjoint, it is easy to see that R(Kj) =

AD(Kj) for j = 1, . . . ,m. By Corollary 5.5 if we consider the function h as a function defined

on Kj , there exists a function gj with

(5.1) ‖h− gj‖Kj ≤ ε/2

and gj can be written as a finite sum of finite products of rational functions of one variable

zi with poles in the set Li. Note that in particular the function gj is defined on K since

Ki ∩ Li = ∅. In fact, gj is bounded on K. Without loss of generality we can assume that

‖gj‖K 6= 0. For each i ∈ I and each j = 1, . . . ,m, define the set

Dj,i =
⋃

Kj,i∩Kk,i 6=∅

Kk,i.

Then, Dj,i and Ki \Dj,i are disjoint compact sets. Since Li contains at least one element in

each connected component of C \Ki and the function χDj,i can be extended holomorphically

on a neighborhood of Ki, as a consequence of Runge’s Theorem, we can find a rational function

rj,i of one complex variable with prescribed poles in the set Li such that

(5.2) ‖χDj,i − rj,i‖Ki ≤ ε̃,

where ε̃ is such that ε̃(1 + ε̃)d−1 ≤ ε

2m‖gj‖K
and (1 + ε̃)d − 1 ≤ ε

2m‖gj‖K
.

Consider the function rj(z1, . . . , zd) =
∏d
i=1 rj,i(zi). We have that Kα ∩ Kj = ∅ for each

α 6= j because the product sets K1, . . . ,Km are pairwise disjoint. In particular, since they are

product sets we have that there exists i0 depending on α and j so that Kα,i0 ∩Kj,i0 = ∅. Since

for any 1 ≤ j1, j2, j3 ≤ m if Kj1,i ∩ Kj2,i 6= ∅ and Kj2,i ∩ Kj3,i 6= ∅, then, Kj1,i ∩ Kj3,i 6= ∅,
we have that Kα,i0 ∩Dj,i0 = ∅. Thus, χDj,i0 = 0 on the set Kα,i0 and by (5.2) we obtain that

‖rj,i0‖Kα,i0 ≤ ε̃. Also, by (5.2) again, for any i 6= i0 and for every α = 1, . . . ,m we have that
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‖rj,i‖Kα,i ≤ 1 + ε̃. Hence, for any α 6= j,

‖χKj − rj‖Kα = ‖rj‖Kα = ‖
d∏
i=1

rj,i‖Kα ≤ ‖rj,1‖Kα,1 · · · ‖rj,d‖Kα,d ≤ ε̃(1 + ε̃)d−1 ≤ ε

2m‖gj‖K
.

Also, for i = 1, . . . , d and zi ∈ Kj,i ⊂ Dj,i, using (5.2) we get

|1− rj,i(zi)| = |χDj,i(zi)− rj,i(zi)| ≤ ‖χDj,i − rj,i‖Ki ≤ ε̃.

Hence, by Lemma 5.8 applied to the complex numbers rj,1(z1), . . . , rj,d(zd) we have that

|1−
d∏
i=1

rj,i(zi)| ≤ (1 + ε̃)d − 1

for all z1 ∈ Kj,1, . . . , zd ∈ Kj,d. Therefore,

‖χKj−rj‖Kj = ‖1−rj‖Kj = ‖1−
d∏
i=1

rj,i‖Kj = sup
zi∈Kj,i
i=1,...,d

|1−
d∏
i=1

rj,i(zi)| ≤ (1+ε̃)d−1 ≤ ε

2m‖gj‖K
.

Hence we have that

(5.3) ‖χKj − rj‖K ≤
ε

2m‖gj‖K
.

Now, consider the function

g =

m∑
j=1

rjgj .

Clearly g is a finite sum of finite products of rational functions of one variable zi with poles in

the set Li and

‖h− g‖K = ‖h−
m∑
j=1

rjgj‖K ≤ ε,

where the last inequality comes from the fact that for each s ∈ {1, . . . ,m}

‖h−
m∑
j=1

rjgj‖Ks ≤ ‖h− rsgs‖Ks + ‖
m∑
j=1
j 6=s

rjgj‖Ks

≤ ‖h− gs‖Ks + ‖gs − rsgs‖Ks +

m∑
j=1
j 6=s

‖rjgj‖Ks(5.4)

≤ ε

2
+

ε

2m‖gs‖K
‖gs‖Ks +

m∑
j=1
j 6=s

ε

2m‖gj‖K
‖gj‖Ks ≤ ε (by (5.1) and (5.3)).

Hence the proof for the case with I finite is complete.

Consider now the case where I is not (necessarily) finite. Since K is a finite union of product

sets, similarly to [2, Lemma 4.3], we have that the set of functions depending on a finite number

of variables is dense in AD(K). Therefore, for a fixed function h ∈ AD(K) and a positive number

ε we can find a function h̃ ∈ AD(K) that depends only on a finite number of variables z1, . . . , zd

with ‖h− h̃‖ ≤ ε/2. By the previous case, if we consider the function h̃ as a function defined on

a set K̃ = ∪mj=1

∏d
i=1Kj,i we have that there exists a function g defined on K̃ with g being a

finite sum of finite products of rational functions of one variable zi with poles in the set Li and
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‖h̃−g‖K̃ ≤ ε/2. By considering g as a function defined on K we have that ‖h−g‖K ≤ ε. Hence

(a) implies (b). The reverse implication is obvious by considering the common denominator of

the finite sum of finite products of rational functions depending on one variable. Hence (a) and

(b) are equivalent.

Statements (c), (d) and (e) are equivalent by Corollary 5.5. It is easy to see that (a) implies

(c) because the sets {Kj}mj=1 are pairwise disjoint. Indeed, since AD(K) = R(K) implies that

AD(Kj) = R(Kj) for all j = 1, . . . ,m and since χKj ∈ AD(K) = R(K) the conclusion holds.

To finish the proof we show that (e) implies (a). Let us fix h ∈ AD(K) and a positive number

ε. For each j = 1, . . . ,m, we consider hj to be the restriction of h to Kj . Clearly hj ∈ AD(Kj).

By Corollary 5.5 we can find a function gj with ‖hj−gj‖Kj ≤ ε/2 and gj is a finite sum of finite

products of rational functions of one variable zi with poles in the set Li. Since Ki ∩ Li = ∅
for all i ∈ I, the function gj is bounded on K. Using that χKj ∈ R(K) we can find a rational

function rj with singularities off K such that ‖gj − rjgj‖Kj ≤ ε/(2m) and ‖rjgj‖Ks ≤ ε/(2m)

for j 6= s. The function

q =

m∑
s=1

rsgs

is a rational function with singularities off K. The same argument as in equation (5.4) yields

‖h− q‖K ≤ ε. This completes the proof. �

Remark 5.11. Senechkin showed that in the previous theorem the family {Kj}mj=1 needs to be

finite. See [17] for the details.

To conclude we show that if K is rationally convex then the hypothesis in Theorem 5.10 (c),

(d), (e) that χKj ∈ R(K) is satisfied. Denote by K∧r the rationally convex hull of a compact

set K ⊂ Cd, that is the set of points z ∈ Cd such that

|g(z)| ≤ max
x∈K
|g(x)|

for every rational function g which is holomorphic on a neighbourhood of K. We recall that

K is rationally convex if K = K∧r . If K is rationally convex then every holomorphic function

on (a neighborhood of) K can be uniformly approximated by rational functions p/q where q is

zero-free on K, by the Oka-Weil approximation theorem, see [6, Page 95] for the details.

It can be seen that the rationally convex hull of a product set is the product of the rationally

convex hulls of the factors. It follows that if Ki ⊂ Cni , i = 1, . . . , d, then( d∏
i=1

Ki

)∧r
=

d∏
i=1

K∧ri .

In particular, a finite product of planar compact sets is always rationally convex.

The condition of being rationally convex is not necessary to obtain rational approximation.

The sphere is not rationally convex, while every holomorphic function on the sphere can be

uniformly approximated by polynomials. However, as we shall show now, rational convexity is

also a sufficient condition to ensure that Theorem 5.10 holds.
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Corollary 5.12. Let I = {1, . . . , N} be a finite set, Li, i ∈ I, subsets of C∪{∞}) and {Kj}mj=1

a finite pairwise disjoint family of products of planar compacta satisfying the hypotheses of

Theorem 5.10. Then, if Kj,i is a set of rational approximation for each j = 1, . . . ,m and each

i ∈ I and K is rationally convex, we have that finite sums of finite products of rational functions

of one variable zi with poles in the set Li are uniformly dense in AD(K). In particular rational

functions are dense in AD(K).

Proof. We shall prove that under the hypothesis of the corollary, condition (e) in Theorem 5.10

is satisfied. This would finish the proof since conditions (e) and (b) are equivalent in view of

Theorem 5.10.

Kj,i is a set of rational approximation for each j = 1, . . . ,m and each i ∈ I which means

that R(Kj,i) = AD(Kj,i). Also, the sets {Kj}∞j=1 are pairwise disjoint and compact, hence

the function χKj can be naturally extended to be holomorphic on a neighborhood of the set

K. Since K is a rationally convex set, by the rational Oka-Weil theorem we can approximate

χKj by rational functions having no singularities on K. Therefore χKj ∈ R(K). Thus, the

requirements of condition (e) in Theorem 5.10 are fulfilled and the result holds. �

Remark 5.13. It is not in general true that if we have finitely many products with AD(Kj) =

P (Kj) then AD(∪mj=1Kj) = P (∪mj=1Kj). Kallin [10] showed that there exist three congruent,

pairwise disjoint, closed polydiscs P1, P2 and P3 in C3 such that P1∪P2∪P3 is not polynomially

convex. Kallin’s proof actually used polydiscs parallel to the coordinate axes.

6. Appendix: All inclusions are in general strict

We recall that

P (K) ⊂
(1)

R(K) ⊂
(2)

O(K) ⊂
(3)

AD(K) ⊂
(4)

A(K) ⊂
(5)

C(K).

All these inclusions are in general strict. We shall focus on dimension d = 3. For (1) we

consider T× {0} × {0} where T is the unit circle in C. For (2) we shall give an example in C3

(see Example 6.1). For (3) we may consider S × {0} × {0} where S is the Swiss cheese in C.

Finally, for (4) we consider D× {0} × {0} where D is the closed unit disc in C and argue as in

Example 3.2. For (5) we take the closed unit ball in C3.

It only remains to give an example for (2). For this we shall use maximal ideal spaces, see

[6]. If F is a function algebra on a compact subset K ⊂ Cn, denote by M(F) the maximal

ideal space of F . Recall that, if F = C(K), then M(F) = K; if F = P (K), then M(F) is the

polynomial hull K̂, and; if F = R(K), then M(F) is the rational hull K∧r .

Hence

K̂ =M(P (K)) ⊃ K∧r =M(R(K)) ⊃M(O(K)) ⊃M(AD(K)) ⊃M(A(K)) ⊃M(C(K)) = K.

An immediate consequence is that if C(K) = P (K), then we have equalities for all of above

inclusions and hence K is polynomially convex. Moreover, if K is not rationally convex, then

C(K) 6= R(K).
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Example 6.1. We consider K to be a totally real compact manifold in C3 that is not rationally

convex. For the existence of such a K see [1]. In [9, Corollary 3.4] it is shown that if K is a

closed totally real C1-submanifold of an open set in C3, then O(K) = C(K). Since K is not

rationally convex we have that R(K) is a proper subset of C(K). Therefore,

O(K) = C(K) 6= R(K).

We note that the previous example leads to an example of an open set V ⊂ C3 such that

R(V ) 6= O(V ).

Remark 6.2. By considering the union of suitable translations of the above sets we can obtain

a compact set K in C3 such that inclusions (1) to (5) are strict simultaneously.
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