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Central de Venezuela, Escuela de Matemáticas, Paseo Los Illustres, Caracas 1020 A, Venezuela



Table of Contents

Preface 3

Chapter 1: BV Spaces 6

1.1. Functions of bounded Jordan variation

1.2. Functions of bounded Wiener variation

1.3. Functions of bounded Riesz variation

1.4. Functions of bounded Waterman variation

Chapter 2: Linear Operators in BV Spaces 26

2.1. Substitution operators

2.2. Multiplication operators

2.3. Integral operators

2.4. Singular operators

Chapter 3: Nonlinear Operators in BV Spaces 42

3.1. Composition operators

3.2. Superposition operators

3.3. Continuity properties

3.4. Operators in other spaces

Chapter 4: Applications to Integral Equations 61

4.1. Hammerstein integral equations

4.2. Hammerstein-Volterra integral equations

4.3. Solvability in generalized BV spaces

4.4. Structure of the solution set

References 81



Preface

Variatio delectat (Cicero)

This survey addresses to the working mathematician who wants to get an idea of the theory and
applications of functions of bounded variation without getting drowned too much into technicalities.
As the title suggests, the scope is more application-oriented, so the central part is Chapter 4 on
existence (and in part uniqueness) results for nonlinear integral equations of Hammerstein type. Since
such equations are intimately related to boundary value problems, our results may simultaneously
serve as source of existence (and in part uniqueness) results for nonlinear differential equations,
subject to various types of boundary conditions.

Since we put the main emphasis on Chapter 4, we will give complete proofs in that chapter. In the
previous three chapters we will provide the necessary theoretical background. However, as we are not
primarily interested in the theory, no proofs will be given in Chapters 1-3 for results published in
easily accessible journals. The only exception are very recent results, mostly obtained by the authors
themselves, which have not been published yet.

The plan of this survey is as follows. In Chapter 1 we collect the basic properties of various spaces
of functions of bounded variation, not only in the sense of the classical Jordan variation, but also
for the more general Wiener variation, Riesz variation, and Waterman variation. Given a partition
P = {t0, t1, . . . , tm−1, tm} (m ∈ N variable) of [0, 1], we consider expressions of the form

•
m∑
j=1

|x(tj) − x(tj−1)| in case of the Jordan variation (Section 1.1),

•
m∑
j=1

|x(tj) − x(tj−1)|p in case of the Wiener variation (Section 1.2),

•
m∑
j=1

|x(tj) − x(tj−1)|p

|tj − tj−1|p−1
in case of the Riesz variation (Section 1.3), and

•
∞∑
n=1

λn|x(bn) − x(an)| in case of the Waterman variation (Section 1.4).

Here the precise requirements on p, λn, an and bn will be specified later. In the first chapter we
will discuss, for each of these variations, the algebraic and analytical properties of the corresponding
function spaces BV , WBVp, RBVp, and ΛBV , with a particular emphasis on those properties which
will be important in subsequent chapters.

Chapter 2 is concerned with some classes of linear operators (multiplication, substitution, and integral
operators) in such spaces. More precisely, for a given function φ : [0, 1] → [0, 1], by Σφ we denote the
substitution operator defined by

(1) Σφ(x)(t) := x(φ(t)),

while for a given function µ : [0, 1] → R, by Mµ we consider the multiplication operator defined by

(2) Mµ(x)(t) := µ(t)x(t).
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If X is a function space over [0, 1], the first problem consists in characterizing all φ : [0, 1] → [0, 1]
such that Σφ(X) ⊆ X, and all µ : [0, 1] → R such that Mµ(X) ⊆ X. For some spaces X this is easy,
for others highly nontrivial.

The definition of integral operators is standard. Given a function k : [0, 1] × [0, 1] → R, by K we
denote by

(3) K(x)(t) :=
∫ 1

0
k(t, s)x(s) ds

the integral operator defined by k. As before, we are interested in conditions on k, possibly both
necessary and sufficient, under which K maps a certain function space X into itself.

All operators studied in Chapter 2 are linear. In Chapter 3 we discuss two classes of nonlinear
operators, namely composition and superposition operators. The composition operator Cf generated
by some function f : R → R acting on functions x : [0, 1] → R is defined by

(4) Cf (x)(t) := f(x(t)) (0 ≤ t ≤ 1).

More generally, the superposition operator Sf generated by some function f : [0, 1] × R → R acting
on functions x : [0, 1] → R is defined by

(5) Sf (x)(t) := f(t, x(t)) (0 ≤ t ≤ 1).

In spite of their simple form, the operators (4) and (5) exhibit a strange and unexpected behaviour
even in such simple spaces like those introduced in the first chapter. For instance, while we obtain
boundedness of the operator (4) as a “fringe benefit” whenever it maps BV , WBVp, RBVp, or ΛBV
into itself, to find criteria for its continuity is a very hard problem which remained open for many
years. We will collect the most important results and illustrate them by several examples which are
scattered over a vast literature.

Finally, the theoretical results of the second and third chapter are applied in Chapter 4, as mentio-
ned above, to several nonlinear integral equations involving Hammerstein and Hammerstein-Volterra
operators. A Hammerstein equation has the form

(6) x(t) = g(t) + λ
∫ 1

0
k(t, s)f(x(s)) ds (0 ≤ t ≤ 1),

with λ ∈ R, where g : [0, 1] → R, k : [0, 1] × [0, 1] → R and f : R → R are given functions, and the
function x : [0, 1] → R is unknown. Using the operators (3) and (4), we may rewrite (6) as operator
equation

(7) x = g + λK(Cf (x)),

and the structure of (7) suggests to apply fixed point principles. More generally, the Hammerstein
equation

(8) x(t) = g(t) + λ
∫ 1

0
k(t, s)f(s, x(s)) ds (0 ≤ t ≤ 1),

where now f : [0, 1] × R → R depends also on s, leads to the fixed point equation

(9) x = g + λK(Sf (x))

involving the superposition operator (5). Occasionally we will also consider Hammerstein-Volterra
equations, where the upper integration limit 1 in (6) and (8) is replaced by the variable limit t.

It is well known that Hammerstein equations naturally occur in the study of boundary value problems,
while Hammerstein-Volterra equations naturally occur in the study of initial value problems. So
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every existence (and uniqueness) result we obtain for the operator equations (7) and (9) leads to a
corresponding existence (and uniqueness) result for boundary value or initial value problems. Such
problems will be studied in a forthcoming paper.

This survey is the outcome of several meetings and fruitful discussions of the authors. Our profound
gratitude goes to the Mathematical Research Institute in Oberwolfach, Germany, where the authors
from Poland and Germany spent a couple of weeks in the framework of the “Research in Pairs”
Programme and enjoyed the unique spirit, excellent working facilities, and overwhelming hospitality
of Oberwolfach. The fifth author (S.R.) gratefully acknowledges repeated hospitality of the Adam
Mickiewicz University of Poznań, Poland, while the first author (J.A.) in addition acknowledges hos-
pitality of the Central University of Venezuela in Caracas. Finally, we are indebted to the Oberwolfach
Institute for the opportunity to publish this survey in the MFO Preprint Series.

We do hope that readers who are not experts in the theory and applications of functions of bounded
variation but want to get an idea of the developments in the last decades, as well as a glimpse of the
diversity in which current research is moving, will find this survey both readable and stimulating.

Caracas, Poznań, Würzburg, January 2019

The authors
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Chapter 1. BV Spaces

In this chapter we are going to collect all notions and facts on BV type spaces we need in the sequel.
Without loss of generality, we will restrict ourselves to functions x : [0, 1] → R; every result easily
carries over to functions on [a, b] through the linear isomorphisms t 7→ a + (b − a)t which respects,
up to a constant, the finiteness of every variation we are going to define.

We will basically be working in the setting of four types of variation. Given a partition P =
{t0, t1, . . . , tm−1, tm} (m ∈ N variable), such that

(1.0.1) 0 = t0 < t1 < . . . < tm−1 < tm = 1,

we consider expressions of the form

•
m∑
j=1

|x(tj) − x(tj−1)| in case of the Jordan variation (Section 1.1),

•
m∑
j=1

|x(tj) − x(tj−1)|p in case of the Wiener variation (Section 1.2),

•
m∑
j=1

|x(tj) − x(tj−1)|p

|tj − tj−1|p−1
in case of the Riesz variation (Section 1.3), and

•
∞∑
n=1

λn|x(bn) − x(an)| in case of the Waterman variation (Section 1.4).

Here the precise requirements on p, λn, an and bn will be specified later. In this chapter we will
discuss, for each of these variations, the algebraic and analytical properties of the correspponding
spaces of functions of bounded variation, with a particular emphasis on those properties which will
be important in subsequent chapters. The proofs of all statements given in this chapter, together
with many more examples and remarks, may be found in the book [ABM].

1.1. Functions of bounded Jordan variation. Before giving the definition of the classical space
of functions of bounded variation, we recall the definition of several spaces of continuous functions
for further use. Since we always consider functions over the interval [0, 1], we drop this interval in
any notation, i.e., we simply write X instead of X[0, 1] for a function space X.

By C we denote the linear spaces of all continuous functions x : [0, 1] → R, equipped with the usual
norm

(1.1.1) ∥x∥C := max {|x(t)| : 0 ≤ t ≤ 1},

and by C1 the linear subspaces of all continuously differentiable functions x : [0, 1] → R, equipped
with either the norm

∥x∥C1 := |x(0)| + ∥x′∥C
or the (equivalent) norm

|||x|||C1 := ∥x∥C + ∥x′∥C .

Moreover, we will sometimes need some intermediate spaces between C1 and C. Recall that a function
x : [0, 1] → R is called Lipschitz continuous if there exists a constant L > 0 such that

(1.1.2) |x(s) − x(t)| ≤ L|s− t| (0 ≤ s, t ≤ 0).

6



More generally, x is called Hölder continuous (or γ-Lipschitz continuous for 0 < γ ≤ 1) if there exists
a constant L > 0 such that

(1.1.3) |x(s) − x(t)| ≤ L|s− t|γ (0 ≤ s, t ≤ 1).

We denote the set of all Lipschitz continuous functions on [0, 1] by Lip, and the set of all γ-Lipschitz
continuous functions on [0, 1] by Lipγ. Writing

lip(x) = lip(x; [0, 1]) := sup
s ̸=t

|x(s) − x(t)|
|s− t|

for the minimal Lipschitz constant L in (1.1.2) and, for 0 < γ ≤ 1,

lipγ(x) = lipγ(x; [0, 1]) := sup
s̸=t

|x(s) − x(t)|
|s− t|γ

for the minimal Hölder constant L in (1.1.3), one may show that the spaces Lip = Lip1 and Lipγ,
equipped with the norms

∥x∥Lip := |x(0)| + lip(x),

and
∥x∥Lipγ := |x(0)| + lipγ(x),

respectively, are Banach spaces. The inclusions

(1.1.4) C1 ⊆ Lip ⊆ Lipα ⊆ Lipβ ⊆ C (α ≥ β)

show that Lipschitz and Hölder continuity is situated “between” continuity and continuous differen-
tiability, and the space Lipγ becomes smaller if γ increases. In particular, the function xτ (t) := tτ

belongs to Lipτ \ Lip for 0 < τ < 1. All inclusions in (1.1.4) are continuous imbeddings which are
strict for 0 < β < α < 1. The last imbedding in (1.1.4) is even compact for β > 0, since a bounded
set in Lipβ is clearly equicontinuous.

Now we define and study two parameter-dependent families of functions which will be quite helpful
in what follows to illustrate our abstract results and to construct examples.

Definition 1.1.1. Given (α, β) ∈ R2 \ {(0, 0)}, consider the function ωα,β : [0, 1] → R defined by

(1.1.5) ωα,β(t) :=

 tα sin tβ for 0 < t ≤ 1,

0 for t = 0.

We will call (1.1.5) the oscillation function associated to the pair (α, β) ∈ R2 in what follows. 2

Of course, the function (1.1.5) is “oscillatory” only for β < 0; however, we keep this name for all
values of α and β. It is instructive to determine all values of (α, β) ∈ R2 for which ωα,β belongs to a
certain function space. To begin, we do this for the spaces occurring in the chain of inclusions (1.1.4).

Proposition 1.1.2. For α, β ∈ R, let ωα,β be defined by (1.1.5). Then the following holds.

(a) ωα,β ∈ C if and only if α > 0 and β is arbitrary, or α ≤ 0 and β > −α.
(b) ωα,β ∈ Lip if and only if α is arbitrary and β ≥ 1 − α.

(c) ωα,β ∈ Lipγ if and only if α is arbitrary and β ≥ 1 − α/γ.

(d) ωα,β ∈ C1 if and only if α is arbitrary and β > 1 − α.

The proof of Proposition 1.1.2 is straightforward and may be found in [A]. The oscillatory functions
(1.1.5) may be used to show that all inclusions in (1.1.4) are strict. For instance, ω−1,β ∈ C \ Lipγ
for 1 < β < 1 + 1/γ, ω−1,β ∈ Lipγ \ Lip for β = 1 + 1/γ, and ω−1,β ∈ Lip \ C1 for β = 2.
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The second useful family of functions is constructed over the interval [0, 1] as follows.

Definition 1.1.3. Given θ > 0, let

(1.1.6) cn := 2−n, dn := n−θ,

and define ζθ : [0, 1] → R by ζθ(0) := 0 and

(1.1.7) ζθ(t) :=


n∑

k=1

(−1)k+1dk = 1 − 1

2θ
+

1

3θ
− + . . .+

(−1)n+1

nθ
for t = 1 − cn =

2n − 1

2n
,

linear otherwise.

Geometrically, ζθ increases linearly by d1 on the interval [0, c1] so that ζθ(c1) = d1. Afterwards ζθ
decreases linearly by d2 on [c1, c1 + c2], increases linearly by d3 on [c1 + c2, c1 + c2 + c3], decreases
linearly by d4 on [c1 + c2 + c3, c1 + c2 + c3 + c4], and so on. For this reason we call (1.1.7) a zigzag
function of order θ. 2

It follows from the construction and continuity of the zigzag function ζθ that

ζθ(1) =
∞∑
k=1

(−1)k+1

kθ
<∞

for all θ > 0. Again, it is illuminating to determine all values of θ > 0 for which the zigzag func-
tion (1.1.7) belongs to the function classes introduced so far. Of course, the function ζθ is always
continuous, by construction, but not differentiable at its peaks. So it is only interesting to find all
θ > 0 for which ζθ is Hölder (in particular, Lipschitz) continuous. Choosing cn and dn as in (1.1.6)
we obtain

sup {dnc−γ
n : n = 1, 2, 3, . . .} = sup {n−θ2nγ : n = 1, 2, 3, . . .} = ∞,

since the exponential term 2nγ grows essentially faster than the power type term nθ. So we get the
somewhat disappointing result that, loosely speaking, the zigzag function ζθ does not “feel” the
dependence on θ, as the oscillation function ωα,β feels the dependence on α and β. We summarize
with the following

Proposition 1.1.4. The zigzag function (1.1.7) belongs to C for all values of θ > 0, but does not
belong to Lipγ for any γ ∈ (0, 1].

The oscillation function (1.1.5) and the zigzag function (1.1.7) are useful for constructing counter-
examples. For further reference, we collect in the following Table 1.1 the values of α, β, and θ,
respectively, for which these functions belong to the function spaces occurring in (1.1.4).

The function ωα,β The function ζθ

belongs to C if and only if α > 0 or always

α ≤ 0 and α + β > 0

belongs to C1 if and only if α + β > 1 never

belongs to Lip if and only if α + β ≥ 1 never

belongs to Lipγ if and only if α + βγ ≥ γ never

Table 1.1: Oscillation functions and zigzag functions
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An essential extension of this table will be given in Table 1.3 at the end of this chapter.

Let us now recall the definition of the classical space BV which, as far as we know, goes back to
Camille Jordan [J] and is our main object of attention in this survey. Throughout the following, we
denote by P the family of all partitions of the interval [0, 1], i.e., all finite sets P = {t0, t1, . . . , tm−1, tm}
(m ∈ N variable) satisfying (1.0.1).

Definition 1.1.5. Given a partition P = {t0, t1, . . . , tm} ∈ P and a function x : [0, 1] → R, the
nonnegative real number

(1.1.8) V ar(x, P ) = V ar(x, P ; [0, 1]) :=
m∑
j=1

|x(tj) − x(tj−1)|

is called the variation (or Jordan variation) of x on [0, 1] with respect to P . Moreover, the (possibly
infinite) number

(1.1.9) V ar(x) = V ar(x; [0, 1]) := sup {V ar(x, P ; [0, 1]) : P ∈ P} ,

where the supremum is taken over all partitions of [0, 1], is called the total (Jordan) variation of x on
[0, 1]. In case V ar(x) < ∞ we say that x is a function of bounded variation (or function of bounded
Jordan variation) on [0, 1] and write x ∈ BV . 2

For further use we collect in the following proposition some important properties of the quantities
(1.1.8) and (1.1.9).

Proposition 1.1.6. The quantities (1.1.8) and (1.1.9) have the following properties.

(a) The variation (1.1.9) is subadditive, i.e.,

V ar(x+ y) ≤ V ar(x) + V ar(y)

for x, y : [0, 1] → R.
(b) The variation (1.1.9) is homogeneous, i.e.,

V ar(µx) = |µ|V ar(x)

for µ ∈ R.
(c) The estimate

(1.1.10) |x(s) − x(t)| ≤ V ar(x; [s, t])

holds for 0 ≤ s < t ≤ 1.

(d) Every function x ∈ BV is bounded with

∥x∥∞ ≤ |x(0)| + V ar(x),

where

(1.1.11) ∥x∥∞ := sup {|x(t)| : 0 ≤ t ≤ 1}.

(e) From x ∈ BV it follows that |x| ∈ BV with

(1.1.12) V ar(|x|) ≤ V ar(x).

(f) The variation (1.1.8) is monotone with respect to partitions, i.e.,

V ar(x, P ) ≤ V ar(x,Q)

for P,Q ∈ P with P ⊆ Q.
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We make some comments on Proposition 1.1.6. The simple example of the Dirichlet type function
x = χ[0,1]∩Q − χ[0,1]\Q shows that the converse of (e) is not true in general. One can prove, however,
that the converse is true under an additional hypothesis: if |x| ∈ BV and x has the intermediate
value property (which means that [f(a), f(b)] ⊆ f([a, b]) for each subinterval [a, b] ⊆ [0, 1]), then
x ∈ BV .

Proposition 1.1.6 (a) and (b) show that BV is a linear space. It is easy to see that x ∈ BV with
x(t) ̸= 0 in general does not imply that 1/x ∈ BV . For example, if

x(t) :=

 1 for t = 0,

t for 0 < t ≤ 1,

it is clear that x ∈ BV , but 1/x ̸∈ BV , since 1/x is unbounded on [0, 1]. If we replace the condition
x(t) ̸= 0 by the stronger condition |x(t)| ≥ δ for some δ > 0, however, then 1/x ∈ BV with

(1.1.13) V ar(1/x) ≤ 1

δ2
V ar(x).

This fact is useful for studying multiplication operators in BV and related spaces, see Section 2.2.

Equipped with the norm

(1.1.14) ∥x∥BV := |x(0)| + V ar(x) (x ∈ BV ),

the linear space BV is a Banach space which is continuously imbedded into the space B = B[0, 1] of
all bounded functions on [0, 1] with norm (1.1.11). Moreover, BV is an algebra with

V ar(xy) ≤ ∥x∥∞V ar(y) + ∥y∥∞V ar(x)

for all x, y ∈ BV . Even better, we have

∥xy∥BV ≤ ∥x∥BV ∥y∥BV (x, y ∈ BV )

which means that BV is a normalized algebra.

Occasionally, we will also consider BV equipped with one of the norms

(1.1.15) |||x|||BV := ∥x∥∞ + V ar(x)

or

(1.1.16) |||x|||BV := ∥x∥L1 + V ar(x),

which are both equivalent to the norm (1.1.14) and so also turn BV into a Banach space.

Clearly, every monotone function x : [0, 1] → R belongs to BV with

V ar(x) = |x(1) − x(0)|.

This provides a link between monotone functions and functions of bounded variation. One could ask
if this could be in some sense inverted. However, this is very far from being true, because there exist
functions of bounded variation which are not monotone on any interval (see [ABM, Example 1.4]).

Now comes an important point. Although functions of bounded variation have no monotonicity
behavior at all, there is a natural interconnection between bounded variation and monotonicity
which is the statement of the classical Jordan decomposition theorem:

Theorem 1.1.7 [J]. A function x : [0, 1] → R has bounded variation if and only if it may be
represented in the form x = y − z, where both y and z are monotonically increasing functions.
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For the proof of Theorem 1.1.7 one takes as y the variation function Vx : [0, 1] → R of x defined by
Vx(t) := V ar(x; [0, t]), which is trivially increasing in t. The fact that also z := x − y is increasing
follows from the simple estimate

x(t) − x(s) ≤ V ar(x; [s, t]) = Vx(t) − Vx(s) = y(t) − y(s),

which holds by (1.1.10) and the additivity of the variation with respect to intervals. In what follows,
we will refer to the representation x = y−z constructed in Theorem 1.1.7 as the Jordan decomposition
of x ∈ BV .

Obviously, the monotone functions on [0, 1] do not form a linear space, as may easily be seen by
considering x(t) = t2 and y(t) = 1 − t. Proposition 1.1.6 (a) and Theorem 1.1.7 show that BV is
the linear hull (or span) of the monotone functions, i.e., the smallest linear space which contains all
monotone functions. This is another way of introducing functions of bounded variation.

Theorem 1.1.7 explains why many “nice” properties of monotone functions carry over to functions
of bounded variation. In particular, a function x ∈ BV has at most countably many points of
discontinuity in [0, 1], all being of first kind (jumps) or removable. Bounded functions which do not
have discontinuities of second kind are usually called regular; so we have the inclusions

(1.1.17) BV ⊆ R ⊆ B,

where R = R[0, 1] denotes the linear space of all regular functions x : [0, 1] → R. These inclusions
show that, roughly speaking, functions of bounded variation are not “too discontinuous”. On the
other hand, the following well known example from every first-year calculus course shows that a
continuous function need not have bounded variation.

Example 1.1.8. Consider the oscillation function ω1,−1 : [0, 1] → R from (1.1.5), i.e.,

ω1,−1(t) =

 t sin
1

t
for 0 < t ≤ 1,

0 for t = 0.

By Proposition 1.1.2 (a), ω1,−1 is continuous on [0, 1]. However, by choosing partitions of alternating
maxima and minima one may easily show that the variation of ω1,−1 is unbounded. 2

Note that, if we interchange the role of the amplitude and the frequency in Example 1.1.8, which
means that we consider the function

ω−1,1(t) =


1

t
sin t for 0 < t ≤ 1,

0 for t = 0,

we get a discontinuous function with bounded variation. The fact that ω1,−1 ̸∈ BV , but ω−1,1 ∈ BV
follows from the following general

Proposition 1.1.9. The oscillation function (1.1.5) with α ∈ R arbitrary, belongs to BV if and only
if β ≥ 0 and α + β ≥ 0, or β < 0 and α + β > 0.

A parallel result for zigzag functions reads as follows. Since

(1.1.18) V ar(ζθ) =
∞∑
k=1

1

kθ
,

the zigzag function (1.1.7) belongs to BV if and only if θ > 1. So the function ζθ may serve, for every
θ ∈ (0, 1], as another example of a continuous functions with unbounded variation.

A comparison between Proposition 1.1.2 (a) and Proposition 1.1.9 shows that the set of admissible
pairs (α, β) for BV is contained in the corresponding set for C, although a function of bounded

11



variation need of course not be continuous. This is a consequence of the fact that all oscillation
functions ωα,β ∈ BV have the intermediate value property. In general, every function x ∈ BV which
has the intermediate value property is continuous. In fact, having bounded variation, we know that
all discontinuities of x, if there are any, are jumps. On the other hand, jumps are excluded by the
intermediate value property, and so the claim follows.

Conversely, it is also interesting to study subclasses of C which are contained in BV . The most
important such subclass is given in the following

Definition 1.1.10. A function x is called absolutely continuous on [0, 1] if for each ε > 0 there exists
some δ > 0 such that, given a collection of non-overlapping subintervals [a1, b1], [a2, b2], . . . , [ak, bk] of
[0, 1] satisfying

k∑
j=1

(bj − aj) ≤ δ,

we have
k∑

j=1

|x(bj) − x(aj)| ≤ ε.

As usual, we denote the set of all absolutely continuous functions on [0, 1] by AC. 2

Of course, absolute continuity implies continuity. We point out that it is important to choose only
mutually non-overlapping subintervals [aj, bj] ⊆ [0, 1] in Definition 1.1.10. If we drop this assumption,
we end up with the essentially smaller class of Lipschitz continuous functions.

As for the class BV , from x, y ∈ AC and µ ∈ R it follows that |f |, f + g, µf and fg also belong
to AC. Moreover, in contrast to the class BV here it suffices to require x(t) ̸= 0 to guarantee that
1/x ∈ AC, since a continuous function which is nonzero on a compact interval is bounded away from
zero.

The relation of AC with the previously defined function classes is given by the chain of inclusions

(1.1.19) Lip ⊆ AC ⊆ C ∩BV ⊆ BV.

In the following Example 1.1.11 we show that all inclusions in (1.1.19) are strict.

Example 1.1.11. The function x(t) :=
√
t is absolutely continuous, but not Lipschitz continuous on

[0, 1]. The well known Cantor function is continuous on [0, 1] and, being monotonically increasing,
has also bounded variation, but is not absolutely continuous. Finding a discontinuous function of
bounded variation is trivial. 2

Absolutely continuous functions are important in two aspects: first, they may be precisely characte-
rized by three different properties and, second, they are precisely primitives of L1-functions. This is
the contents of the following theorem.

Theorem 1.1.12. (a) A function x is absolutely continuous if and and only if x is continuous,
belongs to BV , and has the Luzin property, i.e., maps nullsets into nullsets.

(b) A function x is absolutely continuous on [0, 1] if and and only if it may be represented in the
form

x(t) = x(0) +
∫ t

0
y(s) ds (0 ≤ t ≤ 1),

for some function y ∈ L1; here y(t) = x′(t) a.e. on [0, 1].

Theorem 1.1.12 (a) explains why we have chosen the Cantor function as an example of a function in
(C ∩ BV ) \ AC in Example 1.1.11: it is well-known that this function maps the Cantor nullset into
a set of positive Lebesgue measure, so it fails to have the Luzin property.

12



Theorem 1.1.12 (b) suggests to consider the norm

(1.1.20) ∥x∥AC := |x(0)| + ∥x′∥L1 (x ∈ AC)

on AC; equipped with this norm, AC becomes a Banach space. We will come back to the space AC
when we discuss functions of bounded Riesz variation in Section 1.3.

In view of the inclusion Lip ⊆ BV one could ask if the space BV also contains the larger Hölder
space Lipγ for some γ < 1. This is not true, because one can construct, for fixed γ ∈ (0, 1), a function
x ∈ Lipγ \BV (see [ABM, Example 1.23]) and even a function

x ∈

 ∩
0<γ<1

Lipγ

 \BV

(see [ABM, Example 1.24]). On the other hand, the “dual” construction is also possible: the function

x(t) :=


1

log(2/t)
for 0 < t ≤ 1,

0 for t = 0

satisfies

x ∈ AC \

 ∪
0<γ<1

Lipγ

 .
So far we have studied algebraic properties of BV , as well as relations with other classes of function,
but not compositions of function. This will be done in great detail in Sections 2.1 and 3.1. We just
confine ourselves to an interesting characterization of BV functions which can be found in Federer’s
book [F].

Theorem 1.1.13. A function z : [0, 1] → R belongs to BV if and only if it may be represented as
composition z = y ◦ x, where x : [0, 1] → [0, 1] is increasing and y ∈ Lip with Lipschitz constant
L = 1.

The statement of Theorem 1.1.13 is somewhat surprising: although functions of bounded variation can
have infinitely many discontinuities, these discontinuities may be “smoothed out”, after a monotone
change of variables, by a nonexpansive map. A parallel result to Theorem 1.1.13 with y ∈ Lip replaced
by y ∈ Lipγ will be given in Theorem 1.2.4 in the next section.

Proposition 1.1.6 (d) shows that a sequence which converges in the BV -norm (1.1.14) is uniformly
convergent. The following theorem establishes an important relation between convergence in BV and
pointwise convergence.

Theorem 1.1.14. (a) Let (xn)n be a sequence in BV which converges pointwise on [0, 1] to some
function x. Then

V ar(x; [0, 1]) ≤ lim inf
n→∞

V ar(xn; [0, 1]).

Consequently, the pointwise limit of a sequence of functions with equibounded variations on the in-
terval [0, 1] is a function of bounded variation on [0, 1].

(b) Let (xn)n be a bounded sequence in BV with respect to the norm (1.1.14). Then (xn)n contains a
subsequence which converges pointwise on [0, 1] to some x ∈ BV .

Part (b) of Theorem 1.1.14 is known as Helly’s selection theorem in the literature. It may be considered
as analogue to the well-known Arzelà-Ascoli compactness criterion in the space C of continuous
functions.
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To conclude this section we consider a curious fact which shows that modifying the partitions in the
definition of BV may lead to unexpected phenomena. The usual space BV [0, 1] is defined by the con-
dition V ar(x; [0, 1]) <∞, see (1.1.9), where the supremum is taken over all partitions {t0, t1, . . . , tm}
of [0, 1] with

(1.1.20) 0 = t0 < t1 < . . . < tm−1 < tm = 1.

Instead, let us define a space SBV = SBV [0, 1] to consist of all functions x with the following
property: There exists M > 0 such that, for all collections t0, t1, . . . , tm of points tj ∈ [0, 1] which are
not necessarily ordered by (1.1.20), we have

(1.1.21)
m∑
j=1

|tj − tj−1| ≤ 1 ⇒
m∑
j=1

|x(tj) − x(tj−1)| ≤M,

and call the elements of SBV functions of superbounded variation. Clearly, SBV ⊆ BV . The following
example shows that the inclusion is strict.

Example 1.1.15. Let x(t) := χ[0,1/2)(t). Then x ∈ BV [0, 1] with V ar(x) = 1. However, x ̸∈
SBV [0, 1] which may be seen by considering the collection of points

t0 = 0, t1 =
1

2
, t2 =

1

2
− 1

4
, t3 =

1

2
, t4 =

1

2
− 1

8
, t5 =

1

2
, . . . t2k =

1

2
− 1

2(k + 2)
, t2k+1 =

1

2

for k sufficiently large. 2

The question arises to characterize the space SBV . A first conjecture could be that SBV = BV ∩C
or even SBV = BV ∩ AC. However, this is false; the next example shows even more.

Example 1.1.16. Let x(t) :=
√
t. Then x ∈ BV ∩ Lip1/2 ∩ AC with V ar(x) = 1. To show that

x ̸∈ SBV we use the fact that
∞∑
n=1

1

n
= ∞,

∞∑
n=1

1

n2
=
π2

6
.

Consider the collection of points

t1 = 0, t2 =
3

π2
, t3 = 0, t4 =

3

π2

1

4
, . . . , t2k−1 = 0, t2k =

3

π2

1

k2
.

Then
2k∑
j=2

|tj − tj−1| = 2
3

π2

2k∑
j=1

1

j2
≤ 6

π2

∞∑
n=1

1

n2
= 1.

Suppose that x ∈ SBV , and choose M > 0 according to (1.1.21). Since

2k∑
j=1

|x(tj) − x(tj−1)| = 2
2k∑
j=1

√
3

π

1

j
,

we get a contradiction for k sufficiently large. 2

The next theorem characterizes the class SBV . Since this result is new, we also sketch the proof.

Theorem 1.1.17. The equality SBV = Lip holds.

Proof. The inclusion Lip ⊆ SBV is trivial. So assume that x ∈ SBV , and fix two points a, b with
0 ≤ a < b ≤ 1. Let n = ent(1/(b− a)) denote the integer part of 1/(b− a); then

(1.1.22) 1 ≤ n ≤ 1

b− a
< n+ 1.
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Now we choose the partition

t0 := a, t1 := b, t2 := a, t3 := b, . . . ,

where we repeat a and b so often that the partition contains n+ 1 points. Then

n∑
j=1

|tj − tj−1| = n(b− a) ≤ 1,

by (1.1.22). So we find M > 0 according to (1.1.21) such that

n∑
j=1

|x(tj) − x(tj−1)| = n|x(b) − x(a)| ≤M.

This implies that

|x(b) − x(a)| ≤ M

n
=
M

n

n+ 1

n+ 1
≤M(b− a)

(
1 +

1

n

)
≤ 2M(b− a),

where we again used (1.1.22) for the second ≤-sign. Since a and b were arbitrary, we conclude that
x ∈ Lip with Lipschitz constant 2M . �

1.2. Functions of bounded Wiener variation. Now we consider a certain extension of the spaces
BV which was introduced in 1924 by Wiener [Wi].

Definition 1.2.1. Given a real number p ≥ 1, a partition P = {t0, t1, . . . , tm} ∈ P , and a function
x : [0, 1] → R, the nonnegative real number

(1.2.1) WV arp(x, P ) = WV arp(x, P ; [0, 1]) :=
m∑
j=1

|x(tj) − x(tj−1)|p

is called the Wiener variation of x on [0, 1] with respect to P , while the (possibly infinite) number

(1.2.2) WV arp(x) = WV arp(x; [0, 1]) := sup {WV arp(x, P ; [0, 1]) : P ∈ P} ,

where the supremum is taken over all partitions of [0, 1], is called the total Wiener variation of x
on [0, 1]. In case WV arp(x) < ∞ we say that x has finite Wiener variation (or finite p-variation in
Wiener’s sense) on [0, 1] and write x ∈ WBVp. 2

It is useful to complete this definition by defining WBV∞ to consist of all regular functions. In the
following Proposition 1.2.2 which to some extent is parallel to Proposition 1.1.6 we collect some
properties of the quantities (1.2.1) and (1.2.2).

Proposition 1.2.2. The quantities (1.2.1) and (1.2.2) have the following properties.

(a) The p-th root of the variation (1.2.2) is subadditive, i.e.,

WV arp(x+ y)1/p ≤ WV arp(x)1/p +WV arp(y)1/p

for x, y : [0, 1] → R.
(b) The p-th root of the variation (1.2.2) is homogeneous, i.e.,

WV arp(µx)1/p = |µ|WV arp(x)1/p

for µ ∈ R.
(c) The estimate

(1.2.3) |x(s) − x(t)| ≤WV arp(x; [s, t])1/p
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holds for 0 ≤ s < t ≤ 1.

(d) Every function x ∈ WBVp is bounded with

∥x∥∞ ≤ |x(0)| +WV arp(x)1/p,

where the norm ∥ · ∥∞ is given by (1.1.11).

(e) From x ∈ WBVp it follows that |x| ∈ WBVp with

WV arp(|x|) ≤ WV arp(x).

As before, it is not hard to show that the linear space WBVp equipped with the norm

(1.2.4) ∥x∥WBVp := |x(0)| +WV arp(x)1/p (x ∈ WBVp)

or the equivalent norm
|||x|||WBVp := ∥x∥∞ +WV arp(x)1/p

is a Banach algebra.

The reader may have noticed that we did not state an analogue to Proposition 1.1.6 (f) on the
monotonicity of variations with respect to partitions. The reason is that for p > 1 this does not hold:

Example 1.2.3. Consider the function x : [0, 1] → R defined by

x(t) =


0 for 0 ≤ t < 1/2,

1 for t = 1/2,

2 for 1/2 < t ≤ 1,

and consider the partitions P := {0, 1} and Q := {0, 1/2, 1} ⊃ P . An easy calculation shows then
that WV arp(x, P ) = 2p and WV arp(x,Q) = 2 < 2p for p > 1. 2

It follows immediately from the definition that WBV1 = BV . Moreover, it is easy to show that the
space WBVp is increasing with respect to p. So we have the chain of inclusions

(1.2.5) BV ⊆ WBVp ⊆ WBVq ⊆ R (1 ≤ p ≤ q).

Furthermore, the inclusion Lip ⊆ BV stated in (1.1.19) becomes here

(1.2.6) Lip1/p ⊆ WBVp.

This means that we have to replace Lipschitz continuous functions by Hölder continuous functions
when passing from Jordan variation to Wiener variation. Of course, increasing p in (1.2.6) makes
both spaces larger, which is reasonable.

Let us mention that the inclusion WBVp ⊆ WBVq in (1.2.5) is strict in case p < q. To show this,
we consider the zigzag function ζθ introduced in Definition 1.1.3. Taking into account increasing
partitions containing the peaks of ζθ one may show that

(1.2.7) WV arp(ζθ) =
∞∑
k=1

1

kpθ
(1 ≤ p <∞).

This simple observation allows us to show that WBVp ⊂ WBVq for p < q. For p ≥ 1, consider
the function ζ1/p. From (1.2.7) it follows then that ζ1/p ∈ WBVq, but ζ1/p ̸∈ WBVp for any q > p.
However, we can actually do better: the same function satisfies of course

ζ1/p ∈

∩
q>p

WBVq

 \WBVp.
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In particular, the zigzag function ζ1 belongs to WBVp for all values of p > 1, but not to BV .

We may use the zigzag function (1.1.7) as well to show that the inclusion (1.2.6) is strict. In fact,
choosing θ > 1/p arbitrary, by (1.2.7) we conclude that ζθ ∈ WBVp. On the other hand, we have
already seen in Proposition 1.1.4 that no zigzag function ζθ belongs to the Hölder space Lip1/p.

To conclude, we give a decomposition result for functions from WBVp which is parallel to Theorem
1.1.13 and shows again that one has to replace Lipschitz continuous functions by Hölder continuous
functions when passing from Jordan variation to Wiener variation.

Theorem 1.2.4. A function z : [0, 1] → R belongs to WBVp if and only if it may be represented
as composition z = y ◦ x, where x : [0, 1] → [0, 1] is increasing and y ∈ Lip1/p with Hölder constant
L = 1.

Of course, Theorem 1.1.13 is contained in Theorem 1.2.4 in the special case p = 1. Both theorems
are similar to the famous Sierpiński decomposition of regular functions [Si] which we recall for the
sake of completeness.

Theorem 1.2.5. A function z : [0, 1] → R belongs to R if and only if it may be represented as
composition z = y ◦ x, where x : [0, 1] → [0, 1] is strictly increasing and y ∈ C.

1.3. Functions of bounded Riesz variation. In this section we study yet another concept of
variation which goes back to Riesz [Ri,Ri1], depends on a parameter p ≥ 1, and also reduces to BV
for p = 1. Functions of bounded Riesz variation have particularly interesting applications, since they
are intimately related to Sobolev spaces, see Theorem 1.3.5 below.

Definition 1.3.1. Given a real number p ≥ 1, a partition P = {t0, t1, . . . , tm} ∈ P , and a function
x : [0, 1] → R, the nonnegative real number

(1.3.1) RV arp(x, P ) = RV arp(x, P ; [0, 1]) :=
m∑
j=1

|x(tj) − x(tj−1)|p

(tj − tj−1)p−1

is called the Riesz variation of x on [0, 1] with respect to P , while the (possibly infinite) number

(1.3.2) RV arp(x) = RV arp(x; [0, 1]) := sup {RV arp(x, P ; [0, 1]) : P ∈ P} ,

where the supremum is again taken over all partitions of [0, 1], is called the total Riesz variation of x
on [0, 1]. In case RV arp(x) < ∞ we say that x has bounded Riesz variation (or bounded p-variation
in Riesz’s sense) on [0, 1] and write x ∈ RBVp. 2

From Hölder’s inequality it follows that

RV arp(x) ≥ V ar(x)p,

which shows that the inclusion RBVp ⊆ BV holds. Moreover, one may prove, similarly as for BV
and WBVp, the following result for RBVp.

Proposition 1.3.2. The set RBVp, equipped with the norm

(1.3.3) ∥x∥RBVp := |x(0)| +RV arp(x)1/p (x ∈ RBVp)

is a Banach space which is, for p > 1, continuously imbedded into the space C with norm (1.1.1), as
well as into the space BV with norm (1.1.14). Moreover, RBVp is an algebra with

∥xy∥RBVp ≤ ∥x∥∞∥y∥RBVp + ∥y∥∞∥x∥RBVp

for all x, y ∈ RBVp.
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A comparison with Definition 1.2.1 shows that both spaces WBVp and RBVp reduce to BV for
p = 1. However, there are some essential differences. First, in contrast to the space BV (or the
spaces WBVp), all functions x ∈ RBVp are continuous in case p > 1. The question arises if the spaces
RBVp are connected to the space Lip (as BV ) or the spaces Lipγ (as WBVp). The following result is
parallel to the chain of inclusions (1.2.5); in particular, it shows that RBVp is intermediate between
Lip and AC. It also exhibits an important difference between Wiener and Riesz variation: while the
spaces WBVp are increasing with respect to p, the spaces RBVp are decreasing with respect to p.

Proposition 1.3.3. The inclusions

(1.3.4) Lip ⊆ RBVp ⊆ RBVq ⊆ AC ⊆ BV

hold for 1 < q ≤ p.

We illustrate (1.3.4) by means of the zigzag function (1.1.7).

Example 1.3.4. In the last section we have seen that ζθ ∈ WBVp if and only if

∞∑
k=1

1

kpθ
<∞,

i.e., precisely for pθ > 1. A similar computation shows that

(1.3.5) RV arp(ζθ) =
∞∑
k=1

2k(p−1)

kpθ
.

Since p ≥ 1, elementary convergence criteria show that ζθ ∈ RBVp if and only if p = 1 and θ > 1. So
zigzag functions only belong to BV , but not to RVp for any p > 1. 2

At this point let us collect some of the function classes considered so far, together with relations
between them, in the following Table 1.2, where 1 < p <∞.

Lip1/p ⊂ WBVp ⊃ BV

∪ ∪ ∪

Lip ⊂ RBVp ⊂ AC

Table 1.2: Relations between function classes

All inclusions in Table 1.2 are strict for 1 < p < ∞; we have shown this for Lip1/p ⊂ WBVp by ζθ
for θ > 1/p, for BV ⊂ WBVp by ζ1, and for AC ⊂ BV in Example 1.1.11. The function xτ (t) := tτ

belongs to RBVp \ Lip for 1 − 1/p < τ < 1, to AC \ RBVp for τ = 1 − 1/p, and to Lip1/p \ Lip for
τ = 1/p.

Since RBVp ⊆ AC for p > 1, see (1.3.4), one cannot expect that the space RBVp contains some
Hölder space Lipγ for a suitable choice of γ < 1. In fact, we remarked that there exist functions
which belong to each Hölder space Lipγ for γ < 1, but not to BV . Consequently, such a function
cannot belong to the smaller space RBVp for any p > 1.

A comparison of our results on the Wiener space WBVp and the Riesz space RBVp shows that these
spaces have quite different properties. Let us state them for further reference.

• The space RBVp is decreasing in p, while the space WBVp is increasing in p.

• The space RBVp is contained in C for p > 1, while the space WBVp contains discontinuous
functions.
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• The space RBVp is contained in BV , while the space WBVp contains functions of unbounded
Jordan variation.

• The space WBVp contains all Hölder continuous functions for γ ≤ 1/p, while the space RBVp
contains functions which are not Hölder continuous for any γ.

The next theorem which is due to Riesz [Ri,Ri1] gives a complete characterization of the elements of
RBVp in terms of their derivatives for p > 1. It shows that the space RBVp basically is the same as
the well-known Sobolev space W 1,p.

Theorem 1.3.5 [Ri,Ri1]. Let 1 < p <∞. Then a function x belongs to RBVp if and only if x ∈ AC
and x′ ∈ Lp. Moreover, in this case the equality

(1.3.6) RV arp(x) = ∥x′∥pLp
=
∫ 1

0
|x′(t)|p dt

holds, where RV arp(x) denotes the p-variation (1.3.2) of x in Riesz’s sense.

Clearly, Theorem 1.3.5 is not true for p = 1, since a function in RBV1 = BV is usually not continuous,
let alone absolutely continuous.

The equality (1.3.6) sometimes makes the calculation of the Riesz variation much easier. For example,
for calculating the Riesz variation of the simple function xτ (t) := tτ for 0 < τ < 1, we should fix a
partition P = {t0, t1, . . . , tm} ∈ P and then compute the sum

RV arp(xτ , P ) =
m∑
j=1

(tτj − tτj−1)
p

(tj − tj−1)p−1
,

which is somewhat cumbersome. On the other hand, with (1.3.6) we immediately get

RV arp(xτ ) =
∫ 1

0
|x′τ (t)|p dt = τ p

∫ 1

0
t(τ−1)p dt =

τ p

1 − p(1 − τ)

which shows that xτ ∈ RBVp if and only if τ > 1 − 1/p.

1.4. The Waterman variation. Now we are going to investigate the last of the 4 variations of this
chapter, which is somewhat different from the others. It is usually called Waterman variation (or
Λ-variation) and was introduced and studied in [Wt,Wt1,Wt2].

We denote by Σ = Σ[0, 1] the family of all infinite collections S = {[an, bn] : n ∈ N} of non-overlapping
intervals [an, bn] ⊂ [0, 1].

Definition 1.4.1. A Waterman sequence is a decreasing sequence Λ = (λn)n of positive real numbers
such that λn → 0 as n→ ∞ and

(1.4.1)
∞∑
n=1

λn = ∞.

Given a function x : [0, 1] → R, a set S ∈ Σ, and a Waterman sequence Λ = (λn)n, the positive real
number

(1.4.2) V arΛ(x, S) = V arΛ(x, S; [0, 1]) :=
∞∑
k=1

λk|x(bk) − x(ak)|

(which may be infinite) is called the Waterman variation of x on [0, 1] with respect to S, while the
(possibly infinite) number

(1.4.3) V arΛ(x) = V arΛ(x; [0, 1]) := sup {V arΛ(x, S; [0, 1]) : S ∈ Σ} ,
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where the supremum is taken over all collections S ∈ Σ, is called the total Waterman variation
of x on [0, 1]. In case VarΛ(x) < ∞ we say that x has bounded Waterman variation (or bounded
Λ-variation in Waterman’s sense) on [0, 1] and write x ∈ ΛBV . 2

The most natural example of a Waterman sequence is of course Λq := (n−q)n for 0 < q ≤ 1; in this
case we write ΛqBV instead of ΛBV . In particular, the elements of the space Λ1BV =: HBV are
called functions of bounded harmonic variation. Historically, they have been the starting point and
motivation for studying Waterman sequences and spaces.

If we drop the condition λn → 0 and take λn ≡ 1, the space ΛBV coincides with the classical space
BV . The equality (1.4.5) below shows that this is in a certain sense an “extremal” choice for Λ. We
also remark that ΛBV and BV coincide if and only if the sequence (λn)n is bounded away from zero.
This is the reason why we require λn → 0 as n→ ∞ in Definition 1.4.1.

We collect some properties of the Waterman variations (1.4.2) and (1.4.3) for further reference.

Proposition 1.4.2. The quantities (1.4.2) and (1.4.3) have the following properties.

(a) The variation (1.4.3) is subadditive, i.e.,

V arΛ(x+ y) ≤ V arΛ(x) + V arΛ(y)

for x, y : [0, 1] → R.
(b) The variation (1.4.3) is homogeneous, i.e.,

V arΛ(µx) = |µ|V arΛ(x)

for µ ∈ R.
(c) The variation (1.4.2) is monotone with respect to collections of subintervals, i.e.,

V arΛ(x, S) ≤ V arΛ(x, T )

for S, T ∈ Σ with S ⊆ T .

(d) If x ∈ BV , then x ∈ ΛBV for every Waterman sequence Λ.

(e) If x ∈ ΛBV , then x is bounded.

Properties (d) and (e) in Proposition 1.4.2 may be summarized as inclusions

(1.4.4) BV ⊆
∩
Λ

ΛBV,
∪
Λ

ΛBV ⊆ B,

where the intersection and union in (1.4.4) are taken over all Waterman sequences Λ. One may even
prove the much sharper result

(1.4.5)
∩
Λ

ΛBV = BV,
∪
Λ

ΛBV = R,

where R denotes the space of all regular functions.

Proposition 1.4.2 (a) and (b) show that the set ΛBV is a linear space; as before, one can show that,
equipped with the norm

(1.4.6) ∥x∥ΛBV := |x(0)| + V arΛ(x) (x ∈ ΛBV ),

ΛBV is a Banach space.

The next result states that, roughly speaking, every continuous function x : [0, 1] → R is contained
in some appropriate Waterman space ΛBV ; as Example 1.1.8 shows, this is not true for the classical
space BV . However, it is not true either that the whole space C is contained in every Waterman space
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ΛBV . That is, for every individual continuous function x we have to find an appropriate Waterman
sequence Λ such that x ∈ ΛBV ; this follows from the second equality in (1.4.5).

Proposition 1.4.3. The inclusion

(1.4.7) C ⊆
∪
Λ

ΛBV

holds, i.e., every function x ∈ C is contained in ΛBV for some suitable Waterman sequence Λ =
Λ(x).

The inclusion (1.4.7) complements in some sense the second inclusion in (1.4.4): the union of all Wa-
terman spaces is “intermediate” between continuous and bounded functions, and by (1.4.5) coincides
with the space of all regular functions.

Now we are going to compare the spaces ΛBV and ΓBV for two different Waterman sequences
Λ = (λn)n and Γ = (γn)n. This requires a technical definition.

Definition 1.4.4. Given two Waterman sequences Λ = (λn)n and Γ = (γn)n, we write Λ ≺ Γ if

(1.4.8) lim
n→∞

λn
γn

= 0,

and Λ ≼ Γ if there exists a constant c > 0 such that

(1.4.9)
n∑

j=1

λj ≤ c
n∑

j=1

γj (n = 1, 2, 3, . . .).

Since

lim inf
n→∞

λn
γn

≤ lim inf
n→∞

n∑
j=1

λj

n∑
j=1

γj

≤ lim sup
n→∞

n∑
j=1

λj

n∑
j=1

γj

≤ lim sup
n→∞

λn
γn
,

and the finiteness of the third term is equivalent to (1.4.9), the condition

(1.4.10) lim sup
n→∞

n∑
j=1

λj

n∑
j=1

γj

<∞

is “intermediate” between (1.4.8) and (1.4.9), inasmuch as (1.4.8) ⇒ (1.4.10) ⇒ (1.4.9). 2

One may show that Λ ≼ Γ is equivalent to the inclusion ΓBV ⊆ ΛBV , while Λ ≺ Γ implies (but is
not equivalent to) the strict inclusion ΓBV ⊂ ΛBV .

Let us check the conditions (1.4.8) – (1.4.10) by means of the particularly simple Waterman sequence
Λq := (n−q)n for 0 < q ≤ 1 introduced at the beginning of this section. Clearly, we have

Λp ≺ Λq ⇔ p > q,

and
Λp ≼ Λq ⇔ p ≥ q.

So we get the chain of inclusions

(1.4.11) BV ⊆ ΛpBV ⊆ ΛqBV ⊆ HBV (0 < p ≤ q ≤ 1),

where HBV is the space of all functions of bounded harmonic variation. To show that all inclusions
are strict for p < q, we may again use the zigzag functions (1.1.7).

21



Example 1.4.5. Let ζθ be the zigzag function (1.1.7), and let Λq = (n−q)n (0 < q ≤ 1). Then

(1.4.12) V arΛq(ζθ) =
∞∑
n=1

1

nθ+q

and so ζθ ∈ ΛqBV if and only if θ + q > 1. So if we choose θ := 1 − p, the corresponding zigzag
function ζ1−p belongs to ΛqBV for q > p, but not to ΛpBV . However, we can again do better: for
fixed p < 1, the same reasoning shows of course that

(1.4.13) ζ1−p ∈

∩
q>p

ΛqBV

 \ ΛpBV.

In particular, the zigzag function ζ1 belongs to HBV \ΛpBV for 0 < p < 1, and also to HBV \BV .
2

A comparison of the inclusions (1.2.5) and (1.4.11) shows that both scales of spaces {WBVp : 1 ≤
p < ∞} and {ΛpBV : 0 < p ≤ 1} are increasing with respect to the index p. So it is natural to ask
whether or not these two scales are related. This is in fact true.

Let [a1, b1], . . . , [an, bn] ⊂ [0, 1] be a collection of non-overlapping intervals, and let ηk := |x(bk) −
x(ak)|. Suppose that x ∈ WBVp for some p > 1, which implies that

n∑
k=1

ηpk ≤WV arp(x) =: M.

Applying the Hölder inequality yields

n∑
k=1

ηk
kq

≤
(

n∑
k=1

ηpk

)1/p ( n∑
k=1

1

kqp′

)1/p′

≤M1/p

(
n∑

k=1

1

kqp′

)1/p′

,

where p′ = p/(p− 1), and the right sum remains bounded for n→ ∞ if and only if q > 1 − 1/p. We
conclude that WBVp ⊆ ΛqBV for these values of q.

Conversely, assume now that x ∈ ΛqBV , and let ηk be as before, where we assume without loss of
generality that η1 ≥ η2 ≥ . . . ≥ ηn. From our assumption

n∑
k=1

ηk
kq

≤ V arΛq(x) =: M

we obtain now

M ≥
k∑

j=1

ηj
jq

≥
k∑

j=1

ηk
kq

= k
ηk
kq

= k1−qηk (k = 1, 2, . . . , n).

Consequently, for q = 1 − 1/p we have

ηpk = ηp−1
k ηk ≤ ηpqk ηk ≤

Mpq

kq
ηk (k = 1, 2, . . . , n),

hence
n∑

k=1

ηpk ≤Mpq
n∑

k=1

ηk
kq

≤Mp−1M = Mp.

This shows that x ∈ WBVp with WV arp(x) ≤ Mp. We may summarize our discussion with the
following

Proposition 1.4.7. The inclusion

(1.4.14) WBVp ⊆ ΛqBV
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holds for p > 1 and 1 − 1/p < q ≤ 1, while the reverse inclusion

(1.4.15) ΛqBV ⊆ WBVp

holds for p > 1 and 0 < q ≤ 1 − 1/p.

To conclude this section, let us consider again our favorite families of functions which we introduced
in Section 1.1, namely the oscillatory functions (1.1.5) and the zigzag functions (1.1.7). In Table 1.3
below, which is an essential completion of Table 1.1, we report the precise values of (α, β) ∈ R2 and
θ > 0 for which the function ωα,β resp. the function ζθ belongs to the function spaces we dealt with
in this chapter.

We make some comments on the last column in Table 1.3. The table shows that the oscillatory
function (1.1.5) has a different behavior in all spaces, but the zigzag function (1.1.7) exhibits a
more interesting behavior in spaces of functions of (generalized) bounded variation than in spaces of
continuous functions.

If we take p = 1 in the row for WBVp and RBVp, we get for ζθ in both cases the condition θ > 1,
which is of course nothing else but the condition for BV . Moreover, if we take, at least formally,
q = 1− 1/p in the row for ΛqBV , we get the condition 1 < θ+ q = θ+ 1− 1/p, hence pθ > 1, which
is the same as the condition for WBVp; in view of Proposition 1.4.7, this is not surprising.

The zigzag function (1.1.7) may also be used that both inclusions (1.4.14) and (1.4.15) are strict.
Indeed, in case 1 − 1/p < q we may take θ ∈ (1 − q, 1/p] and get ζθ ∈ ΛqBV \WBVp, while in case
1 − 1/p > q we may take θ ∈ (1/p, 1 − q] and get ζθ ∈ WBVp \ ΛqBV .

Finally, since the zigzag function is always continuous and has the Luzin property, it is clear that we
get the same condition in the rows for BV and for AC.

The function ωα,β The function ζθ

belongs to C if and only if α > 0 or always

α ≤ 0 and α + β > 0

belongs to C1 if and only if α + β > 1 never

belongs to Lip if and only if α + β ≥ 1 never

belongs to Lipγ if and only if α + βγ ≥ γ never

belongs to BV if and only if β ≥ 0 and α + β ≥ 0 θ > 1

or β < 0 and α + β > 0

belongs to WBVp if and only if β ≥ 0 and pα + β ≥ 0 pθ > 1

or β < 0 and pα + β > 0

belongs to RBVp if and only if β ≥ 0 and pα + β ≥ p− 1 p = 1 and θ > 1

or β < 0 and pα + β > p− 1

belongs to AC if and only if α + β > 0 θ > 1

belongs to ΛqBV if and only if β ≥ 0 and α + (1 − q)β ≥ 0 θ + q > 1

or β < 0 and α + (1 − q)β > 0

Table 1.3: Oscillation functions and zigzag functions
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We remark that there exist other generalizations of the Jordan variation which, however, we will
consider in this survey only marginally. The following definition, due to Young [Y] generalizes the
Wiener variation (1.2.1) and imitates the transition from Lebesgue spaces to Orlicz spaces.

Recall that a Young function is a strictly increasing convex function ϕ : [0,∞) → [0,∞) such that

lim
u→0+

ϕ(u)

u
= 0, lim

u→∞

ϕ(u)

u
= ∞,

and ϕ(0) = 0.

Definition 1.4.8. Given a partition P = {t0, t1, . . . , tm} ∈ P, and a function x : [0, 1] → R, the
nonnegative real number

Y V arϕ(x, P ) = Y V arϕ(x, P ; [0, 1]) :=
m∑
j=1

ϕ(|x(tj) − x(tj−1)|)

is called the Young variation of x on [0, 1] with respect to P . If the expression

Y V arϕ(λx) = Y V arϕ(λx; [0, 1]) := sup {Y V arϕ(λx, P ; [0, 1]) : P ∈ P}

is finite for some λ > 0, where the supremum is taken over all partitions of [0, 1], it is called the
total Young variation of λx on [0, 1]. In this case we say that x has finite Young variation (or finite
ϕ-variation in Young’s sense) on [0, 1] and write x ∈ Y BVϕ. 2

Of course, the simplest choice ϕ(u) := up for 1 < p < ∞ gives the total Wiener variation (1.2.2).
However, more sophisticated choices like ϕ(u) := exp(u)− 1 or ϕ(u) := (1 +u) log(u+ 1) lead to new
applications. A natural norm on Y BVϕ = Y BVϕ[0, 1] is

(1.4.16) ∥x∥Y BVϕ
:= |x(0)| + inf {µ > 0 : Y V arϕ(x/µ) ≤ 1},

which is modelled on the usual Orlicz space norm and in case ϕ(u) = up coincides with (1.2.4).

The space Y BVϕ has been studied in detail in [MO] and [LO]. Here we only sketch a connection with
the Waterman space ΛBV . Let ϕ be a Young function and Λq = (n−q)n, for 0 < q < 1 be the special
Waterman sequence introduced in Section 1.4. Then the condition

(1.4.17)
∫ 1

0

du

ϕ(u)1−q
<∞

implies that Y BVϕ ⊆ ΛqBV . A similar finiteness condition with the integral replaced by a series
reads as follows. If

(1.4.18)
∞∑
n=1

ψ(λn) <∞,

where
ψ(u) := sup {uv − ϕ(v) : v ≥ 0}

denotes the conjugate Young function to ϕ, then Y BVϕ ⊆ ΛBV . In case ϕ(u) = up (1 < p < ∞)
condition (1.4.17) becomes ∫ 1

0

du

up(1−q)
<∞,

while condition (1.4.18) becomes
∞∑
n=1

1

npq/(p−1)
<∞,

and both condition are equivalent to p(1 − q) < 1.
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All spaces of functions of bounded variation considered in this chapter are continuously imbedded
into the space B = B[0, 1] of bounded functions on [0, 1] with norm (1.1.11). For further reference
we collect in a table upper estimates for the sharp imbedding constants

c(X,B) := inf {c > 0 : ∥x∥X ≤ c∥x∥∞},

where X stands for one of the spaces BV , WBVp, RBVp, ΛBV , ΛqBV , or Y BVϕ.

X = BV [0, 1] WBVp[0, 1] RBVp[0, 1] ΛBV [0, 1] ΛqBV [0, 1] Y BVϕ[0, 1]

c(X,B) ≤ 1 1 1 max {1, 1/λ1} 1 ϕ(1)

Table 1.4: Some imbedding constants

The imbedding constant c(BV,B) = 1 follows from Proposition 1.1.6 (d), the imbedding constant
c(WBVp, B) = 1 from Proposition 1.2.2 (d).
To calculate c(ΛBV,B) it suffices to observe that

|x(t)| ≤ |x(0)| + |x(t) − x(0)| = |x(0)| +
1

λ1
λ1|x(t) − x(0)|

≤ |x(0)| +
1

λ1
V arΛ(x) ≤ max {1, 1/λ1}∥x∥ΛBV .

The estimate for c(Y BVϕ, B) follows from the fact that Y V arϕ(x) ≤ ϕ(V ar(x)), where V ar(x) is
the Jordan variation (1.1.9).
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Chapter 2. Linear Operators in BV Spaces

In this chapter we study basically three different types of linear operators in the space BV and
related spaces, namely substitution operators, multiplication operators, and integral operators.

Given a function φ : [0, 1] → [0, 1], by Σφ we denote the (linear) substitution operator defined by

(2.0.1) Σφ(x)(t) := x(φ(t)) (0 ≤ t ≤ 1).

If X is a function space over [0, 1], the first problem consists in characterizing all φ : [0, 1] → [0, 1]
such that Σφ(X) ⊆ X. In other words, we want to find the largest possible class of “changes of
variable” s = φ(t) for which the composition x ◦ φ remains in the space X if we take x from X.

Given a function µ : [0, 1] → R, by Mµ we denote the (linear) multiplication operator defined by

(2.0.2) Mµ(x)(t) := µ(t)x(t) (0 ≤ t ≤ 1).

Again, if X is a function space over [0, 1], the first problem consists in characterizing all µ : [0, 1] → R
such that Mµ(X) ⊆ X. In other words, we want to find the largest possible class of “multipliers” µ
for which the product µx remains in the space X if we take x from X.

Given a function k : [0, 1] × [0, 1] → R, by K we denote the (linear) integral operator defined by

(2.0.3) K(x)(t) :=
∫ 1

0
k(t, s)x(s) ds (0 ≤ t ≤ 1).

As before, if X is a function space over [0, 1], the first problem consists in characterizing all k :
[0, 1] × [0, 1] → R such that K(X) ⊆ X. In other words, we want to find the largest possible class of
“kernel functions” k for which after integration of k(t, s)x(s) with respect to s we get a function of
t which remains in the space X if we take x from X.

To be specific, we are interested in the following questions for the space BV .

1. Under what conditions on φ we have Σφ(BV ) ⊆ BV ?

2. Under what conditions on φ is the operator Σφ bounded in BV ?

3. Under what conditions on φ is the operator Σφ compact in BV ?

4. Under what conditions on µ we have Mµ(BV ) ⊆ BV ?

5. Under what conditions on µ is the operator Mµ bounded in BV ?

6. Under what conditions on µ is the operator Mµ compact in BV ?

7. Under what conditions on k we have K(BV ) ⊆ BV ?

8. Under what conditions on k is the operator K bounded in BV ?

9. Under what conditions on k is the operator K compact in BV ?

Of course, similar questions arise for other spaces than BV . It turns out that each of these operators
exhibits several surprising features. We will discuss them and illustrate them with examples in the
following sections.

2.1. Substitution operators. Let us start with analyzing the properties of the substitution operator
(2.0.1) in the space BV . Since the identity has bounded variation on [0, 1], it is clear that φ ∈ BV
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is a necessary condition for the inclusion Σφ(BV ) ⊆ BV . The following example shows that this
condition is not sufficient.

Example 2.1.1. Define φ : [0, 1] → [0, 1] and x : [0, 1] → R by

φ(t) = ω2
1,−1(t) =


t2 sin2 1

t
for 0 < t ≤ 1,

0 for t = 0,

see (1.1.5), and x(s) =
√
s, respectively. Being monotone, we have x ∈ BV . Moreover, it is not hard

to see that φ ∈ BV , since φ′ exists and is bounded on [0, 1]. However, Example 1.1.8 (or Proposition
1.1.9) shows that Σφ(x) = x ◦ φ ̸∈ BV . 2

The problem of characterizing all functions φ for which Σφ(BV ) ⊆ BV was completely solved by
Josephy in [Jo]. To describe the result, let Jn (n ∈ N) denote the class of all functions φ : [0, 1] → [0, 1]
with the property that the preimage φ−1([a, b]) of any interval [a, b] ⊆ [0, 1] can be written as union
of exactly n intervals. We call a function φ : [0, 1] → [0, 1] pseudo-monotone if φ ∈ Jn for some
n. Clearly, every monotone function is pseudo-monotone, since it belongs to J1, and every pseudo-
monotone function has bounded variation. The converse is not true:

Example 2.1.2. By Proposition 1.1.9, the function φ := ω2
1,−1 belongs to BV . However, this function

is not pseudo-monotone, since
φ−1({0}) =

{
0, 1

π
, 1
2π
, 1
3π
, . . .

}
.

To find a pseudo-monotone function which is not monotone is of course trivial. 2

Theorem 2.1.3 [Jo]. The inclusion Σφ(BV ) ⊆ BV holds precisely for all pseudo-monotone functi-
ons φ.

Theorem 2.1.3 explains, combined with Example 2.1.2, why the function φ from Example 2.1.1 does
not generate a substitution operator Σφ in BV . The following result shows that, if the operator Σφ

maps BV into itself, it is always continuous.

Theorem 2.1.4. If φ : [0, 1] → [0, 1] is pseudo-monotone, the corresponding operator Σφ : BV → BV
is bounded in BV .

Let us briefly sketch the proof of this result, where we use the norm (1.1.15). If x : [0, 1] → R is
increasing, a straightforward calculation shows that x ◦ φ ∈ Jn for φ ∈ Jn; moreover,

V ar(x ◦ φ) ≤ 4(n+ 1)∥x ◦ φ∥∞ ≤ 4(n+ 1)∥x∥∞

in this case. If x ∈ BV is arbitrary, we use the Jordan decomposition x = y−z described in Theorem
1.1.7. Then

|||Σφ(x)|||BV = |||x ◦ φ|||BV = |||(y − z) ◦ φ|||BV = |||y ◦ φ− z ◦ φ|||BV

≤ |||y ◦ φ|||BV + |||z ◦ φ|||BV = ∥y ◦ φ∥∞ + V ar(y ◦ φ) + ∥z ◦ φ∥∞ + V ar(z ◦ φ)

(4(n+ 1) + 1)(∥y∥∞ + ∥z∥∞) ≤ (4n+ 5)(2∥y∥∞ + ∥x∥∞) ≤ (8n+ 10)|||x|||BV .

Here we have used the fact that ∥y∥∞ = ∥V ar(x; [0, ·])∥∞ = V ar(x) and ∥z∥∞ ≤ ∥y∥∞ + ∥x∥∞.
Observe that our upper bound for the norm of the linear operator Σφ cannot be chosen universally
for all pseudo-monotone functions, but depends on the class Jn where the substitution function φ
belongs to. In particular, we get the (not optimal) upper estimate |||Σφ|||BV→BV ≤ 18 for increasing
functions φ.

To conclude, let us discuss some mapping properties of the substitution operator (2.0.1). We will
present an analogous discussion in Section 3.1 for the so-called composition operator

(2.1.1) Cf (x)(t) := f(x(t)) (0 ≤ t ≤ 1)
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generated by some function f : R → R. This operator may be considered as some kind of “twin
brother” of Σφ, inasmuch as the outer function f is fixed, but the inner function x varies over some
function space. There is one essential difference, however: the operator Σφ in (2.0.1) is linear, while
the operator Cf in (2.1.1) is nonlinear (which makes its study pretty complicated).

Although this is not the main focus in this survey, let us analyze the mapping properties of the
operator (2.0.1) first in the space C of continuous functions x : [0, 1] → R. To this end, we suppose
that φ : [0, 1] → [0, 1] is continuous, and we are interested in the question how the properties of the
“change of variables” φ are reflected in analogous properties of the operator Σφ. First of all, it is
clear that Σφ is bounded in the space C. Here the computation of its norm is trivial, since

∥Σφ∥C→C = ∥Σφe∥C = 1,

where e(t) ≡ 1. The following example shows that the injectivity or surjectivity of φ does not imply
the injectivity resp. surjectivity of Σφ.

Example 2.1.5. Let φ(t) := t/2. Then φ : [0, 1] → [0, 1] is injective, but Σφ : C → C is not, because
the function defined by x(t) := t for 0 ≤ t ≤ 1/2 is mapped into the function y(t) = t/2 for 0 ≤ t ≤ 1,
no matter how we define x on (1/2, 1].

On the other hand, let φ(t) := 4t(1− t). Then φ : [0, 1] → [0, 1] is surjective, but Σφ : C → C is not,
because the function y(t) = t is not in the range of Σφ. 2

Surprisingly, we get a correct result when we interchange the role of injectivity and surjectivity.

Proposition 2.1.6. Let φ : [0, 1] → [0, 1] be continuous. With Σφ given by (2.0.1), the following is
true.

(a) The operator Σφ : C → C is surjective if and only if the corresponding function φ : [0, 1] → [0, 1]
is injective.

(b) The following three assertions are equivalent.

(i) The function φ : [0, 1] → [0, 1] is surjective.

(ii) The operator Σφ : C → C is an isometry, i.e.,

(2.1.2) ∥Σφx∥C = ∥x∥C (x ∈ C)

(iii) The operator Σφ : C → C is injective.

Proof. (a) If φ is injective, then the set K := φ([0, 1]) ⊆ [0, 1] is a compact interval, and the map
φ : [0, 1] → K is a homeomorphism. Given y ∈ C, the function y ◦ φ−1 : K → R is therefore
continuous, and by the Tietze-Uryson Theorem we may find a continuous function x : [0, 1] → R
with x(t) = (y ◦ φ−1)(t) for t ∈ K, hence y = Σφx.

Conversely, suppose that Σφ is surjective, and fix s0, s1 ∈ [0, 1] with s0 ̸= s1. The map y : [0, 1] → R
defined by

(2.1.3) y(t) :=
|t− s0|

|t− s0| + |t− s1|
(0 ≤ t ≤ 1)

is then well-defined, continuous, and satisfies 0 ≤ y(t) ≤ 1, y(s0) = 0 and y(s1) = 1. Since Σφ is
surjective, there exists x ∈ C such that Σφx = y. In particular,

x(φ(s0)) = y(s0) = 0 ̸= 1 = y(s1) = x(φ(s1)),

which implies φ(s0) ̸= φ(s1) and shows that φ is injective.

(b) If φ is surjective, we have K = φ([0, 1]) = [0, 1], hence

∥Σφx∥C = max {|x(φ(s))| : 0 ≤ s ≤ 1} = max {|x(t)| : 0 ≤ t ≤ 1} = ∥x∥C
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for every x ∈ C, which means that Σφ is an isometry. The fact that (ii) implies (iii) is of course
trivial. So suppose now that Σφ is injective, and assume that there exists t0 ∈ [0, 1] \K. Since K is
compact, the function x : [0, 1] → R defined by

x(t) :=
dist (t,K)

dist (t,K) + |t− t0|
(0 ≤ t ≤ 1)

is well-defined, continuous, and satisfies Σφx(t) ≡ 0. So by assumption we also have x(t) ≡ 0, because
Σφ is a linear operator, contradicting x(t0) = 1. This shows that [0, 1] \K = ∅, i.e., φ is surjective.
�

Observe that the “crossover” between surjectivity and injectivity in our proposition is not only
perfectly symmetric, but in (b) we even get the isometry property of Σφ as a fringe benefit. Also,
this proposition shows that it was not accidental that the first function φ in Example 2.1.5 is not
surjective, while the second one is not injective.

Our aim is now to see how we may imitate the proof to get a similar result in the space BV , assuming
that φ is pseudomonotone.

Proposition 2.1.7. Let φ : [0, 1] → [0, 1] be pseudomonotone. With Σφ given by (2.0.1), the following
is true.

(a) If the operator Σφ : BV → BV is surjective then the corresponding function φ : [0, 1] → [0, 1] is
injective.

(b) The operator Σφ : BV → BV is injective if and only if the corresponding function φ : [0, 1] →
[0, 1] is surjective.

Proof. (a) If φ is not injective there exist σ, τ ∈ [0, 1] with σ ̸= τ but φ(σ) = φ(τ). The function
y := χ{τ} belongs to BV , and by the surjectivity of Σφ we find x ∈ BV such that Σφx = y. But this
implies

1 = y(τ) = Σφx(τ) = x(φ(τ)) = x(φ(σ)) = Σφx(σ) = y(σ) = 0,

a contradiction.

(b) Assume first that φ : [0, 1] → [0, 1] is surjective, and let x ∈ BV satisfy Σφx(t) ≡ 0. For fixed
t ∈ [0, 1] we find by assumption s ∈ [0, 1] such that φ(s) = t. It follows that

x(t) = x(φ(s)) = Σφx(s) = 0,

i.e., x(t) ≡ 0, since t was arbitrary. Conversely, assume now that φ : [0, 1] → [0, 1] is not surjective,
and choose τ ∈ [0, 1] \ φ([0, 1]). The function x := χ{τ} belongs to BV and is not identically zero,
but satisfies

Σφx(t) = x(φ(t)) ≡ 0 (0 ≤ t ≤ 1),

contradicting the injectivity of Σφ. �

Closer scrutiny of the proof of Proposition 2.1.7 shows that we did not use the special structure of
the space BV , but only the fact that BV contains all characteristic functions of singletons. Examples
of other spaces with this property are, e.g., WBVp and ΛBV . So we may use the same reasoning to
prove the following more general

Proposition 2.1.8. Suppose that the operator Σφ given by (2.0.1) maps some function space X into
some function space Y . Then the following is true.

(a) If φ : [0, 1] → [0, 1] is surjective, then Σφ : X → Y is injective.

(b) If Σφ : X → Y is injective, and the space X contains all characteristic functions of singletons,
then φ : [0, 1] → [0, 1] is surjective.

(c) If Σφ : X → Y is surjective, and the space Y contains all characteristic functions of singletons,
then φ : [0, 1] → [0, 1] is injective.
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Observe that the additional hypothesis on the space X in (b) cannot be dropped, as the space
X = Y = R of all constant functions shows: in this case Σφ is always injective, no matter how we
choose the function φ. The problem whether or not the injectivity of φ implies the surjectivity of Σφ

in BV (or some similar space) seems to be open.

2.2. Multiplication operators. Apart from the substitution operator (2.0.1), the multiplication
operator (2.0.2) constitutes another important example of linear operators in BV and many other
function spaces. If X is an algebra, i.e., closed under multiplication, then for every µ ∈ X we have
Mµ(X) ⊆ X. Conversely, if the constant function x(t) ≡ 1 belongs to X, the inclusion Mµ(X) ⊆ X
implies µ ∈ X. This fact may also be restated in the following form, even in the more general
framework of different spaces.

Let X and Y two function spaces over [0, 1]. Following [BaRw], we call the set

(2.2.1) Y/X := {z : [0, 1] → R : zx ∈ Y for all x ∈ X}

the multiplier space of Y over X. An interesting problem consists in calculating this space explicitly
for given spaces X and Y , and in some cases this is easy. For example, the classical Hölder inequality
implies that, for 1 ≤ p, q ≤ ∞,

Lq/Lp =


Lpq/(p−q) for p > q,

L∞ for p = q,

{0} for p < q.

It is also straightforward to show that C/C = C, B/B = B, B/C = B, and C/B = {0}, where B
denotes the space of all bounded functions with the sup norm. Other less trivial multiplier spaces
have been calculated in the recent papers [BaRw,BaRw1]. Recall that the support of a function
µ : [0, 1] → R is defined by

(2.2.2) supp(µ) := {t : 0 ≤ t ≤ 1, µ(t) ̸= 0}.

We point out that this definition of support is somewhat unusual: in the theory of PDEs one usually
takes the closure of (2.2.2). Also, note that a continuous function can never have a countable support,
by the permanence theorem.

Occasionally we will also consider the set

(2.2.3) suppδ(µ) := {t : 0 ≤ t ≤ 1, |µ(t)| > δ} (δ ≥ 0).

So suppδ(µ) ⊇ suppδ′(µ) if δ < δ′, and supp0(µ) = supp(µ). Moreover, if suppδ(µ) is finite for all
δ > 0, then supp(µ) is at most countable, since

supp(µ) =
∞∪
n=1

supp1/n(µ).

Given a function space X, in what follows we denote by Xf the subspace of all functions µ ∈ X with
finite support, and by Xc the subspace of all functions µ ∈ X with countable support. With this
terminology, the following results are proved in [BaRw] for the spaces D of all Darboux functions
and the space ∆ of all functions which have a primitive:

C/∆ = D/B = C/D = ∆/D = ∆/B = {0}, B/D = B/∆ = Bf .

The multiplier spaces ∆/C and ∆/∆ are also known, but their description is more technical.

Now, the relation between multiplier spaces and the multiplication operator (2.0.2) is clear: we have
Mµ(X) ⊆ Y if and only if µ ∈ Y/X. In the paper [BaRw1] the authors also calculate the multiplier
space for various spaces of BV type, which are the main topics of interest for us. We summarize
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with the following Theorem 2.2.1. For Waterman spaces ΛBV and ΓBV , we refer to (1.4.9) for the
meaning of the notation Λ ≼ Γ.

Theorem 2.2.1 [BaRw,BaRw1]. The following equalities hold for multiplier spaces (2.2.1) with
X, Y ∈ {BV,WBVp, RBVp,ΛBV }.

BV/BV = BV ; BV/C = BVc; C/BV = {0}; BV/B = BVc; B/BV = B;

WBVq/WBVp = WBVq if p ≤ q; WBVq/WBVp = (WBVq)c if p > q;

RBVq/RBVp = RBVq if p ≥ q ≥ 1; RBVq/RBVp = {0} if 1 ≤ p < q;

ΛBV/ΓBV = ΛBV if Λ ≼ Γ; ΛBV/ΓBV = ΛBVc if Λ ̸≼ Γ.

So Theorem 2.2.1 implies, in particular, that the operator (2.0.2) mapsX ∈ {BV,WBVp, RBVp,ΛBV }
into itself if and only if µ ∈ X. This is of course what one expects for function algebras.

Apart from the mere acting condition Mµ(X) ⊆ Y , mapping properties of Mµ are of course of
intereset, the most imporant ones being injectivity, surjectivity, and bijectivity. Here one encounters
some surprising asymmetry between conditions for injectivity and surjectivity which have been proved
and illustrated in the recent paper [KRw]. It turns out that all such conditions may be expressed by
means of the support of µ.

Since Mµ is a linear operator, it is clear that Mµ : X → Y is injective if and only if for each x ∈ X\{0}
there is some t ∈ [0, 1] such that both x(t) ̸= 0 and µ(t) ̸= 0. In particular, Mµ is certainly injective
if supp(µ) = [0, 1]. For practical purposes, however, this criterion is too general. To be more explicit,
we introduce some technical terminology.

Let us say that a space X of functions x : [0, 1] → R separates points if for each t ∈ [0, 1] we can find
some x ∈ X such that x(t) ̸= 0, strongly separates points if X contains all characteristic functions of
sigletons, and uniformly separates points if X ⊆ C and for each t ∈ [0, 1] and each δ > 0 we can find
some x ∈ X such that t ∈ supp(x) ⊆ [t− δ, t+ δ].

It is easy to see that strong or uniform separation implies separation. The converse is not true;
for example, the space of constant functions separates points, but neither strongly nor uniformly.
Moreover, there is no relation between strong and uniform separation: the spaces B, BV , WBVp
and ΛBV strongly separate points, but not uniformly, while the spaces C and RBVp (for p > 1)
uniformly separate points, but not strongly. With this terminology, the following necessary and
sufficient conditions may be proved.

Proposition 2.2.2 [KRw]. The following statements are true for function spaces X and Y over
[0, 1].

(a) Suppose that X strongly separates points. Then the operator Mµ : X → Y is injective if and only
if supp(µ) = [0, 1].

(b) Suppose that X uniformly separates points. Then the operator Mµ : X → Y is injective if and
only if supp(µ) is dense in [0, 1].

(c) Suppose that Y separates points. Then the operator Mµ : X → Y is surjective if and only if
supp(µ) = [0, 1] and 1/µ ∈ X/Y .

From Proposition 2.2.2 (c) it follows, in particular, that surjectivity ofMµ : X → Y implies injectivity,
whenever the target space Y separates points.

Moreover, taking into account that all spaces Y ∈ {B,C,BV,WBVp,ΛBV,RBVp} separate points,
we get a simple surjectivity criterion. If Mµ : X → Y is surjective, we obtain from (c) that supp(µ) =
[0, 1] and 1/µ ∈ X/Y . Since the constant function z(t) ≡ 1 belongs to all indicated spaces, we
conclude that X/Y ⊆ X ⊆ B and 1/µ is bounded, which means that |µ(t)| ≥ δ on [0, 1] for some
δ > 0. But the latter condition is also sufficient for surjectivity, because it implies both supp(µ) =
[0, 1] and 1/µ ∈ Y ⊆ X/Y . So we arrive at the following
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Corollary 2.2.3 [KRw]. The following statements are true for function spaces X and Y over [0, 1].

(a) For X ∈ {BV,WBVp,ΛBV }, the operator Mµ : X → Y is injective if and only if supp(µ) =
[0, 1].

(b) For X ∈ {C,RBVp} with p > 1, the operator Mµ : X → Y is injective if and only if supp(µ) =
[0, 1].

(c) For Y ⊆ X ⊆ B and Y ∈ {B,C,BV,WBVp,ΛBV,RBVp}, the operatorMµ : X → Y is surjective
if and only if suppδ(µ) = [0, 1] for some δ > 0. In this case Mµ is also injective.

We remark that Corollary 2.2.3 was proved for the special case X = BV in [AsRa], for X = WBVp
in [AsCRa].

The following Examples 2.2.4 and 2.2.5 show that injectivity of the operator Mµ : BV → BV does
not imply its surjectivity, and that Mµ may be injective in RBVp for p > 1 without being injective
in BV = RBV1.

Example 2.2.4. Define µ : [0, 1] → R by

µ(t) :=

 1 for t = 0,

t for 0 < t ≤ 1.

Clearly, µ ∈ BV with V ar(µ) = 2, and so Mµ maps BV into itself. The operator Mµ is injective, by
Corollary 2.2.3 (a). However, Mµ is not surjective, since the function y(t) ≡ 1 belongs to BV , but
not to the range of Mµ. In fact, any function x satisfying Mµ(x) = y would be unbounded near zero.
2

The explanation of Example 2.2.4 is of course that the function µ is different from zero, but not
bounded away from zero.

Example 2.2.5. Define µ : [0, 1] → R by µ(t) := t. Since µ ∈ RBVp for every p ≥ 1 with RV arp(µ) =
1, the operator Mµ maps RBVp into itself and is injective in case p > 1, by Corollary 2.2.3 (b).
However, Mµ is not injective in BV , since the function x = χ0 is not identically zero, but the
function y = Mµ(x) is. 2

The explanation of Example 2.2.5 is of course that the support of µ is dense in [0, 1], but does not
coincide with [0, 1].

Combining the surjectivity and injectivity results from Corollary 2.2.3 with the fact that the inverse
of the operator Mµ, if it exists, is the operator M1/µ, we obtain a necessary and sufficient condition
for Mµ to be an isomorphism:

Theorem 2.2.6. For X ∈ {BV,WBVp, RBVp,ΛBV }, the following two conditions are equivalent.

(a) The function µ belongs to X and suppδ(µ) = [0, 1] for some δ > 0.

(b) The operator Mµ : X → X is an isomorphism.

We remark that Theorem 2.2.6 was proved for the special case X = BV in [AsRa], for X = WBVp
in [AsCRa].

Apart from boundedness (equivalent: continuity), an important property of linear operators is com-
pactness. For multiplication operators, this often leads to a strong degeneracy. For instance, it is
well-known that the operator (2.0.2) maps the space C [resp. the space Lp] into itself if and only if
µ ∈ C [resp. µ ∈ L∞], and it is compact if and only if µ(t) = 0 for all [resp. almost all] t ∈ [0, 1].

Surprisingly enough, in the space BV many multiplication operators may be compact for nonconstant
multipliers. To describe the corresponding class, we recall that Xc denotes the set of all functions
µ ∈ X with countable support.

32



Theorem 2.2.7. For X ∈ {BV,WBVp, RBVp,ΛBV }, the following two conditions are equivalent.

(a) The function µ belongs to Xc.

(b) The operator Mµ : X → X is compact.

This result was proved in [AsRa] for X = BV and in [AsCRa] for X = WBVp. Note that condition
(a) may be fulfilled for continuous µ only in case µ(t) ≡ 0, which shows that the zero operator is the
only compact multiplication operator in X = RBVp for p > 1.

Recall that the essential norm of a bounded linear operator A between two Banach spaces X and Y
is defined by

(2.2.4) |||A|||X→Y := inf {||A−K||X→Y : K : X → Y linear and compact}.

In other words, the essential norm measures the distance of an operator from the (closed) ideal of
compact operators; in particular, |||A||| = 0 if and only if A itself is compact. Our previous discussion
suggests that

(2.2.5) |||Mµ|||BV→BV = inf {δ > 0 : suppδ(µ) finite}.

We were not able to prove this conjecture in the general case; however, some partial results are
possible. Recall that the right regularization µ# of a BV -function µ : [0, 1] → R is defined by

(2.2.6) µ#(t) :=

 lim
s→t+

µ(s) for 0 ≤ t < 1,

µ(1) for t = 1

Then V ar(µ#) ≤ V ar(µ), and λ := µ− µ# is in BV and has countable support, because µ# differs
from µ only in the (at most countably many) points of discontinuity of µ. Thus, λ generates a compact
multiplication operator Mλ : BV → BV , by Theorem 2.2.7, which implies that

|||Mµ#|||BV→BV = |||Mµ|||BV→BV .

We claim that Mµ satisfies the upper estimate

(2.2.7) |||Mµ|||BV→BV ≤ ∥µ#∥BV

and, if µ is bounded away from zero, also the lower estimate

(2.2.8) |||Mµ|||BV→BV ≥ ∥1/µ#∥−1
BV .

In order to prove (2.2.7) we fix µ ∈ BV and obtain

|||Mµ|||BV→BV ≤ ∥Mµ −Mλ∥BV→BV = ∥Mµ−λ∥BV→BV = ∥µ− λ∥BV = ∥µ#∥BV ,

where λ = µ− µ# as before. For the proof of (2.2.8) we assume that µ is bounded away from zero,
and hence generates an invertible operator Mµ : BV → BV with M−1

µ = M1/µ. For any compact
operator K : BV → BV we must have

∥Mµ# −K∥BV→BV ≥ 1

∥M−1
µ#∥BV→BV

=
1

∥1/µ#∥BV

,

because a compact operator is never invertible in an infinite dimensional space. In particular, (2.2.8)
follows after passing to the infimum over all compact operators K. We illustrate our discussion with
two examples.

Example 2.2.8. This example shows that the estimates (2.2.7) and (2.2.8) become worse the closer
µ comes to zero. For α > 0, consider the function µα(t) := t+α. Then µα is continuous and bounded
away from zero, and has bounded variation. Since µ#

α = µα, from (2.2.7) and (2.2.8) we get

α2 + α

α + 2
=

1

∥1/µ#
α ∥BV

≤ |||Mµα |||BV→BV ≤ ∥µ#
α ∥BV = 1 + α.
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Consequently,

lim
α→0+

1

∥1/µ#
α ∥BV

= 0, lim
α→0+

∥µ#
α ∥BV = 1,

and a direct calculation shows that

inf {δ > 0 : suppδ(µα) finite} = 1 + α.

This illustrates the “gap”between the lower and upper estimate for |||Mµα|||BV→BV . 2

Example 2.2.9. In contrast to Example 2.2.8, in this example the functions µ and µ# are quite
different. Let {r0, r1, r2, . . .} be an enumeration of all rational numbers in [0, 1], and define µ : [0, 1] →
R by

µ(t) :=

 2−k if t = rk,

0 otherwise.

Then µ ∈ BV , and µ has countable support, so Mµ is compact, by Theorem 2.2.7. Moreover, since

{rk ∈ Q ∩ [0, 1] : 2−k > δ (k ∈ N)} ⊆ {2−k : k < log2(1/δ) (k ∈ N)},

and the last set is finite for each δ > 0, the equality (2.2.5) is true here. Alternatively, we could have
used the estimate (2.2.7) and the fact that µ#(t) ≡ 0 in this example. 2

2.3. Integral operators. The purpose of this section is to study the linear integral operator (2.0.3),
as well as its variant

(2.3.1) V (x)(t) =
∫ t

0
k(t, s)x(s) ds,

in spaces of functions of bounded variation. There is a vast literature on the behaviour of the operators
(2.0.3) and (2.3.1) in spaces of continuous or measurable functions, but considerably less is known
in the space BV and its various generalizations. Let us point out that integral operators are more
important than substitution or multiplication operators, because the operator (2.0.3) is closely related
to boundary value problems, and the operator (2.3.1) is closely related to initial value problems for
(second order) differential equations.

To begin with, we state two conditions on the kernel function k which will be used over and over in
this section. Here the symbol ∀′s means that the following property holds for almost all s.

(A) ∀t ∈ [0, 1] : k(t, ·) ∈ L1;

(B) ∃m ∈ L1, ∀′s ∈ [0, 1] : V ar(k(·, s)) ≤ m(s).

Condition (A) is indispensable for the integral in (2.0.3) to make sense. Condition (B) in turn is
what we need to generate an integral operator in BV :

Theorem 2.3.1 [Bi]. Under the conditions (A) and (B), the operator K maps the space BV into
itself and is bounded.

We make some comments on Theorem 2.3.1. First of all, if (B) holds, condition (A) may be weakened
to

(A′) ∀t ∈ [0, 1] : k(t, ·) is measurable and k(0, ·) ∈ L1.

In fact, one may show that (A’) and (B) together imply (A). On the other hand, if we weaken (B)
by requiring

(B′) ∃m ∈ L1, ∀′s ∈ [0, 1] : |k(·, s)| ≤ m(s),
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i.e., replacing the majorization for the variation by a pointwise majorization. In this case we cannot
guarantee that K maps BV into itself; here is a very simple example.

Example 2.3.2. Let k(t, s) := χQ(t). Then (A) and (B’) hold (with m(s) ≡ 1), but (B) does not.
The corresponding operator K maps the function x(t) ≡ 1 into the function K(x) = χQ which does
not belong to BV . 2

We point out that Theorem 2.3.1 gives only a sufficient condition on k for K(BV ) ⊆ BV ; later we
will show (Example 2.3.4) that this condition is not necessary. In fact, conditions (A) and (B) are so
strong that they are even sufficient for the inclusions K(L∞) ⊆ BV or K(WBVp) ⊆ BV .

In order get a milder condition which is both necessary and sufficient, we introduce yet another
requirement for k:

(C) ∃M > 0 ∀ξ ∈ [0, 1] : V ar

(∫ ξ

0
k(·, s) ds

)
≤M.

Observe that (B) implies (C), because for any partition {t0, t1, . . . , tm} from (B) it follows that

m∑
j=1

∣∣∣∣∣
∫ ξ

0
k(tj, s) ds−

∫ ξ

0
k(tj−1, s) ds

∣∣∣∣∣ ≤
∫ 1

0
m(s) ds,

and so (C) is true with M = ∥m∥L1 . It turns out that, combining (C) with (A) (which must be our
general hypothesis), we precisely get what we want.

Theorem 2.3.3 [BiGK]. Suppose that k satisfies condition (A). Then the following two conditions
are equivalent.

(a) The kernel function k satifies condition (C).

(b) The operator K maps the space BV into itself and is bounded.

It is not hard to see that, under the hypotheses of Theorem 2.3.3, the norm of the operator K in
BV may be estimated by

(2.3.2) ∥K∥BV→BV ≤ 2M + ∥k(0, ·)∥L1 .

Theorem 2.3.3 illustrates the fact that both condition (A) and condition (C) for k contribute to the
boundedness of K. We remark that the following slightly more general fact was proved in [BiGK]:
The operator K maps the space BV into the Wiener space WBVp and is bounded if and only if
condition (C) holds with V ar replaced by WV arp.

The following example shows that condition (C) does not imply condition (B).

Example 2.3.4 [BuGK]. Let k : [0, 1] × [0, 1] → R be defined by

k(t, s) :=


t

t2 + s2
for (t, s) ̸= (0, 0),

0 for (t, s) = (0, 0).

Let us show that k satisfies (C). For every ξ ∈ [0, 1] and t ∈ [0, 1] we have

∫ ξ

0
k(t, s) ds =

 arctan
ξ

t
for 0 < t ≤ 1,

0 for t = 0.

Since the function t 7→ arctan(ξ/t) is strictly decreasing for fixed ξ > 0, we can estimate the variation
occurring in condition (C) by the maximal difference of the arctan function, i.e., by M = π.
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To see that k does not satisfy (B), note that, for fixed s ∈ (0, 1), the function k(·, s) is increasing on
[0, s] and decreasing on [s, 1], attaining its maximum 1/2s for t = s. So we have

V ar(k(·, s)) = k(s, s) − k(0, s) − k(1, s) + k(s, s) =
1

s
− 1

1 + s2
,

and the function on the right-hand side does not belong to L1. 2

Example 2.3.4 is interesting also from another viewpoint, since the kernel function in this example
satisfies condition (B’). To see this, observe that∫ 1

0
k(t, s) dt =

∫ 1

0

t

t2 + s2
dt =

∫ √
1+s2

s

du

u
= log

√
1 + s2

s
,

and the last expression is finite for 0 < s ≤ 1. This shows that the requirement |k(·, s)| ≤ m(s) in
(B’) to hold only for almost all s is important.

There are two special cases for the integral operator (2.3.1) which are particularly important in
applications, namely separated kernels and Volterra kernels. While we will treat Volterra kernels in
the next section, we deal now with separated kernels, which means that k has the form

(2.3.3) k(t, s) = k1(t)k2(s).

In this situation it is easy to express the condition (A), (B), and (C) in terms of conditions on
k1 and k2. For instance, (A) and (B) hold if k1 ∈ BV and k2 ∈ L1; in this case we may choose
m(s) := V ar(k1)|k2(s)|. Similarly, (C) holds under the same assumption; in this case we may choose
M := V ar(k1)∥k2∥L1 . However, neither (B) nor (C) for (2.3.3) implies that k1 ∈ BV and k2 ∈ L1.

Example 2.3.5. Let k1 = k2 = χQ. Then (B) is true, since

V ar(k(·, s)) = V ar(k2(s)k1) = 0 (s ∈ [0, 1] \Q).

However, we have k1(t) = k(t, 0) = χQ(t), and this function does not belong to BV . 2

In view of Example 2.3.5 we remark that condition (C) (and so also (B)) for (2.3.3) implies k1 ∈ BV
and k2 ∈ L1 if ∫ ξ

0
k2(s) ds ̸= 0

for some ξ ∈ (0, 1].

From (2.3.2) it follows that for separated kernels we have

∥K∥BV→BV ≤ 2M + |k1(0)| ∥k2∥L1 = 2V ar(k1)∥k2∥L1 + |k1(0)| ∥k2∥L1 ≤ 2∥k1∥BV ∥k2∥L1 .

The study of solutions to integral equations, both linear and nonlinear, in BV spaces is motivated
by numerous applications to real world problems. Sometimes it is useful, or even necessary, to look
for solutions in the space BV ∩C, i.e., to add continuity. So there is some interest to find conditions
which guarantee, or are even equivalent to, the inclusion K(BV ∩C) ⊆ BV ∩C. To this end, we still
introduce another two conditions on the kernel function k:

(D) ∀ε > 0 ∃δ > 0 ∀t, τ ∈ [0, 1] ∀′s ∈ [0, 1] : |t− τ | ≤ δ ⇒ |k(t, s) − k(τ, s)| ≤ ε;

(E) ∀ε > 0 ∃δ > 0 ∀t, τ, ξ ∈ [0, 1] : |t− τ | ≤ δ ⇒
∣∣∣∣∣
∫ ξ

0
[k(t, s) − k(τ, s)] ds

∣∣∣∣∣ ≤ ε.

Let us briefly check these two conditions by means of the kernel function k from Example 2.3.4.
Choosing tn := 1/n and τ = 0 in condition (E) we get∣∣∣∣∣

∫ ξ

0
[k(tn, s) − k(τ, s)] ds

∣∣∣∣∣ = | arctan(nξ)| → π

2
(n→ ∞)
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for ξ > 0 and so (E) fails. Similarly, (D) fails as well, because for the same choice of tn and τ we have

|k(1/n, s) − k(0, s)| =
n

1 + n2s2
→ ∞ (n→ ∞)

for 0 < s ≤ 1.

Trivially, condition (D) implies condition (E); the converse, however, is not true, as we will see later
(Example 2.3.6).

Let us check a moment what conditions (D) and (E) mean for separated kernel function (2.3.3).
Obviously, the assumptions k1 ∈ C and k2 ∈ B are sufficient for (D) (take δ := ε/∥k2∥∞), while the
assumptions k1 ∈ C and k2 ∈ L∞ are sufficient for (E) (take δ := ε/∥k2∥L∞). However, here we have
to require that k2(s) ̸≡ 0. In general these assumptions are far from being necessary: indeed, in case
k2(s) ≡ 0 we may choose k1 arbitrary, and in case k1(t) = const we may choose k2 arbitrary.

One could ask whether or not we get more implications for the kernel function (2.3.3) than those
already established. The following example shows that even for separated kernel functions (D) is
stronger than (E).

Example 2.3.6. Let k be of the form (2.3.3) with k1(t) := t and k2(s) := 1/
√
s. Then (D) fails,

because

|k(t, s) − k(τ, s)| =
|t− τ |√

s

is unbounded for s near zero. However, the equality∣∣∣∣∣
∫ ξ

0
[k(t, s) − k(τ, s)] ds

∣∣∣∣∣ = |t− τ |
∫ ξ

0

ds√
s

= 2|t− τ |
√
ξ

shows that (E) is fulfilled for any ξ ∈ [0, 1] with δ := ε/2. 2

For the reader’s ease, let us recall which of the conditions (A) – (E) stated at the beginning are
fulfilled by the examples of this section.

Example (A) (B) (A’) (B’) (C) (D) (E)

2.3.2 yes no yes yes no no no

2.3.4 yes no yes yes yes no no

2.3.6 yes yes yes yes yes no yes

Table 2.1: Properties of k in the above examples

The importance of the new condition (E) is illustrated by the following

Theorem 2.3.7 [BiGK]. Suppose that k satisfies condition (A). Then the following two conditions
are equivalent.

(a) The kernel function k satifies conditions (C) and (E).

(b) The operator K maps the space BV ∩ C into itself and is bounded, and the set {K(x) : x ∈
BV ∩ C, ∥x∥BV ≤ 1} is equicontinuous.

In Chapter 4 we will apply our theoretical results to nonlinear integral equations involving linear
integral operators like (2.0.3) and nonlinear composition or superposition operators. A useful tool to
prove existence of solutions to such equations is fixed point theory. In most cases, it suffices to apply
Banach’s fixed point theorem for contractions or Schauder’s fixed point theorem for compact maps.
Since a bounded linear operator is always Lipschitz continuous, for applying Banach’s theorem we
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have to ensure only a Lipschitz condition for the nonlinear operator; this is a delicate problem, as we
shall see in the next chapter. On the other hand, for applying Schauder’s theorem we have to ensure
that one of the operators involved is compact, while for the other it suffices to be bounded. So there
is some interest in having (at least sufficient) conditions on the kernel function k which imply the
compactness of the corresponding operator K.

We consider this problem in the Wiener spaces WBVp which reduces to BV for the special choice
p = 1. To this end, we need condition (B) which we introduced at the beginning of this section.

Theorem 2.3.8 [BiGK1]. Under the conditions (A) and (B), the integral operator K maps WBVp
into WBVq and is compact for any p, q ≥ 1.

A comparison of Theorems 2.3.1 and 2.3.8 shows that the hypotheses for the boundedness and
compactness of K are the same. Of course, these hypotheses are only sufficient, but not necessary.
Let us show by means of an example that not every bounded integral operator in BV is compact.

Example 2.3.9. Since the kernel function k from Example 2.3.4 satisfies (A) and (C), but not (D), the
corresponding operator maps the space BV into itself and is bounded, but we may suspect that it not
compact. In fact, it is not. Consider the sequence (xn)n of characteristic functions xn(t) := χ[0,2−n](t).
This sequence is bounded, since ∥xn∥BV = 2. Moreover,

K(xm − xn)(t) =
∫ 2−m

2−n

t

t2 + s2
ds = arctan

(
1

2mt

)
− arctan

(
1

2nt

)
(m < n, 0 < t ≤ 1).

Since the function t 7→ K(xm − xn)(t) is nonnegative and attains its maximum at t = 2−(m+n)/2, we
conclude that

V ar(K(xm) −K(xn)) ≥ arctan(2(n−m)/2) − arctan(2−(n−m)/2) ≥ arctan
√

2 − arctan
1√
2
,

which shows that (K(xn))n cannot contain a convergent subsequence. 2

Now we are going to study the linear integral operator (2.0.3) in spaces of bounded Riesz variation
or Waterman variation. Denoting by RBVp the space of all functions of bounded Riesz p-variation,
see Section 1.3, we introduce a new condition (F). Here we suppose that the partial derivative kt(·, s)
of k with respect to the argument t is continuous for almost all s, and denote by κ the function
κ(t) := ∥kt(·, s)∥C . The new condition reads then

(F) ∀′s ∈ [0, 1] : kt(·, s) ∈ C and κ ∈ Lp.

Note that condition (A) implies that k(·, s) ∈ RBVp for almost all s ∈ [0, 1], so by Riesz’s theorem
(Theorem 1.3.5) we know that k(·, s) ∈ AC, provided that p > 1. Then kt(·, s) ∈ Lp for almost all
s ∈ [0, 1] which shows that condition (F) is not as restrictive as it may seem.

Theorem 2.3.10 [AD]. Under the conditions (A), (B), and (F), the integral operator K maps RBVp
into itself and is bounded.

Now let Λ be a Waterman sequence, and denote by V arΛ the corresponding Waterman variation
introduced in Section 1.4. In analogy to conditions (B) and (C), we consider now the conditions

(BΛ) ∃m ∈ L1, ∀′s ∈ [0, 1] : V arΛ(k(·, s) ≤ m(s);

(CΛ) ∃M > 0 ∀ξ ∈ [0, 1] : V arΛ

(∫ ξ

0
k(·, s) ds

)
≤M.

With this notation, we have then the following analogues to Theorem 2.3.3 and Theorem 2.3.8:
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Theorem 2.3.11 [BiCGS]. Suppose that k satisfies condition (A). Then the following two conditions
are equivalent.

(a) The kernel function k satifies condition (CΛ).

(b) The operator K maps the space BV into the space ΛBV and is bounded.

Theorem 2.3.12 [BiCGS]. Under the conditions (A) and (BΛ), the integral operator K maps ΛBV
into itself and is compact.

Observe that there is an asymmetry in Theorem 2.3.10: although condition (CΛ) explicitly refers to
the Waterman sequence Λ, we do not need the inclusion K(ΛBV ) ⊆ ΛBV in (b) to ensure (a), but
only the (apparently weaker) inclusion K(BV ) ⊆ ΛBV . This can be explaned as follows. Since the
characteristic function x = χ[0,ξ] belongs to BV , Theorem 2.3.7 (b) implies that K(x) ∈ ΛBV . But

K(x)(t) =
∫ 1

0
k(t, s)x(s) ds =

∫ ξ

0
k(t, s) ds,

and taking Λ-variations on both sides yields precisely condition (CΛ).

2.4. Singular operators. A particularly interesting special case of linear integral operators is that
of Volterra kernels, which means that k(t, s) ≡ 0 for s ≥ t. The corresponding operator (2.0.3) has
then the form

(2.4.1) V (x)(t) =
∫ t

0
k(t, s)x(s) ds

and is called Volterra operator. Thus, we may write the kernel function in (2.4.1) in the form

(2.4.2) v(t, s) :=

 k(t, s) for 0 ≤ s < t ≤ 1,

0 for 0 ≤ t ≤ s ≤ 1.

Volterra operators have in general much nicer properties than just integral operators like (2.0.3). For
example, the operator (2.4.1) has, in contrast to the operator (2.0.3), always spectral radius zero,
which is useful in the search for invariant balls for nonlinear operators of Volterra type, see Section
4.2.

Let us see how our conditions (A), (B), (C), (BΛ), and (CΛ) translate for the Volterra operator
(2.4.1).

As before, (A) requires that the function v(t, ·) is in L1, but here only on the interval [0, t]. condition
(B) becomes

(2.4.3) ∀′s ∈ [0, 1] : |v(s, s)| + V ar(v(·, s); [s, 1]) ≤ m(s),

where m is some nonnegative L1-function. Observe that, if we require the majorant m in (2.4.3) to
belong not only to L1, but to Lp for some p > 1, then also v(t, ·) ∈ Lp[0, t] for all t. This follows from
the estimate

|v(t, s)| ≤ |v(s, s) − v(t, s)| + |v(s, s)| ≤ V ar(v(·, s); [s, t]) + |v(s, s)| ≤ m(s)

which holds for almost all s ∈ [0, t].

Condition (C) may be replaced by

∃M > 0 ∀ξ ∈ [0, 1] : V ar

(∫ min {ξ,·}

0
k(·, s)) ds

)
≤M.

The following theorem shows that, due to the special structure (2.4.2) of the kernel, a Volterra
operator maps a very large space into BV .
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Theorem 2.4.1 [BiGK1]. Suppose that k satisfies condition (A) and (2.4.3), where m ∈ Lp for some
p ∈ [1,∞). Then the operator (2.4.1) maps the space Lp/(p−1) into the space BV and is bounded. In
case p = 1 the operator V : BV → BV is compact.

So Theorem 2.4.1 shows that, the milder the condition on the majorant m in (2.4.3) (i.e., the smaller
p), the smaller we may choose the space of departure Lp/(p−1) for V . Theorem 2.4.1 is proved by
showing that the estimate

(2.4.4) ∥V (x)∥BV ≤ ∥m∥Lp∥x∥Lp/(p−1)

holds for every x ∈ Lp/(p−1).

From Theorem 2.4.1 it follows that, whenever (xn)n is a bounded sequence which converges in the
Lp/(p−1)-norm to zero for some p ∈ [1,∞), the sequence (V (xn))n converges in the BV -norm to zero.
One may show that this is also true if (xn)n converges only a.e. on [0, 1] to zero. However, it is false
for p = ∞, i.e., Lp/(p−1) = L1, as the following example shows.

Example 2.4.2 [BiGK1]. For 0 ≤ t ≤ 1, let xn(t) := nχ[0,1/n](t). Clearly, the sequence (xn)n is
bounded in L1 and converges a.e. on [0, 1], but not in the L1-norm, to zero. Taking k(t, s) ≡ 1 for
0 ≤ s < t ≤ 1 we obtain

V (xn)(t) =
∫ t

0
xn(s) ds = nmin {t, 1/n} (0 ≤ t ≤ 1)

which shows that V ar(V (xn)) ≡ 1 for all n ∈ N. 2

In the setting of Waterman spaces, condition (BΛ) for Volterra operators reads

(2.4.5) |v(s, s)| + V arΛ(v(·, s); [s, 1]) ≤ m(s),

while condition (CΛ) becomes

(2.4.6) V arΛ

(∫ min {ξ,·}

0
k(·, s)) ds

)
≤M.

We get then the following result which is parallel to Theorem 2.4.1.

Theorem 2.4.3 [BiCGS]. Suppose that v satisfies condition (A) and (2.4.5), where m ∈ Lp for some
p ∈ [1,∞). Then the operator (2.4.1) maps the space Lp/(p−1) into the space ΛBV and is bounded.

Similarly as in the proof of Theorem 2.4.1, one gets here the estimate

∥V (x)∥ΛBV ≤ max {λ1, 1} ∥m∥Lp∥x∥Lp/(p−1)

for every x ∈ Lp/(p−1), where m is the Lp function from (2.4.5), and λ1 is the first element of the
Waterman sequence Λ = (λn)n.

In many applications, Volterra integral operators of type (2.4.1) with kernel function

(2.4.7) vα(t, s) :=


1

(t− s)α
for 0 ≤ s < t ≤ 1,

0 for 0 ≤ t ≤ s ≤ 1

are particularly important. In case 0 < α < 1 such operators are called weakly singular, in case α = 1
strongly singular. We consider here the weakly singular Volterra operator

(2.4.8) Vα(x)(t) =
∫ t

0

x(s)

(t− s)α
ds (0 ≤ t ≤ 1).
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It is obvious that the operator Vα satisfies condition (A) (see Section 2.3) for 0 < α < 1. We claim
that Vα also satisfies condition (C), but not condition (B), and so it exhibits the same behaviour as
the operator from Example 2.3.4.

To see this, observe that, for fixed ξ ∈ [0, 1] we have∫ ξ

0
vα(0, s) ds = 0

and

(2.4.9)
∫ ξ

0
vα(t, s) ds =

∫ min {ξ,t}

0

ds

(t− s)α
=

t1−α

1 − α
− (t− min {ξ, t})1−α

1 − α
(0 < t ≤ 1).

Since the function on the right-hand side of this equality is increasing in t on [0, ξ], and decreasing
in t on [ξ, 1], we obtain, similarly as in Example 2.3.4,

V ar

(∫ ξ

0
vα(·, s) ds

)
= 2

∫ ξ

0
vα(ξ, s) ds−

∫ ξ

0
vα(0, s) ds−

∫ ξ

0
vα(1, s) ds

=
2

1 − α
ξ1−α − 1

1 − α
− 1

1 − α
(1 − ξ)1−α ≤ 2

1 − α
=: M.

However, the kernel function vα cannot satisfy condition (B), because the function t 7→ vα(t, s) is not
bounded, let alone of bounded variation, for any s ∈ (0, 1). For the same reason, vα does not satisfy
(D). To check condition (E), observe that (2.4.9) implies∣∣∣∣∣

∫ ξ

0
[vα(t, s) − vα(τ, s)] ds

∣∣∣∣∣ =

∣∣∣∣∣ t1−α

1 − α
− (t− min {ξ, t})1−α

1 − α
− τ 1−α

1 − α
+

(τ − min {ξ, τ})1−α

1 − α

∣∣∣∣∣
≤ 1

1 − α

(
|t1−α − τ 1−α| + |t− min {ξ, t} − τ + min {ξ, τ}|1−α

)

≤ 1

1 − α

(
|t− τ |1−α + |t− min {ξ, t} − min {ξ, τ}|1−α

)

≤ 1

1 − α

(
|t− τ |1−α + (|t− τ | + |min {ξ, t} − τ + min {ξ, τ}|)1−α

)

≤ 1

1 − α

(
|t− τ |1−α + 21−α|t− τ |1−α

)
=

1 + 21−α

1 − α
|t− τ |1−α.

So for ε > 0 it suffices to choose

0 < δ ≤
(

1 − α

1 + 21−α

)1/(1−α)

ε1/(1−α)

to verify condition (E). To conclude, let us collect the various (mostly only sufficient) conditions on
k under which the corresponding integral operator K has certain analytical properties.

(A) & (B) ⇒ K(BV ) ⊆ BV bounded

(A) & (C) ⇔ K(BV ) ⊆ BV bounded

(A) & (B) ⇒ K(WBVp) ⊆ WBVq compact

(C) & (E) ⇒ K(BV ∩ C) ⊆ BV ∩ C compact

(A) & (B) & (F) ⇒ K(RBVp) ⊆ RBVp bounded

(A) & (CΛ) ⇔ K(BV ) ⊆ ΛBV bounded

(A) & (2.4.3) ⇒ V (L∞) ⊆ BV bounded

(A) & (2.4.5) ⇒ V (L∞) ⊆ ΛBV bounded

Table 2.2: The operators K and V in BV spaces
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Chapter 3. Nonlinear Operators in BV Spaces

In this chapter we study composition operators and superposition operators in BV and related more
general spaces.

Recall that the composition operator Cf generated by some function f : R → R acting on functions
x : [0, 1] → R is defined by

(3.0.1) Cf (x)(t) := f(x(t)) (0 ≤ t ≤ 1).

More generally, the superposition operator (or Nemytskij operator) Sf generated by some function
f : [0, 1] × R → R acting on functions x : [0, 1] → R is defined by

(3.0.2) Sf (x)(t) := f(t, x(t)) (0 ≤ t ≤ 1).

In the study of these operators in spaces of functions of bounded variation, the following 10 crucial
questions naturally arise.

1. Under what conditions on f we have Cf (BV ) ⊆ BV ?

2. Under what conditions on f is the operator Cf bounded on BV ?

3. Under what conditions on f is the operator Cf continuous on BV ?

4. Under what conditions on f is the operator Cf uniformly continuous on bounded subsets?

5. Under what conditions on f is the operator Cf Lipschitz continuous on bounded subsets?

6. Under what conditions on f we have Sf (BV ) ⊆ BV ?

7. Under what conditions on f is the operator Sf bounded on BV ?

8. Under what conditions on f is the operator Sf continuous on BV ?

9. Under what conditions on f is the operator Sf uniformly continuous on bounded subsets?

10. Under what conditions on f is the operator Sf Lipschitz continuous on bounded subsets?

Of course, the term “conditions” means here that we are interested in criteria which are both ne-
cessary and sufficient. Conditions which are only sufficient, or only necessary, are often easily found.
Recall that a (linear or nonlinear) operator is called bounded if it maps bounded sets into bounded
sets. In contrast to linear operators, a nonlinear operator may be bounded and discontinuous, or
continuous and unbounded.

While the answer to almost all questions for the operator (3.0.1) is now known, but many of these
questions for the operator (3.0.2) are open. This is not surprising, because the “interaction” of t and
u in the function f(t, u) in (3.0.2) makes the theory much more complicated (and, in fact, sometimes
leads to completely unexpected phenomena).

3.1. Composition operators in BV . We start this section with the solution of the first and second
question for the composition operator (3.0.1).

Theorem 3.1.1 [Jo]. The following two conditions are equivalent:

(a) The function f : R → R satisfies the local Lipschitz condition

(3.1.1) ∀r > 0∃Lr > 0∀u, v ∈ [−r, r] : |f(u) − f(v)| ≤ Lr|u− v|.
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(b) The operator Cf defined in (3.0.1) maps BV into itself.

Theorem 3.1.1 is rather subtle, inasmuch it is not possible to replace (local) Lipschitz continuity of
f in (a) by (global) Hölder continuity:

Example 3.1.2. Let Cf be the composition operator generated by the “seagull function”

f(u) := min
{√

|u|, 1
}
.

Then f is absolutely continuous and Hölder continuous (with Hölder exponent 1/2). However, Cf

maps the function

x(t) :=

 t2 sin2 1

t
for 0 < t ≤ 1,

0 for t = 0,

which belongs to BV , into the function

f(x(t)) :=

 t

∣∣∣∣sin 1

t

∣∣∣∣ for 0 < t ≤ 1,

0 for t = 0,

which does not. 2

Observe that Example 3.1.2 also shows that the composition of two functions of bounded variation
need not have bounded variation.

Before studying analytical properties of the composition operator (3.0.1), let us study some mapping
properties like injectivity, surjectivity, and bijectivity. It is rather obvious that the operator Cf is
bijective in BV if and only if the function f is bijective and both f and f−1 satisfy the local Lipschitz
condition (3.1.1) on R. Indeed, this is a direct consequence of Theorem 3.1.1 and the fact that C−1

f

(if it exists!) is the composition operator Cf−1 . Moreover, the following simple example shows that
we really need the condition f−1 ∈ Liploc(R) to ensure the bijectivity of Cf : BV → BV .

Example 3.1.3. The function f : R → R defined by f(u) := u3 is bijective with f−1 ̸∈ Liploc(R).
Clearly, the corresponding composition operator Cf is injective in BV . However, Cf is not surjective.
To see this, observe that the function

y(t) :=


1

n3
for t =

1

n
,

0 otherwise

belongs to BV . The only possible preimage x of y is

x(t) =


1

n
for t =

1

n
,

0 otherwise,

which does not belong to BV . 2

Surprisingly enough, the symmetry between f and Cf holds for injectivity, but not for surjectivity,
as the following theorem shows.

Theorem 3.1.4 [KRw]. (a) The injectivity of the operator Cf on BV implies the injectivity of the
function f on R, and vice versa.

(b) The surjectivity of the operator Cf on BV implies the surjectivity of the function f on R.

Note the similarity between the mapping behaviour of the inner composition operator Σφ and the
outer composition operator Cf : for the injectivity of Σφ we have a necessary and sufficient condition
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in terms of φ, while for its surjectivity we only have a necessary condition; for the injectivity of Cf

we have a necessary and sufficient condition in terms of f , while for its surjectivity we only have a
necessary condition.

The operator Cf in Example 3.1.3 is injective, but not surjective in BV . Conversely, in contrast to
multiplication operators in BV , where surjectivity implies injectivity (see Corollary 2.2.3 (c)), there
are composition operators in BV which are surjective, but not injective.

Example 3.1.5 [KRw]. Define f : R → R by

f(u) := min {u+ 2, |u|} =


2 + u for u < −1,

−u for −1 ≤ u ≤ 0,

u for u > 0.

Geometrically, the graph of f consists of three linear pieces with corner points at (−1, 1) and (0, 0).
Obviously, f is locally (even globally) Lipschitz on R, so the operator Cf maps BV into itself, by
Theorem 3.1.1. Moreover, Cf is not injective, which follows from Theorem 3.1.4 (a) or may be checked
directly. However, Cf : BV → BV is surjective, which may be seen as follows.

For fixed v ∈ R we have

f−1({v}) =


{v − 2} for v < 0,

{v − 2,−v, v} for 0 ≤ v ≤ 1,

{v} for v > 1.

Being bounded, every y ∈ BV maps [0, 1] into an interval [a, b] for some a < b. A somewhat
cumbersome reasoning [KRw, Lemma 6] shows that one can find a set A ⊆ [0, 1] with only finitely
many connected components such that

y−1([a, 1/3]) ⊆ A ⊆ y−1([a, 2/3)).

With the function y we associate a function x defined by

x(t) := (y(t) − 2)χA(t) + y(t)χ[0,1]\A(t) =

 y(t) − 2 for t ∈ A,

y(t) for t ̸∈ A.

Since A (and so also [0, 1] \A) has only finitely many connected components, both functions χA and
χ[0,1]\A belong to BV , hence x ∈ BV . Moreover, by construction we have y = Cf (x), which proves
surjectivity. 2

We may summarize our comparison between mapping properties of f ∈ Liploc(R) and Cf : BV → BV
as follows:

• Injectivity of Cf implies injectivity of f , and vice versa.

• Surjectivity of Cf implies surjectivity of f , but not vice versa.

• There are injective composition operators which are not surjective.

• There are surjective composition operators which are not injective.

• Bijectivity of Cf implies bijectivity of f with f−1 ∈ Liploc, and vice versa.
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Let us take a closer look at the last assertion. The crucial condition f−1 ∈ Liploc was reformulated in
[KRw] in the following form. Let us call a function f : R → R non-flat at u ∈ R if there are compact
intervals I, J ⊂ R such that u is an interior point of I, f |I : I → J is bijective, and (f |I)−1 ∈ Lip(J).
This name is motivated by the fact that a continuous function f : R → R is non-flat at u ∈ R if and
only if there are numbers m, δ > 0 such that |f(u1)−f(u2)| ≥ m|u1−u2| for all u1, u2 ∈ [u−δ, u+δ],
which means that f has locally a Lipschitz continuous inverse.

The surjective function f from Example 3.1.3, which does not generate a surjective operator Cf in
BV , is non-flat at every point u ∈ R \ {0}, but not at u = 0, the only preimage of v = 0. Similarly,
the surjective function f from Example 3.1.5, which generates a surjective operator Cf in BV , is
non-flat at every point u ∈ R \ {−1, 0}, where f(−1) = 1 and f(0) = 0. However, in contrast to
Example 3.1.3 we have more choices for preimages: for v = 1 we may take u = 1 ∈ f−1(1), while for
v = 0 we may take u = −2 ∈ f−1(0), and f is non-flat at both points u. This suggests the following
conjecture: The operator Cf defined by some f ∈ Liploc(R) is surjective in BV if and only if for each
v ∈ R there is some u ∈ f−1(v) such that f is non-flat at u. We were able to prove the “if” part
(which is not easy at all) [KRw], but not the “only if” part of this conjecture.

In the following Table 3.1 we summarize what we know about the mapping properties of the operators
we considered so far: the substitution operator (2.0.1), the multiplication operator (2.0.2), and the
composition operator (3.0.1).

φ surjective φ injective supp(µ) = [0, 1] suppδ(µ) = [0, 1] f injective f surjective

⇕ ⇑ ⇕ ⇕ ⇕ ⇑

Σφ injective Σφ surjective Mµ injective Mµ surjective Cf injective Cf surjective

Table 3.1: Mapping properties of some operators in BV

Example 3.1.3 shows that the implication for Cf in the fifth box in Table 3.1 cannot be inverted.
On the other hand, we do not know whether or not the implication for Σφ in the second box can be
inverted.

Now we are going to analyze the analytical properties of the operator Cf , like boundedness, continuity,
or Lipschitz continuity. Throughout this survey, we denote by

(3.1.2) Br = Br(X) := {x ∈ X : ∥x∥ ≤ r}

the closed ball centered at zero with radius r > 0 in a normed space (X, ∥·∥). Recall that an operator
between two normed spaces is called bounded if it maps bounded sets into bounded sets.

Theorem 3.1.6. Under the hypothesis (3.1.1), the operator Cf is automatically bounded in the norm
(1.1.14).

The proof of the following result is straightforward: indeed, condition (3.1.1) immediately implies
that Cf (Br(BV )) ⊆ B2Lr(BV ).

To decide whether or not the operator Cf is also continuous in the norm (1.1.14) if Cf (BV ) ⊆ BV
was a surprisingly difficult open problem for more than 50 years. Some sufficient conditions have
been given in the literature. Thus, in [BaBiKMc,BiGK1] it is shown that Cf is continuous if f is a
sum of power series centered at 0 with infinite radius of convergence, or if f is of class C1. In [DN,
Corollary 6.64] the authors prove that the condition f ∈ C1 even implies the uniform continuity of
Cf on bounded subsets of BV . On the other hand, Cf need not be uniformly continuous on bounded
subsets if f is locally Lipschitz [DN, Proposition 6.66], which by Josephy’s result is necessary and
sufficient for Cf (BV ) ⊆ BV .

The problem of deciding whether or not the operator Cf is always continuous in the norm (1.1.14)
whenever it maps BV into itself is now positively solved:
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Theorem 3.1.7. Under the hypothesis (3.1.1), the operator Cf is automatically continuous in BV .

Theorem 3.1.7 has an interesting history. In the paper [Mo] from 1937, Morse claims to prove that
the local Lipschitz continuity of f guarantees the continuity of Cf in the BV norm. However, the
proof of this claim is about 30 pages long, it uses cryptic tools from other fields, and its correctness
is at least doubtful. In the recent paper [Mc1], the author gives a more straightforward and elegant
proof of this fact.

An even shorter (and almost elementary) proof of Theorem 3.1.7 was given quite recently by Reinwand
in [Rw]. Since this proof gives some insight into general continuity properties of operators, we briefly
sketch the idea.

It is taught in every first year calculus course that the continuity of a sequence of functions between
two metric spaces carries over to the limit function under uniform convergence, but not necessarily
under pointwise convergence. In [Rw] the author introduces another type of convergence, called semi-
uniform convergence, and proves the following result: if (Cn)n is a sequence of continuous functions
Cn : X → Y , where X and Y are metric spaces, which converges semi-uniformly to some function
C : X → Y , then C is also continuous.

Now, the point is that this may be made more explicit if Cn and C are composition operators. Given
a sequence (fn)n in Liploc(R) and a function f ∈ Liploc(R), the author proves the following

Proposition 3.1.8 [Rw]. The following two statements are equivalent.

(a) The operator sequence (Cfn)n converges semi-uniformly in BV to the operator Cf .

(b) The relations

lim
n→∞

∥fn − f∥BV [−R,R] = 0, sup
n

lip(fn; [−R,R]) <∞

hold for each R > 0.

Observe that (b) is much weaker than convergence in Liploc(R) (i.e., in the norm ∥ · ∥Lip[−R,R]),
because we only impose convergence in the BV norm (1.1.14).

Now Theorem 3.1.7 follows readily from Proposition 3.1.8. In fact, f ∈ Liploc implies that (and is even
equivalent to) f ′ ∈ L∞[−R,R] for each R > 0. We can therefore choose a sequence of polynomials
(pn)n such that ∥pn − f ′∥L1[−R,R] → 0 as n → ∞, ∥pn∥L∞[−R,R] ≤ cR < ∞ for each R > 0, and the
sequence (pn)n does not depend on R. The functions fn : [−R,R] → R defined by

fn(u) := f(0) +
∫ u

0
pn(v) dv (|u| ≤ R)

satisfy then

fn ∈ Liploc, ∥fn − f∥BV [−R,R] = ∥pn − f ′∥L1[−R,R] → 0, lip(fn; [−R,R]) ≤ cR

for each R > 0. By Proposition 3.1.8, the operator sequence (Cfn)n converges semi-uniformly in BV
to the operator Cf , and since each Cfn is continuous in BV , the operator Cf is continuous as well.

We already mentioned a sufficient condition for the uniform continuity of Cf on bounded subsets of
BV ; let us restate this for further reference as

Theorem 3.1.9 [DN]. If the function f : R → R is C1, the operator Cf defined in (3.0.1) is
uniformly continuous on bounded subsets of BV .

Now we turn to the problem of characterizing the Lipschitz continuity of Cf on bounded subsets of
BV . One might ask why we did not consider the global Lipschitz continuity of Cf in BV in our list
of questions, i.e., conditions for

(3.1.3) ∥Cf (x) − Cf (x̃)∥BV ≤ L∥x− x̃∥BV (x, x̃ ∈ BV )
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with some constant L > 0. The reason is simple: this would lead to a strong degeneracy for the
generating function f :

Theorem 3.1.10 [MM]. The following two conditions are equivalent:

(a) The function f : R → R is affine, i.e.,

(3.1.4) f(u) = αu+ β (u ∈ R)

for some constants α, β ∈ R.
(b) The operator Cf defined in (3.0.1) satisfies the global Lipschitz condition (3.1.3).

Theorem 3.1.10 is quite surprising: it shows that, if we want to apply the Banach fixed point principle
to a problem involving composition operators in the space BV , we can do this only if the problem
is actually linear. On the other hand, in most applications it suffices to impose a local Lipschitz
condition of the form

(3.1.5) ∥Cf (x) − Cf (x̃)∥BV ≤ Lr∥x− x̃∥BV (x, x̃ ∈ Br(BV ))

with some constant Lr > 0 which may depend on the “size” of the bounded set containing x and x̃.
Here we arrive at a condition which is milder than being affine:

Theorem 3.1.11 [AMS]. The following two conditions are equivalent:

(a) The function f : R → R is C1, and its derivative satisfies the local Lipschitz condition

(3.1.6) ∀r > 0∃Lr > 0∀u, v ∈ [−r, r] : |f ′(u) − f ′(v)| ≤ Lr|u− v|.

(b) The operator Cf defined in (3.0.1) satisfies the local Lipschitz condition (3.1.5).

The following example illustrates the difference between the preceding two theorems.

Example 3.1.12. Let Cf be the composition operator generated by the function f(u) := u2. By
Theorems 3.1.1 and 3.1.8, the corresponding operator Cf maps BV into itself and is both bounded
and continuous. We claim that Cf satisfies a local, but not a global Lipschitz condition in the BV -
norm (1.1.14).

To see this, we first recall that BV is an algebra, as we have seen in Section 1.1, which is imbedded into
the algebra of all bounded functions with the sup norm ∥·∥∞. So for x, x̃ ∈ BV with ∥x∥BV , ∥x̃∥BV ≤ r
we have

∥Cf (x) − Cf (x̃)∥BV = ∥(x+ x̃)(x− x̃)∥BV ≤ ∥x+ x̃∥∞∥x− x̃∥BV + ∥x+ x̃∥BV ∥x− x̃∥∞.

Since ∥x∥∞ ≤ ∥x∥BV , we conclude that (3.1.5) holds with Lr := 4r.

On the other hand, Theorem 3.1.10 implies that Cf cannot be globally Lipschitz continuous on
BV . Indeed, if we suppose that (3.1.3) is true, we could take x(t) ≡ 2L and x̃(t) ≡ 0 and get a
contradiction. 2

Our final result in this section is a characterization of compact composition operators in BV . It is
well-known that the operator (3.0.1) (and even the operator (3.0.2)) can be compact in many function
spaces, like C or Lp, only if the generating function is constant. This shows, loosely speaking, that
it does not make sense to apply the Schauder fixed point theorem to a problem which contains a
composition operator, but no other operator which is compact. The same is true in the space BV :

Theorem 3.1.13. The following two conditions are equivalent:

(a) The function f : R → R is constant on R.
(b) The operator Cf defined in (3.0.1) is compact in BV .
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Proof. The implication (a) ⇒ (b) is trivial. So assume that Cf : BV → BV is compact, but the
generating function is not constant. This means that we can find real numbers a and b with a < b
and (without loss of generality) f(a) < f(b). Here we may assume that a = 0, f(a) = 0, b = 1, and
f(b) = 1, because otherwise we may pass from f to the function

g(t) :=
f((b− a)t+ a) − f(a)

f(b) − f(a)

which generates a composition operator Cg : BV → BV that is compact if and only if Cf is compact.

The sequence (xn)n defined by xn(t) := χ(0,1/n)(t) is bounded in BV , so by our compactness assump-
tion the sequence (yn)n defined by yn(t) := f(xn(t)) has a convergent subsequence (ynk

)k. Denote its
limit by y, so

∥ynk
− y∥BV → 0 (k → ∞).

But
ynk

(t) = (f ◦ xnk
)(t) = f(χ(0,1/nk)(t)) = χ(0,1/nk)(t),

since f(0) = 0 and f(1) = 1. Moreover, it is clear that the sequence (ynk
)k converges pointwise on

[0, 1] to zero, so y(t) ≡ 0. On the other hand

∥ynk
∥BV = ∥χ(0,1/nk)∥BV ≡ 2,

a contradiction. It follows that our assumption was false, and so f has to be constant as claimed. �

To conclude, we summarize our results on the autonomous composition operator (3.0.1) in the follo-
wing synoptic table.

f ∈ Liploc(R) ⇔ Cf (BV ) ⊆ BV

f ∈ Liploc(R) ⇔ Cf bounded

f ∈ Liploc(R) ⇔ Cf continuous

f ∈ C1(R) ⇒ Cf uniformly continuous on bounded sets

f ′ ∈ Liploc(R) ⇔ Cf Lipschitz continuous on bounded sets

f affine ⇔ Cf globally Lipschitz continuous

f constant ⇔ Cf compact

Table 3.2: The operator Cf in BV

Table 3.2 shows that the problem of characterizing boundedness, continuity, and (global or local)
Lipschitz continuity of the composition operator Cf are completely solved. As we shall see in the
following section, this is far from being true for the superposition operator Sf .

3.2. Superposition operators in BV . As pointed out above, the behavior of the superposition
operator (3.0.2) in BV is much more complicated than in the autonomous case (3.0.1). For making
the presentation more coherent and for not overburdening the formulation of the theorems which
follow, we collect right from the beginning of this section 7 technical conditions (A) – (G) on the
function f : [0, 1] × R → R.

(A) ∃L > 0∀u, v ∈ R : sup
0≤t≤1

|f(t, u) − f(t, v)| ≤ L|u− v|.

(B) ∀r > 0∃Lr > 0∀u, v ∈ [−r, r] : sup
0≤t≤1

|f(t, u) − f(t, v)| ≤ Lr|u− v|.
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(C) ∃M > 0∀u ∈ R : V ar(f(·, u); [0, 1]) ≤M.

(D) ∀r > 0∃Mr > 0∀u ∈ [−r, r] : Var(f(·, u); [0, 1]) ≤Mr.

(E) ∃M > 0∀{t0, . . . , tm} ∈ P [0, 1]∀u0, . . . , um−1 ∈ R :
m∑
j=1

|f(tj, uj−1) − f(tj−1, uj−1)| ≤M.

(F)


∀r > 0∃Mr > 0∀{t0, . . . , tm} ∈ P [0, 1]∀u0, . . . , um−1 ∈ [−r, r] :

m−1∑
j=1

|uj − uj−1| ≤ r ⇒
m∑
j=1

|f(tj, uj−1) − f(tj−1, uj−1)| ≤Mr.

(G)


∀r > 0∃Mr > 0∀{t0, . . . , tm} ∈ P [0, 1]∀u0, . . . , um ∈ [−r, r] :

m∑
j=1

|uj − uj−1| ≤ r

⇒
m∑
j=1

|f(tj, uj) − f(tj−1, uj)| ≤Mr and
m∑
j=1

|f(tj−1, uj) − f(tj−1, uj−1)| ≤Mr.

One could call (A) a Lipschitz condition for f(t, ·), uniformly in t, (B) a local Lipschitz condition for
f(t, ·), uniformly in t, (C) a variation condition for f(·, u), uniformly in u, (D) a variation condition
for f(·, u), locally uniformly in u, (E) a mixed condition for f , (F) a local mixed condition for f , and
(G) a (local) crossed mixed condition for f .

Observe that (B) implies (G) with Mr := Lr max {r, 1}; we will use this fact later in Chapteer 4.

There are some obvious interconnections between the conditions (A) – (G) which we collect in the
following Table 3.3.

(A) ⇒ (B) (C) ⇒ (D)

(E) ⇒ (F) ⇐ (G)

Table 3.3: Interconnection between (A) – (G) (general f)

None of these conditions are equivalent. Clearly, (B) ̸⇒ (A) (take f(t, u) = u2), and (D) ̸⇒ (C) (take
f(t, u) = tu). Moreover, we will show in Example 3.2.2 below that the implication (F) ⇒ (E) is not
true.

Keeping in mind the interconnections between the conditions (A) – (G), we start now a series of
results which connect these conditions to the properties of the superposition operator Sf generated
by f : [0, 1] × R → R. Here functions of the special type

(3.2.1) f(t, u) :=

 ϕ(u) for t = 0,

0 for 0 < t ≤ 1

will play a prominent role, where ϕ : R → R is given. Several examples and counterexamples may be
constructed by adjusting the properties of ϕ in order to fulfill (or not to fulfill) a prescribed part of
the conditions (A) – (G). This fact is based on the observation that, by definition of f , the equality

Sf (x)(t) − Sf (y)(t) = [ϕ(x(0)) − ϕ(y(0))]χ{0}(t) (0 ≤ t ≤ 1)

holds for all functions x, y ∈ BV , which implies the following
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Lemma 3.2.1. Let Sf be the superposition operator genated by the function (3.2.1). Then the following
assertions are true.

(a) The function ϕ : R → R is bounded if and only if the operator Sf : BV → BV is bounded.

(b) The function ϕ : R → R is continuous if and only if the operator Sf : BV → BV is continuous.

(c) The function ϕ : R → R is Lipschitz continuous if and only if the operator Sf : BV → BV is
Lipschitz continuous.

(d) The function ϕ : R → R is locally Lipschitz continuous iff the operator Sf : BV → BV is locally
Lipschitz continuous.

It is illuminating to see how the technical conditions (A) – (G) look like for the special function
(3.2.1). We summarize with the following scheme.

• Condition (A) for (3.2.1) means ϕ ∈ Lip(R).

• Condition (B) for (3.2.1) means ϕ ∈ Lip([−r, r]) and V ar(f(·, u); [0, 1]) = |ϕ(u)|.

• Condition (C) for (3.2.1) means ϕ ∈ B(R).

• Condition (D) for (3.2.1) means ϕ ∈ B([−r, r]).

• Condition (E) for (3.2.1) means ϕ ∈ B(R).

• Condition (F) for (3.2.1) means ϕ ∈ B([−r, r]).

• Condition (G) for (3.2.1) means ϕ ∈ BV ([−r, r]).

This scheme shows that we obtain additional implications in Table 3.3 and get the stronger Table
3.4.

(A) ⇒ (B) (C) ⇒ (D)

⇕ ⇕

(E) ⇒ (F) ⇐ (G)

Table 3.4: Interconnection between (A) – (G) (f from (3.2.1))

Our first example in this section shows that (F) does not imply (E).

Example 3.2.2 [BiGK1]. Choosing ϕ(u) := u in (3.2.1), the corresponding function f : [0, 1]×R →
R does not satisfy (E), because for the partition P [0, 1] := {0, 1} and an arbitrary point u0 ∈ R we
have |f(1, u0) − f(0, u0)| = |u0|, contradicting (E) if |u0| > M .

On the other hand, choosing {t0, . . . , tm} ∈ P [0, 1] and u0, . . . , um−1 ∈ [−r, r] with

m−1∑
j=1

|uj − uj−1| ≤ r,

we get
m∑
j=1

|f(tj, uj−1) − f(tj−1, uj−1)| = |f(0, u0)| = |u0| ≤ r,

so (F) holds with Mr := r. Observe that f in this example satisfies (A) (and so also (B)), as well as
(D), since

V ar(f(·; [0, 1]) = |f(0, u)| = |u|.

For the same reason, however, f does not satisfy (C). 2
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We remark that the first example of a function f with the same properties as the function in Example
3.2.2 was contructed in the paper [BaBiKMc].

Let us now check the sufficiency (or necessity) of the conditions (A) – (G) for the acting condition
Sf (BV ) ⊆ BV and the analytical properties of Sf . To begin with, we remark that Lyamin [L]
claimed that conditions (B) and (D) together imply Sf (BV ) ⊆ BV . This seems quite natural, but
unfortunately, it is false, as is shown by the following counterexample due to Maćkowiak.

Example 3.2.3 [Mc]. For n = 2, 3, 4, . . ., let

cn := 1 − 1

n
, wn :=

1

2n
, In := (cn − wn, cn + wn),

and define f : [0, 1] × R → R by

f(t, u) :=


1

n

(
1 − |u− cn|

wn

)
for t = cn and u ∈ In,

0 otherwise.

Then f satisfies (B) (even (A)) with L = 2, as well as (D) (even (C)) with M = 22. However, for
x(t) := t we have

Sf (x)(t) = f(t, t) =


1

n
for t = 1 − 1

n
,

0 otherwise,

and this function clearly does not belong to BV . 2

The first correct sufficient conditions have been obtained by Bugajewska in 2010 and Bugajewska et
al. in 2015 and read as follows.

Theorem 3.2.4 [Ba]. Suppose that the conditions (A) and (E) are fulfilled. Then Sf (BV ) ⊆ BV ,
and Sf is bounded.

Theorem 3.2.5 [BaBiKMc]. Suppose that the conditions (B) and (F) are fulfilled. Then Sf (BV ) ⊆
BV , and Sf is bounded.

Since (A) ⇒ (B) and (E) ⇒ (F), but neither (B) ⇒ (A) nor (F) ⇒ (E), Theorem 3.2.5 is actually
stronger than Theorem 3.2.4. In fact, the function f in Example 3.2.3 satisfies (B) (even (A)) with
L = 1, but not (E), as we have seen there. Since Sf (BV ) ̸⊆ BV , the function f cannot satisfy (F),
by Theorem 3.2.5.

The hypotheses given in Theorems 3.2.4 and 3.2.5 are only sufficient. Closer scrutiny reveals that
condition (G) is exactly what we need to characterize bounded superposition operators in BV :

Theorem 3.2.6 [BaBiKMc]. The following two conditions are equivalent:

(a) The function f : [0, 1] × R → R satisfies condition (G).

(b) The operator Sf maps BV into itself and is bounded.

As pointed out above, the condition (B) and (F) in Theorem 3.2.5 are only sufficient for the boun-
dedness of the operator Sf . We illustrate this for condition (B) by the following simple

Example 3.2.7. Let ϕ(u) := min
{√

|u|, 1
}

be the seagull function from Example 3.1.2, and define

f : [0, 1] × R → R by (3.2.1). A straightforward calculation shows that x ∈ BV with ∥x∥BV ≤ r
implies ∥Sf (x)∥BV ≤ 2

√
r, so Sf maps BV into itself and is bounded. On the other hand, condition

(B) is certainly not fulfilled for t = 0.
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However, by Theorem 3.2.6 the function f satisfies condition (G). Indeed, if a partition {t0, t1, . . . , tm}
of [0, 1] and a collection {u0, u1, . . . , um} of real numbers meet the hypotheses of (G), then

m∑
j=1

|f(tj, uj) − f(tj−1, uj)| = |f(0, u1)| = min
{√

|u1|, 1
}
≤ 1

and
m∑
j=1

|f(tj−1, uj) − f(tj−1, uj−1)| = |f(0, u1) − f(0, u0)|

=
∣∣∣min

{√
|u1|, 1

}
− min

{√
|u0|, 1

}∣∣∣ ≤ √
|u1 − u0| ≤

√
2r.

Consequently, we may choose Mr := max {
√

2r, 1} in condition (G). 2

The fact that boundedness is included in Theorem 3.2.6 (b) is somewhat annoying: One could ask
whether or not condition (G) is also necessary for the mere inclusion Sf (BV ) ⊆ BV without the
boundedness requirement on Sf . The following example shows that this is not true because, in
contrast to the composition operator Cf , the superposition operator Sf need not be bounded, nor
continuous, if it maps BV into itself:

Example 3.2.8 [BaBiKMc]. Let ϕ(u) := 1/u for u ̸= 0 and ϕ(0) := 0, and define f : [0, 1]×R → R
by (3.2.1). Clearly, we have Sf (BV ) ⊆ BV . However, the sequence (xn)n defined by

xn(t) :=


1/n for t = 0,

0 for 0 < t ≤ 1

is bounded in BV , and even converges to zero, since ∥xn∥BV = 2
n
. However, Sf maps this sequence

into the sequence

Sf (xn)(t) = f(t, xn(t)) =


n for t = 0,

0 for 0 < t ≤ 1

which is unbounded, since ∥Sf (xn)∥BV = 2n. Consequently, Sf is not bounded in BV . 2

Note that we might have used also Lemma 3.2.1 in Example 3.2.8, because that function ϕ is neither
bounded nor continuous on R.

As far as we know, a criterion, both necessary and sufficient, for the acting condition Sf (BV ) ⊆ BV
is not known. Such a criterion should be weaker than condition (G), but cover the function f from
the preceding Example 3.2.8. From Theorems 3.2.4, 3.2.5, and 3.2.6 it follows that the function f in
Example 3.2.8 cannot satisfy any of the conditions (E), (F), or (G); this can also be proved directly.

Concerning the boundedness of Sf , the following result seems to be of independent interest. It shows
that the boundedness of f is reflected in the boundedness of Sf :

Theorem 3.2.9 [BaBiKMc]. (a) If condition (B) holds for f , then Sf is bounded if and only if f
is locally bounded.

(b) If Sf (BV ) ⊆ BV , then the set

Tr :=

{
t : 0 ≤ t ≤ 1, sup

|u|≤r
|f(t, u)| = ∞

}

is finite for every r > 0.

Part (b) in Theorem 3.2.9 shows, loosely speaking, that f(·, u) cannot become unbounded in the
neighbourhood of “too many points” if Sf maps BV into itself. For instance, in Example 3.2.8 we
have Tr = {0} for any r > 0.
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3.3. Continuity properties. Now we consider the problem of finding conditions for the continuity
(or stronger properties) of the operator (3.0.2) in BV . Example 3.2.8 shows that, in contrast to the
composition operator Cf , the superposition operator Sf is not automatically continuous if it maps BV
into itself. In fact, the sequence (xn)n constructed there satisfies ∥xn∥BV → 0, but ∥Sf (xn)∥BV → ∞
as n→ ∞, so Sf cannot be continuous at the zero function x0(t) ≡ 0.

A sufficient condition for the continuity of Sf is that f be continuously differentiable on [0, 1] × R.
Under this hypothesis, one can say even more:

Theorem 3.3.1 [Mc1]. Suppose that f ∈ C1. Then Sf is uniformly continuous on bounded subsets
of BV .

Interestingly, the converse of Theorem 3.3.1 is far from being true, for two reasons. First of all, one
may show that Sf need not be continuous if f is Lipschitz in both variables, instead of being C1. It
is even more striking that even a discontinuous function f may generate a superposition operator Sf

which is continuous in BV .

Example 3.3.2 [Mc1]. First we define an auxiliary function ϕ : [0, 1] × [1/2, 1] → R by

ϕ(t, u) :=



t for 0 ≤ t ≤ 1/2 and u ≥ 2t,

u− t for 0 ≤ t ≤ 1/2 and u ≤ 2t,

u+ t− 1 for 1/2 ≤ t ≤ 1 and u ≤ 2 − 2t,

1 − t for 1/2 ≤ t ≤ 1 and u ≥ 2 − 2t.

Afterwards we define f : [0, 1] × R → R for n = 0, 1, 2, . . . by

f(t, u) :=



1

2
−
∣∣∣∣t− 1

2

∣∣∣∣ for u ≥ 1,

0 for u ≤ 0,

2−nϕ (2n[t− 2−nent(t2n)], 2nu) for 2−(n+1) ≤ u ≤ 2−n,

where ent(r) denotes the integer part of r ∈ R. It is not hard to check that f is well-defined
and continuous. A more cumbersome calculation shows that f is globally Lipschitz (with Lipschitz
constant 2) on [0, 1] × R, which implies that Sf (BV ) ⊆ BV . However, f is not C1, since it is not
differentiable at (t, u) = (1/2, 1).

We claim that Sf is not continuous at the zero function x0(t) ≡ 0. From the definition of f it follows
that Sf (x0) = x0. For n = 0, 1, 2, . . ., consider the sequence (xn)n of constant functions xn(t) ≡ 2−n.
Clearly, ∥xn∥BV = 2−n, so (xn)n converges to x0 as n→ ∞. On the other hand,

V ar(Sf (xn); [0, 1]) = V ar(f(·, 2−n); [0, 1]) ≡ 1 (n = 1, 2, 3, . . .),

and so the sequence (Sf (xn))n cannot converge to x0. 2

Example 3.3.3 [BiGK1]. The function f from Example 3.2.2 is certainly discontinuous on the
positive vertical axis. Nevertheless, the corresponding operator Sf not only maps BV into itself, but
is everywhere continuous in the BV -norm. 2

For the reader’s ease, let us recall which of the conditions (A) – (G) stated at the beginning are
fulfilled by the examples of this section.
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Example (A) (B) (C) (D) (E) (F) (G)

3.2.2 yes yes no yes no yes yes

3.2.3 yes yes yes yes no no no

3.2.7 no no yes yes yes yes yes

3.2.8 no no no no no no no

3.3.2 yes yes yes yes yes yes yes

Table 3.5: Properties of f in the above examples

Sometimes one is not interested in the global continuity on the whole space, but in the continuity at
just a single point. In this connection, we fix x ∈ BV and impose the following new condition.

(H)



∀ε > 0∃δ > 0∀{t0, . . . , tm} ∈ P [0, 1]∀u0, . . . , um ∈ [−δ, δ] :
m∑
j=1

|uj − uj−1| ≤ δ

⇒
m∑
j=1

|[f(tj, uj + x(tj)) − f(tj−1, uj + x(tj−1)] − [f(tj, x(tj)) − f(tj−1, x(tj−1))]| ≤ ε

and
m∑
j=1

|f(tj−1, uj + x(tj−1)) − f(tj−1, uj−1 + x(tj−1))| ≤ ε.

Observe that (H) implies (G) if f(t, 0) ≡ 0 (i.e., Sf (x0) = x0) and we take x0(t) ≡ 0. The following
result gives a necessary and sufficient condition for continuity at a point.

Theorem 3.3.4 [Mc1]. The following two conditions are equivalent:

(a) The function f : [0, 1] × R → R satisfies condition (H).

(b) The operator Sf maps BV into itself and is continuous at x.

Clearly, if f is C1 on [0, 1]×R, then f is absolutely continuous on each compact subset of [0, 1]×R,
and so condition (H) holds for every x ∈ BV . The functions f in the Examples 3.2.8 and 3.3.2 have
been constructed in such a way that the corresponding operator Sf is discontinuous at x = θ. By
Theorem 3.3.4, neither of the two functions can satisfy condition (H) at x = θ. Indeed, this follows
from the fact that they do not satisfy (G), and that f(t, 0) ≡ 0 in both cases.

Now we consider global Lipschitz continuity of Sf in BV , i.e., the condition

(3.3.1) ∥Sf (x) − Sf (x̃)∥BV ≤ L∥x− x̃∥BV (x, x̃ ∈ BV )

with some constant L > 0. The following is parallel to Theorem 3.1.10 and shows that (3.3.1) leads to
a strong degeneracy for the regularization (2.2.6) of the generating function f in the first argument:

Theorem 3.3.5 [MM]. The following two conditions are equivalent:

(a) The right regularization of the function f : [0, 1] × R → R defined by

(3.3.2) f#(t, u) :=

 lim
s→t+

f(s, u) for 0 ≤ t < 1,

f(1, u) for t = 1

is affine, i.e.,
f#(t, u) = α(t)u+ β(t) (t ∈ [0, 1], u ∈ R)

for some functions α, β ∈ BV .

(b) The operator Sf defined in (3.0.2) satisfies the global Lipschitz condition (3.3.1).
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It is clear that in the autonomous case f : R → R there is no difference between f and f#, since
the regularization refers only to the variable t. One might ask whether or not, under the hypothesis
(3.3.1), the function f itself is also affine, and not only its right regularization f#. The following
example shows that the answer is negative:

Example 3.3.6 [MM]. Here we go back to Example 2.2.9. Let {r0, r1, r2, . . .} be an enumeration
of all rational numbers in [0, 1] (r0 := 0), and let ϕ : R → R be any function satisfying ϕ(0) = 0 and
|ϕ(u) − ϕ(v)| ≤ ℓ|u− v|. We define f : [0, 1] × R → R by

f(t, u) :=

 2−kϕ(u) if t = rk,

0 otherwise.

For any partition P = {t0, t1, . . . , tm} ∈ P[0, 1] and x ∈ BV we have

m∑
j=1

|Sf (x)(tj) − Sf (x)(tj−1)| ≤ 2
∞∑
k=0

|f(rk, x(rk))| = 2
∞∑
k=0

2−k|ϕ(x(rk))| ≤ 4ℓ∥x∥∞,

which shows that Sf maps the space BV into itself and is bounded. Furthermore, for x, y ∈ BV and
P = {t0, t1, . . . , tm} as above we obtain the estimate

m∑
j=1

|Sf (x)(tj) − Sf (y)(tj) − Sf (x)(tj−1) + Sf (y)(tj−1)|

≤ 2
m∑
j=0

|f(tj, x(tj)) − f(tj, y(tj))| ≤ 2
∞∑
k=0

|f(rk, x(rk)) − f(rk, y(rk))|

≤ 2
∞∑
k=0

2−k|ϕ(x(rk)) − ϕ(y(rk))| ≤ 2ℓ
∞∑
k=0

2−k|x(rk) − y(rk)|

= 2ℓ|x(0) − y(0)| + 2ℓ
∞∑
k=1

2−k|x(rk) − y(rk)| ≤ 2ℓ∥x− y∥BV .

This together with the trivial estimate |Sf (x)(0) − Sf (y)(0)| ≤ ℓ|x(0) − y(0)| shows that Sf satisfies
the global Lipschitz condition (3.3.1) with L = 2ℓ, although f is not affine. 2

It is not hard to see that f#(t, u) ≡ 0 on [0, 1) for the function f in Example 3.3.6, in accordance
with Theorem 3.3.5.

Note that also the function f from Example 3.2.2 can serve as an example of a non-affine function
which generates a Lipschitz continuous operator in BV . Indeed, this follows from the global Lipschitz
continuity of ϕ(u) = u on R and Lemma 3.2.1 (c). Also in this case it is easy to see that f#(t, u) ≡ 0,
in accordance with Theorem 3.3.5.

Let us now take a closer look at compactness. As Theorem 3.1.13 shows, the composition operator
Cf is never compact in BV , except for the trivial case when f is constant. To see that the situation
is different for superposition operators, let us go back for a moment to the multiplication operator
Mµ which we studied in Section 2.2.

Clearly, the multiplication operator Mµ in (2.2.1) may be viewed as a special superposition operator
Sf which is generated by the function f(t, u) = µ(t)u, with µ ∈ BV . We have seen in Section 2.2
that in case of a countable support supp(µ), the operator Mµ is compact, so there are compact
superposition operators in BV which are not constant. Let us briefly consider an example.

Example 3.3.7. The function f from Example 3.2.2 is discontinuous, but generates a continuous
superposition operator Sf in BV , as we have observed in Example 3.3.3. Since Sf is a multiplication
operator Mµ with µ = χ{0}, the operator Sf is also compact in BV . 2

One could conjecture that the result for multiplication operators carries over to general superposition
operators, requiring that supp(f(·, u)) is countable for each u ∈ R. However, the following examples
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show that this condition is not necessary for the compactness of Sf , and it even does not guarantee
the acting condition Sf (BV ) ⊆ BV .

Example 3.3.8. Define f : [0, 1] × R → R by f(t, u) ≡ 1. Then the corresponding operator Sf is
clearly compact in BV , but supp(f(·, u)) = [0, 1] for each u. 2

Example 3.3.9. Define f : [0, 1] × R → R by

f(t, u) :=

 1 for t = u = 1/n (n ∈ N),

0 otherwise.

Then supp(f(·, u)) is finite (or empty) for each u ∈ R. On the other hand, the operator Sf does not
map BV into itself, as can be seen by the choice x(t) := t. 2

In view of these examples, the question arises to find nonconstant compact superposition operators
which are not multiplication operators. The following theorem shows that this is not possible, under
the additional assumption that f(·, u) be continuous for all u. Observe that this assumptions excludes
multiplication operators, because in this case supp(f(·, u)) cannot be countable, by the intermediate
value theorem.

Theorem 3.3.10. Assume that f(·, u) is continuous for all u ∈ R. Moreover, suppose that the
corresponding operator Sf maps BV into itself and is both continuous and compact. Then f does not
depend on u, and so Sf is constant.

Proof. Fix u ∈ R\{0} and a ∈ [0, 1], and let an := a+1/n (or an := a−1/n if a = 1). For n sufficiently
large, the sequence (xn)n defined by xn := uχan is then bounded in BV , since ∥xn∥BV ≤ 2|u|. This
sequence is mapped by Sf into the sequence (yn)n with

yn(t) = f(t, xn(t)) =

 f(t, u) for t = an,

f(t, 0) for t ̸= an.

Since Sf is compact, there exists some subsequence (ynk
)k of (yn)n converging in the BV -norm (and

so also pointwise) to some y ∈ BV . We claim that y(t) = f(t, 0) for all t ∈ [0, 1]. To see this, we
distinguish two cases.

1st case: t = a. Then ynk
(t) = ynk

(a) = f(a, xnk
(a)) = f(a, 0), since a ̸= an for all n. Consequently,

y(a) = f(a, 0) as well.

2nd case: t ̸= a. Then also t ̸= an for n large enough, and so again ynk
(t) = f(t, xnk

(t)) = f(t, 0),
hence y(t) = f(t, 0) as claimed.

Now, considering the special partition {0, a, ank
, 1} yields

V ar(ynk
− y; [0, 1]) ≥ |ynk

(a) − y(a) − ynk
(ank

) + y(ank
)|

= |f(a, 0) − f(a, 0) − f(ank
, u) + f(ank

, 0)|

= |f(ank
, u) − f(ank

, 0)| → |f(a, u) − f(a, 0)|

as k → ∞. But ∥ynk
− y∥BV → 0, as k → ∞, since y is the limit of the sequence (ynk

)k. We conclude
that f(a, u) = f(a, 0), hence f(t, u) = f(t), since a and u were arbitrary. �

The following Table 3.6 shows that the description of analytical properties in terms of f is much
more difficult for the superposition operator Sf than it was for the composition operator Cf .
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(B) & (F) ⇒ Sf : BV → BV bounded

(G) ⇔ Sf : BV → BV bounded

(B) & f locally bounded ⇔ Sf : BV → BV bounded

f ∈ C1 ⇒ Sf : BV → BV uniformly continuous

f# affine ⇔ Sf : BV → BV globally Lipschitz

f = f(t) ⇔ Sf : BV → BV continuous and compact

Table 3.6: The operator Sf in BV

The results of this section show that most conditions on f are only sufficient to imply a certain
property of the corresponding superposition operator Sf . There is an interesting condition which
shows that conditions (B) and (D) are “almost” necessary for the boundedness of Sf in BV . The
precise formulation is as follows.

Theorem 3.3.11 [DN]. Suppose that the operator Sf generated by some function f : [0, 1]×R → R
maps BV into itself and is bounded. Then f may be represented as a sum

f(t, u) = g(t, u) + h(t, u),

where the functions g and h have the following properties.

(a) The function g satisfies the conditions (B) and (D).

(b) The function h is zero on ([0, 1] \ C) × R, where C ⊂ [0, 1] is some countable subset.

At this time let us take a deep breath and see what we have learned so far. Our results show that
the composition operator (3.0.1) and the superposition operator (3.0.2) have a completely different
behavior in the space BV . To conclude this section, let us briefly summarize these differences:

• Whenever the operator Cf maps BV into itself, it is automatically bounded; this is not true
for the operator Sf .

• Whenever the operator Cf maps BV into itself, it is automatically continuous; this is not true
for the operator Sf .

• The condition Cf (BV ) ⊆ BV holds precisely for locally Lipschitz functions f ; the condition
Sf (BV ) ⊆ BV may hold even for discontinuous functions f .

• Local Lipschitz continuity of u 7→ f(u) guarantees the continuity of Cf in the BV -norm;
however, even global Lipschitz continuity of (t, u) 7→ f(t, u) does not guarantee this for the
operator Sf .

• Only affine functions f generate globally Lipschitz continuous operators Cf in the BV -norm;
this is not true for the operator Sf .

• Only constant functions f generate compact operators Cf in the BV -norm; this is not true for
the operator Sf .

In the following section we are concerned with the problem which of our results carry over from BV
to other spaces of functions of bounded (Wiener, Riesz, Waterman) variation. This will be important
in applications to the integral equations and boundary value problems discussed in the last chapters.

3.4. Operators in generalized BV spaces. Let us now study the behavior of the composition
operator (3.0.1) and the superposition operator (3.0.2) in the more general spaces WBVp, RBVp,
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and ΛBV introduced in the first chapter. We start with a necessary and sufficient acting condition
for the composition operator Cf which is parallel to Theorem 3.1.1.

Theorem 3.4.1 [AGV]. The following four conditions are equivalent:

(a) The function f : R → R satisfies the local Lipschitz condition (3.1.1).

(b) The operator Cf defined in (3.0.1) maps the Wiener space WBVp into itself.

(c) The operator Cf defined in (3.0.1) maps the Riesz space RBVp into itself.

(d) The operator Cf defined in (3.0.1) maps the Waterman space ΛBV into itself.

Moreover, in this case the operator Cf is automatically bounded.

Sometimes it is interesting to consider composition operator (3.0.1) between WBVp and WBVq, or
RBVp and RBVq, for p ̸= q. Here one has to replace the local Lipschitz condition (3.1.1) by the local
Hölder condition

(3.4.1) ∀r > 0∃Lr > 0∀u, v ∈ [−r, r] : |f(u) − f(v)| ≤ Lr|u− v|p/q.

However, this is a reasonable condition only for p ≤ q, since a function which satisfies a Hölder
condition with exponent α > 1 is constant. So the problem for Wiener spaces is different from that
for Riesz spaces. In fact, if (3.4.1) holds, then for x ∈ WBVp with ∥x∥WBVp ≤ r and any partition
{t0, t1, . . . , tm} of [0, 1] we obtain

m∑
j=1

|f(x(tj)) − f(x(tj−1))|q ≤ Lq
r

m∑
j=1

|x(tj) − x(tj−1)|p ≤ Lq
rWV arp(x; [0, 1]),

which shows that Cf (WBVp) ⊆ WBVq. On the other hand, for x ∈ RBVp with ∥x∥RBVp ≤ r and any
partition {t0, t1, . . . , tm} of [0, 1] we obtain

m∑
j=1

|f(x(tj)) − f(x(tj−1))|q

(tj − tj−1)q−1
≤ Lq

r

m∑
j=1

|x(tj) − x(tj−1)|p

(tj − tj−1)q−1
,

and we can replace (tj − tj−1)
q−1 in the denominator by (tj − tj−1)

p−1 only if p ≥ q. So the only
possibility which does not lead to a degeneracy is p = q, and this case is already covered by Theorem
3.4.1 (c). This is not surprising, since RBVq is strictly contained in RBVp for p < q.

Theorem 3.4.1 shows that in all spaces of functions of bounded variation we consider in this survey, we
get boundedness of the composition operator for free. The continuity problem is much more delicate,
as we have seen in Section 3.1. The proof of the fact that the acting condition Cf (BV ) ⊆ BV implies
the continuity of Cf is by no means trivial, and it is even not clear whether or not this also holds in
the Wiener space WBVp for p > 1.

In the Riesz space, however, we may use a trick to get continuity. As was shown by Marcus and Mizel
[MaMi], the composition operator Cf is automatically continuous in the Sobolev space W 1,p[0, 1] for
p > 1, provided that Cf maps this space into itself. But as we have seen in Section 1.3, the space
W 1,p[0, 1] is isomorphic to RBVp[0, 1], since both spaces basically contain for p > 1 all absolutely
continuous functions with first Lp-derivative, and their norms also coincide (up to equivalence). So
the following is true:

Theorem 3.4.2. Under the hypothesis (3.1.1), the operator Cf is automatically continuous in RBVp
for p > 1.

We point out that sufficient conditions for the continuity of Cf are known if Cf acts from BV into the
larger space WBVp for some p > 1. Let us denote by ACloc(R) the space of all functions f : R → R
which are absolutely continuous on each compact interval.

Theorem 3.4.3 [BiGK1]. Suppose that f ∈ ACloc(R), and f ′ ∈ Lp/(p−1)[−a, a] for some p > 1 and
every a > 0. Then Cf maps BV into WBVp and is both bounded and continuous.
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Theorem 3.4.3 has an interesting consequence. Suppose that Cf (BV ) ⊆ BV . Then we know that
Cf (BV ) ⊆ WBVp for every p > 1, and f ∈ Liploc(R), by Theorem 3.1.1. But then f ′ ∈ L∞[−a, a] ⊂
Lp/(p−1)[−a, a] for every a > 0, and so Cf is continuous, viewed as an operator from BV into WBVp.

The following theorem provides a sufficient condition on f which implies the continuity of Cf in a
Waterman space.

Theorem 3.4.4 [BiCGS]. In case f ∈ C1(R), the composition operator Cf maps ΛBV into itself
and is both bounded and continuous.

Recall that we introduced the relation Λ ≼ Γ in Section 1.4; this relation is equivalent to the inclucion
ΓBV ⊆ ΛBV . We also considered a stronger realtion denoted by Λ ≺ Γ; this relation implies (but
is not equivalent to) the strict inclucion ΓBV ⊂ ΛBV . Now, the next theorem shows that the
composition operator Cf never maps the space ΛBV into the (smaller) space ΓBV for Λ ≺ Γ, unless
Cf is trivial.

Theorem 3.4.5 [BiCGS]. Suppose that Cf (ΛBV ) ⊆ ΓBV , where Λ ≺ Γ. Then the function f is
differentiable with f ′(u) ≡ 0, so f is constant.

Let us now pass to the nonautonomous superposition operator (3.0.2). As one could expect, here the
situation becomes more complicated. First of all, we have to replace condition (F) from Section 3.2
by a stronger condition; here by Sm we denote the set of all permutations of {1, 2, . . . ,m}.

(FΛ)


∀r > 0∃Mr > 0∀{t0, . . . , tm} ∈ P [0, 1]∀u0, . . . , um ∈ [−r, r] :

sup
σ∈Sm

m∑
j=1

λσ(j)|uj − uj−1| ≤ r ⇒ sup
σ∈Sm

m∑
j=1

λσ(j)|f(tj, uj−1) − f(tj−1, uj−1)| ≤Mr.

Theorem 3.4.6 [BiCGS]. Suppose that f : [0, 1] × R → R satisfies the conditions (B) and (FΛ).
Then the superposition operator Sf maps ΛBV into itself and is bounded.

In Theorem 3.2.6 we have seen a certain converse of Theorem 3.4.6 for BV : if the superposition
operator Sf maps BV into itself and is bounded, then condition (G) holds, and so also condition
(F). The following somewhat surprising example shows that an analogous result for ΛBV (with (F)
replaced by (FΛ)) is not true.

Example 3.4.7 [BiCGS]. Let ϕ(u) := u, and define f : [0, 1] × R → R by (3.2.1). Then the
superposition operator Sf generated by f maps any space ΛBV into any space ΓBV and is bounded.
However, the function f does not satisfy condition (FΛ).

Indeed, take λn := 1/n and an := 1/
√
n; then

(3.4.2)
∞∑
n=1

λn = ∞,
∞∑
n=1

an = ∞
∞∑
n=1

λnan =: r <∞.

Suppose that f satisfies (FΛ), fix Mr > 0 in correspondence to r from (3.4.2), and choose m ∈ N so
large that

m+1∑
j=1

aj > Mr.

For j = 0, 1, . . . ,m, let uj := aj+1 + aj+2 + . . .+ am+1. Then

sup
σ∈Sm

m∑
j=1

λσ(j)|uj − uj−1| = sup
σ∈Sm

m∑
j=1

λσ(j)aj ≤ r.
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On the other hand, the last term in (FΛ) is then

sup
σ∈Sm

m∑
j=1

λσ(j)|f(tj, uj−1) − f(tj−1, uj−1)| = sup
σ∈Sm

λσ(1)|f(0, u0)| =
m+1∑
j=1

aj > Mr,

and so condition (FΛ) fails. 2

The following Table 3.7 summarizes what we know about composition and superposition operators
in generalized spaces of functions of bounded variation, where X stands for WBVp, RBVp, or ΛBV .

f ∈ Liploc(R) ⇔ Cf (X) ⊆ X

f ∈ Liploc(R) ⇔ Cf : X → X bounded

f constant ⇔ Cf (ΛBV ) ⊆ ΓBV for Γ ≺ Λ

f ∈ ACloc(R), f ′ ∈ Lp/(p−1) ⇒ Cf : BV → WBVp bounded and continuous

f ∈ C1(R) ⇒ Cf : ΛBV → ΛBV continuous

f ∈ C1 ⇒ Sf : X → X uniformly continuous

f# affine ⇔ Sf : X → X globally Lipschitz

(B) & (FΛ) ⇒ Sf : ΛBV → ΛBV bounded

Table 3.7: The operators Cf and Sf in other spaces
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Chapter 4. Applications to Integral Equations

In this chapter we will focus on applications of results from previous chapters to nonlinear integral
equations considered in spaces of functions of bounded variation of various types. We will prove
existence, or existence and uniqueness, of solutions for either nonlinear Hammerstein or nonlinear
Volterra-Hammerstein integral equations. Our main tool is fixed point theory, so we will impose
suitable conditions on the data which make it possible to apply well-known fixed point theorems.
Although those conditions have been already considered in the preceding two chapters, we will repeat
them here to make the presentation self-contained.

In the first two sections we are going to concentrate on the space BV of functions of bounded variation
in the sense of Jordan. In the third section some results will be placed in other spaces of functions
of bounded variation, namely, in ΛBV , WBVp and RBVp spaces.

There are several motivations to consider BV -solutions to integral equations. In particular, let us
point out the fact that solutions to many equations which describe specific physical phenomena are
often functions of bounded variation in the sense of Jordan. For example, the integral equation

(4.0.1) x(t) = ω2
∫ 1

0
G(t, s)ρ(s)x(s) ds+

∫ 1

0
G(t, s)q(s) ds (0 ≤ t ≤ 1),

where

(4.0.2) G(t, s) =

 t(1 − s) for 0 ≤ t ≤ s ≤ 1,

s(1 − t) for 0 ≤ s ≤ t ≤ 1,

is the classical Green’s function of the second derivative, describes the amplitude of forced vibrations
of a string (see [Pi]). Under suitable assumptions on the data ρ, q, and ω, (4.0.1) possesses a unique
solution which is a function of bounded variation in the sense of Jordan on the interval [0, 1]. This
fact follows from the theorems proved in the paper [Bi].

4.1. Hammerstein integral equations. Consider the nonlinear Hammerstein integral equation

(4.1.1) x(t) = g(t) + λ
∫ 1

0
k(t, s)f(x(s)) ds (0 ≤ t ≤ 1),

with λ ∈ R, where g : [0, 1] → R, k : [0, 1] × [0, 1] → R and f : R → R are given functions, and the
function x : [0, 1] → R is unknown. We point out that the role of λ in (4.1.1) is very important. For
example, in the problems concerning calculation of either free pulsation of harmonic vibrations of a
string or critical speed of a shaft is reduced to calculating such values of λ for which the corresponding
integral equations, being special cases of (4.1.1), have a nontrivial solution.

As mentioned above, in this section we are going to look for solutions of equation (4.1.1) of bounded
variation in the sense of Jordan. Using the notation from Chapter 2 and Chapter 3 we may write
(4.1.1) equivalently as operator equation

(4.1.2) x = g + λK(Cf (x)),

where K denotes the integral operator (2.0.3) generated by k, and Cf denotes the composition
operator (3.0.1) generated by f . Firstly, we will prove two existence and uniqueness type theorems
for equation (4.1.2) by using Banach’s fixed point theorem for contractions, which is sufficient in
this situation. For convenience of the reader we will repeat here some assumptions which appear in
previous chapters and will be needed in the study of this equation; we denote them by (H1), (H2),
... without referring to identical conditions in Chapter 2 or 3. The following conditions will be used
throughout the sequel; as before, the symbol ∀′s means that the indicated property holds only for
almost all s.

(H1) ∀t ∈ [0, 1] : k(t, ·) ∈ L1;
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(H2) ∃m ∈ L1, ∀′s ∈ [0, 1] : V ar(k(·, s)) ≤ m(s);

(H3) f ∈ Liploc(R).

Note that condition (H1) coincides with condition (A), and condition (H2) with condition (B’) in
Section 3.2, while condition (H3) is the crucial hypothesis (3.1.1) in Theorem 3.1.1. The above
conditions suffice to obtain our first existence and uniqueness result.

Theorem 4.1.1 [Bi]. Under the assumptions (H1) – (H3), there exists a number ρ > 0 such that
equation (4.1.1) has, for fixed g ∈ BV , a unique solution x ∈ BV for every λ satisfying |λ| ≤ ρ.

Proof. As usual, the proof builds on the Banach-Caccioppoli fixed point theorem, applied to the
operator G : BV → BV defined by G(x) := g + λK(Cf (x)). To this end, choose r > 0 with
∥g∥BV < r, and ρ > 0 in such a way that both

(4.1.3) ∥g∥BV + ρ sup
|u|≤r

|f(u)| ∥m+ |k(0, ·)|∥L1 ≤ r

and

(4.1.4) ρLr ∥m+ |k(0, ·)|∥L1 < 1,

where Lr is the local Lipschitz constant from Theorem 3.1.1 (a). Since the L1-norm of m + |k(0, ·)|
occurring on the right-hand side of (4.1.3) and (4.1.4) will be used several times in the sequel, we
introduce the special abbreviation

(4.1.5) µ(k) := ∥m+ |k(0, ·)|∥L1 .

By Theorem 2.3.1 and Theorem 3.1.1, we have K(Cf (x)) ∈ BV , and so the operator G maps the
space BV into itself. Denoting as in (3.1.2) by Br = Br(BV ) the closed ball of radius r in BV
centered at zero, for any x ∈ Br and every partition {t0, t1, . . . , tm} of [0, 1] we have

m∑
j=1

∣∣∣∣∫ 1

0
[k(tj, s) − k(tj−1, s)]f(x(s)) ds

∣∣∣∣ ≤ sup
0≤s≤1

|f(x(s))|
m∑
j=1

∫ 1

0
|k(tj, s) − k(tj−1, s)| ds

= sup
0≤s≤1

|f(x(s))|
∫ 1

0

m∑
j=1

|k(tj, s) − k(tj−1, s)| ds ≤ sup
0≤s≤1

|f(x(s))|
∫ 1

0
m(s) ds.

Consequently, for |λ| ≤ ρ we get

∥G(x)∥BV ≤ ∥g∥BV + |λ| sup
|u|≤r

|f(u)|µ(k),

which shows that G(Br) ⊆ Br, by (4.1.3). Now we have to show that G is a contraction on Br. For
any x, y ∈ Br and every partition {t0, t1, . . . , tm} of [0, 1] we obtain

(4.1.6)

m∑
j=1

∣∣∣∣∫ 1

0
k(tj, s)[f(x(s)) − f(y(s))] ds−

∫ 1

0
k(tj−1, s)[f(x(s)) − f(y(s))] ds

∣∣∣∣
≤ sup

0≤s≤1
|f(x(s)) − f(y(s))|

∫ 1

0

m∑
j=1

|k(tj, s) − k(tj−1, s)| ds

≤ Lr sup
0≤s≤1

|x(s) − y(s)|
∫ 1

0
m(s) ds ≤ Lr∥m∥L1∥x− y∥BV ,

hence
V ar(K(Cf (x)) −K(Cf (y))) ≤ Lr∥m∥L1∥x− y∥BV .
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Moreover,

(4.1.7)
|K(Cf (x))(0) −K(Cf (y))(0)| ≤ sup

0≤s≤1
|f(x(s)) − f(y(s))|

∫ 1

0
|k(0, s)| ds

≤ Lr∥k(0, ·)∥L1∥x− y∥BV .

Combining (4.1.6) and (4.1.7) we arrive at

∥G(x) −G(y)∥BV = |G(x)(0) −G(y)(0)| + |λ|V ar(K(Cf (x)) −K(Cf (y)))

≤ |λ|Lr µ(k)∥x− y∥BV ,

with µ(k) as in (4.1.5), and the statement follows from (4.1.4). �

We illustrate Theorem 4.1.1 for the case of separated kernels k(t, s) = k1(t)k2(s), where k1 ∈ BV
and k2 ∈ L1. As we have seen in Section 2.3, in this case (H1) holds trivially, while (H2) holds with
m(s) = V ar(k1)k2(s). The L1-norm of k(0, ·) occurring in (4.1.3) and (4.1.4) is here

∥k(0, ·)∥L1 =
∫ 1

0
|k1(0)| |k2(s)| ds = |k1(0)| ∥k2∥L1 .

So for ∥g∥BV < r condition (4.1.3) reads

ρ ≤ r − ∥g∥BV

∥k1∥BV ∥k2∥L1 sup
|u|≤r

|f(u)|
,

while condition (4.1.4) becomes

ρ <
1

Lr∥k1∥BV ∥k2∥L1

.

Observe that both (4.1.3) and (4.1.4) show that, the “larger” k1, k2 and f are, the smaller is the set
of admissible parameters λ. 2

Let us consider now the more general nonlinear Hammerstein integral equation

(4.1.8) x(t) = g(t) + λ
∫ 1

0
k(t, s)f(s, x(s)) ds (0 ≤ t ≤ 1),

in which the composition operator Cf is replaced by the superposition operator Sf . So the corre-
sponding operator equation reads

(4.1.9) x = g + λK(Sf (x)),

where Sf denotes the operator (3.0.2) generated by f : [0, 1]×R → R. Now we impose the following
hypotheses:

(H4) sup
0≤t≤1

∥k(t, ·)∥L1 <∞;

(H5) ∃M > 0 ∀ξ ∈ [0, 1] : V ar

(∫ ξ

0
k(·, s) ds

)
≤M ;

(H6) f ∈ Liploc([0, 1] × R).

Note that condition (H4) implies condition (A), while condition (H5) coincides with condition (C) in
Section 2.3. Condition (H6) is satisfied, for example, in case f ∈ C1. Also, observe that (H6) implies
condition (G) which plays a crucial role in Theorem 3.2.6, because

m∑
j=1

|uj − uj−1| ≤ r
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for points u0, . . . , um ∈ [−r, r] implies both

m∑
j=1

|f(tj, uj) − f(tj−1, uj)| ≤ Lr

m∑
j=1

|tj − tj−1| = Lr

and
m∑
j=1

|f(tj, uj) − f(tj−1, uj−1)| ≤ Lr

m∑
j=1

|uj − uj−1| ≤ rLr,

where Lr denotes the Lipschitz constant of f on [0, 1] × [−r, r]. Combining this with the estimate
(2.3.2) for the integral operator (2.3.1) we obtain the following

Theorem 4.1.2 [BiGK]. Under the assumptions (H4) – (H6), there exists a number ρ > 0 such that
equation (4.1.8) has, for fixed g ∈ BV , a unique solution x ∈ BV for every λ satisfying |λ| ≤ ρ.

Proof. The first part of the proof is very similar to that of Theorem 4.1.1. Again, we apply the
Banach-Caccioppoli fixed point theorem, but now to the operator G : Br(BV ) → BV defined by
G(x) := g + λK(Sf (x)). To this end, suppose that ∥g∥BV < r, let Lr denote the Lipschitz constant
of f on [0, 1] × [−r, r], and choose ρ > 0 in such a way that both

(4.1.10) ∥g∥BV + ρ(2M + ∥k(0, ·)∥L1)(Lr + rLr + |f(0, 0)|) ≤ r

and

(4.1.11) ρLr sup
0≤t≤1

∥k(t, ·)∥L1 < 1,

where M is the constant appearing in condition (H5). By Theorem 2.3.3 and Theorem 3.2.6, we have
K(Sf (x)) ∈ BV , and so the operator G maps the space BV into itself. We claim that the operator
G maps the ball Br = Br(BV ) into itself. For any x ∈ Br and every partition {t0, t1, . . . , tm} of [0, 1]
we have

m∑
j=1

|f(tj, x(tj)) − f(tj−1, x(tj−1))|

≤
m∑
j=1

|f(tj, x(tj)) − f(tj, x(tj−1))| +
m∑
j=1

|f(tj, x(tj−1)) − f(tj−1, x(tj−1))|

≤ Lr

m∑
j=1

|x(tj) − x(tj−1)| + Lr

m∑
j=1

|tj − tj−1| ≤ Lr(V ar(x) + 1).

Thus,
∥Sf (x)∥BV ≤ |f(0, x(0)) − f(0, 0)| + |f(0, 0)| + V ar(Sf (x))

≤ Lr|x(0)| + |f(0, 0)| + Lr(V ar(x) + 1) ≤ Lr + rLr + |f(0, 0)|.
Consequently, using (2.3.2) we get

∥G(x)∥BV ≤ ∥g∥BV + |λ| ∥K(Sf (x))∥BV ≤ ∥g∥BV + ρ(2M + ∥k(0, ·)∥L1)(Lr + rLr + |f(0, 0)|),

and the inclusion G(Br) ⊆ Br follows from (4.1.10).

To show that G is a contraction is slightly more tricky than in Theorem 4.1.1. First of all, denoting
by ∥ · ∥∞ the supremum norm (1.1.11) on BV , we get

(4.1.12)

∥G(x) −G(y)∥∞ = |λ| sup
0≤t≤1

∣∣∣∣∫ 1

0
k(t, s)[f(s, x(s)) − f(s, y(s))] ds

∣∣∣∣
≤ ρLr sup

0≤t≤1

∫ 1

0
|k(t, s)| |x(s) − y(s)| ds ≤ ρLr sup

0≤t≤1
∥k(t, ·)∥L1∥x− y∥∞.

Consider the set G(Br(BV )), equipped with the metric d(x, y) := ∥x−y∥∞. We claim that this metric
space is complete. Suppose that (yn)n, where yn = G(xn) and ∥xn∥BV ≤ r, is a Cauchy sequence with
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respect to the supremum norm. It is clear that there exists a bounded function y : [0, 1] → [−r, r]
which is the uniform limit of the sequence (yn)n. On the other hand, by Helly’s selection principle
(Theorem 1.4.14 (b)), there exist a function x ∈ Br(BV ) and a subsequence (xnk

)k of (xn)n such that
xnk

→ x pointwise on [0, 1] as k → ∞. But then, by the Lebesgue dominated convergence theorem,
we have G(xnk

) → G(x) pointwise on [0, 1]. This shows that y = G(x) and proves the completeness
of the considered metric space.

Now we consider the restriction of the operator G to the set G(Br(BV )). The estimate (4.1.12)
shows, together with (4.1.11), that G is a contraction on (G(Br(BV )), d), and we already know that
G maps this space into itself. So from the Banach-Caccioppoli fixed point theorem we conclude that
equation (4.1.8) has a unique solution x ∈ BV for every λ satisfying |λ| ≤ ρ. �

We point out that Theorem 4.1.2 has a wider range of applications than Theorem 4.1.1, for two
reasons. First, superposition operators are of course more general than composition operators. Second,
there are kernel functions which satisfy hypothesis (H5), but not hypothesis (H2).

Example 4.1.3. A prominent example is the weakly singular kernel function k(t, s) = vα(t, s), see
(2.4.6). As we have seen in Section 2.4, this kernel function does not satisfy condition (H2), and so
Theorem 4.1.1 does not apply. On the other hand, it satisfies (H4), since

sup
0≤t≤1

∫ 1

0
vα(t, s) ds = sup

0≤t≤1

∫ t

0

ds

(t− s)α
= sup

0≤t≤1

t1−α

1 − α
=

1

1 − α
,

as well as (H5) with M := 2/(1 − α). 2

Let us assume for simplicity that f(0, 0) = 0 in Example 4.1.3. Then for ∥g∥BV < r condition (4.1.10)
reads

ρ ≤ (1 − α)(r − ∥g∥BV )

4(1 + r)Lr

,

while condition (4.1.11) becomes

ρ <
1 − α

Lr

.

Both restrictions for ρ are quite reasonable: the larger α < 1, or the larger Lr > 0, or the closer g to
the boundary of Br, the smaller we must choose ρ.

Since seeking solutions to integral equations like (4.1.1) and (4.1.8) is stimulated and motivated
by physical phenomena, sometimes it is necessary to consider BV -solutions which are in addition
continuous. Here we impose the hypothesis

(H7) ∀ε > 0∃δ > 0∀t, τ ∈ [0, 1]∀′s ∈ [0, 1] : |t− τ | ≤ δ =⇒ |k(t, s) − k(τ, s)| ≤ ε

which is nothing else but the condition (D) from Section 2.3.

Theorem 4.1.4 [Bi]. Under the assumptions (H1), (H2), (H3) and (H7), there exists a number ρ > 0
such that equation (4.1.1) has, for fixed g ∈ BV ∩ C, a unique solution x ∈ BV ∩ C for every λ
satisfying |λ| ≤ ρ.

Proof. We only sketch the differences to the proof of Theorem 4.1.1. Let (xn)n be a sequence in
BV ∩C such that ∥xn−x∥BV → 0, as n→ ∞, for some x ∈ BV . From ∥xn−x∥C → 0 it follows then
that x ∈ C, which shows that (BV ∩ C, ∥ · ∥BV ) is a Banach space. Considering again the operator
G(x) := g + λK(Cf (x)), but now on the ball Br(BV ∩ C), we get the estimate

|G(x)(t) −G(x)(τ)| ≤ |g(t) − g(τ)| + |λ| sup
0≤s≤1

|f(x(s))|
∫ 1

0
|k(t, s) − k(τ, s)| ds

for every x ∈ Br(BV ∩ C) and t, τ ∈ [0, 1]. From (H7) and g ∈ BV ∩ C it follows that G(x) is a
continuous function. The remaining part of the proof goes exactly as in Theorem 4.1.1. �

65



The preceding existence results all build on the contraction mapping principle, which explains that we
also obtained uniqueness of solutions. Now we prove an existence theorem based on the Schauder fixed
point principle. The advantage is that we need not impose a Lipschitz condition on the nonlinearity
f , and we get existence for every λ ∈ R. Of course, we have to pay a price for this: we loose uniqueness
of solutions.

Let us assume for simplicity that g(t) ≡ 0 in (4.1.1), i.e., we consider solutions of the equation

(4.1.13) x(t) = λ
∫ 1

0
k(t, s)f(x(s)) ds (0 ≤ t ≤ 1),

or, equivalently, fixed points of the operator G := λKCf . Suppose that the map f : R → R satisfies
the two hypotheses

(H8) ∃q > 1∀r > 0 : f ∈ RBVq[−r, r]

and

(H9) lim
|u|→∞

|f(u)|
|u|

= 0.

Here RBVq in (H8) denotes the Riesz space introduced in Section 1.3. Condition (H9) means that f
has strictly sublinear growth for large values of the argument.

Theorem 4.1.5 [BiGK1]. Under the assumptions (H1), (H2), (H8) and (H9), equation (4.1.13) has,
for every λ ∈ R, a solution x ∈ BV .

Proof. Without loss of generality, we may assume that λ ̸= 0. For p := q/(q− 1), with q as in (H8),
we consider the composition operator Cf from BV into WBVp, and the integral operator K from
WBVp into BV ; here WBVp is the Wiener space introduced in Section 1.2. From Theorem 2.3.8 we
already know that K : WBVp → BV is compact. Moreover, the estimate |x(t)− x(0)|p ≤ WV arp(x)
implies that ∥x∥∞ ≤ ∥x∥WBVp , see (1.2.4), and so

(4.1.14) ∥K(x)∥BV ≤ µ(k)∥x∥WBVp ,

where µ(k) is given by (4.1.5).

Theorem 1.3.5 and (H9) imply that f ′ ∈ Lq[−r, r] for every r > 0. So for every x ∈ Br(BV ) we have

WV arp(Cf (x)) ≤ ∥f ′∥pLq [−r,r]V ar(x) (q = p/(p− 1)),

which shows that Cf : BV → WBVq is both continuous and bounded. We claim that there exists
R > 0 such that

(4.1.15) sup
|u|≤R

|f(u)| ≤ R

|λ|µ(k)
.

In fact, otherwise we find an unbounded real sequence (un)n such that

|f(un)|
|un|

≥ 1

|λ|µ(k)
,

contradicting our assumption (H9). Combining (4.1.14) and (4.1.15) yields

∥G(x)∥BV = |λ| |K(Cf (x))(0)| + |λ|V ar(K(Cf (x))) ≤ |λ|µ(k) sup
|u|≤R

|f(u)| ≤ R,

and the assertion follows from Schauder’s fixed point theorem. �
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We remark that Theorem 4.1.5 was proved in [BiGK], even for the nonautonomous case f : [0, 1]×R →
R and for g(x) ̸≡ 0, by degree theoretic methods. More precisely, the authors show that

H(τ, x)(t) := τg(t) + τλ
∫ 1

0
k(t, s)f(s, x(s)) ds (0 ≤ τ ≤ 1)

defines an admissible compact homotopy joining the operator G(x) := g + λK(Sf (x)) with the zero
operator on a suitable ball in BV , and then apply the Leray-Schauder degree on that ball.

Let us give an example which is extremely simple, but illustrates quite well the difference between
our various assumptions.

Example 4.1.6. For λ > 0, consider the equation

(4.1.16) x(t) = λt
∫ 1

0
x(s)τ ds (0 ≤ t ≤ 1).

We distinguish the special values τ = 2, τ = 1 and τ = 1/2 and are interested in nonnegative BV
solutions of (4.1.16). To begin with, let us see which of our hypotheses are satisfied for k(t, s) = t
and f(u) = uτ for these values of τ .

(H1) (H2) (H3) (H4) (H5) (H6) (H7) (H8) (H9)

τ = 2 yes yes yes yes yes yes yes yes no

τ = 1 yes yes yes yes yes yes yes yes no

τ = 1/2 yes yes no yes yes no yes yes yes

Table 4.1: Properties of k and f in Example 4.1.6

Of course, x(t) ≡ 0 is always a solution of (4.1.16), so we are interested in nontrivial solutions (which
may occur in balls, where the operator G defined by the right-hand side of (4.1.16) is not contracting).
The structure of the equation shows that all solutions are of the form x(t) = At for some A ∈ R.
Putting this function into G(x)(t) and calculating the integral gives a condition for A.

1st case: τ = 2. Here we get A = 3/λ, so

xλ(t) =
3

λ
t

is the unique nontrivial solution. Since ∥xλ∥BV = 3/λ, the operator G cannot be a contraction on
the ball Br for r = 3/λ. Indeed, the estimate

|x(t)2 − y(t)2| = |x(t) + y(t)| |x(t) − y(t)| ≤ 2r|x(t) − y(t)| (x, y ∈ Br)

shows that G is a contraction on Br only for 2λr < 1.

Observe that m(s) ≡ 1, k(0, s) ≡ 0, hence µ(k) = 1, and Lr = 2r in this case, so the conditions
(4.1.3) and (4.1.4) become

ρ ≤ 1

r
, ρ <

1

2r
,

where the second condition is more restrictive. Since f(u) = u2 does not satisfy the growth condition
(H9), Theorem 4.1.1 applies here, but Theorem 4.1.5 does not.

2nd case: τ = 1. Here A may be arbitrary, but (4.1.16) is solvable only for λ = 2. In this case

x(t) = At (A ∈ R)
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are infinitely many nontrivial solutions. Since the operator G here is not a contraction, and f(u) = u
does not satisfy the growth condition (H9), neither Theorem 4.1.1 nor Theorem 4.1.5 applies.

3rd case: τ = 1/2. Here we get A = 4λ2/9, so

xλ(t) =
4λ2

9
t

is the unique nontrivial solution. Of course, the structure of the nonlinear part shows that the
operator G here is not a contraction on any ball Br, and so Theorem 4.1.1 does not apply. However,

f(u) =
√
|u| satisfies the growth condition (H9), and it also belongs to RBVq[−r, r] for 1 < q < 2

and every r > 0.

An easy calculation shows that condition (4.1.15) becomes here R ≥ λ2, so for these values of
R we may apply Theorem 4.1.5. This example shows again that we cannot expect uniqueness of
solutions when applying the Schauder fixed point theorem. It also illustrates the fact that, in case of
nonlinearities of strictly sublinear growth at ∞, only balls of large radius are invariant. 2

We remark that the various condition we have given in this section to ensure the existence of inva-
riant balls for the fixed point operator G have been generalized in the literature. We cite a sample
result which uses milder a priori estimates. For example, in [BiR] the authors impose the following
conditions:

• There exists a function Ψ : [0,∞) → [0,∞) such that Ψ(r) > 0 for r > 0 and

sup {|f(x(t))| : 0 ≤ t ≤ 1} ≤ Ψ(∥x∥BV )

for all x ∈ BV .

• There exists a continuous increasing function Φr : [0,∞) → [0,∞) such that

∥Cf (x) − Cf (y)∥BV ≤ Φr(∥x− y∥BV ) (x, y ∈ Br).

It is then shown that, under additional appropriate hypotheses, equation (4.1.1) has a solution in
Br(BV ) for fixed g ∈ BV and all |λ| ≤ ρ, provided that

∥g∥BV + ρΨ(r)µ(k) ≤ r

and
Φr(ρ) <

ρ

µ(k)
(ρ > 0),

where µ(k) is again given by (4.1.5). Since ∥x∥∞ ≤ ∥x∥BV , we may choose Ψ(r) := sup {|f(u)| :
|u| ≤ r} to recover Theorem 4.1.1. Similarly, if f satisfies the local Lipschitz condition (3.1.1), we
may choose Φr(ρ) := Lrρ to recover Theorem 4.1.1. More general choices, however, are also possible
(e.g., Φr(ρ) := arctan ρ or Φr(ρ) := log(1 + ρ)) which enlarge the applicability of the result in [BiR].

4.2. Hammerstein-Volterra integral equations. Now we pass to the nonlinear Hammerstein-
Volterra integral equations

(4.2.1) x(t) = g(t) + λ
∫ t

0
k(t, s)f(x(s)) ds (t ≥ 0),

and

(4.2.2) x(t) = g(t) + λ
∫ t

0
k(t, s)f(s, x(s)) ds (t ≥ 0).

Note that we can make the right-hand side of (4.2.1) or (4.2.2) small by either choosing the factor
λ or the upper limit t of the integral sufficiently small. Our choice depends on what we need in a
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specific problem: choosing λ small enlarges the existence interval [0, T ] of solutions, while choosing t
small gives us a larger set of admissible values for λ.

Since most results are parallel to those obtained in the previous section, we will be brief. We restrict
ourselves to the equation (4.2.1) which is simpler than (4.2.2). Adapting the hypotheses on f , the
extension to (4.2.2) is straightforward. Denoting by

(4.2.3) V (x)(t) =
∫ t

0
k(t, s)x(s) ds =

∫ 1

0
v(t, s)x(s) ds,

with v(t, s) given by (2.4.2), the linear integral operator (2.4.1), we may rewrite (4.2.1) as fixed point
equation

(4.2.4) x = g + λV (Cf (x)),

where Cf is the composition operator (3.0.1). As in Section 2.4, we assume that

(H10) ∀t > 0 : v(t, ·) ∈ L1[0, t]

and

(H11) |v(s, s)| + V ar(v(·, s); [s, 1]) ≤ m(s),

for some L1-function m. Observe that Hypothesis (H11) is nothing else but (2.4.3) from Section 2.4.
The following result is then parallel to Theorem 4.1.1.

Theorem 4.2.1 [Bi]. Under the assumptions (H3), (H10), and (H11), there exist numbers ρ > 0 and
T > 0 such that equation (4.2.1) has, for fixed g ∈ BV , a unique solution x ∈ BV [0, T ] for every λ
satisfying |λ| ≤ ρ.

Proof. As before, the proof builds on the Banach-Caccioppoli fixed point theorem, applied to the
operator G : Br(BV ) → BV defined by G(x) := g+ λV (Cf (x)). Let r > 0 and ρ > 0 be the same as
in the proof of Theorem 4.1.1. In addition, we choose T > 0 in such a way that both

(4.2.5) ∥g∥BV + ρ sup
|u|≤r

|f(u)|
∫ T

0
m(s) ds ≤ r

and

(4.2.6) ρLr

∫ T

0
m(s) ds < 1,

where Lr is the local Lipschitz constant from Theorem 3.1.1 (a). In rather the same way as in the
proof of Theorem 4.1.1, for any x ∈ Br and every partition {t0, t1, . . . , tm} of [0, T ] we have then

m∑
j=1

∣∣∣∣∫ tj

0
k(tj, s)f(x(s)) ds−

∫ tj−1

0
k(tj−1, s)f(x(s)) ds

∣∣∣∣
≤ sup

0≤s≤1
|f(x(s))|

m∑
j=1

∫ T

0
|v(tj, s) − v(tj−1, s)| ds

= sup
0≤s≤1

|f(x(s))|
∫ T

0

m∑
j=1

|v(tj, s) − v(tj−1, s)| ds ≤ sup
0≤s≤1

|f(x(s))|
∫ T

0
m(s) ds.

Consequently, for |λ| ≤ ρ we get

(4.2.7) ∥G(x)∥BV ≤ ∥g∥BV + |λ| sup
|u|≤r

|f(u)| ∥m∥L1[0,T ].
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This shows that G(Br) ⊆ Br, by (4.2.5). Now we have to show that G is a contraction on Br. For
any x, y ∈ Br and every partition {t0, t1, . . . , tm} of [0, T ] we obtain

(4.2.8)

m∑
j=1

∣∣∣∣∣
∫ T

0
v(tj, s)[f(x(s)) − f(y(s))] ds−

∫ T

0
v(tj−1, s)[f(x(s)) − f(y(s))] ds

∣∣∣∣∣
≤ sup

0≤s≤1
|f(x(s)) − f(y(s))|

∫ T

0

m∑
j=1

|v(tj, s) − v(tj−1, s)| ds

≤ Lr sup
0≤s≤1

|x(s) − y(s)|
∫ T

0
m(s) ds ≤ Lr∥m∥L1[0,T ]∥x− y∥BV ,

hence
V ar(V (Cf (x)) − V (Cf (y))) ≤ Lr∥m∥L1[0,T ]∥x− y∥BV .

Moreover,

(4.2.9)
|V (Cf (x))(0) − V (Cf (y))(0)| ≤ sup

0≤s≤1
|f(x(s)) − f(y(s))|

∫ T

0
|v(0, s)| ds

≤ Lr∥v(0, ·)∥L1[0,T ]∥x− y∥BV .

Combining (4.2.8) and (4.2.9) we arrive at

∥G(x) −G(y)∥BV = |G(x)(0) −G(y)(0)| + |λ|V ar(V (Cf (x)) − V (Cf (y)))

≤ |λ|Lr ∥m∥L1[0,T ]∥x− y∥BV ,

and the statement follows from (4.2.6). �

Of course, if we suppose that g ∈ BV ∩C, we may also formulate and prove an analogue to Theorem
4.1.4. We confine ourselves to the formulation of such a result without proof.

Theorem 4.2.2 [Bi]. Under the assumptions (H3) and (H7), there exist numbers ρ > 0 and T > 0
such that equation (4.2.1) has, for fixed g ∈ BV ∩ C, a unique solution x ∈ BV [0, T ] ∩ C[0, T ] for
every λ satisfying |λ| ≤ ρ.

We also give a theorem which is parallel to Theorem 4.1.5, inasmuch as it builds on Schauder’s
theorem, rather than Banach’s theorem.

Theorem 4.2.3. Under the assumptions (H8), (H9), (H10) and (H11), equation (4.2.1) has, for every
λ ∈ R, a solution x ∈ BV [0, T ] for sufficiently small T > 0.

Proof. The proof of the continuity and boundedness of Cf : BV → WBVp and compactness of
V : WBVp → BV goes as in Theorem 4.1.5. However, due to the special structure of a Volterra
operator, existence of invariant balls is more easily established. In fact, (4.1.14) may now be replaced
by

(4.2.10) ∥V (x)∥BV [0,T ] ≤ ∥m∥L1[0,T ]∥x∥WBVp ,

and Lebegue’s dominated convergence theorem shows that ∥m∥L1[0,T ] may be made arbitrarily small
by choosing T > 0 sufficiently small. �

The following example illustrates the applicability of Theorem 4.2.3 in the case when the preceding
Theorem 4.2.1 and 4.2.2 do not apply for lack of Lipschitz continuity of the nonlinearity f .

Example 4.2.4. Consider again the third case of Example 4.1.6, i.e., the equation

(4.2.11) x(t) = λt
∫ t

0

√
x(s) ds (t ≥ 0)
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which is the Volterra analogue to (4.1.16).

Hypothesis (H10) holds trivially. Since v(s, s) = s and V ar(v(·, s); [s, 1]) = 1 − s for v(t, s) = t, we
may choose m(s) ≡ 1 in Hypothesis (H11). Consequently, we have

∥V (x)∥BV [0,T ] ≤ ∥m∥L1[0,T ] = T.

Theorem 4.2.3 guarantees the existence of a solution of (4.2.11) for every λ ∈ R on a sufficiently small
intervall [0, T ]. Of course, x(t) ≡ 0 is such a solution, and it is even defined on the whole semiaxis
[0,∞).

On the other hand, a direct calculation shows that x(t) = λ2t4/9 is another solution of (4.2.11). So
Theorem 4.2.3 again does not guarantee uniqueness of solutions, as one could expect.

We point out that equations like (4.2.11) may have many more solutions even if the integral in
(4.2.11) becomes singular. Thus, if we consider the equation

(4.2.12) x(t) = λt
∫ t

0
x(s)τ ds (t ≥ 0)

and make the Ansatz x(t) := Atα, the integral exists not only for positive values of τα, but also
for −1 < τα < 0, say. Comparing exponents leads then to the condition τα = α − 2. Now, the
function τ = φ(α) := (α − 2)/α is a homeomorphism between (1, 2) and (−1, 0), with inverse
α = ψ(τ) = 2/(1 − τ), and the conditions 1 < α < 2 and −1 < τ < 0 precisely correspond to our
requirement −1 < τα < 0. Adjusting the constant A = A(α, λ) we obtain a nontrivial solution of
bounded variation also in this weakly singular case. 2

The reason why Volterra-Hammerstein equations have better properties than Hammerstein equations
is of course that the operator V given in (4.2.3) has, in contrast to the operator (2.0.3), spectral radius
zero. This makes the problem of finding invariant balls, and so of proving existence, quite easy. A
well-known consequence is that an initial value problem for an ordinary differential equation is very
often (uniquely) solvable, while the existence and uniqueness of solutions of a boundary value problem
may be a subtle problem. In Section 4.4 below we will derive some properties of the solution set of
equations like (4.1.1) and (4.2.1) if these equations are not uniquely solvable.

4.3. Solvability in generalized BV spaces. Let us now see to what extent our results carry over
to more general spaces of functions of bounded variation. Here our focus will be put on the Waterman
space ΛBV and the Young space Y BVϕ which have been introduced in Section 1.4. In the preceding
Sections 4.1 and 4.2 we have given existence and uniqueness results

• for the Hammerstein equation (4.1.1) in the space BV ,

• for the Hammerstein-Voltarre equation (4.2.1) in the space BV ,

• for the Hammerstein equation (4.1.1) in the space BV ∩ C, and

• for the Hammerstein-Voltarre equation (4.2.1) in the space BV ∩ C.

At the risk of being redundant, we will do the same in this section for the spaces ΛBV and Y BVϕ.
However, some proofs will be skipped if they require only minor technical modifications of proofs
which have been given before.

We start with the Waterman space ΛBV . Of course, we have to adapt our hypotheses by replacing,
in particular, Hypothesis (H2) by

(H2Λ) ∃m ∈ L1, ∀′s ∈ [0, 1] : V arΛ(k(·, s)) ≤ m(s);

which coincides with condition (BΛ) in Section 2.3. The following existence and uniqueness result is
parallel to Theorem 4.1.1.
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Theorem 4.3.1 [BaR]. Under the assumptions (H1), (H2), and (H3), there exists a number ρ > 0
such that equation (4.1.1) has, for fixed g ∈ ΛBV , a unique solution x ∈ ΛBV for every λ satisfying
|λ| ≤ ρ.

Proof. Consider again the fixed point problem for the operator G(x) := g+λK(Cf (x)). To this end,
choose r > 0 with ∥g∥ΛBV < r, and ρ > 0 in such a way that both

(4.3.1) ∥g∥ΛBV + ρ sup
|u|≤r

|f(u)|µ(k) ≤ r

and

(4.3.2) ρLr max {1, 1/λ1}µ(k) < 1,

where µ(k) is given by (4.1.5) and Lr is the local Lipschitz constant from Theorem 3.1.1 (a).

By Theorem 2.3.12, the operator K maps ΛBV into itself. Moreover, by Theorem 3.4.1 the operator
Cf maps ΛBV into itself and is bounded. Fix x ∈ Br = Br(ΛBV ), and let {[an, bn] : n ∈ N} be any
collection of non-overlapping intervals [an, bn] ⊂ [0, 1]. For fixed N ∈ N we have

N∑
n=1

λn |K(Cf (x))(bn) −K(Cf (x))(an)| =
N∑

n=1

λn

∣∣∣∣∫ 1

0
[k(bn, s) − k(an, s)]f(x(s)) ds

∣∣∣∣ ds
≤ sup

0≤s≤1
|f(x(s))|

∫ 1

0

N∑
n=1

λn |k(bn, s) − k(an, s)| ds

≤ sup
0≤s≤1

|f(x(s))|
∫ 1

0
V arΛ(k(·, s) ds ≤ sup

0≤s≤1
|f(x(s))|

∫ 1

0
m(s) ds.

Consequently, for |λ| ≤ ρ we get

∥G(x)∥ΛBV ≤ ∥g∥ΛBV + |λ| sup
|u|≤r

|f(u)|µ(k),

which shows that G(Br) ⊆ Br, by (4.3.1). The proof of the contraction property of G on Br is similar.
For x, y ∈ Br we get

N∑
n=1

λn |K(Cf (x))(bn) −K(Cf (x))(an) −K(Cf (y))(bn) +K(Cf (y))(an)|

=
N∑

n=1

λn

∣∣∣∣∫ 1

0
k(bn, s)[f(x(s)) − f(y(s))] ds−

∫ 1

0
k(an, s)[f(x(s)) − f(y(s))] ds

∣∣∣∣
≤
∫ 1

0

N∑
n=1

λn|k(bn, s) − k(an, s)| |f(x(s)) − f(y(s))| ds

≤ Lr sup
0≤s≤1

|x(s) − y(s)|
∫ 1

0

N∑
n=1

λn|k(bn, s) − k(an, s)| ds

≤ Lr max {1, 1/λ1}∥x− y∥ΛBV

∫ 1

0
V arΛ(k(·, s) ds

≤ Lr max {1, 1/λ1}∥m∥L1∥x− y∥ΛBV .

Consequently,

∥G(x) −G(y)∥ΛBV = |G(x)(0) −G(y)(0)| + |λ|V ar(K(Cf (x)) −K(Cf (y)))

≤ |λ|Lr max {1, 1/λ1}∥k(0, ·)∥L1∥x− y∥ΛBV + |λ|Lr max {1, 1/λ1}∥m∥L1∥x− y∥ΛBV

= |λ|Lr max {1, 1/λ1}µ(k)∥x− y∥ΛBV .

The statement follows now from (4.3.2) and the Banach-Caccioppoli fixed point theorem. �
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Of course, the term max {1, 1/λ1} which appears here comes from the imbedding constant c(ΛBV,B)
in Table 1.4. The next example illustrates the estimates (4.3.1) and (4.3.2) in the special Waterman
space ΛqBV .

Example 4.3.2. Let 0 < q < 1, k(t, s) := ζ2−q(t)k2(s), where ζθ is the zigzag function (1.1.7),
k2 ∈ L1, and f(u) := |u|τ for some τ > 1. For these data, we consider equation (4.1.1) in the space
ΛqBV . From (1.4.12) and ζ2−q(0) = 0 it follows that

µ(k) = ∥m∥L1 + ∥k(0, ·)∥L1 = ∥k2∥L1V arΛq(ζ2−q) = ∥k2∥L1

∞∑
n=1

1

n2
= ∥k2∥L1

π2

6
.

So for given g ∈ ΛqBV with ∥g∥ΛqBV < r, condition (4.3.1) reads

ρ ≤
6(r − ∥g∥ΛqBV )

π2rτ∥k2∥L1

,

while condition (4.3.2) becomes

ρ <
6

π2τrτ−1∥k2∥L1

.

For these values of ρ > 0, the equation

x(t) = g(t) + λζ2−q(t)
∫ 1

0
k2(s)x(s)τ ds (0 ≤ t ≤ 1)

has a unique solution x ∈ ΛqBV for |λ| ≤ ρ. 2

Similarly, for proving an existence and uniqueness result for the Hammerstein-Volterra equation
(4.2.1) we have to replace Hypothesis (H11) by

(H11Λ) ∃m ∈ L1 : λ1|v(s, s)| + V arΛ(v(·, s); [s, 1]) ≤ m(s).

Theorem 4.3.3 [BaR]. Under the assumptions (H3), (H10), and (H11Λ), there exist numbers ρ > 0
and T > 0 such that equation (4.2.1) has, for fixed g ∈ ΛBV , a unique solution x ∈ ΛBV [0, T ] for
every λ satisfying |λ| ≤ ρ.

Proof. Again, let g ∈ ΛBV , r > 0 and ρ > 0 be the same as in the proof of Theorem 4.3.1. In
addition, we choose T > 0 in such a way that both

(4.3.3) ∥g∥BV + ρ sup
|u|≤r

|f(u)|
∫ T

0
m(s) ds ≤ r

and

(4.3.4) ρLr max {1, 1/λ1}
∫ T

0
m(s) ds < 1,

where Lr is the local Lipschitz constant from Theorem 3.1.1 (a). By the definition (2.4.2) of the
triangular kernel function v, we have

V arΛ(v(·, s); [0, s]) ≤ λ1|k(s, s)|.

Consequently, for x ∈ Br = Br(ΛBV ) and any collection of non-overlapping intervals [an, bn] ⊂ [0, T ]
we obtain

N∑
n=1

λn |V (Cf (x))(bn) − V (Cf (x))(an)| =
N∑

n=1

λn

∣∣∣∣∫ 1

0
[v(bn, s) − v(an, s)]f(x(s)) ds

∣∣∣∣ ds
≤ sup

0≤s≤1
|f(x(s))|

∫ T

0

N∑
n=1

λn |k(bn, s) − k(an, s)| ds

≤ sup
0≤s≤1

|f(x(s))|
∫ T

0
V arΛ(k(·, s) ds ≤ sup

0≤s≤1
|f(x(s))|

∫ T

0
[λ1|k(s, s)| + V arΛ(k(·, s); [s, T ])] ds

≤ sup
0≤s≤1

|f(x(s))|
∫ T

0
m(s) ds.
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So for |λ| ≤ ρ we get
∥G(x)∥ΛBV ≤ ∥g∥ΛBV + |λ| sup

|u|≤r
|f(u)| ∥m∥L1[0,T ],

and G(x) = g + λV (Cf (x)) as before. This shows that G(Br) ⊆ Br, by (4.3.3). To show that G is a
contraction on Br, we proceed as in the proof of Theorem 4.2.1. For x, y ∈ Br we get

N∑
n=1

λn |V (Cf (x))(bn) − V (Cf (x))(an) − V (Cf (y))(bn) + V (Cf (y))(an)|

=
N∑

n=1

λn

∣∣∣∣∣
∫ T

0
k(bn, s)[f(x(s)) − f(y(s))] ds−

∫ T

0
k(an, s)[f(x(s)) − f(y(s))] ds

∣∣∣∣∣
≤
∫ T

0

N∑
n=1

λn|v(bn, s) − v(an, s)| |f(x(s)) − f(y(s))| ds

≤ Lr sup
0≤s≤1

|x(s) − y(s)|
∫ T

0

N∑
n=1

λn|k(bn, s) − k(an, s)| ds

≤ Lr max {1, 1/λ1}∥x− y∥ΛBV

∫ T

0
V arΛ(k(·, s) ds

≤ Lr max {1, 1/λ1}∥m∥L1∥x− y∥ΛBV .

Consequently,

∥G(x) −G(y)∥ΛBV = |G(x)(0) −G(y)(0)| + |λ|V ar(K(Cf (x)) −K(Cf (y)))

≤ |λ|Lr max {1, 1/λ1}∥k(0, ·)∥L1[0,T ]∥x− y∥ΛBV + |λ|Lr max {1, 1/λ1}∥m∥L1[0,T ]∥x− y∥ΛBV

= |λ|Lr max {1, 1/λ1}∥m∥L1[0,T ]∥x− y∥ΛBV .

The statement follows now from (4.3.4) and the Banach-Caccioppoli fixed point theorem. �

Of course, if we suppose that g ∈ ΛBV ∩C, we may also formulate and prove an analogue to Theorem
4.3.1 and Theorem 4.3.3. We confine ourselves to the formulation of such results without proof.

Theorem 4.3.4 [BaR]. Under the assumptions (H1), (H3), (H7), and (H2Λ), there exists a number
ρ > 0 such that equation (4.1.1) has, for fixed g ∈ ΛBV ∩ C, a unique solution x ∈ ΛBV ∩ C for
every λ satisfying |λ| ≤ ρ.

Theorem 4.3.5 [BaR]. Under the assumptions (H3) and (H11Λ), there exist numbers ρ > 0 and
T > 0 such that equation (4.2.1) has, for fixed g ∈ ΛBV ∩C, a unique solution x ∈ ΛBV [0, T ]∩C[0, T ]
for every λ satisfying |λ| ≤ ρ.

Let us now turn to the space Y BVϕ generated to some Young function ϕ : [0,∞) → [0,∞). Here we
have to replace hypothesis (H2) by the following condition:

(H2ϕ) ∃m ∈ L1, ∃α > 0, ∀′s ∈ [0, 1] : Y V arϕ(k(·, s)/α) ≤ m(s);

The following existence and uniqueness result is then similar to Theorem 4.1.1 and Theorem 4.3.1.

Theorem 4.3.6 [BaBiH]. Under the assumptions (H1), (H2ϕ), and (H3), there exists a number
ρ > 0 such that equation (4.1.1) has, for fixed g ∈ Y BVϕ, a unique solution x ∈ Y BVϕ for every λ
satisfying |λ| ≤ ρ.

Proof. First we observe that (H2ϕ) implies that∫ 1

0
Y V arϕ(k(·, s)/α) ds ≤ ∥m∥L1 <∞.
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So for γ := α max {∥m∥L1 , 1} we get∫ 1

0
Y V arϕ(K(·, s)/γ) ds ≤ 1

max {∥m∥L1 , 1}

∫ 1

0
Y V arϕ(k(·, s)/α) ds =

∥m∥L1

max {∥m∥L1 , 1}
≤ 1.

Consequently,
∥k(·, s)∥Y BVϕ

≤ |k(0, s)| + γ,

by the definition (1.4.16) of the norm in Y BVϕ. Choose r > 0 with ∥g∥Y BVϕ
< r, and ρ > 0 in such

a way that both

(4.3.5) ∥g∥Y BVϕ
+ ρµ(k) sup

|u|≤r
|f(u)| ≤ r

and

(4.3.6) ρLr µ(k)ϕ(1) < 1,

where Lr is the local Lipschitz constant from Theorem 3.1.1 (a), and µ(k) is given by (4.1.5). We
claim that the operator G(x) := g + λK(Cf (x)) maps the ball Br = Br(Y BVϕ) into itself.

In fact, given x ∈ Br and any partition {t0, t1, . . . , tm} of [0, 1], by Jensen’s inequality we have

m∑
j=1

ϕ

(
|λ|
γ
|K(Cf (x))(tj) −K(Cf (x))(tj−1)|

)

≤
m∑
j=1

ϕ

(∫ 1

0

|λ|
γ

sup
|u|≤r

|f(u)| |k(tj, s) − k(tj−1, s)| ds
)

≤
∫ 1

0
Y V arϕ

(
|λ| sup

|u|≤r
|f(u)| k(·, s)

γ

)
ds.

Taking the supremum over all partitions we deduce that

inf

{
µ > 0 : Y V arϕ

(
λK(Cf (x))

µ

)
≤ 1

}

≤ inf

{
µ > 0 :

∫ 1

0
Y V arϕ

(
|λ| sup

|u|≤r
|f(u)| k(·, s)

µ

)
ds ≤ 1

}

≤ |λ| sup
|u|≤r

|f(u)|
∫ 1

0
Y V arϕ

(
k(·, s)
γ

)
ds ≤ |λ| sup

|u|≤r

|f(u)|.

Moreover,
|G(x)(0)| ≤ ∥g∥Y BVϕ

+ ρ∥k(0, ·)∥L1 sup
|u|≤r

|f(u)|.

Consequently, for |λ| ≤ ρ we have

∥G(x)∥Y BVϕ
≤ ∥g∥Y BVϕ

+ |λ| sup
|u|≤r

|f(u)|µ(k),

which shows that G(Br) ⊆ Br, by (4.3.5). Now we have to show that, as before, G is a contraction
on Br. For any x, y ∈ Br and every partition {t0, t1, . . . , tm} of [0, 1] we obtain

m∑
j=1

ϕ

(∫ 1

0

|λ|
γ
|k(tj, s) − k(tj−1, s)| |f(x(s)) − f(y(s))|

)
ds

≤
m∑
j=1

∫ 1

0
ϕ

(
|λ|
γ

sup
0≤s≤1

|f(x(s)) − f(y(s))| |k(tj, s) − k(tj−1, s)|
)
ds

≤
∫ 1

0
Y V arϕ

(
|λ|Lr sup

0≤s≤1
|x(s) − y(s)| k(·, s)

γ

)
ds,
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hence

(4.3.7) Y V arϕ(K(Cf (x)) −K(Cf (y))) ≤ Lrγ∥x− y∥∞ ≤ Lrγϕ(1)∥x− y∥Y BVϕ
.

The statement follows now from (4.3.6). �

Let us check what our hypotheses mean for separated kernel functions of the form (2.3.3).

Example 4.3.7. Suppose that k(t, s) = k1(t)k2(s), where k1 ∈ Y BVϕ and k2 ∈ L∞. Obviously,

Y V arϕ

(
k(·, s)
∥k2∥L∞

)
= Y V arϕ

(
k1k2(s)

∥k2∥L∞

)
≤ k2(s)

∥k2(·)∥L∞

Y V arϕ(k1),

so hypothesis (H2ϕ) holds with

α = ∥k2∥L∞ , m(s) =
Y V arϕ(k1)

∥k2∥L∞

k2(s).

So

µ(k) = Y V arϕ(k1)
∥k2∥L1

∥k2∥L∞

+ |k1(0)| ∥k2∥L1 ≤ max {1/∥k2∥L∞ , 1} ∥k1∥Y BVϕ
∥k2∥L1

in this case. To be specific, let ϕ(u) := up for some p ∈ (1,∞), i.e., we consider equation (4.1.1) in
the Wiener space WBVp. Similarly as in Example 4.3.2, we take k(t, s) := ζ2/p(t)k2(s), where ζθ is
the zigzag function (1.1.7), k2 ∈ L∞, and f(u) := |u|τ for some τ > 1. From (1.2.7) it follows that

µ(k) = ∥m∥L1 + ∥k(0, ·)∥L1 = ∥k2∥L1WV arp(ζ2/p) = ∥k2∥L1

∞∑
n=1

1

n2
= ∥k2∥L1

π2

6
.

So for given g ∈ WBVp with ∥g∥WBVp < r, condition (4.3.5) reads

ρ ≤
6(r − ∥g∥WBVp)

π2rτ
,

while condition (4.3.2) becomes

ρ <
6

π2τrτ−1
.

For these values of ρ > 0, the equation

x(t) = g(t) + λζ2/p(t)
∫ 1

0
k2(s)x(s)τ ds (0 ≤ t ≤ 1)

has a unique solution x ∈ WBVp for |λ| ≤ ρ. 2

If we want to prove unique solvability in Y BVϕ for the Hammerstein-Volterra equation (4.2.1), we
have to replace (H11) by the condition

(H11ϕ) ∃m ∈ L1 ∃α > 0 : ϕ(|v(s, s)|/α) + Y V arϕ(v(·, s)/α; [s, 1]) ≤ m(s).

The next theorem gives an existence and uniqueness result for solutions x ∈ Y BVϕ of the Hammerstein-
Volterra equation (4.2.1). Since the argument is here slightly more tricky than for BV and ΛBV , we
also give the proof. Now we have to suppose, in addition, that the Young function ϕ satisfies a ∆2

condition (for small u) which means that there exist numbers u0 > 0 and k > 0 such that

(4.3.8) ϕ(2u) ≤ kϕ(u) (0 ≤ u ≤ u0).

Obviously, the Young function ϕ(u) = up with 1 < p < ∞ satisfies a ∆2 condition, so the following
theorem applies, in particular, to the Wiener space WBVp.
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Theorem 4.3.8 [BaBiH]. Under the assumptions (H3), (H10), and (H11ϕ), there exist numbers
ρ > 0 and T > 0 such that equation (4.2.1) has, for fixed g ∈ Y BVϕ, a unique solution x ∈ Y BVϕ[0, T ]
for every λ satisfying |λ| ≤ ρ.

Proof. Let r > 0 and Lr be the same as in the proof of Theorem 4.3.6. Choose N ∈ N so large that
both

(4.3.9) ρ
α

2N
sup
|u|≤r

|f(u)| + ∥g∥Y BVϕ
≤ r

and

(4.3.10) ρ
αLrϕ(1)

2N
< 1.

Let 0 < T ≤ min {u0, 1}, where u0 is the upper bound for the ∆2 condition, be so small that

(4.3.11)
∫ T

0
ϕ

(
2N |k(s, s)|

α

)
ds+

∫ T

0
Y V arϕ

(
2N |k(·, s)|

α
; [s, T ]

)
ds ≤ kN

∫ T

0
m(s) ds ≤ 1,

where α and m are from condition (H11ϕ), and k > 0 is the constant occurring in the ∆2 condition.
Such a T > 0 exists in view of the absolute continuity of the Lebesgue integral and the estimate∫ T

0
ϕ

(
2|k(s, s)|

α

)
ds+

∫ T

0
Y V arϕ

(
2|k(·, s)|

α
; [s, T ]

)
ds ≤ k

∫ T

0
m(s) ds,

so it suffices to choose T > 0 such that ∥m∥L1 ≤ 1/k. From (4.3.11) we get

(4.3.12) inf

{
µ > 0 :

∫ T

0
ϕ

(
|k(s, s)|

µ

)
ds+

∫ T

0
Y V arϕ

(
|k(·, s)|
µ

; [s, T ]

)
ds ≤ 1

}
≤ α

2N
.

Given x ∈ Br and any partition {t0, t1, . . . , tm} of [0, 1], and denoting v(t, s) as in (2.4.2), we have

m∑
j=1

ϕ

(
|K(Cf (x))(tj) −K(Cf (x))(tj−1)|

µ

)

=
m∑
j=1

ϕ

(∣∣∣∣∣
∫ tj

0

k(tj, s)f(x(s))

µ
ds−

∫ tj−1

0

k(tj−1, s)f(x(s))

µ
ds

∣∣∣∣∣
)

=
m∑
j=1

ϕ

(∣∣∣∣∣
∫ T

0

[v(tj, s) − v(tj−1, s)]f(x(s))

µ

∣∣∣∣∣
)

≤
m∑
j=1

ϕ

(
1

T

∫ T

0

T

µ
sup
|u|≤r

|f(u)| |v(tj, s) − v(tj−1, s)| ds
)

≤
m∑
j=1

1

T

∫ T

0
ϕ

(
T sup

|u|≤r
|f(u)| |v(tj, s) − v(tj−1, s)|

µ

)
ds

≤
∫ T

0
Y V arϕ

(
sup
|u|≤r

|f(u)| v(·, s)
µ

)
ds.

Taking the supremum over all partitions we conclude that

inf

{
µ > 0 : Y V arϕ

(
K(Cf (x))

µ

)
≤ 1

}

≤ inf

{
µ > 0 :

∫ T

0
Y V arϕ

(
sup
|u|≤r

|f(u)| v(·, s)
µ

)
ds ≤ 1

}

≤ sup
|u|≤r

|f(u)| inf

{
µ > 0 :

∫ T

0
Y V arϕ

(
v(·, s)
µ

)
ds ≤ 1

}
.
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Combining this with (4.3.11) and the obvious equality∫ T

0
Y V arϕ

(
v(·, s)
µ

)
ds =

∫ T

0
ϕ

(
v(s, s)

µ

)
ds+

∫ T

0
Y V arϕ

(
v(·, s)
µ

; [s, T ]

)
ds

we finally obtain

inf

{
µ > 0 : Y V arϕ

(
K(Cf (x))

µ

)
≤ 1

}
≤ sup

|u|≤r

|f(u)| α
2N
.

This shows that the operator G maps, by our choice (4.3.9) of r > 0, the ball Br into itself. A similar
reasoning, building on (4.3.10) shows that G is a contraction on this ball. �

To conclude, we give two existence and uniqueness results for continuous solutions x ∈ Y BVϕ of
(4.1.1) resp. (4.2.1). The proof is the same as for Theorem 4.1.1 resp. Theorem 4.2.1, with obvious
modifications.

Theorem 4.3.9 [BaBiH]. Under the assumptions (H1), (H3) and (H7), there exists a number ρ > 0
such that equation (4.1.1) has, for fixed g ∈ Y BVϕ ∩C, a unique solution x ∈ Y BVϕ ∩C for every λ
satisfying |λ| ≤ ρ.

Theorem 4.3.10 [BaBiH]. Under the assumptions (H3) and (H7), there exist numbers ρ > 0 and
T > 0 such that equation (4.2.1) has, for fixed g ∈ Y BVϕ ∩ C, a unique solution x ∈ Y BVϕ[0, T ] ∩
C[0, T ] for every λ satisfying |λ| ≤ ρ.

We collect all existence and uniqueness results of Sections 4.1 – 4.3 in the following synoptic Table
4.2. Here we restrict ourselves to the autonomous case of a nonlinearity f : R → R.

Unique solvability of Equation (4.1.1) Equation (4.2.1)

in BV Theorem 4.1.1 [Bi] Theorem 4.2.1 [Bi]

in BV ∩ C Theorem 4.1.4 [BiGK] Theorem 4.2.2 [Bi]

in ΛBV Theorem 4.3.1 [BaR] Theorem 4.3.3 [BaR]

in ΛBV ∩ C Theorem 4.3.4 [BaR] Theorem 4.3.5 [BaR]

in Y BVϕ Theorem 4.3.6 [BaBiH] Theorem 4.3.8 [BaBiH]

in Y BVϕ ∩ C Theorem 4.3.9 [BaBiH] Theorem 4.3.10 [BaBiH]

Table 4.2: Existence and uniqueness theorems

All existence and uniqueness results of Table 4.2 refer to the autonomous case of functions f : R →
R, i.e., to the equations (4.1.1) and (4.2.1). Building on the acting, boundedness, and continuity
conditions given in Section 3.2 for the superposition operator Sf , one may obtain analogous results
for the non-autonomous case of functions f : [0, 1]×R → R, i.e., for the equations (4.1.8) and (4.2.2).

4.4. Structure of the solution set. If the solution of a nonlinear equation, like those considered
in this chapter, is not unique, it is of some interest to have information on the topological structure
of the solution set. One prominent example is the Rδ-property which means that the set of solutions
is homeomorphic to the intersection of a decreasing sequence of absolute retracts.

In this section we give a sample result of this type for solutions x ∈ ΛBV ∩ C of the general
Hammerstein-Volterra integral equation (4.2.2). Since we reformulated this equation as fixed point
problem (4.2.4), our discussion will rely upon the following structural result on fixed point sets of
continuous maps in C = C[0, 1] which we recall without proof.
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Proposition 4.4.1 [Sz]. Let G : C → C be a continuous map which satisfies the following four
condition.

(a) The set G(C) ⊂ C is equicontinuous.

(b) There exist t0 ∈ [0, 1] and y0 ∈ R such that G(x)(t0) = y0 for all x ∈ C.

(c) For any ε > 0 and every x, y ∈ C from x|Iε = y|Iε it follows that G(x)|Iε = G(y)|Iε, where
Iε := [t0 − ε, t0 + ε].

(d) Every sequence (xn)n in C which satisfies

(4.4.1) lim
n→∞

(xn −G(xn)) = 0

has an accumulation point.

Then the fixed point set of G is a compact Rδ-set.

Let us make some comments on Proposition 4.4.1. This proposition has been proved in [Sz] in the
much more general setting of maps G : K → E, where K is a bounded convex subset of a normed
space, and E is a Banach space.

Condition (a) in Proposition 4.4.1 suggests to use some Arzelà-Ascoli type result, while condition
(c) means, loosely speaking, that G is an operator with memory; Volterra integral operators provide
an important example. Finally, condition (d) is usually called a Palais-Smale condition; this is an
important ingredient of topological and variational methods in nonlinear analysis.

We are going to apply Proposition 4.4.1 to the operator G in (4.2.4). For the precise formulation,
recall that f : [0, 1] × R is said to satisfy an Lp-Carathéodory condition if t 7→ f(t, u) is Lebesgue
measurable for each u ∈ R, u 7→ f(t, u) is continuous for (almost) each t ∈ [0, 1], and |f(t, u)| ≤ mp(t)
for some function mp ∈ Lp. Moreover, we need the following technical hypothesis

(H12) ∀ε > 0∃δ > 0∀t, τ ∈ [0, 1] : 0 ≤ τ − t ≤ δ =⇒
∫ t

0
|k(t, s) − k(τ, s)|mp(s) ds ≤ ε,

which is some integral-type modification of (H7) and involves the function mp from the Carathéodory
condition.

Theorem 4.4.2 [BiCGS]. Suppose that f : [0, 1] × R satisfies an Lp-Carathéodory condition for
some p ∈ (1,∞], g ∈ BV ∩ C, and λ ∈ R. Assume that the hypotheses (H1), (H10), (H11Λ) (H12)
and (FΛ) from Section 3.4 hold, where Λ is some Waterman sequence and m ∈ Lp/(p−1) in hypothesis
(H11Λ). Then the solution set

(4.4.2) Σ := {x ∈ BV ∩ C : x = g + λV (Sf (x))}

of equation (4.2.2) is a compact Rδ-set in the Banach space ΛBV ∩C endowed with the norm (1.1.14).

Proof. We apply Proposition 4.4.1 to the operator

(4.4.3) G(x)(t) = g(t) + λ
∫ t

0
k(t, s)f(s, x(s)) ds (0 ≤ t ≤ 1)

in the space C of continuous functions and divide the proof into four steps.

1st step: To verify condition (a), let ε > 0 be given. Our hypotheses (H11Λ) and (H12) imply that
we can find δ > 0 such that

|g(t) − g(τ)| ≤ ε (0 ≤ t, τ ≤ 1, |t− τ | ≤ δ),

∫ t

0
|k(t, s) − k(τ, s)|mp(s) ds ≤ ε (0 ≤ t ≤ τ ≤ 1, |t− τ | ≤ δ),
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and
max {λ1, 1}

∫
A
mp(s)m(s) ds ≤ ε

for any Lebesgue meaasurable set A ⊂ [0, 1] of measure ≤ δ, where mp ∈ Lp is the Carathéodory
bound of f and m ∈ Lp/(p−1) is the function from (H11Λ). It follows that, for 0 ≤ t ≤ τ ≤ 1 with
|t− τ | ≤ δ, we have

|G(x)(t) −G(x)(τ)| ≤ |g(t) − g(τ)| + |λ|
∣∣∣∣∫ t

0
k(t, s)f(s, x(s)) ds−

∫ τ

0
k(τ, s)f(s, x(s)) ds

∣∣∣∣
≤ |g(t) − g(τ)| + |λ|

∫ t

0
|k(t, s) − k(τ, s)| |f(s, x(s))| ds+ |λ|

∫ τ

t
|k(τ, s)| |f(s, x(s))| ds

≤ |g(t) − g(τ)| + |λ|
∫ t

0
|k(t, s) − k(τ, s)|mp(s) ds+ max {λ1, 1} |λ|

∫ τ

t
mp(s)m(s) ds ≤ 3λε.

Since δ depends only on ε, but not on x ∈ C, we have shown that the set G(C) is equicontinuous.

2nd step: The conditions (b) and (c) are trivially satisfied for t0 := 0 and y0 := g(0).

3rd step: We have to show that the operator (4.4.3) is continuous. But this follows for the integral
operator (2.4.1) from Theorem 3.4.3 and the estimate

(4.4.4) ∥K(Sf (x))∥ΛBV ≤ max {λ1, 1} ∥mp∥Lp∥x∥Lp/(p−1)
,

where mp is the majorizing function for f .

4th step: We claim that the operator (4.4.3) satisfies the Palais-Smale condition (d). So let (xn)n be
a sequence of continuous functions which satisfies (4.4.1). Using (4.4.4) and Helly’s Theorem 1.1.14
(b), there exists a subsequence (G(xnk

))k of (G(xn))n which converges pointwise to some y ∈ ΛBV .
The structure of the fixed point equation (4.2.2) shows that then (xnk

)k also converges pointwise to
y, and so the sequence (Sf (xnk

))k is bounded in Lp/(p−1) and converges a.e. on [0, 1] to Sf (y).

Now we use a ΛBV variant of the remark after Theorem 2.4.1 and conclude that the sequence
(G(xnk

))k converges in the ΛBV -norm to G(y) = y. Since the ΛBV -norm (1.4.6) is stronger than
the supremum norm (1.1.11), it follows that the sequence (xn)n has an accumulation point in the
space C.

By Proposition 4.4.1, the set (4.4.2) is a compact Rδ in C. To end the proof we show that this set,
endowed with the norm (1.1.11), is homeomorphic to the set

(4.4.5) ΣΛ := {x ∈ ΛBV ∩ C : x = g + λV (Sf (x))},

endowed with the norm (1.4.6). Of course, we have equality Σ = ΣΛ as sets, and the identity map
id : (Σ, ∥·∥∞) → (ΣΛ, ∥·∥ΛBV ) is continuous, since the norm (1.4.6) is stronger than the norm (1.1.11).
Now, if (xn)n is a sequence in Σ which converges to some x ∈ Σ in the norm (1.1.11), we conclude
as above that the sequence (G(xn))n converges to G(x) in the norm (1.4.6). But G(xn) = xn and
G(x) = x, hence ∥xn−x∥ΛBV → 0 as n→ ∞. We conclude that the identity map id : (ΣΛ, ∥·∥ΛBV ) →
(Σ, ∥ · ∥∞) is continuous as well, and so we are done. �

It is not hard to find examples of functions k and f which satisfy the hypotheses of Theorem 4.4.2.
For example, let k(t, s) = k1(t)k2(s) with k1 ∈ Lip and k2 ∈ L2, and f(t, u) = g(t)h(u), where g ∈ L2

and h : R → R is continuous and bounded. Then (H11Λ) holds with

m(s) := (λ1∥k1∥∞ + V arΛ(k1)) ∥k2∥L2 ,

and (H12) holds with

δ :=
ε

2lip(k1) max {λ1, 1}∥k1∥ΛBV

.

The other hypotheses of Theorem 4.4.2 are easily verified.
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