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Abstract. Weakly complete real or complex associative algebras A are necessarily
projective limits of finite dimensional algebras. Their group of units A~! is a pro-
Lie group with the associated topological Lie algebra Ap;e of A as Lie algebra
and the globally defined exponential function exp: A — A~! as the exponential
function of A~!. With each topological group G, a weakly complete group algebra
K[G] is associated functorially so that the functor G — K[G] is left adjoint to
A+ A7l The group algebra K|[G] is a weakly complete Hopf algebra. If G is
compact, then R[G] contains G as the set of grouplike elements. The category
of all real weakly complete Hopf algebras A with a compact group of grouplike
elements whose linear span is dense in A is equivalent to the category of compact
groups. The group algebra A = R[G] of a compact group G contains a copy of the
Lie algebra £(G) in Aye; it also contains all probability measures on G. The dual of
the group algebra R[G] is the Hopf algebra R(G,R) of representative functions of
G. The rather straightforward duality between vector spaces and weakly complete
vector spaces thus becomes the basis of a duality R(G, R) <> R[G] and thus yields a
new aspect of Tannaka duality. In the case of a compact abelian G, an alternative
concrete construction of K[G] is given both for K = C and K = R. Because of
the presence of £(G), the enveloping algebra of weakly complete Lie algebras are
introduced and placed into relation with K[G].
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Chapter 1

The Basics on Real and Complex Vector Spaces

We let K denote the field R of real numbers, respectively, the field C of complex
numbers and, accordingly, Vg the category of real, respectively, V¢ the category
of complex vectorspaces.

def

If V is a K-vector space then its dual V* = Vg (V,K) C KV of K-linear forms
inherits a vector space topology from K", called the topolgy of pointwise con-
vergence, or the weak-*-topology or simply the weak topology. If B is any basis
of V' (which exists by the Axiom of Choice (AC)), then the topological vector
space V* is isomorphic to the product topological vector space V2. Conversely, if
W = KX in the category of topological vector spaces, then W = V(X)_ A topo-
logical K-vector space is called weakly complete iff it is isomorphic to KX for some
set X.

The full subcategory Wk of the category of all topological K-vector spaces
and continuous linear maps between them (cf. [10], EA3.10, p. 755) is called the
category of weakly complete spaces.

We just observed that a weakly complete topological vector space W = KX

is the dual of the vector space V def K™, and a close look at the topological
dual W < Wi (W, K) & WEKX,K) = Wk (K, K)X) = KX =V shows that
W = W'*. It is equally straightforward to oberserve that V*' = V for each K-
vector space V. This is the core of the following theorem.

THE DUALITY OF THE CATEGORIES Vi AND Wy

Theorem 1.1. The categories Vk of K-vector spaces and Wy of weakly complete
topological K-vector spaces are naturally dual to each other. a

A few comments are in order. For the concept of two contravariant functors
F: A — Band U: B — A being adjoint on the right see e.g. [compbook], Definition
A3.30, p. 773. If these functors implement an equivalence of the categories A and
the opposite B°P of B (see [10], A3.39 on p. 777) then the categories A and B
are said to be naturally dual to each other. A celebrated example is given by the
category AB of abelian groups and the category CAB of compact abelian groups
called Pontryagin—van Kampen Duality (cf. [10]). The duality of Vx and Wk is
discussed in detail in [10], E7.12ff., pp.325-340, and again in [11], Appendix 2,
pp- 629-650. It is no accident that weakly complete vector spaces are discussed
extensively in a book dedicated to a comprehensive study of pro-Lie groups such
as [11]. The Lie algebra £(G) of a pro-Lie group is a weakly complete vector space;
in particular, this applies to each and every compact group (and indeed to every
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almost connected locally compact group. It is shown in [10], Proposition 7.5 that
the duality between Vg and Wk is a special case of the Pontryagin formalism. It
is also argued that the category Vi may be considered as a category of locally
convex topological spaces since every K vector space has a unique finest locally
convex topology.

Given this wealth of information on the background of the Duality Theorem
1.1 we emphasize that the basic facts on the duality here are very simple and
direct, but it is this simple rather systematic aspect that will serve us well in the
present project. Some of the basic properties of weakly compact vector spaces are
surprisingly simple.

Proposition 1.2. For a topological K-vector space W the following statements
are eqivalent:
(i) W is profinite-dimensional, that is, W is the strict projective limit of its
finite dimensional quotients.
(il) W is weakly complete.

Proof. This is a simple consequence of the duality and the elementary fact, that
every K-vector space is the directed union of the system of its finite dimensional
vector subspaces. O

(Cf. [10], Proposition 7.26, p. 329.)

Proposition 1.3. Every weakly complete vector space is linearly compact, that is,
any filterbasis of closed affine subspaces has a nonempty intersection.

Proof. See [11], Theorem A2.14, p. 643. O

Let us conclude these remarks with the observation that most of what we
discuss here remains true over any locally compact topological field K in place of
R or K; however we emphasie that we cannot work with the discrete topology of
the ground field which was done in similar situations in contexts like [4] or [12]
and a considerable body of literature related to these sources.



Chapter 2

Hopf Algebras:
The Category Theoretical Background

We work in an environment which generalizes the category of K-vector spaces
plus the presence of the K-tensor products. Such environments were traditionally
provided by the theory of Commutative Monoidal Categories A which support
a functor ® : A x A — A such as e.g. the category of sets with the cartesian
product (X,Y) — X x Y. The precise definitions were collected in [10], Appendix
3, p. 7871f., see notably Definition A3.62 on p. 789. What is relevant here is that
not only the category Vi of K-vector spacs has the familiar tensor product ®
but that the category Wk of weakly complete vector spaces has a tensor product
which was first intruduced by R. DAHMEN in [1] and was used readily in [3].
The essence of this tensor product is that for two weakly complete vector spaces
Wi = KX and Wy = KY we have W7 ® Wy = KX*Y and that there is a bilinear
homeomorphism (wq,ws) — w1 @ we : Wi x Wy — Wi ® Wa such that any
continuous bilinear function b: Wy x Wy — W3 for a weakly complete member W3
of Wk factors through a unique continuous linear map (that is, a morphism of
W]K) b Wl X W2 — W3 such that b(wl,wg) = b’(w1 X wg).

Proposition 2.1. The category Wk together with its tensor product ® is a com-
mutative monoidal category such that for two K-vector spaces Vi and Vo and two
weakly complete K-vector spaces W1 and Wo we have natural isomorphisms

Vi @WV)* 2V eVy and (W@ W) =W o W,.
Proof. These assertions are straightforward exercises; see also [1] and [3]. O
This means

Corollary 2.2. The symmetric monoidal categories (Vi,®) and (Wk, ®) are nat-
urally dual.

Proof. This is a reinterpretation of Theorem 1.1 and Proposition 2.1. a

In any abstract or topological abelian category, an algebra V' with a mutlipli-
cation poses the problem that multiplication (z,y) — zy;V X V — V is not a
morphism because it is bilinear and not linear. The presence of a tensor product
“®” that transforms bilinearity into linearity is therefore an ideal tool to deal with
algebras in a systematic way.
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We call a morphism m: A ® A — A multiplication and call it associative if the
following diagram is commutative in which the natural isomorphism aapc: A ®
(B®C) = (A® B) ® C describes the associativity of ® (cf. [10], pp. 788-789,
preceding Definition A3.62 of a commutative monoidal category):

AR(ARA) — 2424 , (AQA)®A
id a4 ®mJ/ J{m@)idA
(D1) ATA ATA
A - A.
ida

A commutative monoidal category posseses an identity object E (in the case of
sets a singleton set, in the case of Vg the vector space K) and isomorphisms
tarE®A— Aand 5 A]®@ E — A. An identity u: E — A for a multiplication m
is characterized by the commutativity of the diagram

E®A u®id 4 A@A ida ®@u A@E

oy ] I I
A _ A — A.
ida ida

Then a monoid in a commutative monoidal category is an object A in the category,
an associative multplication m with an identity u. (See [10], p, 791.) In the category
of sets with multiplication being the cartesian product, a monoid is exactly the
classical concept of a monoid, that is, a semigroup with identity. In the category
of topological spaces and continuous maps, a monoid in the categorical sense is a
topological semigroup with identity. In the category Vi of K-vector spaces with
the classical tensor product, it is a unital associative K-algebra, and finally,

a monoid in the commutative monoidal category Wy with the ten-
sor product of weakly complete K-vector spaces is a weakly com-
plete topological unital associative K-algebra.

The category theoretical view point regarding commutative monoidal categories
(A, ®) is valuable if one needs to reverse arrows and to consider, say, monoids in
the opposite category (A°P, ®).

Definition 2.3. A coalgebra in a commutative monoidal category is an object with
a coassociative comultipolication c¢: A — A® A, that is, a morphism in the category
satisfying a commutative diagram obtained from (D1) by reversing all arrows, and
with a coidentity k: A — E| that is, a morphism satisfying a commutative diagram
obtained from (D2) by reversing all arrows. O

In a commutative monoidal category (SET), x) of sets with the cartesian prod-
uct and the singleton set {} as identity object F, everyset X gives rise to a coalge-
bra with comultiplication  — (x,2) : X — X x X and coidentity z — x : X — E.
A comprehensive survey of of coalgebras was provided by MICHAELIS in [12]. One
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fundamental Theorem is the following, attributed in [12] to CARTIER, formulated
here for the category Vk:

THE FUNDAMENTAL THEOREM ON COALGEBRAS

Theorem 2.4. FEvery coalgebra in the category Vi of K-vector spaces is the
directed union of the set of its finite dimensional subcoalgebras.

Proof. See [12], Theorem 4.12, p. 742. O

In its structure this result is similar to the elementary remark that every vector
space is the directed union of its finite dimensional vector subspaces which led
to the characterisation of weakly compact vector spaces in Proposition 1.2. In a
similar way we derive from Theorem 2.4 the following important consequence:

THE FUNDAMENTAL THEOREM OF WEAKLY COMPLETE ALGEBRAS

Corollary 2.5. Every weakly complete unital topological K-algebra is the strict
projective limit of the projective system of quotient morphisms between its finite
dimensional unital quotient algebras.

Proof. The proof is a straightforward application of 2.4 via duality. Cf. e.g. [3],
Theorem 3.2. a

In [2] and [3] it was deduced from 2.5 that the multiplicative group A~! of units
of any weakly complete algebra A had special properties. Recall that a topological
group G is almost connected if the component factor group G/Gq is compact. Pro-
Lie groups were extensively studied in [11]. In particular, every pro-Lie group has
a weakly complete Lie algebra £(G) which is a pro-Lie algebra in the sense that
is is the strict projective limit of its finite dimensional quotient algebras, and that
there is a canonical exponential function expg : £(G) — G.

THE GROUP OF UNITS OF A WEAKLY COMPLETE ALGEBRA

Theorem 2.6. Let A be a weakly complete associative unital K-algebra and G
its group A~ of invertible elements. Let Ari. denote the weakly complete pro-Lie
algebra with the Lie bracket [z, y] = xy — yx. Then the following conclusions hold:
(i) G = A.
(ii) G is an almost connected pro-Lie group (which is connected if K = C). The

ezponential function of A is everywhere defined by expx = > ~_, %wm and
yields the exponential function of G given by expg : Arie — G.
Proof. Sie [2] and [3], 3.11, 3.12, and 4.1. O

We return briefly to the category theoretical background with the following
definition:
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Definition 2.7. (a) A bimonoid in a commutative monoidal category is an object
together with both a monoid structure (m,u) and comonoid structure (c, k),

Y L E

(o) A—° sA@A—" A and F “ A

)
such that ¢ is a monoid morphism.

(b) A group (or often group object in a commutative monoidal category) is a bi-
monoid with commutative comultiplication and with an A-morphism o: A — A,
called inversion or symmetry (as the case may be) which makes the following
diagram commutative

A ® A o®id

() | [

A A

uok

plus a diagram showing its compatibility with the comultiplication (see [10], Def-
inition A3.64.ii).

(¢) In our commutative monoidal categories (Vk,®) and (Wk,®) of K-vector
spaces,respectively,weakly complete K-vectorspaces,a group object (A, m, ¢, u, k, o)
is called a Hopf algebra, respectively, a weakly complete Hopf algebra. a

In reality, the definition of a bimonoid is symmetric and the equivalent condi-
tions that ¢ be a monoid morphism, respectively, that m be a comonoid morphism
can be expressed in one commutative diagram (see [10], Diagram following Defi-
nition A3.64, p. 793). Also it can be shown that in a group the diagram arising
from the diagram (o) by replacing o ® id by id ®o commutes as well.

In any theory of Hopf algebras it is common to single out two types of special
elements, and we review them in the case of weakly complete Hopf algebras.

Definition 2.8. Let A be a weakly complete coassociative coalgebra with comul-
tiplication ¢ and coidentity k. Then an element a € A is called grouplike if k(a) = 1
and c(a) = a ® a. The set of grouplike elements of A will be called I'(A).

If A is a bialgebra, a € A is called primitive, if ¢(a) = a® 1+ 1 ® a. The set of
primitive elements of A will be called TI(A). O

For any a € A with ¢(a) = a ® a, the conditions a # 0 and k(a) = 1 are
equivalent.

These definitions apply, in particular, to any weakly complete Hopf algebra.
The set I'(A) of grouplike elements of a weakly complete bialgebra A is a closed
submonoid of (A,-) and the set II(A) of primitive elements of A is a closed Lie
subalgebra of Apse. If A is a Hopf algebra, then T'(A) is a closed subgroup of A~!
hence is a pro-Lie group.

For a morphism f: W7 — Wy in Wk let f: W} — W/ in Vk denote the dual
morphism of vector spaces.
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For a weakly complete coalgebra A let A" = Wk (A, K) be the dual of A. Then
A’ is an algebra: If c: A — A® A is the comultiplication of A, then ¢’: A’ @ A" — A’
is the multiplication of A’.

For a unital algebra R and a weakly complete coalgebra A in duality let (a, g) —
(a,g) : R x A — K denote the pairing between R and A, where for f € R =
Wk (A,K) and a € A we write (f,a) = f(a).

Definition 2.9. Let R be a unital algebra over K. Then a character of R is a
morphism of unital algebras R — K. The subset of K consisting of all alge-
bra morphisms inherits the topology of pointwise convergence from K and as a
topological space is called the spectrum of R and is denoted Spec(R). O

Now let R be a unital algebra and A 4f R its dual weakly complete coal-
gebra with comultiplication ¢ such that ab = ¢/(a ® b) for all a,b € R. In these
circumstances we have:

Proposition 2.10. Let g € A. Then the following statements are equivalent:
(i) g € A is grouplike in the coalgebra A.
(ii) g: R — K is a character of R, that is, is an element of Spec(R).
There is a natural bijection between Spec(R) and I'(A).

Proof. See e.g. [3], 6.5. O

Let K(R) denote the closed two sided ideal in R of all € R such that f(z) =0

for all f € Spec(R). We set S(A) ef span(I'(4))

Proposition 2.11. In the annihilator mechanism of the duality between R and A
we have K(R) = S(A)* and K(R)*+ = S(A).

Proof. For the annhilator mechanism in the presence of duality (at least in the
case of abelian groups) see e.g. [10], 7.12ff. Given that routine, the proof of the
proposition is straightforward. a

Definition 2.12. A unital K-algebra R is called reduced if K(A) = {0}. O

(Ctf. [5], pp. 29.) Thus R is reduced iff S(A) = A (for A = R*) iff the linear
span of T'(A) is dense. We also note that S(A) is a subcoalgebra of A.



Chapter 3

The Weakly Complete Group Algebra K|[G]
and its Hopf Structure

We obtain one significant weakly complete Hopf algebra via the left adjoint
existence theorem starting from the functor A — A~! from weakly complete unital
algebras to the category of topological groups: This left adjoint functor G — K[G]
from the category of topological groups to the category of weakly complete unital
algebras is the topic of investigation here, and K[G] is called the K-group algebra
of the topological group G:

Proposition 3.1. To each topological group G there is attached functorially a
weakly complete group algebra K[G] with a natural morphism ng: G — K[G] ™!
such that the following universal property holds:

For each weakly complete unital algebra A and each morphism of topological groups
f:G — A7! there exists a unique morphism of weakly complete unital algebras
" K[G] — A restricting to a morphism f":K[G]™' — A~ of topological groups
such that f = f' ong.

Proof. See [3], Theorem 5.1. O

A schematic display of the universal property may be helpful:

top groups wc algebras
G —< 5 KG! K[G]
1 I s
A1 — A1 A

In [3] the following facts were established on the weakly complete group algebra:
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THE WEAKLY COMPLETE GROUP ALGEBRA K[G]

Theorem 3.2. For any topological group G, the following statements hold:

(1)
(2)

The K-linear span span(ng(G)) of the image ng: G — K[G]~! is dense in
K[G].
For topological groups G and H there is a natural isomorphism

acu:K[G x H] = K[G] ® K[H].
The continuous algebra morphism
K[G 228 k(G x G]—2¢2 LK[G] @ K[G]

is the natural comultiplication of a Hopf algebra structure on K[G].

Na(QG) is a subgroup of T(K[G]), the closed subgroup of the pro-Lie group
K[G]~! of grouplike elements.

The closed K-vector space of primitive elements II(K[G]) is the Lie algebra
of the pro-Lie group T'(K[G]), and the exponential function of K[G] induces
the exponential function expq: £(G) = II(K[g]) — T(KIG]).

For any compact group G, the function ng is an embedding algebraically and
topologically. In this case we may consider G as a subgroup of K[G] 1.

If G is a compact group and G is considered a subgroup of T'(K[G]) according
to (3) and (5), then G = T(R[G]) and is a proper subgroup of T'(C[G]).

Proof. For (1) see [3], 3.5, for (2) see 5.5 and 5.9, for (3) see 5.7, for (4) see
Theorem 2.5 above, for (5) see [3], 5.4, and for (6) see [3], 8.7. O



Chapter 4

The Group Algebra K[G] and its Duality

To some extent, we are dealing here with the duality theory of weakly complete
Hopf algebras A. For this purpose we let G denote the pro-Lie group T'(4) of
primitive elements of A.

The underlying weakly complete vector space of A is a topological left and right
G-module A with the module operations

(g,a) »ga: GxA—A ga:=ga, and
(a,9) —~ag: GxA—A ag:=ag.
We let I(A) denote the filterbasis of closed two-sided ideals J of A such that A/J

is a finite dimensional algebra and that A = lim jcy4) A/J. We can reformulate
Corollary 2.4 in terms of G-modules as follows:

Lemma 4.1. For the topological group G = T'(A), the G-module A has a filter
basis I(A) of closed two-sided submodules JCA such that dim(A/J)<oo and that
A = limjepay A/J is a strict projective limit of finite dimensional G-modules. The
filter basis I(A) in A converges to 0 € A.

Proof. This is indeed a reformulation of Corollary 2.4 ad
Fora J € [(A) let J* = {f € A": (Va € J) (f,a) = 0} denote the annihilator

of J in the dual V of A. We compare the “Annihilator Mechanism” from [10],
Proposition 7.62 and observe the following configuration:

A {0}
‘ ‘ } ~ (A)J)
J Jt+
\ [} os
{0} A

In particular, we recall the fact that J+ = (A/J) showing that J* is a finite-
dimensional G-module on either side. By simply dualizing Lemma 4.1, we obtain

Lemma 4.2. For the topological group G = T'(A), the dual G-module R def 4 of
the weakly complete G-module A has an up-directed set D(R) of finite-dimensional
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two-sided G-submodules (and K-coalgebras!) F C R such that R is the direct limit

R = colim F = U F.
FeD(R) Feb(R)

The colimit is taken in the category of (abstract) G-modules, i.e. modules without
any topology.

Proof. This is a consequence of vector space duality 1.1 in view of Lemma 4.1. O

This means that for the topological group G = I'(A4), every element w of the dual
of A’ is contained in a finite dimensional left- and right-G-module.
We record this in the following form:

Lemma 4.3. Let w € A’. Then the vector subspaces span(G-w) and span(w-G)
of both the left orbit and the right orbit of w are finite dimensional, and both are
contained in a finite dimensional K-subcoalgebra of A’.

Proof. Straightforward from the preceeding. O

For any w € A’ the restriction f def w|G : G — Kis a continuous function such that
each of the sets of translates f,, fg(h) = f(gh), respectively, ¢f, ¢f(h) = f(hg)
forms a finite dimensional vector subspace of the space C(G, K) of the vector space
of all continuous K-valued functions f on G.

Definition 4.4. For an arbitrary topological group G we define R(G,K) C
C(G,K) to be that set of continuous functions f:G — K for which the linear
span of the set of translations ,f, ;f(h) = f(hg), is a finite dimensional vector
subspace of C'(G,K). The functions in R(G, K) are called representative functions.

(]

In Lemma 4.3 we saw that for a weakly complete Hopf algebra A and its dual
A’ (consisting of continuous linear forms) we have a natural linear map

Tar A" = R(T(A),K), Ta(w)(g) = (@II'(4))(9)-

Lemma 4.5. There is an exact sequence of K-vector spaces

0 S(A)T—2C 4/ T4 R(T(A),K).

Proof. An element w € A’ is in the kernel of 74 if and only if w(I'(4)) = {0} if
and only if w(S(A4)) = {0} if and only if w € S(A)*. O

We recall from Theorem 3.2(1) that for a weakly complete group algebra A =
K[G] the term S(A)* in the exact sequence vanishes, and so 74 is injective in
that case. In general, it does not appear to be evident under which circumstances
Lemma 4.5 can be improved.

Still in the case of A = K[G] we are in a much better situation.
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Lemma 4.6. For any topological group G and any f € R(G,K) there is an w €
K[G] such that wong = f.
Proof. See [3], 7.6. O

THE DUAL OF A WEAKLY COMPLETE GROUP ALGEBRA K[G]

Theorem 4.7. (i) For an arbitrary topological group G, the function
Fa:K[G] = R(G,K), F(w)=wong

is a natural isomorphism of Hopf algebras.

(ii) If A is a weakly complete Hopf algebra satisfying S(A) = A, and if G is the
group T'(A) of grouplike elements of A, then T4: A’ = R(G,K), 7(w) = w|G is an
injective morphism of Hopf algebras, embedding A’ as Hopf subalgebra of R(G,K).

Proof. (i) By Theorem 3.2(i) we have span(n(G)) = K[G] and so the relation
(wone)(G) = wng(G)) = {0} implies w = 0. Hence the natural linear function
Fo:K[G] — R(G,K), Fg(w) = wgong is injective. By Lemma 4.6, it is surjective
and so it is a natural isomorphism of vector spaces.

We recall that K[G] @ K[G] = K[G x G] in the category of weakly complete
vector spaces by Theorem 3.2(2). By Proposition 2.1 we derive that K[G])' @ K[G]’
is naturally isomorphic to K[G x G, and so G — K|[G]' is a functor mapping
topological groups to group objects in the category of vector spaces, that is, to
Hopf algebras.

Analogously, R(G,K) ® R(H,K) = R(G x H,K) in the category of vector
spaces. Hence the functor G — R(G,K) is a functor mapping topological groups
into the category of Hopf algebras (in the category of K-vector spaces). The nat-
urality of Fz then implies that it is a morphism of Hopf algebras.

(ii) The relation S(A) = A is equivalent to S(4)* = {0} in A’, and so by Lemma
4.5, the linear function 74 is injective. By (i) we identify R(G,K) and K[G]' as
Hopf algebras. Then the injection 74: A" — R(G,K) = K[G), G = T'(A) is none
other than the dual £/, of the surjective back adjunction e 4: K[G] = K[I'(4)] — A
of the adjunction of Corollary 6.10 in [3], and so it is a morphism of Hopf algebras
and the assertion follows. O

The vector space R(G,K) is familiar in the literature as the vector space of
representative functions on G, where it is most frequently formulated for compact
groups G and where it is also considered as a Hopf-algebra. In that case, the
isomorphism of Theorem 4.7 is also an isomorphism of Hopf algebras. We are
choosing here the covariant group algebra K[G] to be at the center of attention
and obtain R(G, K) via vector space duality from K[G]. Conversely, if one asks for
a “concrete” description of K[G], then the answer may now be that, in terms of
topological vector spaces, as a topological vector space, K[G] is the algebraic dual
(consisting of all linear forms) of the (abstract) vector subspace R(G,K) of the
vector space C'(G,K) of continuous functions G — K. If G is a compact group,
C(G,K) is a familiar Banach space.



Chapter 5
The Group Algebra R[G] for Compact Groups

The weakly complete group algebras K[G] are particularly perfect for K = R and

compact groups G. Recall the hyperplane ideal I = ker k for the augmentation

k:R[G] — R. Let B(G) C 1+ I denote the closed convex hull of G C R[G].
Indeed we have

REAL GROUP ALGEBRAS OF COMPACT GROUPS

Theorem 5.1. Let G be a compact group and abbreviate the real weakly complete
group Hopf algebra R[G] by A. Then the following statements hold:

(1) The natural morphism of topological groups ng: G — T'(A) is an isomorphism
of compact groups.

(2) The Lie algebra £(G) is isomorphic to the pro-Lie algebra II(A), and the
restiction of the exponential function of A is (upon natural identification)
equal to expa: £(G) — G.

(3) B(G) is a compact submonoid with zero of R[G]~1 which is naturlly isomor-
phic to the compact convex set of probability measures of G containing Haar
measure vy € 1 + I as the zero element of B(G).

(4) The subspace J e R-7v is a one-dimensional ideal, and
RGl=1T®J

is the ideal direct sum of I and J. The vector subspace J is a minimal nonzero
ideal. In particular, J = R[G]/I = R and I = R[G]/J. The Lie algebra of
primitive elements II(R[G]) = £(G) is contained in I = kerk. Trivially,
expl C1+1.

Proof. See [3], Section 6 and 7. O

We note that item (1) is not correct for K = C. Out next chapter will shed
some light onto how matters relate between R and C.
In the converse direction we have the following information.

THE HOPF ALGEBRA SIDE OF THE ISSUE

Theorem 5.2. Let A be a real weakly complete Hopf algebra and abbreviate
the group T'(A) of its grouplike elements by G. Assume that G is compact and
generates the algebra A algebraically and topologically. Then the natural morphism
ea:R[T(A)] — A is an isomorphism of weakly complete Hopf algebras.

Proof. See [3], Theorem 8.12. O
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Proposition 5.3. A real weakly complete Hopf algebra A which satisfies A = S(A)
is automatically cocommutative.

Proof. By Theorem 4.7(ii) we have an injection of Hopf algebras A" — R(T'(A), K).
Since R(I'(A),K) is a commutative algebra, A’ is a commutative algebra. Hence
its dual A is cocommutative. O

Definition 5.4. A real weakly complete Hopf algebra A is called compactlike if
the multiplicative subgroup I'(A) is compact and its linear span is dense in A, that
is A=S(4). O

Cf. [3] . By Proposition 5.3, a real weakly complete compactlike Hopfalgebra is
automatically cocommutative.

THE EQUIVALENCE THEOREM

Theorem 5.5. The categories of compact groups and of weakly compact compact-
like Hopf algebras are equivalent.

Proof. The result follows from Theorem 5.1(1) and Theorem 5.2. O

In particular this means that the topological K-linear representation theories
of compact groups and of the topological algebras underlying wealky complete
compactlike Hopf algebras are the same.

In a similar vein,

if a category turns out to be dual to the category of weakly complete
compactlike Hopf algebras, then it is also dual to the category of
compact groups and vice versa.

Here is a simple example:

A DUALITY THEOREM
Theorem 5.6. The category of weakly complete compactlike Hopf algebras is dual
to the category of real reduced Hopf algebras.

Proof. A real weakly complete compactlike Hopf algebra is isomorphic to R[G]
for a compact group G. By Theorem 4.7, the dual R[G]’ is isomorphic to the real
Hopf algebra R(G,R) which is reduced (see Definition 2.10 and the subsequent
comments) since S(R[G]) = R[G]. O

Remark. A real reduced Hopf algebra is automatically a commutative algebra.

THE TANNAKA DUALITY THEOREM

Corollary 5.7. [14] The categories of compact groups and of real reduced Hopf
algebras are duals of each other.

Proof. Now clear. a0



Chapter 6

An Alternative View: Compact Abelian Groups

We have seen the usefulness of the concept of a weakly complete group algebra
K[G] over the real or complex numbers. We obtained its existence out the adjoint
functor existence theorem. This is rather remote from a concrete construction. It
may therefore be helpful to see the whole apparatus in a much more concrete way
at least for a substantial subcategory of the category of compact groups, namely,
the category of compact abelian groups for which we already have a familiar duality
theory due to PONTRYAGIN and VAN KAMPEN (see e.g. [10], Chapter 7).

In this chapter let G be a compact abelian group and G = Hom.(G,R/Z)
its discrete character group. These groups are written additively. For the current
discussion, we consider a character y of G as a function G — S! — C* and
let A = A(G) denote the discrete abelian multiplicative group of these x. Then
clearly A = A(G) 2 G. (Since in former chapters the letter A frequently denoted
some topological algebra, the reader should perhaps be warned that in the present
context it designates a multiplicatively written discrete abelian group.)

The Hopf algebra R(G,C).
Following [10], Theorem 3.28ff. we have R(G,C) = €D, c 4 C-x. Therefore, con-

sidering C(4) C C4, we have an isomorphism ¢g: CY) — R(G,C),

(1) () =Y FO0x

XEA

as a finite sum. Thus, if ¢ € A is the identity character, we have ¢(d,.) = x for
x € A.

We recall that the comultiplication cr of R(G,C) = C) is simply given by
cr(9)(g,h) = p(g + h) which equals ¢(g)p(h) = (¢ ® ©)(g, h), if ¢ is a character
of G, i.e. ¢ € A. Thus on the basis elements J, . of C™), the comultiplication ¢ of
C™ is simply given by ¢(dyc) = dye ® 6y and it is linearly extended from there.
In this fashion, C*) becomes a commutative and cocommutative Hopf algebra
isomorphic to the Hopf algebra R(G, C).

The dual Hopf algebra C[G].

The vector space dual of C4) is the Hopf algebra C4 in the category WV of
weakly complete C-vector spaces with the dual pairing

(——nChxCW = c, (F )= F(x)f(x)eC.

XEA
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Definition 6.1. We write C[G] L1 4 as the set of all functions F: A — C given
the topology of pointwise convergence. Its commutative and cocommutative Hopf
algebra structure is dual to that of C(Y) which we just recalled. O

Multiplication on C[G]:

Let Fy, F, € CA. We identify C* ® C# with CA*4 in the category VW. Let
m: CA*4 — CA denote the multiplication of the Hopf algebra C[G]. Then for all
X € A we have

<m(F17F2)a X> = <F1 02y F27 C(X)>

(since m and ¢ are duals of each other)

= <F1 ® F3, 5xs ® 5X€> = <F17 5x,s><F2>5x76>

(by the definition of the comultiplication ¢ on C[A])

= F1(x)F2(x)

(by the definition of the dual pairing)

= (F1F2)(x)

So multiplication on C[G] = C¢ is the pointwise multiplication of functions making
the algebra structure of C¢ the one arising from the product of copies of C.

Comultiplication v: C[G] = C¢ — C[G] ® C[G] = C“*% on C[G]:

Let F € C# and x1, x2 € A. If C4) ® C4) in the category of vector spaces is
identified naturally with C4*4) then 8¢y, \,) (c,e) 18 identified with &y, c ® 6y, ..
Then on a basis of C4) @ C) we have (Y(F),8y,c @ 0yy.c) = (F,0x1x0.c)

(since «y is dual to the multiplication on C[G] = C4))

= F(xixz)
(by definition of the dual pairing).

We summarize:

Lemma 6.2. For a compact abelian group G, the multiplication of the weakly
complete Hopf algebra C[G] = CAS) is given by the natural product multiplication
(F1F)(x) = Fi(x)F2(x), and the comultiplication is given by v(F)(x1,x2) =
F(x1x2) (with C**4 and C* @ CA identified in the category of weakly complete
vector spaces).

Proof. This is a summary of what we had before. O

What are the grouplike elements F' € C[G] = CA?

An element F € C* is grouplike iff it is nonzero and v(F) = F ® F, that is, for
all x1, x2 € A we have

Y(F)(x1,x2) = (F @ F)(x1,x2) = F(x1)F(x2).

But from the previous subsection we have v(F)(x1, x2) = F(x1x2). Thus F in
the weakly complete Hopf algebra C[G] = C is grouplike iff F € Hom(A,C*).

What are the primitive elements F' € C[G] = CA? The identity 1 of the algebra
C4 is the constant function with value 1 € C. An element F' € C* is primitive iff
Y F)=(F®1+1QF)iff
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(Vx1,x2 € 4) F(xaix2) = v(F)(x1,x2) = (F®1+1® F)(x1,Xx2)
= F(x1) + F(x2) iff F' is a morphism of abelian groups iff

F € Hom(A4, (C,+)).
Again we summarize for the Hopf algebra C[G] = CA(%):

Lemma 6.3. The group G* = I'(C[G]) is Hom(A, C*) C (C*)4 with the topology
of pointwise convergence.

The Lie algebra of primitive elements is the vector space Hom(A,C) C CA with
the topology of pointwise convergence.

Proof. See above. a

The following is noted in [10]:

Remark 4. Hom(A,R) is naturally isomorphic to Hom(R ®z A,R), a weakly
complete R-vector space.

Proof. See Proposition 7.35, p. 338 of [10]. O

This remains true in the case K = C. These facts may be shown directly. In
[10], Theorem 8.20 it is discussed that G contains totally disconnected compact
subgroups A such that the annihilator in the character group of G, say, A+ C A
is free, and A/A" is a torsion group. This means that G/A is a torus. We note
that the inclusion A+ — A induces an isomorphism K @z A+ — K ®7 A and
the (torsion free) rank of A is rank AL, If A+ = Z(X) for a set X of cardinality
rank A+, then Hom(4,K) = KX,

Remark 6. 5. If X is any cardinal and A is an abelian group with torsion free
rank X, then Hom(A4,R) = R¥.

Proof. See the preceding explanation. O

The exponential function of C[G] = CA.

We recall from [3], Theorem 3.12, that every weakly complete associative unital
algebra W such as e.g. C* has an exponential function, which is immediate in
this particular case as it is calculated componentwise. If the weakly complete

algebra W is even a Hopf algebra, such as C#, then the group G* et (W) is
a pro-Lie group with C-Lie algebra £(G*) being the pro-Lie subalgebra II1(W) of
Wiie of all primitive elements of W by [3], Theorem 6.15. If W = C4 = C[G],
then the exponential function expg:: £(G*) — G* of G¥ is the restriction of the
(componentwise!) exponential function exp: C4 — (C4)~! = (C*)4 to £(G*) =
Hom(A4, C).
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The real case derived from the complex case

If we consider R as a subfield of C, then it is natural to consider R(G,R) as
a vector subspace of R(G,C) in the natural way. Let x:C — C be conjugation:
k(z) = z. Then % = id¢

The involution x ® idg on the complexification C Qg E of a real vector space
E is treated at some length in [10] in the last section of Chapter 3, headlined
Complezificatin of Real Representations (cf. p. 83ff.). -

We define the involution rg on R(G,C) by £(¢)(g) = ¢(g) for all g € G. Then
a function ¢ € R(G,C) is in R(G,R) iff ¢ is fixed under g,

If x\:G — St C C is a (multiplicative) character, then its coextension G — C,
which we may also denote Y, is a member of R(G,C), and in this sense we may
write A C R(G,C). Now, if x € A, then rr(x)(9) = x(9) = x(9)"! = x"(9),
since x(G) C S!, as G is compact. Thus kg leaves A C R(G,C) invariant and
induces on A an involution. Accordingly, we define on CY) an involution pg by
pa(f)(x) = kr(X). Then ta(kr(p)) = pa(i(p)) for ¢ € R(G,C), that is, tgorkr =
pa o ta. Accordingly, f € C) is in R(Y) iff it is fixed under pg.

The involution pg of C) extends to an involution o of CA via og(F) =
F o kg. Then the duality of C* and C“), which is implemented by the pairing

(F.f) = FOOf0),
XEA

is clearly compatible with o¢ in the sense that

(2) (F, f) = {oa(F), pc(f))-

Definition 6.6. We define R[G] C C[G] = C* to be the fixed vector space of the
involution o of C[G]. O

For the following we recall that T'(R[G]) C G* = Hom(A,C*) and that II(R[G]) =
£(G) C Hom(A, C).

THE CASE OF COMPACT ABELIAN GROUPS REVISITED

Theorem 6.7. For compact abelian groups G the following statements hold
(i) R[G] is a weakly complete real Hopf subalgebra of the weakly complete complex
Hopf algebra C[G] = CA.
(i) T'(R[G]) = Hom(A,S'), and therefore I'(R[G]) is naturally isomorphic to G.
(iii) II(R[G]) = Hom(A,iR) =i Hom(A,R), and therefore II(R[G]) is isomorphic
to R™22k(A) yhere rank(A) is the torsion free rank of the abelian group A = G.
(iv) The exponential function exp: C[G] = C* — C[G]~! = (C*)4, (exp F)(x) =
e maps I(R(G)) = £(G) into T'(R[G]) = G and induces the exponential
function expa: £(G) = G of G.

Proof. (i) Let v: G — H be a morphism of compact groups. Then A(7y): Ay — Ay,
A; = A(Gy), j = 1,2, is a morphism of abelian groups, and C[G] = C4 — C42 =
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C[H] is a morphism of weakly complete Hopf algebras. Then the following diagram

commutes:
cle)] — C[H]

7| |

C[G] ——— C[H].
Ch]

Thus the involution ¢:C[—] — C[—] is a natural transformation. In view of
C[G x H] = C[G] ® C[H] in the category of weakly complete vector spaces, og
is an involution of Hopf algebras on C[G], that is it respects multiplication and
comultiplication as well as identities and coidentities plus symmetries. Hence the
fixed point set R[G] of o on C[G] is a Hopf subalgebra.

(ii) The naturality of o and C[G x H] = C¥*# = C[G] ® C[H] in the category
of weakly complete vector spaces imply readily that G* = T'(C[G]) = Hom(A, C*)
is invariant under o. Let F: A — C* be in G* and let x € A. Then o(F)(x) =
F(x—1) = (F(X))i1 and o(F) = F imply that F(x)~! = F(x) within C, whence
|F(x)] = 1. Hence F € G* is o-invariant iff F(A) C S'. But Hom(4,S!) =

Hom(A,R/Z) = A=G=~a by Pontryagin Duality: See [10], Theorem 7.63,
p. 358.

(iii) We assume that F' € Hom(A, C) is o-invariant. that is F\(x) = (¢ F)(x) =
F(x™') = -F(x). If F(x) = z+iy with 2,y € R, then x+1iy = —(z—1y), implying
2 = 0. Thus F(A) C iR. Thus I(R[G]) = Hom(A,iR) = Hom(A,R) = Rrank(4)
by Remark 5.

(iv) If F € Hom(A,iR) C C4, then for any x € A we have (exp F)(x) =
e ¢ S!. The remainder follows from [dh1], Theorem 6.15. O

We observe that C = R®iR and C* = R} xS 2 R x T in a canonical fashion.
Let the R-vector space Hom(A,R) = Hom(R ®z A, R) be denoted G*. Then we
have the following Corollary for which we recall G* = T'(C[G]) O

Corollary 6.8. Let G be a compact abelian group. Then
(i) G*=G" x @G,
(i) L£c(G) =G @ £(G).

(iil) expgs = idgy +expg in the sense that expgs acts componentwise.

Proof. (i) By Theorem 7(ii), G* = Hom(A4,C*) = Hom(A, R} x St)
=~ Hom(A,R}) x Hom(A,S!) = Hom(4,R) x Hom(CAv', T) = G x G=G xGby
duality. We calculate that o operates on G* x G via (p,g) = (=, g). So the fixed
point set of G* x G is {0} x G = G.

(ii) By Theorem 7(iii), II(C[G]) = Hom(A4, C) = Hom(A, R @ iR)
>~ Hom(A, R) ® Hom(A,iR) = G* @ iHom(A,R) = G® @ iG”. Now o acts on
G* @iG" via ¢ + i) — —p+it). So the fixed point set of G* ®iG” is iG” = Lr(G).

Assertion (iii) is immediate. O



Chapter 7

Preservation Properties
of the Group Algebra Functor

In our discussion of the functor G — K[G] we have mainly concentrated on the
objects. But in concrete situations it is just as important to know how this functor
treats morphisms. So we insert a chapter on the prepservation of the most basic
properties.

Does the functor K[—] preserve surjectivity?

Let f: G — H be a surjective morphism of compact groups.

We know from [3] that G may be viewed as the multiplicative subgroup of
group like elements of R[G] and that

(1) span(G) = R[G].
Since f = R[f]|G has H as image,we know that
2) H C im(R[f]).

The function R[f] is, in particular, a morphism of weakly complete vector spaces.
These morphisms always have closed images (see [10], Theorem 7.30(iv)). By (1),
H generates R[H] algebraically and topologically. Thus R[H] is contained in the
image of the morphism R[f] which therefore is surjective. But then the commuting
diagram

corlG] 22, cgR[H]
G s o
C[f]

shows that C[f] is also surjective. So we have the following Lemma:

Lemma 7.1. For every surjective morphism f of compact groups the morphism
K[f] of weakly complete Hopf algebras is surjective.

Proof. See above. O

This seems natural in so far as left adjoints tend to preserve epimorphisms.
The particular left adjoint K[—], however, also preserves injectives:

Theorem 7.2. If G is a closed subgroup of the compact group H, then K[G] C
K[H] (up to natural isomorphism,).

Proof. From the injectivity of a morphism of compact groups j:G — H we
derive the surjectivity of C(j,K): C(H,K) — C(G,K). (Cf. the Gelfand-Naimark
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Theorem.) Accordingly, the function L?(j,K): L?(H,K) — L*(G,K) is surjective
as well. Now we set M C(f,K)(R(H,K)) € R(G,K). Since R(H,K) is dense
in C(H,K) in the norm topology, M is dense in R(G,K) in the norm topology.
Then it is dense in L?(G,K) in the L2-topology, and M is a G-module. In the case
of K = R we can now apply Lemma 8.11 of [3] and conclude that M = R(G,R).
Thus R(G, j): R(H,R) = R(G,R) is surjective. By Theorem 7.7 of [3] this implies
that R[f]:R[H]" — R[G]’ is surjective. The duality between K-vector spaces and
weakly complete K-vetorspaces shows that R[f]: R[G] — R[H] is injective. This
proves the theorem for K = R. But then the commuting diagram

CRR[f]

C @ R[G] C® R[H]
Clq] — C[H]

shows that C[f] is also injective. In the category of weakly complete vector spaces
every injective morphism is an embedding by duality since every surjective mor-
phism of vector spaces is a coretraction. a

Corollary 7.3. (i) For each compact group G with identity component Gg, the
Hopf algebra K[Gy)] is a Hopf subalgebra of K[G].
(i) R[Go] is algebraically and topologically generated by II(R[G]).

Proof. (i) is a consequence of Theorem 7.2.

(ii) The compact group Gq is algebraically and topologically generated by
expa(L£(GQ)) (cf. [11], Corollary 4.22, p. 191, and span(Gp) = R[Go] bu Theorem
3.2(1). O



Chapter 8

The Impact of Weakly Closed
Enveloping Algebras of Lie Algebras

We have observed that at least for compact groups G, the weakly complete group
algebra R[G] contains a substantial volume of materials: G itself, the Lie algebra
£(G) of G as a pro-Lie group, the exponential function between them and, as was
at least indicated in Theorem 5.1(3) and which was described in greater detail in
[3], a substantial portion of the Radon measure theory of G. The topological Hopf
algebra K[G] is, in a sense, univerally generated by G. So it seems natural to ask
the question whether £(G) generates K[G] in a universal way—perhaps in some
fashion that resembles the universal enveloping algebra of a Lie algebra such as
it is presented in the famous POINCARE-BIRKHOFF-WITT-Theorem. This is not
exactly the case, but a few aspects can and proably should be discussed

We let K denote one of the topological fields R or C. Let WA denote the
category of weakly complete associative unital algebras over K and and WL the
category of weakly complete Lie algebras over K. The functor A — Ap;. which
associates with a weakly complete associative algebra A the weakly compliete Lie
algebra obtained by considering on the weakly complete vector space A the Lie
algebra obtained w.r.t. the Lie bracket [z, y] = zy — yx is called the underlying Lie
algebra functor. Since A is a strict projective limit of finite dimensional K-algebras
by [3], Theorem 3.2, then Ay, is a strict projective limit of finite dimensional K-Lie
algebras, briefly called pro-Lie algebras. Every pro-Lie algebra is weakly complete.
Caution: A comment following Theorem 3.12 of [3] exhibits an example of a weakly
complete K-Lie algebra which is not a pro-Lie algebra.

Lemma 8.1. The “underlying Lie algebra” functor A — Ay from WA to WL
has a left adjoint U: WL — WA.

Proof. The category WL is complete. (Exercise. Cf. Theorem A3.48 of [10], p.
781.) The “Solution Set Condition” (of Definition A3.59 in [10], p. 786) holds.
(Exercise: Cf. the proof of [3], Section 5.1 “The solution set condition”.) Hence U
exists by the Adjoint Functor Existence Theorem (i.e., Theorem A3.60 of [10], p.
786). 0

In other words, for each weakly complete Lie algebra L there is a natural
morphism Ap: L — U(L) such that for each continuous Lie algebra morphism
f:L — Ay for a weakly complete associative unital algebra A there is a unique
WA-morphism f': U(L) — A such that f = f{,, o AL.
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WL AA
L —2 Ul)e U(L)

vf l lf Lic Tmf !
Ave ——  Avie A.

If necessary we shall write Ux instead of U whenever the ground field should
be emphasized. We shall call Uk (L) the weakly complete enveloping algebra of L

(over K).

Example 8.2. Let L = K. Then U(L) = K(X) (see [3], Definition following
Corollary 3.3), and define Ar: L — U(L)rie by Ar(t) = t-X. Then the universal
property is satisfied by [3], Corollary 3.4. Indeed, let f: K — Ar;. a morphism of
weakly compliete Lie algebras. Then there is a unique morphism f": U(L) — A
such that f/(X) = f(1) by [3], Corollary 3.4. Then f'(t-X) =t-F'(X) =t f(1) =
1),

Thus by Lemma 3.5 of [3] and the subsequent remarks we have:

The weakly complete enveloping algebra Uc over C of the small-
est nonzero Lie algebra is isomorphic to the weakly complete com-
mutative algebra C[[X]]C with the complex power series algebra
C[[X]] 2 CN, Ny = {0,1,2,...}.

The size of the weakly complete enveloping algebras therefore is considerable.

Proposition 8.3. The universal enveloping functor U is multiplicative, that is,
there is a natural isomorphism oy, r,: U(L1 X Lo) — U(L1) ® U(Ls).

Proof. We have a natural bilinear inclusion morphism of weakly complete vector
spaces j: U(L1) x U(Lg) — U(L1) ® U(Ls) yielding
Ly x Ly, U(L1)Lie X U(L2)Lie;> U(L1)Lie ® U(L2)Lic

and
U(L1)nie ® U(L2)Lie=(U(L1) ® U(L2))Lies

the composition ag of which is a morphism of weakly complete Lie algebras. Hence
the universal property yiels a morphism of weakly complete associative algebras

(1) [ U(L1 X LQ) — U(Ll) X U(LQ)

such that ag = agie 0 Ap, ® AL, -

The functorial property of U allows us to argue that each of U(L,,), m = 1,2
is a retract of U(Ly x L) so that we may assume U(L,,) C U(L; X Ly), m = 1,2.
Now the multiplication in U(L; x Lg) gives rise to a continuous bilinear map
U(L1) x U(Lg) — U(L; x L)), and then the universal property of the tensor
product of weakly complete vector spaces yields the morphism
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Similarly to the proof of [3], Theorem 5.5 (preceding the statement of the
theorem) we argue that « and 8 are inverses of each other, and so « of (1) is the
desired isomorphism ar, 1,,. O

Corollary 8.4. For a weakly complete Lie algebra L let pr:L — (U(L) ®
U(L))Lie denote morphism of weakly complete vector spaces given by pr(x) =
vo(2) @ 1 + 1@~ (x). Then py, is a morphism of Lie algebras. Thus py, turns out
to be a morphism of weakly complete Lie algebras and therefore, by the universal
property of U produces a unique natural morphism of weakly complete associative
unital algebras vr: U(L) — U(L) @ U(L) such that pr, = (71)Lie © AL- Then each
weakly complete enveloping algebra U(L) is a weakly complete Hopf algebra with
the comultiplication v, and the coidentity U(k): U(L) — K, where k: L — {0} is
the constant morphism.

Proof. Let z; € £ and y; = Ap(z;), j = 1,2. Since Ar, is a morphism of weakly
complete Lie algebras, Ar([z1,22]) = [y1,¥2] = y1y2 — y2y1 in U(L)Lie. Now let
2 =y; ®1+1®y; for j =1,2. Then in (U(L) ® U(L))rie, just as in the classical
case, we calculate

[21, 22] = z120—2021 = (YN @1I+1QY1) (2R 1+1®Y2) — (121 +1RY2) (1 @1+ 1Ry )
= 111201+ QY +12 @y +1@Y1Y2) — (Y21 @1+ 12 QY1 +y1 QY2 + 1@ Yay1)
= [ylayQ] ®@1+1® [y17y2]7

showing that pr: L — U(L)L; is a morphism of weakly complete Lie algebras. Now
~r, is a morphism of weakly complete unital algebras satisfying 7. (y) = y®1+1®y
for y = A(x), € L and the associativity of this comultiplication is readily checked
as in the case of abstract enveloping algebras. The constant morphism of weakly
complete Lie algebras L — {0} yields a morphism of weakly complete unital
algebras U(L) — K which is the coidentity of the Hopf algebra. O

Our results from [3] regarding weakly complete associative unital algebras and
Hopf algebras over K apply to the present situation.

THE WEAKLY COMPLETE ENVELOPING ALGEBRA

Theorem 8.5. Let L be a weakly complete Lie algebra. Then
(i) U(L) is a strict projective limit of finite-dimensional Lie algebras and the
group of units U(L)~! is dense in U(L). It is an almost connected pro-Lie
group (which is connected in the case of K = C). The algebra U(L) has an
exponential function expyyry: U(L)Lie — uU(L) 4,
(ii) the pro-Lie algebra TI(U(L)) of primitive elements of U(L) contains Ar(L),

(iii) the pro-Lie algebra II(U(L)) is the Lie algebra of the pro-Lie group Gp, def

['(U(L)) of grouplike elements of U(L), and the exponential function expg, :
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L(G1) — G is the restriction and corestriction of expy(r)- Its image gen-
erates algebraically and topologically the identity component (Gr)o.

Proof. (i) See [3] Theorems 3.2, 3.11, 3.12, 4.1.

(ii) The very definition of the comultiplication in Corollary 8.4 shows that for
any y € Ar(L), the image under the comultiplication v, is y ® 1 + 1 ® y, which
means that y is primitive.

(iii) See [3], Theorem 6.15. O

We note right away that for any weakly complete Lie algebra L which has
at least one nonzero finite dimensional K-linear representation, the morphism
Ar: L — U(L)pie is nonzero. By Ado’s Theorem, this applies, in particular, to
any Lie algebra which has a nontrivial finite dimensional quotient and therefore is
true for all pro-Lie groups.

Corollary 8.6. (i) The weakly complete enveloping algebra U(L) of a weakly
complete Lie algebra L with a nontrivial finite dimensional quotient has nontrivial
grouplike elements.

(ii) If L is a pro-Lie algebra, then A: L — U(L)yie maps L isomorphically into
the set II(U(L)) of primitive elements.

Proof. (i) By Theorem 8.5 (iii) U(L) has nontrivial grouplike elements if ITI(U(L))
is nonzero. By Theorem 8.5 (ii) this is the case if 4y, is nonzero which is the case
for all L satisfying the hypothesis of the Corollary by the remark preceding it.
(ii) Since each finite dimensional quotient of L has a faithful representation
by the Theorem of Ado, and since the finite dimensional quotients separate the
points of L, the morphism ~yy, is injective. However, injective morphisms of weakly
complete vector spaces are open onto their images. a

It follows that for pro-Lie algebras L we may assume that L is in fact a closed
Lie subalgebra of U(L) which generates U(L) algebraically and topologically.

One application of the functor U is of present interest to us. Recall that for
a compact group we naturally identify G with the group of grouplike elements
of R[G], and that £(G) may be identified with the pro-Lie algebra II(R[G]) of
primitive elements. In the case of K = C it is still true that II(C[G]) is the Lie
algebra of the pro-Lie group I'(C[G]).

Proposition 8.7. (i) Let G be a compact group. Then there is a natural morphism
of weakly complete algebras we: Ur(£(G)) — R[G].

(ii) The image of wg is the closed subalgebra R[Gy] of R[G].

(iii) The pro-Lie group T'(Ugr(£(G))) is mapped onto Gy = T'(R[Go]) C R[G].

Proof. (i) follows at once from the universal property of U.
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(ii) As a morphism of weakly complete Hopf algebras, w: U(£(Gy)) — R[Go]
maps grouplike elements into grouplike elements.

But the closed group Gj is generated algebraically and topologically by exp(G)
Hence Gy is contained in the algebra algebraically and topologically generated by
exp (£(G)) = I(R[G]). O

Example 8.8. Let G = T = R/Z. Then C[G] = CZ as was exposed in Chapter 6.
Then I'(C[G]) & Hom(Z,C*) = C* and II(C[G]) =& Hom(Z, C) = C. Further, by
Example 2.2, U(C) = C(X) = C[[X]]®. Then the morphism of Hopf algebras wr of
Proposition 10 is a morphism C[[X]]® — CZ = C[[X]]. Thus the enveloping Hopf
algebra of £(G) C C[G] tends to be vastly larger than the group algebra C[G].
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